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It is well known in  th e  classical case that every rational
representation of a semi-simple algebraic linear group is completely
reducible. But the same argument becomes false in the case where
the universal domain is of characteristic p  O. For instance, when
K  is  a  universal domain o f  characteristic 2, the simple group
SL(2, K) has the following rational representation p which is not
completely reducible :

a
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=  0  a2 b 2

0  e 2 d 2 ) •

(This p is not completely reducible because a c  and b d  are not
linear polynomials in  a2 , b2 , e 2 , cr.) Therefore it is an interesting
question to ask conditions for an algebraic linear group G  so that
every rational representation of G  is completely reducible.

The main purpose of the present paper is to answer the above
question. We want to include algebraic groups in an algebraically
closed field and also an arbitrary matric group over a field, and
for that purpose, we use the following terminology.

A  universal domain K  is defined to be just an algebraically
closed field . An  algebraic linear group with a  universal domain
K  is defined to be the set of K-rational points of an algebraic
linear group in the usual sense, defined over a subfield o f K  and
with a universal domain (in the usual sense) which contains the
field K .  Let K  be a universal domain and let G  be a  subgroup
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o f G L (n, K ). The closure G * o f G  in the Zariski topology on
GL(n, K ) is again a group, hence is algebraic group. This G * is
called the closure of G .  A matric group G  is called connected if
the closure G* of G is connected. Let G * be the closure of a matric
group G  and let G3` be the connected component of the identity
o f G * .  Then M r■G is the largest connected subgroup of G, the
closure of G,1( r\G  is Gg' and the indices [G* : G'ol]  and [G : (G3' r\G)]
are equal to each other. This subgroup M  r\G  is called the con-
nected component of the identity of G .  A rational representation of
a matric group G  is defined to be the restriction on G of a rational
representation of the closure o f G.

In the following, let K  be a universal domain o f characteristic
p  which may or may not be zero, and let G  be a matric group
contained in GL(n, K).

Now, our main result, which is an answer of the above ques-
tion, can be stated as follows :

( 1 ) W hen p  0: Ev ery  rational representation of G  is com-
pletely reducible if a n d  only  i f  there  is  a normal subgroup G. o f
f inite index such  that (i) G , is a  subgroup o f a  torus group (i. e.,
diagonalizable) and (ii) the index o f  G , in  G  is  prime to p .  If G
is connected, then the above condition is equiv alent to the condition
that the representation of G  by homogeneous forms o f  degree p  is
completely reducible. On the other hand, if G is  an algebraic group
(w hich m ay not be connected), then the complete reducibility  of  all
rational representations of G  is equivalent to the condition that every
element of G  is  semi-simple (i.e., diagonalizable).

(2) W hen p= 0 : Each of the following two conditions is equi-
valent to the complete reducibility of all rational representations of G.

(I) T he closure o f  G  has a f aithful rational representation
which is completely reducible.

(II) The radical o f  the closure of  G  is  a torus group.

We shall prove also the following interesting theorem concern-
ing the complete reducibility o f rational representations o f a  con-
nected algebraic linear group :

I f  G  is  a connected algebraic linear group, then every rational
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representation of G  is completely reducible i f  (and only  if) the fol-
low ing is true:

I f  pi is  a ratz'onal representation of G, then p ' is  equi -p
1 0valent to the representation ( 0 p )*

Some fundamental results on algebraic linear groups, which
are contained in A. Borel's paper "Groupes linéaires algébriques",
Ann. of Math. 64, No. 1  (1956), pp. 20-82, are used freely or with
words "cf. Borel's paper" only.

1. Prelim inaries on connected algebraic linear groups.

Let K  be a  universal domain o f an  arbitrary characteristic
and let G  b e  a  connected algebraic linear group contained in
GL(n, K), throughout this section, except for in Lemma 4.

A  Borel subgroup B  o f G is defined to be a maximal connected
solvable subgroug of G .  Then as was proved by Borel, the follow-
ing is true

Lemma 1. The homogeneous variety GI B  i s  a projective
v ariety . On the other hand, every element of G  is  in  some conjugate
of B.

Now we have :

Lemma 2 .  I f  u E G  is unipotent, then there is a closed connected
unipotent subgroup o f G  which contains u.

Proo f. B y  the last half o f  Lemma 1, we see that u is in a
Borel subgroup B  o f G .  Since B  is  solvable, the set U  o f all
unipotent elements o f  B  is  a  closed connected subgroup, which
proves the assertion.

