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1. The construction

The purpose of this note is to discuss what I believe to be
the simplest rigorous approach to one-dimensional diffusion theory.
The method used is not really new ;  the idea appears in some of
the older physically-oriented literature, although usually in a
mathematically incomplete form, and the same basic approach has
been taken recently by McKean [ 1 0 ]  in the case of Bessel pro-
cesses. The possibilities of the method do not seem to have been
widely appreciated, however. Although the class of diffusions which
can easily be derived in this way is limited, the method does in
these cases offer easy proofs o f some rather deep results on the
nature of sample functions.

W e w ill obtain other diffusions from  the standard Wiener
(Brownian motion) process, which is here taken for granted, by a
method quite reminiscent of K. Itô 's  approach via stochastic differ-
ential equations [ 9 ]  (see also [3 ] ,  chapter 9 ) .  However, the concept
o f a  stochastic integral will not be needed. Let m(y) be a real
function which satisfies a Lipschitz condition of order 1  on the
whole line, and consider the integral equation

( 1 ) y(t) = a mly(T)NT + x(t)
0

1 )  Th is work was supported in  part by the National Science Foundation.
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It is well known that there is a unique continuous solution y(t)
fo r each continuous function x (t) and constant a , and that the
mapping Ma taking x into y is continuous in the topology of uniform
convergence on finite intervals. As a result, if  x (t) is considered
to be a sample function of the Wiener process, y (t) will also be a
path of a stochastic process, and since the Wiener paths are almost
surely continuous the same will hold for {y (t)}.

To make this more precise, let W  denote the Wiener measure
on the Borel sets of, say, C,,,„. Since Ma is continuous, it is
possible to define a new probability measure P a  by putting P a (A)
= W(M,7 1A ) for any Borel set A ; we can then consider {y(t)} as a
random function defined on the sample space (C

(
0

, 1
)

7  P a ) .  Since
almost all Wiener paths start at 0 we clearly have P a {y(0)=a} =1.

It is not hard to see that { y(t)}  is a Markov process with
stationary transition probabilities. If (1 ) is rewritten in the form

( 2 ) y(t + s) = y(t) + f +  m[y(T)]d7 +Ex(t + s)—  x(t)] ,

we see that y(t + s) depends only on y(t) and increments x(t + x ( t ) ,
T > 0 .  But y (t) depends on x(T) for T <t  ,  and these values are
independent of the increments above. It follows that the conditional
distributions of y(t + s) given y (t) only and given { y (T ) , <t}  are
the same, which is a form of the Markov property. It is also clear
from (2), because of the stationarity of the increments of Wiener
processes, that the conditional distribution of y(t + s) given a = y(t)
is equal (a.s.) to  the distribution o f y (s) computed with initial
state a. Thus our claim can be quite easily substantiated.

There is a simple step by which the construction can be
considerably generalized : let f  be a continuous, strictly increasing
function from (-00 7 C * 0  )  into itself, and let z (t)=f  (y (t)). Obviously
the Markov property, stationary transition probabilities, and con-
tinuity o f paths enjoyed by the process {y(t)} are still present in
{z(t)} ; in other words, {z(t)}  is also a diffusion process. It follows
from a  theorem of Dynkin and Yushkevich [5] (or P I  th a t  the
strong Markov property is also present, but we shall not discuss
that in detail or make use of it here.
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2. Generator o f  {y(t)}

That is all there is to the construction, but it remains to be
seen which processes can be so obtained. In  this section we will
characterize the process {y(t)}  resulting from the first stage of the
construction by finding the infinitesimal generator of an associated
semi-group of transformations. Let Co be the space o f continuous
real-valued functions having limits at ± O C  aud  define

( 3 ) (T ,u)(a) = au(y (t))i y (0) = a]

for functions uE C o . We will first show that 7  is  a contraction
semi-group o f operators from Co into itself ;  the only part of this
assertion which is not obvious is the continuity o f T u  a t  ±  •

This is very easily seen if the function m (y) is bounded, for then
y (t) differs from Brownian motion by at most a fixed quantity (for
each t).

