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Abstract Let k be an algebraically closed field of characteristic zero. Let f :X → S be

a flat, projectivemorphism of k-schemes of finite type with integral geometric fibers.We

prove the existence of a projective relativemoduli space for semistable singular principal

bundles on the fibers of f .

This generalizes the result of A. Schmitt, who studied the case when X is a nodal

curve.

1. Introduction

LetX be a smooth projective variety defined over an algebraically closed field k of

characteristic zero. In [14] and [15] M. Maruyama, generalizing Gieseker’s result

from the surface case, constructed coarse moduli spaces of semistable sheaves

on X . (In fact, the construction worked in some other cases.) Later these moduli

spaces were also constructed for arbitrary varieties (see C. Simpson’s paper [21])

and in an arbitrary characteristic (see [12] and [11]). Since the moduli space of

semistable sheaves compactifies the moduli space of (semistable) vector bundles,

it is an obvious problem to try to construct similar compactifications in the case

of principal bundles. This problem was considered by many authors (see [19] and

the references within), and it was solved in the case of smooth varieties. However,

in the case of singular varieties the problem is still open in spite of some partial

results (see, e.g., [3] and [18]). The aim of this paper is to solve this problem in

the characteristic zero case.

Let ρ : G→GL(V ) be a faithful k-representation of the reductive group G.

In the following we assume that image of the representation ρ is contained in

SL(V ).

A pseudo-G-bundle is a pair (A, τ), where A is a torsion-free OX -module of

rank r = dimV and τ : Sym∗(A⊗ V )G →OX is a nontrivial homomorphism of

OX -algebras. In [3] U. Bhosle, following earlier work of A. Schmitt [16] in the

smooth case, constructed the moduli space of pseudo-G-bundles in the case when
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X satisfies some technical condition, which she showed to hold for seminormal

or S2-varieties. However, it is easy to see that this condition is always satisfied

(see Lemma 2.3).

Giving the homomorphism τ is equivalent to giving a section

σ :X →Hom(A, V ∨ ⊗OX)//G= Spec
(
Sym∗(A⊗ V )G

)
.

Let UA denote the maximum open subset of X where A is locally free. We say

that the pseudo-G-bundle (A, τ) is a singular principal G-bundle if there exists

a nonempty open subset U ⊂ UA such that σ(U)⊂ Isom(V ⊗OU ,A∨|U )/G.

In the case when X is smooth, A. Schmitt showed in [17] that the moduli

space of δ-semistable pseudo-G-bundles parameterizes only singular principal G-

bundles (for large values of the parameter polynomial δ). In a subsequent paper

[18], he also showed that in the case when X is a curve with only nodes as sin-

gularities, the moduli space constructed by Bhosle parameterizes only singular

principal G-bundles. Moreover, under some mild assumptions on the representa-

tion ρ, he proved that σ(UA)⊂ Isom(V ⊗OUA ,A∨|UA)/G. (In this case we say

that (A, τ) is an honest singular principal G-bundle.)

In this paper we prove that the same result holds for all the varieties: the

moduli space constructed by Bhosle (for large values of the parameter polyno-

mial δ) parameterizes singular principal G-bundles for all varieties X and all

representations ρ. More precisely, we prove the following theorem.

THEOREM 1.1

Let f : X → S be a flat, projective morphism of k-schemes of finite type with

integral geometric fibers. Assume that k has characteristic zero. Let us fix a poly-

nomial P and a faithful representation ρ : G→ SL(V )⊂GL(V ) of the reductive

algebraic group G.

1. There exists a projective moduli space Mρ
X/S,P → S for S-flat families of

semistable singular principal G-bundles on X → S such that for all s ∈ S the

restriction A|Xs has Hilbert polynomial P .

2. Let P correspond to sheaves of degree zero. If the fibers of f are Goren-

stein and there exists a G-invariant nondegenerate quadratic form ϕ on V , then

Mρ
X/S,P → S parameterizes only honest singular principal G-bundles.

Since the fiber of Mρ
X/S,P → S over s ∈ S is equal to Mρ

Xs,P
this theorem shows

that moduli spaces of singular principal bundles are compatible with degenera-

tion.

Our approach is similar to the one used in [5] and [6] as explained in [19]:

we prove a global boundedness result for swamps. (This part of our paper works

in any characteristic.) Then we use this fact to prove the semistable reduction

theorem in the same way as in the case of smooth varieties. The above-mentioned

boundedness result is the main novelty of the paper. It is obtained by proving

that the tensor product of semistable sheaves on a variety is not far from being

semistable.
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The second part of the theorem follows from careful computation of Hilbert

polynomials of dual sheaves on Gorenstein varieties.

Unfortunately, the above approach does not work in positive characteristic

because we still do not know how to construct moduli spaces of swamps for rep-

resentations of type ρa,b,c : GL(V )→GL((V ⊗a)⊕b ⊗ (detV )−c) for c �= 0. In the

case of characteristic zero, to construct the moduli space of pseudo-G-bundles it

was sufficient to use moduli spaces of ρa,b,c-swamps for c= 0. But the construc-

tion used the Reynolds operator, which is not available in positive characteristic.

Moreover, in positive characteristic there appears a serious problem with

defining the pullback operation for families of pseudo-G-bundles on nonnormal

varieties (see [19, Remark 2.9.2.23]).

The structure of the paper is as follows. In Section 2 we recall some definitions

and results, and we show that Bhosle’s condition is satisfied for all varieties. In

Section 3 we study Picard schemes in the relative setting, and we state some

existence results for moduli spaces of swamps. Section 4 is the technical heart of

the paper: we prove that the tensor product of semistable sheaves on nonnormal

varieties is close to being semistable. Then in Section 5 we show that in many

cases singular principal bundles of degree zero are honest. In Section 6 we use all

these results to prove a semistable reduction theorem and to show the existence

of projective relative moduli spaces for (honest) singular principal bundles.