On the other hand, the following was proved by Borel :

Lemma 3 .  I f  G consists m erely  of semi-simple elements, then
G is commutative, hence is a torus group.

Next we shall concern with an algebraic group which is not
connected :

Lemma 4 .  L e t G  be an algebraic linear group and let Go be
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the connected component of the identity  o f  G . T hen each coset Go g
(gE G ) contains an  element of  finite order.

Proof. L e t A  be the smallest algebraic group containing g
and let A 0 be the connected component of the identity o f A .  Since
A  is commutative and since A , is infinitely divisible (in the additive
formulation), A o g contains an element of finite order", which proves
the assertion.

2 .  P r e l im in a r ie s  on g r o u p  r e p r e s e n ta t io n s .

Let G  be an abstract group, let Go b e  a normal subgroup of
G  and let K  be a  fie ld  o f characteristic p  which may be zero,
throughout this section, except for in Lemmas 8  and 9.

The following lemma is well known :"

L e m m a  5 .  I f  a  f in ite  K-module M i s  a sim ple  K-G-module,
then M  is  the direct sum  of  a finite number o f  K-G 0 -modules which
are simple.

C o ro llary . I f  a representation p o f  G in GL(n, K) is completely
reducible, then the restriction of  p on G, is completely reducible.

The converse of the above corollary is not true in general if
p ± 0 ,  but we have :

L e m m a  6 »  L et p  be a  representation o f  G  in  G L (n , K ). I f
the restriction p, o f  p on G, is completely reducible and if  the index
t= [G :G 0 ]  is f inite and not divisible by p , then p itself  is completely
reducible.

Proof. I f  p  is not completely reducible, then p  contains a

representation of the form (P i  p2)
 which is not completely reduc-0

ible and such that p 1 , p ,  are irreducible. Hence we may assume

1) One can prove furthermore that A— A o x F with a finite group F.
2) This is a special case of the following easy lemma in  group theory : Let a

group F  be an operator domain on a group G and let r ' be a normal subgroup o f F.
If contains all inner automorphisms of G, i f  G  is a simple F-group and if G  satis-
fies the maximum and minimum conditions for ["-subgroups, then G  is  the direct
product of a finite number of ["-simple subgroups.

3 )  The writer was informed by Dr. H. Matsumura that this lemma was given by
C. Chevalley.
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that p = ( 1
(
9;  7:9 2 )  and that p 1 ,  p 2 are irreducible. Let the representa-

tion module of p  be M * . M *  contains the representation module
M  o f 192 ,  and M * /M  is  the representation module of pl . S ince Po
is completely reducible, we see that M  i s  a direct summand of
M *  as a  Go-K -m odule. Hence M * =m -EB N ,e • • •  E 9 N , , ,  where N i

are simple Go-K-m odules. For each N i ,  w e  f ix  a  linearly in-
dependent basis a i „ ••• , au  over K ; w e  note here that the number
s  is independent o f  i  because M * /M  i s  a simple G-K-module
(remember the well known proof o f Lemma 5). For each (r, s)-
matrix b=(b 1 ; ) over the module M , we define N (b )=E , ; (a1 1 +1), ; )K.
T hus w e have a one-one correspondence between all o f b  and
a ll o f  submodules N  such  that M *----M EB N  as an  K-module".
W e m ay assume, on the other hand, th a t p ,  is  g iv e n  b y  the
linearly independent basis a„,• • •  ,a„ modulo M  o f M * / M . Each
g E G  defines a linear transformation f (g )  on the module of (r, s)-
matrices over M *  as follows : I f  ( x „ ,  • • •  x r 8 ) P 1 ( g )  = (y11, •••  >yr.),
then  (x i ; )- f (g)= (y 1 5 ). W e define also an (r, s)-m atrix c(g) over
M  b y  the relation N (c(g))=N (0)g . I f  b  and b ' are such that
N (b)g = N (b'), t h e n  w e  h ave  (ai i +b i ; )g = (ai ; +b; ; )-f (g). Since
(ai i )g=(a i i + c(g)). f (g), w e  se e  th a t b' = c(g) +bg f (g) - 1 . Thus :

( 1 ) N(b)g = N(c(g)+ bg f (g )")  .