In case m (y ) is not bounded, we will prove continuity using
an inequality also needed later, which we now derive. From (1)
follows

I y(t) — a I < I x(t)I + t m(a)I + A T)

where K  is the constant in the Lipschitz condition satisfied by m.
I f  t > 0 ,  and t*  is a point in [0 , t ]  at which I y(cr)— a attains its
maximum for that interval, then

1.3(t') — a I <  I x(t*) I + t* I m(a)1 + Kt* I A t * ) — a I •

It is an easy consequence that for values of t  such that 1 — K t> 1
2

( 4 ) max y(T)— 2 t m(a)1+2 max I x(T) I •
r<_t

Now suppose u E Co , and u(00)— b, say . To prove that T u (  )

=b also, it suffices to show that

( 5 ) lim Pr(y (t)< AI Y (0) = a) = 0

fo r every finite A ; furthermore, it is enough to prove it for all
small enough t. Now because of the Lipschitz condition, I m (a)l<
m ( 0 ) 1 +K al. Then from (4) w e have for 1 — 2Kt>0 that
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Pr(y (t)< A I y(0) ----- a)<Pr(ly (t)— ai_a— A ly (0 )= a)
<P r(2  max I x('r) I >  a(1-2 tK )+B )

where B  is constant. Since max I x(T) I  has a distribution which

does not depend on a , we obviously obtain 0 as the limit when
a  00 , and hence (5). Continuity at — 00 is proved similarly.

Let A  denote the (strong) infinitesimal generator of T .  W e
will prove

Theorem 1. The generator o f  {T ,}  is given by

( 6 ) (A u)(a) = m (a)u/(a)+ u"(a) ;
2

the domain o f A  consists o f ex actly  those functions u w hich have
a  continuous second derivative and for w hich the right hand side
o f  (6 ) tends to  0  as a— . ±oo.

P ro o f . The approach we will take is via the relations

( 7 ) lim E
a

 [Y (t)—  a l m(a) ,
tt ÷0+ 

( 8 ) lim E  fEY(t) -
 a l l1 ,  and

(+ 0 + a  ( t )

( 9  ) lim E a f EY( t ) —  at  — 0.
(+0+ l t )

( "E a "  is expectation with respect to the measure P a ).

These facts are almost immediate from (1 ) when m  is bounded,
but to handle other cases we need to use (4), together with

(10) E Im ax x(r)19, =  Ch et= , k  = 1, 2, ••• ,

where "E " means integral with respect to Wiener measure. (The
last fact is easy, since the exact distribution is known from the
"reflection principle".) Equation (9 ) is an immediate consequence
of (4 ) and (10).

To derive (7) and (8 ) is now very easy. Writing

(11) y(t)—a x (t)+tm (a)+e(t)

where
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(t) =  {m (y(t))— m (a)} dT,
0

we will have (7) as soon as we show that E (( t ) )=  o ( t ) .  But making
use of (4) we have for small t

1 (t)1 <2Kt(tIm (a)1 +m ax  I X ( r) i )

and using (10) we have E(1(t)1)= o(t 3 /2 )  and hence (7). To obtain
(8) is equally simple ; from (11) we have at once

(y(t)— a) 2 =  x (t) 2 + [tm (a )+ (t ) ] 2 + 2 x (t)[tm (a )+ (t)] .

On taking expectations the first term gives the desired answer t,
and it is easy using th e  facts above to see that the remaining
terms are o(t 2 ) ;  (8) follows.

New suppose that u  is bounded and has a  continuous second
derivative. There is a  well-known simple argument, based on the
Taylor expansion of u up to the quadratic term, which shows that
for each a

1(12) lim ( T  fu " ) —
 "

( a )  — m(a)u'(a)+ —u"(a);
2

we will not give the details. The only properties of the semi-group
which come into play are (7), (8) and (9). If, moreover, u E CO 3 it
is obvious that fo r a= ± 00 the limit in (12) exists and equals 0,
since by definition (T  u)(±  00)= u(± co), If finally u  is such that
the right side of (12) is continuous at ± 00 (i.e. tends to 0), then
it is known 2 ) that the convergence must be uniform and so that
u must belong to the domain of the generator A.