Notation. All the schemes in the paper are locally Noetherian. A variety is

an irreducible and reduced separated scheme of finite type over an algebraically

closed field.

2. Preliminaries

2.1. Basic definitions
Let X be a d-dimensional projective variety over an algebraically closed field k.

Let OX(1) be an ample line bundle on X .

We say that a coherent sheaf E on X is torsion-free if it is pure of dimen-

sion d. For a torsion-free sheaf E we can write its Hilbert polynomial as

P (E)(m) := χ
(
X,E ⊗OX(m)

)
=

d∑
i=0

αi(E)
mi

i!
.

The rank of E is defined as the dimension of E⊗K(X), where K(X) is the field

of rational functions. It is denoted by rkE, and it is equal to αd(E)/αd(OX). We

also define the degree of E as

degE = αd−1(E)− rkE · αd−1(OX)

(see [9, Definition 1.2.11]). The slope μ(E) is, as usual, defined as the quotient

of the degree of E by the rank of E.

For two coherent sheaves E,F on X we set

E ⊗̂F =E ⊗ F/Torsion.
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LEMMA 2.1

If X is a normal variety and E and F are torsion-free sheaves on X, then

μ(E ⊗̂F ) = μ(E) + μ(F ).

Proof

If E is a torsion-free sheaf, then for a general choice of hyperplanes H1, . . . ,Hd ∈
|OX(1)| we have

P (E)(m) =

d∑
i=0

χ(E|⋂
j≤i Hj

)

(
m+ i− 1

i

)
(see [9, Lemma 1.2.1]). It follows that the rank and degree of E depend only on

χ(E|⋂
j≤i Hj

) for i= d and i= d− 1.

If X is a normal variety, then by assumption E is locally free outside of a

closed subset of codimension ≥ 2. For a general choice of hyperplanesH1, . . . ,Hd ∈
|OX(1)| the intersection

⋂
j≤dHj is a union of points and

⋂
j≤d−1Hj is a smooth

curve. Therefore the sheaves E|⋂
j≤i Hj

for i = d and i = d − 1 are locally free.

Similarly, the sheaves F |⋂
j≤i Hj

for i= d and i= d− 1 are locally free. Since in

the case of points and smooth curves our assertion is clear, we get the lemma. �

If X is normal, then we can define the determinant of a torsion-free sheaf E as

the reflexivization of
∧rkE

E. In this case the degree degE is equal to the degree

of the determinant. This fact follows immediately from the proof of the above

lemma.

2.2. Serre’s conditions Sk

We say that a coherent sheaf E on a scheme X satisfies condition Sk if for all

points x ∈X we have depthx(Ex)≥min(dimEx, k).

The following lemma is quite standard, but we need a more general version

than usual. In the case of smooth projective varieties it is essentially equivalent

to [9, Proposition 1.1.6].

LEMMA 2.2

Let X be a Cohen–Macaulay scheme of finite type over a field. Then

1. ExtqX(E,ωX) is supported on the support of E and for all points x ∈X

we have ExtqX(E,ωX)x = 0 if q < codimxE. Moreover, codimx ExtqX(E,ωX)≥ q

for q ≥ codimxE.

2. E satisfies condition Sk if and only if for all points x ∈ X we have

codimx ExtqX(E,ωX)≥ q+ k for all q > codimxE.

Proof

By assumption X is Cohen–Macaulay, and every local ring OX,x is a quotient of a

regular local ring, so we can apply the local duality theorem (see [8, Theorem 6.7])

to prove that ExtqX(E,ωX)x �= 0 if and only if Hdimx X−q
x (E) �= 0. But the local
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cohomology Hdimx X−q
x (E) vanishes if dimxX − q > dimxE, which proves the

first part of (1). If q = codimxE, then codimx(ExtqX(E,ωX)) ≥ q is equivalent

to the obvious inequality dimx(ExtqX(E,ωX))≤ dimxE. Hence, since every sheaf

satisfies S0, the second part of (1) follows from (2).

To prove (2) note that by [8, Theorem 3.8] depthx(Ex) ≥ min(dimEx, k)

if and only if Hi
x(E) = 0 for all i < min(dimEx, k). By the local duality theo-

rem this last condition is equivalent to ExtqX(E,ωX)x = 0 for q >max(codimxE,

dimOX,x− k). This is equivalent to saying that for q > codimxE a nonvanishing

of ExtqX(E,ωX)x implies dimOX,x ≥ q+ k. �

Let k be an algebraically closed field. Let X be a d-dimensional, pure (i.e.,

OX satisfies S1) scheme of finite type over k. Let C be a smooth curve defined

over k, and let us fix a closed point 0 ∈ C. By pX : Z =X × C →X we denote

the projection. Let Y be a nonempty proper closed subscheme of X × {0} (in

particular, we assume that X has dimension ≥ 1), and let i : Y ↪→ Z denote the

corresponding closed embedding. Let us also set U = Z − Y , and let j : U ↪→ Z

denote the corresponding open embedding.

LEMMA 2.3

If E is a pure sheaf of dimension d on X, then we have a canonical isomorphism

p∗XE 	 j∗j
∗(p∗XE). In particular, OZ 	 j∗OU , and for any locally free sheaf F

on Z we have F 	 j∗j
∗F .

Proof

Let us set F = p∗XE. Since we have a canonical map F → j∗j
∗F , the assertion is

local and hence we can assume that X and Y are affine. By [8, Proposition 2.2]

we have an exact sequence

0→ i∗H0
Y (F )→ F → j∗j

∗F → i∗H1
Y (F )→ 0.