I f  w e app ly th is formula to  the case where b= c(h) w ith It G G,
then we have

( 2 ) c(hg) = c(g) + c(h)g • f(g)

Now, let g 1 , •• • , gi  be such that G= E Go g, and we set d = t '( E c ( g i )).
W e w an t to  show that N ( d ) g = N (d) fo r  every g  E G .  Indeed,
c(g)+dg.f (g) - 1  = c(g) + t - '(Ec(g,)g f (g) - 1 )= c(g) + t - 1 (E(c(g i g)—  c(g))=
t '( E c ( g i g ))= d . "  Therefore M * = M EB N (d) a s  a  representation
module of G , which com pletes th e  proof.

4) T he fo rm u la  ( 1 )  below show s that N ( b )  i s  Go-a d m iss ib le  if  a n d  only if
bg =b- f (g) for every g E Go •

5) Note that if  g ' E Gog ,  then c(g')—  c(g), because N (0 ) is a Go-module.
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C oro lla ry . I f  p  o ,  th e n  the converse of the corollary  to
Lemma 5 is  true, prov ided that the index [G : G0 ]  is f inite.

Lemma 7. L e t H  be a  subgroup o f f inite index of G .  I f  a
representation p  o f H  in  G L (n, K ) is not completely reducible, then
the representation p *  of G  induced by p  is not completely reducible.

Proof. Let M  be the representation module of p. M  contains
an K-H-module N  which is not a direct summand o f M .  Let M*
b e  the representation module of p* . Then M *  is  o f th e  form
M E BE M g, where g , are such that G = H + E H g i  (g 1 H ) .  I t  i s
obvious that E Mg i is H-admissible. M * contains N* =N  Ng,.
I f  N * is a direct summand of M * as a G-K-module, then we have
!WIDE M g i  =N6DE N g i EDN' as an H-K-module. Then we see that
M=NED(Mr\(E Ng 1 +N1) )  as an H-K-module, which is a contradic-
tion. Hence N * is not a direct summand o f  M *  and p *  is not
completely reducible.

C oro lla ry . I f  a f inite group G * has order w hich is divisible
by p , then G* has a representation which is not completely reducible.

Proof. G* has an element a whose order is p .  Then the sub-

group { ai}  is represented by f(
1  i

1 ) f

l 

'  and we see the assertion0 
by Lemma 7.

Next we observe relationship between rational representations
of a  matric group G  and those of the closure o f G.

Lemma 8 .  Let G  be a m a tr i c  group and let G* be the closure
o f G .  Let p*  be a  rational representation of G* and let p  be the
restriction of p *  on G . T h e n  p  is irreducible if and only  if  p *  is
irreducible. p is completely reducible if  and only i f  p*  is completely
reducible.

Proof. p(G) is dense in p* (G*) and we see the assertions easily.

Lemma 9 .  Let N  be a normal subgroup of a  matric group G
and let p be an irreducible rational representation of G  into GL(n, K),
K  being a universal domain. If  N consists only of u n ip o ten t elements,
then N  is contained in the kernel of the irreducible representation p.
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Proof. Since the set of a ll unipotent matrices in GL (n, K ) is
closed, and since the image of a unipotent element under a rational
representation is again unipotent, the closure N * o f p(N ) consists
only of unipotent elements. Therefore N *  is nilpotent, hence is
solvable. Therefore we may assume that every element (au )  of
p(N ) is such that a 5 - 0  i f  i > j ,  whence a i i  =1 for every i. On
the other hand, the corollary to Lemma 5 says that the restriction
o f p on N  is completely reducible, whence p(N ) must consists only
of the identity, which completes the proof.

3. The m ain resu lt in the case where G  is connected and
13=01

Theorem 1. Let K  b e  a  univ ersal dom ain o f  characteristic
p ± 0  and let G be a connected m atric group contained in  GL(n, K).
Then the follow ing three conditions are equivalent to each other:

( I ) Every  rational representation of  G is completely reducible.
(II) G  is contained in  a  torus group, i.e., there is an element

a of GL (n, K ) such that a 'G a  is  a subgroup of the diagonal group.
(III) The representation of G  by homogeneous forms o f degree

is completely reducible.