It only remains to see that the whole of the domain has been
identified. Since, for large X, the operator X — A maps the domain
o f A  onto CO 3 it suffices to show that the operator in  (6), with
its "natural" domain described above, also has this property to
establish that it coincides with A . I n  other words, we need to be
sure that the equation

2 )  T h is  a n d  other facts from  sem i-group theory used below  a r e  proved, for
in stance , in  [8].
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Xu — m(x)u'— —
1

u" u ( x )
2

has a solution u  in the natural domain of (6 ) for every v E C0 . A
more general result has however been proved by Feller ([6], Thm.
13. 1) and so the proof o f Theorem 1 is complete.

3. Generator of {z(t)}

We now consider the effect of the second stage of the con-
struction—the transformation z (t)= f (y (t))—  on th e  infinitesimal
generator. For simplicity we always assume that f  maps the line
onto itself. Then {z(t)} gives rise to another semi-group {S,} of
operators on C 0 ; let B  denote its generator. The point of departure
is the simple observation that

(S t v )(b) = { T ,(v of )} (a),

where v o f  means the composed function v (f (a))  and b = f ( a ) .  It
follows that v is in the domain o f B  if and only i f  v of  is in that
of A, and when this holds

(13) (B v )(b) = { A (vof )} (a).

We will now make, at some loss of generality, the assumption
that f " (a)  exists and is continuous on ( — 00, + 00). It is then clear
from the above discussion together with Theorem 1 that B  has
the form

(14) (By) (b) = —2
1 f ' (a) 2 v"(b)+ v'(b) —2

1  f  "(a)+ m(a) f  (a)}

when v  is in its domain ; this occurs exactly when v" is continuous
and the right side of (14) tends to  0  as a ,  ±  O 'D  (recall b=f (a)).
Hence in this case B  is a classical diffusion operator of the form

(15) (Bv)(b) —  
a (b )2

 v
„
(b)+ go v'(b) ; a(b )> O.

2

We will next give sufficient conditions iusuring that an operator
(15) corresponds to a process obtained from our construction :

Theorem 2. T h e re  is  a  process { z (t)} , construc ted  by  the
m ethod in section 1 , w hich has (15) fo r  its generator prov ided that
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a" and i(3' exist, that a > 0  and —

1  
is not integrable at either ±  oc,

and that the functions a a "  and 16"-4ce' l a  are bounded". If  these
conditions hold, the function m  and f  used in the construction are
given by  (17) and (16) below.

P ro o f . Comparing the generator which has been obtained in
(14) fo r  {z(t)} with the general form (15), we see that i f  they
agree it is necessary that f ( a ) = a ( b ) .  This yield

(16) f (a)—  S -1 (b), w here S(b) = d x  

1 a'(b)a(b)
(17) m (a)—  ce(b)

In the construction o f  {y(t)} it was assumed that m  satisfied a
uniform Lipschitz condition ;  i f  such a condition holds for the
function o f (17) then the ultimate construction of a process {z(t)}
with generator (15) will be possible. It is, of course, enough that

d ( /3(b)
da\a(b)1

< M  and d a/(b)
da

< M

  

should hold, but using d—b  = f  '(a)= a(b) these statements reduce toda
the hypotheses of the theorem, and so the proof is complete.

4. An application

The main theoretical advantage of the construction described
above is that it simplifies the analysis of the sample functions of
{z(t)}  in terms of the Wiener paths. For instance, it is well known
that a W iener path is nowhere differentiable, with probability 1,

3 )  The proof will show that i f  a  is bounded, the other boundedness conditions
can be replaced by the assumption that a' and g/a satisfy a Lipschitz condition of
order 1, and the existence of a" and g,  everywhere is not needed.

o a(x )

The assumption that f "  is continuous requires that a ' be conti-
nuous and the need for f  to map the whole line onto itself is met
provided a( b ) >0  for each b  and S(± 00)= ± 00 .

Again comparing (14) and (15) we obtain
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and in fact it nowhere satisfies a local Holder condition of order
greater than 1/2 . From (1), it is then immediate that the paths of
{y(t)} have the same properties, and provided f  has a  continuous,
positive derivative the same things hold for { z (t)} . In particular,
processes with a  generator satisfying the assumptions of Theorem
2 all have paths which are (a.s.) nowhere differentiable. In much
the same way other properties of Brownian motion paths can be
carried over to a large class of diffusions. Some of these will be
mentioned explicitly in the next theorem, although no attempt was
made to provide an exhaustive list.