To prove that i∗Hi
Y (F ) = 0 for i = 0,1, it is sufficient to prove that for every

point y ∈ Y , the depth of Fy is at least 2 (see [8, Theorem 3.8]). Now, let us take

a local parameter s ∈OC,0. Then Fy/sFy 	Ey has depth at least 1 (because by

assumption E satisfies S1), so the required assertion is clear. �

REMARK 2.4

The above lemma shows in particular that every variety satisfies condition (2.19)

in the sense of Bhosle (see [3, Definition 2.8]).

2.3. Moduli spaces of pseudo-G-bundles
Let us fix a faithful representation ρ : G→ SL(V )⊂GL(V ), r = dimV, of a reduc-

tive algebraic group G.

A pseudo-G-bundle is a pair (A, τ), where A is a torsion-free OX -module

of rank r, and τ : Sym∗(A⊗ V )G →OX is a nontrivial homomorphism of OX -
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algebras. Giving τ is equivalent to giving a section

σ :X →Hom(A, V ∨ ⊗OX)//G= Spec
(
Sym∗(A⊗ V )G

)
.

A weighted filtration (A•, α•) of A is a pair consisting of a filtration

A• = (0⊂A1 ⊂ · · · ⊂ As ⊂A)

by saturated subsheaves (i.e., such that the quotients A/Ai are torsion-free) of

increasing ranks and an s-tuple

α• = (α1, . . . , αs)

of positive rational numbers. To every weighted filtration (A•, α•) one can asso-

ciate the polynomial

M(A•, α•) :=
s∑

i=1

αi

(
P (A) · rk(Ai)− P (Ai) · rk(A)

)
.

If (A•, α•) is a weighted filtration of a pseudo-G-bundle (A, τ), then one can

also define the number μ(A•, α•, τ) describing the stability of the SL(A⊗K(X))-

group action on Hom(A⊗K(X), V ∨ ⊗K(X))//G (see, e.g., [20, 3.3.2]).

Let us fix a positive polynomial δ with rational coefficients and of

degree ≤ dimX−1. Then we say that a pseudo-G-bundle (A, τ) is δ-(semi)stable

if A is torsion-free, and for any weighted filtration (A•, α•) of A we have the

inequality

M(A•, α•) + δ · μ(A•, α•, τ)(≥)0.

To define the slope version of (semi)stability, instead of M(A•, α•) one uses

the rational number

L(A•, α•) :=
s∑

i=1

αi

(
degA · rk(Ai)− degAi · rk(A)

)
.

The next theorem follows from the results of Schmitt [16] (in the smooth

case) and from the results of Bhosle [3] and Lemma 2.3 in general.

THEOREM 2.5

Let (X,OX(1)) be a polarized projective variety defined over an algebraically

closed field of characteristic zero. Then there exists a projective moduli space

Mρ,δ
X,P for δ-semistable pseudo G-bundles (A, τ) on X, such that A has Hilbert

polynomial P (with respect to OX(1)).

2.4. Semistability of singular principal G-bundles
Let (A, τ) be a pseudo G-bundle. Let us recall that giving τ is equivalent to

giving a section

σ :X →Hom(A, V ∨ ⊗OX)//G= Spec
(
Sym∗(A⊗ V )G

)
.

Let UA denotes the maximum open subset of X where A is locally free. The

pseudo-G-bundle (A, τ) is a singular principalG-bundle if there exists a nonempty
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open subset U ⊂ UA such that

σ(U)⊂ Isom(V ⊗OU ,A∨|U )/G.

If A has degree zero and σ(UA)⊂ Isom(V ⊗OUA ,A∨|UA)/G, then we say that

(A, τ) is an honest singular principal G-bundle.

Let us recall that a singular principal G-bundle (A, τ), via the following

pullback diagram, defines a principal G-bundle P(A, τ) over the open subset U :

P(A, τ) Isom(V ⊗OU ,A∨|U )

U
σ|U

Isom(V ⊗OU ,A∨|U )/G.

If X is smooth, then every singular principal G-bundle is honest (see [20,

Lemma 3.4.2]). Note that our definitions are slightly different from those appear-

ing in previous literature (which changed in time to those that are close to our

definitions).

Let (A, τ) be a singular principal G-bundle, and let λ : Gm → G be a one-

parameter subgroup of G. Let

QG(λ) :=
{
g ∈G : lim

t→∞
λ(t)gλ(t)−1 exists in G

}
.

A reduction of (A, τ) to λ is a section β : U ′ →P(A, τ)/QG(λ) defined over some

nonempty open subset U ′ ⊂ U . This reduction defines a reduction of structure

group of a principal GL(V )-bundle associated to A|U ′ to the parabolic subgroup

QGL(V )(λ), so we get a weighted filtration (A′
•, α•) of A|U ′ .

Let j : U ′ ↪→X denote the open embedding. Then for i= 1, . . . , s we define

Ai as the saturation of A ∩ j∗(A′
i). In particular, we get a weighted filtration

(A•, α•) of A.

We say that a singular principal G-bundle (A, τ) is (semi)stable if A is

torsion-free and for any reduction of (A, τ) to a one-parameter subgroup λ :

Gm →G we have the inequality

M(A•, α•)(≥)0.

3. Moduli spaces of swamps revisited

In this section we recall and re-prove some basic results concerning the existence

of the relative Picard scheme and its compactifications. Then we apply these

results to the existence of moduli spaces of swamps.

We interpret the compactified Picard scheme as the coarse moduli space

of stable rank 1 sheaves, and we use Simpson’s construction of these moduli

spaces to prove the existence of the universal family (i.e., the Poincaré sheaf)

under appropriate assumptions. This approach, although very natural, seems to

be hard to find in existing literature, especially in the relative case.

The notation in this section is as follows. R denotes a universally Japanese

ring. We also fix a projective morphism f :X → S of R-schemes of finite type
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with geometrically connected fibers. We assume that f is of pure relative dimen-

sion d. By OX(1) we denote an f -very ample line bundle on X . We also fix a

polynomial P .