Proof. It is obvious by virtue of Lemma 8 that each of the
above conditions for G  is equivalent to that for the closure of G.
Therefore we may assume that G  i s  a connected algebraic linear
group. It is well known that (II) implies (I) and it is obvious that
(I ) implies (III). Thus w e have on ly to  show th at (I I I ) implies
(II). A ssum e th at ( I I I )  is  true and that (I I ) is not true, and we
shall lead to a contradiction. Lemma 3 shows that G contains an
element g  which is not semi-simple. Then the unipotent part g u

of g  is different from the identity and is contained in G (cf. Borel's
paper), hence G  contains a  connected closed unipotent subgroup
U + 1  by Lemma 2. The representation module F  the repre-
sentation P p  o f  G by homogeneous forms o f  degree p  is nothing
but the module of homogeneous forms of degree p  in n  variables
X 1 , ••• , X „ on which element g of G operates by the rule h(X „ ••• ,
X p)g =h((X „ ••• , X p)g). F p  contains M = X 1,'K ,  w h ich  is  a lso  a
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representation module of G .  Hence (III) implies that M  is  a direct
summand o f F .  T hus F p = N e M . For each monomial ni ,.. i n =

••• with i f  such that ii < p  and E i i =p, there is a uniquely
determined element ;Ili ,. i n  of M  such that f i ,. i n = ni , . i n + m i i . .i n  form
a linearly independent basis for N .  W e note that N  and M  are
representation modules of U .  Hence we have only to show that :

The decomposition F p =NEDM as a repersentation module of
the connected closed unipotent group U lead us to a contradiction.

Let u= (1111 ) be a generic point of U over the universal domain
K .  We may replace U  w ith a  conjugate o f  U .  Hence we may
assume first that u t .,= 0  i f  i > j ,  whence u i i = 1  fo r  each 1. Set
K*=K({ u7 i }), and we choose (k, 1) so that uk i  K * ,  u i ;  E K *  i f  i > k
and such  that uk ;  E K *  i f  j > / .  For each A  (A  being a
triangular unipotent matrix), we can associate such an (k, 1), and
w e m ay assume th at the pair (k , 1) f o r  U  is lexicographically
smallest among those (k, 1) fo r A - 1 - U A . Assume for a moment
that there is a linear relation E i a i uk i  E K * with a i  E K  and a l  +0 .
We may assume that a 1 = 1 and that a i =0  i f  uk i  E  K * .  Hence, in
particular, a,— ••• = c f k

=
 a l + i

=
 • • •  =an= 0. Consider the unit matrix

1  and the matrix c'=(c i )  such that (i) = 0  if j  I  / , ( ii)  c ,= a,
i f  i  I  /  and (iii) c 1 = 0. S e t  c = l + c '.  Then obviously c - 1 =1— c'.
Since c - lu= u  modulo K *, we see easily that such an (k, 1) defined
for c 'U c  has the same k  and a smaller /  than our (k, 1), which is
a contradiction. Therefore

(1 ) I f  a i  E K  and if a l     0 , then E i a i uk i ØK* .

Now, let a = ( a 1)  be an arbitrary element o f U .  Then u a is also
a generic point of U over K .  Since uk i (i > / )  is  in K *, the (k,
component of u a must be in  K * .  This shows by v irtue o f (1)
above that a,1 = 0  if j > / .  Since a is arbitrary, we see that uu  =0
for every j d= /. Thus X I i s  U -invarian t. Now we consider the
elements f i r . (i. i <p , i5 = p ) .  W e denote by g ;  t h e  element
f ,,.. i n  such that i1 =1 , i i = p - 1  fo r  each j =k, k +1 ,  • • • , 1— 1, 1+1,

• , n .  Since we have

( 2 ) (XkX7-1)4 = E uk i x i xri ,
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we see that

( 3 ) -  E J ittki g i  •

Consider the coefficient o f X21 in let it b e  d .  (3) shows that
d  is  a linear combination o f uk i (j  I  l)  w ith coefficients in K .  On
the other hand, (2) shows th a t d—u k i  must be in K * .  Thus we
have a contradiction to  (1) above, which completes the proof of
Theorem 1.

4 .  The m ain result in the case where p+ O.

Theorem 2. Let K  be a universal domain of characteristic p4-= 0
and let G  be a m atric group contained in  G L (n , K ). Then the fol-
lowing conditions are equivalent to each other :

(I) Every  rational representation of  G  is completely reducible.
(II) T here is a norm al snbgroup G, of  f inite index  such that

(i) G, is a  subgroup o f  a  torus group an d  ( i i ) the index  of  G , in
G is not divisible by p .