T h e o re m  3. L e t  { z(t)}  b e  an y  diffusion constructed by  the
method of section 1, where the f unction f  has a continuous, positive
deriv ativ e. T hen

(i) W ith Probabiliey  1, z (t)+ct has no Points o f  increase or
decrease for any  value o f  c.

(ii) W ith probability  1, z (t) has an upper (lower) derivative equal
to +00(—  oc) everywhere".

(iii) W ith probability  1 the equantity

l im  sup
it,-t21 <8

t 2 T

z(t1)—z(t2)

 

ti t ,  1 / 2

 log  (t,—t 2 ) 1/2

is f inite; it is bounded prov ided f ' is bounded.
( i v )  For each a, with probability 1

l i m

t ÷ o

s

+

u p

 1

z ( t ) —  b
2 t  l o g  l o g  t1 1 / 2  

— f  ( f  ')(b)) .

P ro o f . Each o f these results can easily be deduced from
known properties of the Wiener paths, together with our represent-
ation of the diffusion { z (t)} . For instance, it was proved in  [4 ]
that x (t)+c t has no points of increase or decrease for any c, for
almost all Wiener paths x(t). But if x (t) and y (t) satisfy (1 ) it is
clear that the existence of a point of increase for y (t)+ct implies
one for x (t)+c"t fo r all large enough c " , so that { y (t)+ct}  has

4 )  Here "upper derivative" means th e  (two sided) lim , s u p . o f  th e  difference
quotients.
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a.s. no points of increase (or decrease). Since f  is strictly mono-
tonic, it is immediate that z (t)= f (y (t)) can have no point of
increase or decrease ; the same result for z (t)+ct follows using the
assumed differentiability of f .  This proves (i), and (ii) is an im-
mediate corollary. The Holder continuity asserted in (iii) follows
from the analogous result fo r Brownian motion which is proved
in Ell ;  the local law o f the interated logarithm (iv ) is also an
immediate consequence of the law in the Brownian case, which is
well known.

5. Concluding remarks

The class o f processes described in Theorem 1 is of course a
restricted one ; the assumptions made there are somewhat similar
to those made by Feller in his early work on diffusion E q .  The
approach we have taken could be generalized, for it is not always
necessary in the first stage that m  be a Lipschitz function (see
[10 ]) nor, in the second stage, that f '  exist everywhere. It would
be o f some interest to see how large a class o f processes can be
obtained by our method, although the only advantages which it
offers over other, more general method—those o f  simplicity and
the results in Theorem 3—might well be lost in the process.

It is easy to incorporate absorbing barriers into the diffusions
we have constructed. This can be done for the process {y (t)} by
changing the mapping M o  to provide that, for each x (t), the cor-
responding y (starting inside the desired open state interval) proceeds
as before until it first touches a barrier and then remains constant
thereafter. The second step of the construction, of course, merely
changes the position of the boundaries. Reflecting barriers are
also readily provided, as H. McKean pointed out to m e . To illus-
trate the method, suppose a barrier at 0 is desired. The function
m  is originally given on the positive half line ; we extend it as
an even function. Using the extended m , a process {y (t)} on the
whole line is constructed as in section 1 ; { y(01}  then provides the
desired reflecting barrier process. Two barriers can be managed
in much the same way, and again the second stage of the con-
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struction introduces no difficulty. In  both the absorbing and re-
flecting cases the analysis of the infinitesimal generator proceeds
with only minor changes from the discussion in section 2  and 3,
and shows that functions in the domain of A must satisfy appro-
priate classical boundary conditions.

Finally we mention the possibilities of taking the same approach
to Markov processes with discontinuous paths. This has been done
using the method o f stochastic integral equations by K. Itô [9] ; a
special case was suggested by Doob in [ 2 ] .  I f  x (t) is any bounded
measurable function, the usual existence proof still shows that (1)
has a unique solution, and so it can be shown that processes {y(t)}
(and hence also {z(t)} )  can be constructed from a  process {x(t)}
with "reasonable" discontinuous paths by following the steps of
our construction for diffusions. It is then not hard to prove that
if {x(t)} has stationary independent increments, the resulting process
w ill be Markovian with stationary transition probabilities. This
strongly suggests the possibility o f generalizing a.s. results on the
paths o f differential processes to a wider class in a manner analo-
gous to Theorem 3. We shall not pursue this further at present,
however.
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