3.1. Universal families on relative moduli spaces
Let us define the moduli functor MX/S,P : (Sch/S)−→ (Sets) by sending T → S

to

MX/S,P (T ) =

⎧⎨⎩
isomorphism classes of T -flat families of Gieseker

semistable sheaves with Hilbert polynomial P

on the geometric fibers of p : T ×S X → T

⎫⎬⎭/∼,

where ∼ is the equivalence relation ∼ defined by F ∼ F ′ if and only if there exists

an invertible sheaf K on T such that F 	 F ′ ⊗ p∗K.

THEOREM 3.1 (SEE [14], [15], [21], [12] AND [11])

There exists a projective S-scheme MX/S,P , which uniformly corepresents the

functor MX/S,P . Moreover, there is an open subscheme Ms
X/S,P ⊂MX/S,P that

universally corepresents the subfunctor Ms
X/S,P of families of geometrically

Gieseker stable sheaves.

We are interested in when the moduli scheme Ms
X/S,P represents the functor

Ms
X/S,P . This is equivalent to the existence of a universal family onMs

X/S,P ×S X .

Let us recall that the moduli scheme Ms
X/S,P is constructed as a quotient of

an appropriate subscheme Rs of the Quot-scheme Quot(H;P ) by PGL(V ). Let

q∗H→ F̃ denote the universal quotient on Rs ×S X .

PROPOSITION 3.2 ([9, PROPOSITION 4.6.2])

The moduli scheme Ms
X/S,P represents the functor Ms

X/S,P if and only if there

exists a GL(V )-linearized line bundle A on Rs on which elements t of the center

Z(GL(V ))	Gm act via multiplication by t. If such A exists, then Hom(p∗A, F̃ )

descends to a universal family and any universal family is obtained in such a

way.

3.2. Existence of compactified Picard schemes in the relative case
For simplicity we assume that all geometric fibers of f are irreducible and reduced

(hence they are varieties) and that S is connected.

Let us fix a polynomial P . For all locally Noetherian S-schemes T → S let

us set

P ic′X/S,P (T )

=

{
isomorphism classes of invertible sheaves L on XT = T ×S X

such that χ(Xt,Lt(n)) = P (n) for every geometric t ∈ T

}
.

Note that if P ic′X/S,P (T ) is nonempty, then the highest coefficient of P is the

same as the highest coefficient of the Hilbert polynomial of OXs for any s ∈ S.
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As above, we introduce an equivalence relation ∼ on P ic′X/S,P (T ) by L∼ L′

if and only if there exists an invertible sheaf K on T such that L 	 L′ ⊗ p∗K.

Then we can define the Picard functor

P icX/S,P : (Sch/S)−→ (Sets)

by sending an S-scheme T to P icX/S,P (T ) = P ic′X/S,P (T )/∼.

Let us also define the compactified relative Picard functors. There are two

different methods of compactification of the Picard scheme. We can compactify

the Picard scheme by adding all the rank 1 torsion-free sheaves on the fibers of

X or only those rank 1 torsion-free sheaves that are locally free on the smooth

locus of the fibers. The second method has the advantage of producing a smaller

scheme.

Let us set

P ic′X/S,P (T ) =

⎧⎨⎩
isomorphism classes of T -flat sheaves L on XT = T ×S X

such that Lt is a torsion-free, rank 1 sheaf on Xt

and χ(Xt,Lt(n)) = P (n) for every geometric t ∈ T

⎫⎬⎭ .

As above, we define the compactified Picard functor

P icX/S,P : (Sch/S)−→ (Sets)

by sending an S-scheme T to P icX/S,P (T ) = P ic′X/S,P (T )/∼.

We also define the small compactified Picard functor

P ic
sm

X/S,P : (Sch/S)−→ (Sets)

by sending an S-scheme T to

P ic
sm

X/S,P (T ) =

{
L ∈ P ic′X/S,P (T ) such that L is locally free

on the smooth locus of XT /T

}/
∼ .

THEOREM 3.3

Assume that f :X → S has a section g : S →X.

1. There exists a quasi-projective S-scheme PicX/S,P that represents the

Picard functor P icX/S,P .

2. If g(S) is contained in the smooth locus of X/S, then there exists a projec-

tive S-scheme PicX/S,P that represents the compactified Picard functor P icX/S,P .

Moreover, PicX/S,P contains a closed S-subscheme Pic
sm

X/S,P that represents the

small compactified Picard functor P ic
sm

X/S,P .

Proof

First let us remark that all the Picard functors P icX/S,P , P icX/S,P , and P ic
sm

X/S,P

are subfunctors of the moduli functor MX/S,P . In fact, from our assumptions it

follows that P icX/S,P = Ms
X/S,P = MX/S,P . Now we can construct PicX/S,P ,

PicX/S,P , and Pic
sm

X/S,P as geometric invariant theory quotients of appropri-

ate subschemes RPic ⊂ RPic
sm ⊂ RPic = Rs = Rss of the Quot-scheme used to

construct the moduli space Ms
X/S,P by GL(V ). In fact all these quotients are
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PGL(V )-principal bundles. To prove that Pic
sm

X/S,P is a closed subscheme of

PicX/S,P it is sufficient to see that RPic
sm is a closed subscheme of RPic. This

follows from [2, Lemma on p. 37] applied to the universal quotient restricted to

the smooth locus of RPic ×S X →RPic.

To prove (1) by (a slight generalization of) Proposition 3.2 it is sufficient

to show existence of a GL(V )-linearized line bundle APic on RPic on which the

center of GL(V ) acts with weight 1.

Let us set APic = detp∗(F̃ ⊗ q∗Og(S)), where F̃ comes from the universal

quotient on RPic ×S X . The definition makes sense since F̃ is a line bundle on

RPic ×S X and p∗(F̃ ⊗ q∗Og(S)) = (idRPic ×S g)∗F̃ is also a line bundle. The

center of GL(V ) acts on the fiber of APic at ([ρ], x) ∈ RPic ×S X with weight

χ(OXf(x)
|x) = 1, which implies the first assertion of the theorem.