(III) T he connected component G, o f  th e  identity  o f  G  i s  a
subgroup o f  a torus group and [G :G 0 ]  is not divisible by p .

I f  G  is  an  algebraic linear group, then the above conditions are
equivalent to the following condition:

(IV) Every element o f  G  is  semi-simple.

Proof. It is obvious that (III) implies (II) and th at (II ) implies
(I) by virtue of Lemma 6. Therefore, by Lemma 8, w e have only
to prove the equivalence of (I), (III), (IV) in the case where G is
an algebraic linear group. T hus w e assume that G  is algebraic,
and let Go b e  th e connected component o f th e identity o f G.
Assume first that (IV ) is  true. Then G , consists merely o f semi-
simple elements, hence Go i s  a  torus group by Lem m a 3. If a
semi-simple element a  has a finite order, then the order is prime
to p .  Therefore Lemma 4 implies that [G : G0 ]  is not divisible by
p .  T hus (IV ) im plies (III). A s  w e  have rem arked above, (III)
implies (I). Assume now that (IV) is not true. Then, as w e have
seen in the proof o f  Theorem 1, th e re  is  a unipotent element u
o f G which is different from the id en tity . I f  u E G0 , th e n  G , has
a rational representation which is not completely reducible, hence
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G itself has such one by Lemma 7 or by the corollary to Lemma 5.
If u OGo ,  then the finite group GIG, has a  representation which
is not completely reducible, which is a  rational representation of
G .  Thus we see that (I) is not t r u e .  Therefore (I) implies (IV),
which completes the proof of Theorem 2.

5. The m ain  result in  the case where p  =  O.

Theorem 3. Let K  be a universal domain of characteristic p =0
and let G be a m atric group contained in  G L (n , K ) . Then the fol-
lowing conditions are equivalent to each other :

( I ) Every rational representation of G  is completely reducible.
(II) The closure o f G  has a faithful rational representation

which is completely reducible.
(III) The radical of the closure of  G is  a torus group.

Proof. It is obvious that (I) implies (II) by virtue of Lemma 8.
Lemma 9 shows that (II) implies (III). I n  order to show that (III)
implies (I), we shall prove the following lemma :

Lemma 1 0 .  Let G  be a  connected algebraic linear group and
let R  be the radical of G .  I f  R  i s  a  torus group, then there is a
closed connected normal subgroup S  such  that (i) G  =R S  and (ii)
R n S  i s  a f inite g ro v p . Furtherm ore, R  is contained in the center
o f  G  (hence R  i s  the connected component of the  identity  of the
center of G).

Proo f. F o r th e  fact that R  is contained in  the center of G,
see Borel's paper. Let S be the subgroup generated by all unipotent
elements o f G .  Then S  is obviously a norm al subgroup. Each
unipotent element is in  a  closed connected unipotent subgroup of
G, hence S  is generated by closed connected subgroups, and there-
fore S  is a closed connected subgroup of G .  Now, we may assume
that R  is a diagonal group and that each g E G  is given by

p , ( g )  . 7 1 2 (g )  •  •  •  q - ,(g )  \

0  2(g) • 7 . 2 r (g ))

\ 0   r ( g )

g =
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with irreducible representations p„••• , pr . I f  u  E  G is unipotent,
then p i ( u )  is unipotent, whence the determinant o f  p i ( u )  is 1.
Therefore we see that if .5 G S, then the determinant o f p i ( s )  is 1.
On the other hand, since R  is in the center o f G, p i (R ) is in the
center o f p i (G), hence by the famous lemma of Schur every element
o f p i (R ) is of the form k•p i (1 ) with k E K .  Therefore we see thet
R n S  is a finite group. Since S a is closed normal subgruop, RS is
a closed normal subgroup. Since G IR  is semi-simple, we see that
G IR S is semi-simple, unless G = R S . If G + R S , then GIRS contains
a non-trivial unipotent element, whence there must be a unipotent
element o f G outside o f RS, which is a contradiction to our con-
struction o f S .  Therefore G = R S , which completes the proof.

Now we proceed with the proof o f Theorem 3. By the corol-
lary to Lemma 6, we may assume that G is connected. Lemma 8
allows us to assume that G  is an algebraic linear group. Let R
be the radical of G and let S  be the normal subgroup given in
Lemma 10. Since RrNS is a finite group and since G = R S , we see
that S is  semi-simple, whence every rational representation of S
is completely reducible. Let p  be an arbitrary rational representa-
tion■ o f G .  We may assume that p (R ) is a diagonal group, whence
the complete reducibility of the restriction of p  on S  implies the
complete reducibility o f p ,  which completes the proof.