Now assume that g(S) is contained in the smooth locus of X/S. Then the

same argument as above gives the existence of the Poincaré sheaf on Pic
sm

X/S,P .

The existence of the Poincaré sheaf on PicX/S,P is slightly more difficult. First

let us show that there exists a resolution

0→En → · · · →E0 →Og(S) → 0,

where Ei are locally free sheaves on X . Since there are sufficiently many locally

free sheaves on X , we can construct the resolution up to step En−1, where n is

the relative dimension of X/S. Then the kernel of En−1 → En−2 is also locally

free. Indeed, it is sufficient to check it on the geometric fiber Xs over s ∈ S, where

one can use the fact that the homological dimension of Og(s) is equal to n. (This

follows from the smoothness assumption.)

Tensoring with a high tensor power OX(m) we can assume that all the higher

direct images of F̃ ⊗ q∗(Ei(m)) under the projection p vanish. In particular, all

sheaves p∗
(
F̃ ⊗ q∗(Ei(m))

)
are locally free. Then we can set

APic = detp!
(
F̃ ⊗ q∗(Og(S)(m))

)
=
⊗
i

(
detp∗(F̃ ⊗ q∗(Ei(m)))

)(−1)i

.

Obviously, the center of GL(V ) still acts on the fibers of APic with weight 1.

Hence the theorem follows from Proposition 3.2. �

REMARK 3.4

Note that the second part of Theorem 3.3 does not immediately follow from [1]

and [2]. The representability of (compactified) Picard functors is proven there

only in étale topology or after rigidification (see, e.g., [2, Theorems 3.2, 3.4]).

Rigidification of the compactified Picard functor amounts in our case to restrict-

ing to the open subset of RPic, where the restriction of F̃ to g(S) is invertible.

Then by the same argument as in the proof of Theorem 3.3(1) we can construct

the scheme representing the corresponding rigidified Picard functor obtaining [2,

Theorem 3.4]. However, we prefer to make a stronger assumption as in Theo-

rem 3.3(2) to construct the projective Picard scheme.
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3.3. Moduli spaces of swamps
Let us fix nonnegative integers a and b, and consider a GL(V )-module (V ⊗a)⊕b.

Let ρa,b : GL(V )→GL((V ⊗a)⊕b) be the corresponding representation. If A is a

sheaf of rank r = dimV , then we can associate to it a sheaf Aρa,b
= (A⊗a)⊕b. On

the open set where A is locally free, Aρa,b
is a locally free sheaf associated to the

principal bundle obtained by extension from the frame bundle of A.

Let us recall that a ρa,b-swamp is a triple (A,L,ϕ) consisting of a torsion-free

sheaf A on X , a rank 1 torsion-free sheaf L on X , and a nonzero homomorphism

ϕ :Aρa,b
→ L.

Let us fix a positive polynomial δ of degree ≤ d−1 with rational coefficients.

Let us write δ(m) = δ md−1

(d−1)! +O(md−2).

For a weighted filtration (A•, α•) of A, we set ri = rkAi and we consider a

vector γ ∈Qr defined by

γ =
∑

αi(ri − r, . . . , ri − r︸ ︷︷ ︸
ri×

, ri, . . . , ri︸ ︷︷ ︸
(r−ri)×

).

Let γj denote the jth component of γ. We set

μ(A•, α•;ϕ) =−min
{
γi1 + · · ·+ γia

∣∣ (i1, . . . , ia) ∈ I : ϕ|(Ai1⊗···⊗Aia )
⊕b �≡ 0

}
,

where I = {1, . . . , s+ 1}×a is the set of all multi-indices.

Let us recall that a ρa,b-swamp (A,L,ϕ) is δ-(semi)stable if for all weighted

filtrations (A•, α•) we have

M(A•, α•) + μ(A•, α•;ϕ)δ(≥)0.

A ρa,b-swamp (A,L,ϕ) is slope δ-(semi)stable if for all weighted filtrations

(A•, α•) we have

L(A•, α•) + μ(A•, α•;ϕ)δ(≥)0.

Now we can state the most general existence result for moduli spaces of

swamps. We keep the notation from the beginning of this section.

THEOREM 3.5

Let us fix an S-flat family L of pure sheaves of dimension d on the fibers of

f :X → S. Assume either that d= 1 or that f has only irreducible and reduced

geometric fibers. Then there exists a coarse S-projective moduli space for δ-

semistable S-flat families of ρa,b-swamps (A,L, ϕ) such that for every s ∈ S the

restriction A|Xs has Hilbert polynomial P .

In the case when X is a smooth complex projective variety this theorem was

proved by Gómez and Sols in [7] and later generalized by Bhosle to singular

complex varieties satisfying Bhosle’s condition in [3]. Note that in [7] and [3]

the authors considered only the case when L is locally free. However, this is not

necessary due to Lemma 2.3, and it is sufficient to assume that L is torsion-free.

Generalization to the relative case in arbitrary characteristic follows from [12]

and [11]. We need only to comment on why one does need to require that the
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fibers of f are irreducible or reduced in the curve case. This fact follows from

[9, Remark 4.4.9]: torsion submodules for sheaves on curves are detected by any

twist of its global sections. This allows one to omit using [3, Proposition 2.12]

in the curve case. In particular, this shows that all the results of Sorger [22] are

now a part of the more general theory.

We also have another variant of the above theorem (cf. [19, Theorem 2.3.2.5]).

THEOREM 3.6

Let us fix a Hilbert polynomial Q. Assume that all geometric fibers of f are

irreducible and reduced, and assume that f :X → S has a section g : S →X such

that g(S) is contained in the smooth locus of X/S. Then there exists a coarse

moduli space for δ-semistable S-flat families of ρa,b-swamps (A,L, ϕ) such that

for every s ∈ S the restriction A|Xs has Hilbert polynomial P and the restriction

L|Xs has Hilbert polynomial Q. This moduli space is projective over PicX/S,Q.

4. Tensor product of semistable sheaves on nonnormal varieties

Let (X,OX(1)) be a d-dimensional polarized projective variety defined over an

algebraically closed field k.

Let ν : X̃ →X denote the normalization of X , and let E be a coherent OX -

module. Since ν is a finite morphism, there exists a well-defined coherent OX̃ -

module ν!E corresponding to the ν∗OX̃ -module Hom(ν∗OX̃ ,E). If E is torsion-

free, then we have HomOX
(ν∗OX̃/OX ,E) = 0. Hence

ν∗(ν
!E) =HomOX

(ν∗OX̃ ,E)⊂HomOX
(OX ,E) =E,

and ν!E is also torsion-free.

LEMMA 4.1

There exists a constant α (depending only on the variety X) such that for any

rank r torsion-free sheaf E on X we have

0≤ μ(E)− μ
(
Hom(ν∗OX̃ ,E)

)
≤ α.

Proof

We have an exact sequence

0→HomOX
(ν∗OX̃ ,E)→E →Ext1OX

(ν∗OX̃/OX ,E).

For large m we have

P
(
HomOX

(ν∗OX̃ ,E)
)
(m)≤ P (E)(m),

and, since HomOX
(ν∗OX̃ ,E) and E have the same rank, we have

μ
(
HomOX

(ν∗OX̃ ,E)
)
≤ μ(E).

On the other hand we have

αd−1(E)≤ αd−1

(
HomOX

(ν∗OX̃ ,E)
)
+ αd−1

(
Ext1OX

(ν∗OX̃/OX ,E)
)
.
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Note that Ext1OX
(ν∗OX̃/OX ,E) is supported on the support of ν∗OX̃/OX .

Let Y1, . . . , Yk denote codimension 1 irreducible components of the support of

ν∗OX̃/OX . Then αd−1(Ext1OX
(ν∗OX̃/OX ,E)) can be bounded from above using

the ranks of Ext1OX
(ν∗OX̃/OX ,E) at Y1, . . . , Yk. Hence by the above

inequality, to prove the lemma it is sufficient to bound these ranks.

There exists a subsheaf G⊂E such that G is locally free (we need only locally

free in codimension 1) and E/G is torsion (i.e., equal to zero at the generic point

of X). This can be constructed by taking r general sections of E(m) for large m

and twisting the image of Or
X ⊂H0(E(m))⊗OX →E(m) by OX(−m).

Then we have an exact sequence

0 =Hom(ν∗OX̃/OX ,E)→Hom(ν∗OX̃/OX ,E/G)→Ext1(ν∗OX̃/OX ,G).

Note that the sheaves in this sequence are supported on
⋃
Yi and the rank of

Ext1(ν∗OX̃/OX ,G) on Yi is the same as the rank of Ext1(ν∗OX̃/OX ,Or
X) on Yi.

In particular, it depends only on the rank r, and it is independent of E. Hence

the dimensions of Hom(ν∗OX̃/OX ,E/G) at the generic points of Y1, . . . , Yk are

bounded from above by a linear function of r. But this implies that the ranks

of E/G, and hence also of Ext1(ν∗OX̃/OX ,E/G), on Y1, . . . , Yk are bounded

independently of E. Now we can use the sequence

Ext1(ν∗OX̃/OX ,G)→Ext1(ν∗OX̃/OX ,E)→Ext1(ν∗OX̃/OX ,E/G)

to bound the ranks of Ext1OX
(ν∗OX̃/OX ,E) on Y1, . . . , Yk. �

COROLLARY 4.2

Let us set β = αd−1(OX̃)−αd−1(OX). Then for any rank r torsion-free sheaf E

on X we have

β ≤ μ(E)− μ(ν!E)≤ α+ β,

where the slopes are computed with respect to OX(1) on X and ν∗OX(1) on X̃.

Proof

For any sheaf F on X̃ we have

χ
(
X̃,F ⊗ ν∗OX(m)

)
= χ
(
X,ν∗F ⊗OX(m)

)
.

This implies that

μ(ν∗F )− μ(F ) = αd−1(OX̃)− αd−1(OX) = β.

Therefore, since

ν∗(ν
!E) =HomOX

(ν∗OX̃ ,E),

we have

μ(E)− μ(ν!E) =
(
μ(E)− μ(Hom(ν∗OX̃ ,E))

)
+
(
μ(ν∗(ν

!E))− μ(ν!E)
)

=
(
μ(E)− μ(Hom(ν∗OX̃ ,E))

)
+ β.

Now the corollary follows from Lemma 4.1. �
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COROLLARY 4.3

For any rank r torsion-free sheaf E on X we have

β ≤ μmax(E)− μmax(ν
!E)≤ α+ β.

Proof

If G⊂E is a subsheaf of E, then ν!G⊂ ν!E, and hence

μ(G)≤ μ(ν!G) + α+ β ≤ μmax(ν
!E) + α+ β.

This proves that

μmax(E)≤ μmax(ν
!E) + α+ β.

Now if F ⊂ ν!E, then ν∗F ⊂ ν∗(ν
!E)⊂E. Therefore

μ(F ) = μ(ν∗F )− β ≤ μmax(E)− β,

which implies that

μmax(ν
!E)≤ μmax(E)− β. �

For a torsion-free sheaf E on X we set ν�E = ν∗E/Torsion. Then ν∗ν
�E =

(ν∗ν
∗E)/Torsion.

Note that ν! is an equivalence of categories of sheaves on X and X̃ , whereas

ν� has much worse properties. But ν� has the following important property: since

ν∗(E1 ⊗E2) = ν∗E1 ⊗ ν∗E2 we have ν�(E1 ⊗̂E2) = ν�E1 ⊗̂ν�E2.