6. Another result.

Let K  be a universal domain of an arbitrary characteristic and
let G be a connected algebraic linear group with universal domain
K ,  throughout this section.

Theorem 4 .  Every rational representation of G is completely
reducible if (and only  if) the follow ing is true:

I f  p " = ( 1  
'

I )  i s  a  rational representation o f  G , then  p "  is0  P
1  0equivalent to the representation ( 0  ( / ) .

Proo f. L e t p = (P 1)  be a rational representation of G .  Wep,
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have only to show that p is equivalent to the representation (to) '

Since p(ab)— p(a)p(b), we have

( 1 ) T(ab) = P i(a)T(b)d -  T(a)P2(b) for any a, bEGG.

Let x  be a  generic point of G  over K  and we consider f (x )—
q- (x )p 2 (x ) . f  (a)  is then well defined for any a E  G . The relation
(1) im plies that f  (ab) = Pi(a)  T  (b) 2(b) - 1  do 2(a ) - 1  + T  (a) P 2 (a) - 1  —
P1(a)f (b)P2(a) + f (a) for any a, b E G, whence

( 2 ) f  (xa) = P1(x)f(a)P2(x) - 1  ± f  (x ) for any a EGG.

Let m , n be such that T is an (m, n)-matrix and consider the module
L  o f all (m, n)-matrices over K ( x ) .  Each element g  o f G  defines
an K-linear map (I), on L  as follows :

(Pg (w, ; (x)) =  (tv i i (xg)) .

Thus L  becomes an K-G-m odule. Let M  b e  th e  s e t  o f all
p1 (x)cp 2 ( x ) '  with (m , n)-matrices c  over K .  Then M  is  a  finite
K-module contained in L .  Since p i (xa)cp 2 (x a) 1 = p i (x)(p,(a)cp,(a) - 1 )
x p,(x) - 1  (a e G ), M  is G-admissible. Set N= f (x)K + M .  Then the
relation (2) shows that N  is also a  finite K-G-module. We consider
a representation p* of G  by the module N .  The relation (2) shows
that f  (x ) is G-invariant modulo M , hence either f (x ) E M  or 10* is

equivalent to a  representation of the form  (0
1  X

0,). The former

case implies that f  (x )+ p i (x)c p,(x) - 1  = 0  with some (m, n)-matrix
c  over K .  By our assumption, the latter case implies that there
is  an element p1 (x)cp 2 (x) - i  o f M  such that f (x )+ p,(x )cp 2 (x) - ' is
G-invariant. Hence, in any case, there is an (m , n)-matrix c  over
K  such that f  (x)+ p,(x)cp 2 (x) - 1  is G-invariant. Set T* =-T — c p 2 + p i c.

Then, transforming p  b y  the matrix (P1(1)
p ( 1 )

)

'

 we see that p is0 2 
rr*equivalent to the representation (' ) .  Set f*(x )=T *(x )p 2 (x) - 1 .0  p  2

Then f * (x )--- f (x )— c+p i (x)cp 2 ( x ) ' ,  which is G-invariant by our
choice o f c. Therefore f*(xa)—  f*(x ) for any a E G , whence f *(x )
= f*(xx - i) = O . This shows that q-*=0, which completes the proof
o f Theorem 4.
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We note by the way that the matrix f ( x )  has an interesting
property as follows :

Proposition. Assume that p -- ( rj i )  i s  a rational represen-
P2

tation  o f  G .  Set H = { h; hE G , 7 (h)—  0} . T hen the homogeneous
variety G IH =f g H 1  is  an affine variety, on which the coordinates of
a point g H  are given by f (g). 6 )

Proof. Since 7(1)= 1, the formula (1) in the above proof shows
that 7(a - 1 ) = P1(a)T (a)P2(a) - 1 ,  h e n c e

 7 . (a - 1 1)) = P1(a) - 1 È r(b)P2(b) - ' —
q- (a)p2(a) - 1 1 9 2(b). Therefore f  (a) = f (b) if and only if a H = bH , which
proves the assertion.

6 )  I f  we consider the set of cosets H g , then it becomes an affine variety, on
which the coordinates o f f i g  are given by p 1 ( g ) - 1 T ( g ) .