Let C = Ann(ν∗OX̃/OX) ⊂ OX and CX̃ = C · OX̃ ⊂ OX̃ denote conductor

ideals of the normalization.

LEMMA 4.4

For any torsion-free sheaf E on X we have

μ(ν�E)≤ μ(ν!E)− μ(CX̃).

Proof

Note that C =HomOX
(ν∗OX̃ ,OX). Therefore for any coherent OX -module E we

have a canonical map

C ⊗E =HomOX
(ν∗OX̃ ,OX)⊗Hom(OX ,E)→HomOX

(ν∗OX̃ ,E) = ν∗(ν
!E)

given by composition of homomorphisms. Since ν∗ and ν∗ are adjoint functors

this map induces

ν∗C ⊗ ν∗E → ν!E.

Since E is torsion-free and CX̃ = ν�C we get

CX̃ ⊗̂ν�E 	 CX̃ · ν�E ↪→ ν!E.

Since this inclusion is an isomorphism at the generic point of X̃ we have the

inequality

μ(CX̃ ⊗̂ν�E)≤ μ(ν!E).
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Now Lemma 2.1 gives

μ(CX̃ ⊗̂ν�E) = μ(ν�E) + μ(CX̃),

which implies the required inequality. �

COROLLARY 4.5

For any rank r torsion-free sheaf E on X we have

−β ≤ μ(ν�E)− μ(E)≤−β − μ(CX̃),

where the slopes are computed with respect to OX(1) on X and ν∗OX(1) on X̃.

Proof

The canonical map E → ν∗(ν
∗E) leads to the inclusion

E ↪→ ν∗(ν
�E).

This gives

μ(E)≤ μ
(
ν∗(ν

�E)
)
= μ(ν�E) + β,

where the last equality follows from the proof of Lemma 4.2. This bounds the

difference μ(ν�E)−μ(E) from below. To get the bound from above it is sufficient

to use Lemma 4.4 and Corollary 4.2. �

REMARK 4.6

By Lemma 4.4 and Corollary 4.5 we have

μ(ν!E)≥ μ(ν�E) + μ(CX̃)≥ μ(E)− β + μ(CX̃).

This allows us to take α=−μ(CX̃) in Lemma 4.1. The proof of Lemma 4.1 also

gives a related and explicit bound on α.

Corollary 4.1 can be used to prove the following corollary.

COROLLARY 4.7

For any rank r torsion-free sheaf E on X we have

−β ≤ μmax(ν
�E)− μmax(E)≤−β − μ(CX̃).

Proof

If G⊂E is a subsheaf of E, then ν�G⊂ ν�E, and hence

μ(G)≤ μ(ν�G) + β ≤ μmax(ν
�E) + β.

This proves that

μmax(E)≤ μmax(ν
�E) + β.

Now if F ⊂ ν�E, then by the proof of Lemma 4.4 we have

CX̃ ⊗̂F ⊂ CX̃ ⊗̂ν�E ↪→ ν!E.
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Together with Lemma 2.1 and Corollary 4.3, this gives

μ(F )≤ μmax(ν
!E)− μ(CX̃)≤ μmax(E)− β − μ(CX̃),

which implies that

μmax(ν
�E)≤ μmax(E)− β − μ(CX̃). �

Since ν∗(E1⊗E2) = ν∗E1⊗ ν∗E2 we have ν�(E1 ⊗̂E2) = ν�E1 ⊗̂ν�E2. Therefore

[13, Introduction] or [6, Lemma 3.2.1] imply the following proposition.

PROPOSITION 4.8

There exists an explicit constant γ (depending only on the polarized variety

(X,OX(1))) such that for any two torsion-free sheaves E1 and E2 on X of ranks

r1, r2, respectively, we have

μmax(E1 ⊗̂E2)≤ μmax(E1) + μmax(E2) + (r1 + r2)γ.

5. Honest singular principal bundles

In this section X is a d-dimensional projective variety defined over an alge-

braically closed field k with a fixed ample line bundle OX(1).

The main aim of this section is proof of the following generalization of [18,

Proposition 3.4].

PROPOSITION 5.1

Assume that X is Gorenstein (i.e., a Cohen–Macaulay scheme with invertible

dualizing sheaf ωX), and assume that there exists a G-invariant nondegenerate

quadratic form ϕ on V . Then every degree zero singular principal bundle is an

honest singular principal bundle.

Proof

Let (A, τ) be a degree zero singular principal bundle. As in the proof of [18,

Proposition 3.4] one can easily show that there exists an injective map A→A∨

induced by the form ϕ. By Lemma 5.3 we see that the Hilbert polynomials of

A and A∨ are the same up to the terms of order O(md−2). Hence A→A∨ is

an isomorphism in codimension 1. Now let us recall that for each x ∈ X two

finitely generated modules over a local ring OX,x satisfying S2 that coincide in

codimension 1 are equal. In particular, at each point x where A is locally free

the map A→A∨ is an isomorphism. As in the proof of [18, Proposition 3.4] this

implies that

σ(UA)⊂ Isom(V ⊗OUA ,A∨|UA)/G. �

The following lemma generalizes a well-known equality from smooth varieties to

singular ones.
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LEMMA 5.2

For any rank r coherent sheaf E and a line bundle L we have

deg(E ⊗L) = degE + r
(
L · OX(1)d−1

)
.

Proof

We use the notation from Kollár’s book [10, Chapter VI.2]. In particular, Ki(X)

stands for the subgroup of the Grothendieck group of X generated by subsheaves

supported in dimension at most i. We have

L⊗E(m) =

d∑
i=0

c1(L)
i ·E(m)

(see, e.g., [10, Chapter VI.2, Lemma 2.12]). On the other hand, by [10, Chap-

ter VI.2, Corollary 2.3] we have

E ≡ rOX modKd−1(X).

Note that

L⊗E(m) =E(m) + rc1(L) · OX(m) + c1(L) · (E − rOX)(m) +
∑
i≥2

c1(L)
i ·E(m)

and c1(L) · (E− rOX)+
∑

i≥2 c1(L)
i ·E ∈Kd−2(X) by [10, Chapter VI.2, Propo-

sition 2.5]. Therefore by [10, Chapter VI.2, Corollary 2.13] we have

χ
(
X,L⊗E(m)

)
= χ
(
X,E(m)

)
+ rχ

(
X,c1(L) · OX(m)

)
+O(md−2).

By the Riemann–Roch theorem for singular varieties (see [4, Corollary 18.3.1]),

we have

χ
(
X,c1(L) · OX(m)

)
= χ
(
X,OX(m)

)
− χ
(
X,L−1(m)

)
=

∫
X

(
ch(OX(m))− ch(L−1(m))

)
TdX

=
(
L · OX(1)d−1

) md−1

(d− 1)!
+O(md−2)

which, together with the previous equality, implies the lemma. �

LEMMA 5.3

If X is Gorenstein and E is a torsion-free sheaf on X, then

degE∨ =−degE.

Proof

Since X is Cohen–Macaulay, Serre’s duality gives the equality

χ(X,E) = (−1)d
d∑

i=0

(−1)i dimExti(E,ωX).
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The local to global Ext spectral sequence

Hp
(
X,Extq(E,ωX)

)
⇒ Extp+q(E,ωX)

implies that

d∑
i=0

(−1)i dimExti(E,ωX) =
∑

0≤p,q≤d

(−1)p+q dimHp
(
X,Extq(E,ωX)

)

=

d∑
q=0

(−1)qχ
(
X,ExtqX(E,ωX)

)
.

Therefore we obtain

χ
(
X,E(m)

)
= (−1)d

d∑
q=0

(−1)qχ
(
X,ExtqX(E,ωX)⊗OX(−m)

)
.

By Lemma 2.2 we have dimExtqX(E,ωX)≤ d−2 for q > 0, so by [10, Chapter VI,

Corollary 2.14],

χ
(
X,ExtqX(E,ωX)⊗OX(−m)

)
=O(md−2)

for q > 0. Since ωX is invertible, Hom(E,ωX) =E∨ ⊗ ωX and we get

χ
(
X,E(m)

)
= (−1)dχ

(
X,E∨ ⊗ ωX(−m)

)
+O(md−2).

In particular, we have

αd−1(E
∨ ⊗ ωX) =−αd−1(E).

Therefore by Lemma 5.2,

degE∨ = deg(E∨ ⊗ ωX)− rc1(ωX) · c1
(
OX(1)

)d−1

= αd−1(E
∨ ⊗ ωX)− rαd−1(OX)− rc1(ωX) · c1

(
OX(1)

)d−1

= −degE − 2rαd−1(OX)− rc1(ωX) · c1
(
OX(1)

)d−1
.

Applying this equality for E =OX we see that

−2αd−1(OX)− c1(ωX) · c1
(
OX(1)

)d−1
= 0,

so degE∨ =−degE. �

6. Semistable reduction for singular principal G-bundles

The following global boundedness of swamps on singular varieties can be proven

in the same way as in the case of smooth varieties (see [5, Theorem 4.2.1], [6,

Theorem 3.2.2], or [19, Theorem 2.3.4.3]). The only difference is that we need

Proposition 4.8 (instead of, e.g., [6, Lemma 3.2.1]).

THEOREM 6.1

Let us fix a polynomial P , integers a, b, and a class l in the Néron–Severi group

of X. Then the set of isomorphism classes of torsion-free sheaves A on X with
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Hilbert polynomial P and such that there exists a positive rational number δ and

a slope δ-semistable ρa,b-swamp (A,L,ϕ) with L of class l is bounded.

This boundedness result implies the following semistable reduction theorem (see

[5, Theorem 5.4.4], [6, Theorem 4.4.1], or [19, Theorem 2.4.4.1]). We skip the

proof as it is the same as in the smooth case.

THEOREM 6.2

Assume that k has characteristic zero. Then there exists a polynomial δ∞ such

that for every positive polynomial δ > δ∞, every δ-semistable pseudo-G-bundle

(A, τ) is a singular principal G-bundle.

Let us recall that a singular principal G-bundle is semistable if and only if the

associated pseudo-G-bundle is δ-semistable for δ > δ∞ (see [5, Theorem 5.4.1]).

Therefore the above semistable reduction theorem and Theorem 2.5 imply the

following corollary.

COROLLARY 6.3

Assume that k has characteristic zero, and let us fix a polynomial P . Then there

exists a projective moduli space Mρ
X,P for semistable principal G-bundles (A, τ)

on X such that A has Hilbert polynomial P .

Now let us consider the relative case. Let f :X → S be a flat, projective morphism

of k-schemes of finite type with integral geometric fibers. Assume that k has

characteristic zero, and fix a polynomial P .

THEOREM 6.4

Let us fix a faithful representation ρ : G → GL(V ) of the reductive algebraic

group G.

1. There exists a projective moduli space Mρ
X/S,P → S for S-flat families of

semistable singular principal G-bundles on X → S such that for all s ∈ S the

restriction A|Xs has Hilbert polynomial P .

2. Let P correspond to sheaves of degree zero. If the fibers of f are Goren-

stein and there exists a G-invariant nondegenerate quadratic form ϕ on V , then

Mρ
X/S,P → S parameterizes only honest singular principal G-bundles.

The first part of this theorem follows directly from the above corollary (rewritten

in the relative setting). The second part is a direct consequence of Proposition 5.1.

Since the proof in the relative setting is essentially the same as usual (cf. [9,

Theorem 4.3.7]) we skip the details.
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