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Introduction. Let S  be a compact Hausdorff space with a coun-
table open base, S" the n-f old symmetric product of S, S=U  S" the

It = 0

topological sum o f  S", where S° = { a}  ,  a an extra point, and S=S
U {A} the one-point compactification of S. The purpose of this paper
is to investigate a  class of semi-groups {T ,;  t > 0 }  o f linear opera-
tors defined on the space B(./ )  of bounded measurable functions on

with a  special property, which will be called the branching pro-
perty;

(1) T ,R x)— (T ,7)1 s ( x ) ,  xE S , /lE B(S ),

where /N is a  mapping from B (S ), the space of bounded measura-
ble functions on S, to B(./ . )  defined by

f ( X j ) ,  when x= x2, n ]
9 = 1

(2) i(x ) = \ ,  when x=8,
,0 ,  when x = A.

When the semi-group T , is positivity preserving and contraction,
there corresponds a M arkov process on S with the semi-group by the
general theory of Markov processes. We shall call the Markov pro-
cess a  branching Markov process. Branching processes are  inves-
tigated by many authors a s  a  mathematical model for the population

*  The first and the third authors were supported in part by contract USPHFNIH
10452-04 through Stanford University and the second author, by NSF Grant GP
4867 through Cornell University.
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growth of particles (cf., e.g., Harris [8] ).
This paper will consist of three parts. In the first part we shall

give some equivalent formulations of the branching property. The
most important one is the equivalence between the branching property

and the property B . III (Theorem 1. 2). Roughly speaking, the pro-
perty B. III is equivalent to say that i f  there are  n-particles they

move independently of each other before the splitting (branching)
time, and when they split into m-particles this happens only through

th e  even t that ju st o n e  o f th e  o rig in a l n-particles splits into

m —  (n-1)-particles and the other (n -1)-partic les continue the same

motion as before. Several versions of the property which is equivalent

to the Property B. III are adopted as a definition of branching proces-

ses by some authors, b u t th e  equivalence between the branching

property (1) and the Property B. III, as far as the authors know, has

not been proved in  fu ll generality. This equivalence will play an
important role especially in  constructing branching Markov processes

from given fundamental quantities. The equivalence will be proved in
part I, while the construction itself will be treated in  part II. Using
the strong Markov property of the branching Markov process, one
can easily see that there are two fundamental quantities which will

uniquely determine the process. They are the non-branching part
X ° (Definition 1. 2) of the branching Markov process and the branch-
ing law  n(x , d y )  (Definition 1. 3). The first one is a  Markov pro-

cess on SU {A} with A as the terminal point ( i t  must be remarked

that the state space is not S  but S ) ,  which describes the behavior

of a particle before its first splitting. The second one is a  stochas-
tic kernel on S x S  such that n(x, S )= 0 fo r every  x  S ,  which gov-
erns the law of the splitting. We shall prove that a large class of
branching processes is uniquely determined by X ° and n  (such a
branching Markov process will be called an ( X°, 7)-branching Markov
process).

In part II, we shall first give a  general theorem o f piecing out
fo r  Markov processes. This theorem will provide a simple way to
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piece out the sample functions o f a  given Markov process by an ins-
tantaneous distribution (Definition 2. 1). Thus, the problem of cons-
truction for branching Markov processes is reduced to construct a
Markov process o n  S  from th e  given non-branching p a rt X ° (a
Markov process o n  S )  an d  an  instantaneous distribution from the
given branching law (Theorem 3.5), and prove that th e  constructed
Markov process by the piecing out theorem has the property B. III.
T h is is, however, an  immediate consequence of the way of construc-
tion o f  th e  non-branching part on  S  and the instantaneous distribu-
tion. We shall give several examples of branching Markov processes
in  p a r t  I I . To do this, it is sufficient to specify non-branching parts
and branching laws. We shall give there related fundamental equa-
tions for these processes, while the general form will be derived in
part I fo r ( X°, 70-branching Markov processes. These a re : a  linear
integral equation on the large state space S  of renewal type

(3) u(t, x )=  r f ( x )  + t S,.. ,11r(x; ds dy)u(t —s, y ),
0 s

xES, tE [0, 00),

where f E  B ( S ) ; an d  a  non-linear integral equation on S

(4) u ( t, x )= T  f (x )-1 -  t
o Ss IC(x; ds dy)F[y; u(t —  s)] ,

xE S, tE [0, 00),
where f E  B (S ) and

F[x ; = d y )  g ( y ) ,  gE B(S).

We shall call (3 )  and  (4) M-equation an d  S-equation respectively.
These equations a re  defined in  terms of the non-branching part X°
and the branching law 7r only.

A  detailed discussion for the equations will be given in part III,
which may be understood as an analytical version of part II. We shall
construct a (m in im al) solution o f th e  M-equation, following Moyal
[33], and show that it defines a  semi-group with the branching pro-
perty ( 1 ) .  A solution u(t, x ) of the S-equation can be constructed by
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the usual method of successive approximation and from the solution
one can define a semi-group T, on B ( , )  putting T17(x) = 1 -1”  u(t, x 5),
when x= [xl, x2, •••,  x , ] .

 C le a r ly  i t  h a s  the branching property.
Thus these constructions provide two independent ways o f analy-
tically constructing an  ( X °, 70-branching process. O n  t h e  other
hand, it  is  e a sy  to  show that there is an intimate relation between
the solutions of the S-equation and M-equation: that is, the minimal
solution of the M-equation provides the one for the S-equation, while
a solution of the M-equation can be constructed from the solution
of the S-equation. In other words, the M-equation is  a linearization
of the S-equation. B y th is relation we can investigate the solution
of the S-equation (a  non-linear semi-group on B (S )) in terms of the
M-equation (a  linear semi-group on B (S )).

Assuming some regularity conditions, we shall discuss the infini-
tesimal generator of a branching semi-group. In doing so, we shall
derive two fundamental differential equations: the backward equation
and the f orw ard equation. The backward equation is a quasi-linear
evolution equation. Such a class of equations was considered in, e.g.,
Kolmogoroff-Dmitriev [24] and Bartlett [1] for some of the simplest
cases, and by Itô-M cKean [19] and Skorohod [43] for branching
processes with diffusing particles. In the case of branching Brownian
motion, th is c lass of non-linear differential equations is a particular
case of the equations discussed by Kolmogoroff, Petrovsky and
Piscounoff [25]. The forward equation is a linear evolution equation
involving functional derivatives. We shall prove the uniqueness of
solutions of the forward equation and apply it to give another proof
of the branching property of the minimal solution of the M-equation.
Finally, in Chapter IV, we shall discuss the equation related to the
number of partic les. In particular, we shall see that the first moment
defines a nonnegative but not necessarily contraction semi-group. A
probabilistic treatment o f such a  semi-group was treated by Hunt
[10] and K night [23] . A  branching Markov process also seems to
provide one of the natural and "nice" model of creation of mass.
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In  Chapter V , we shall discuss transformations of branching
Markov processes ;  i.e., operations on a branching Markov process to
get a  new branching Markov process. Some interesting examples
will be given for killing, drift and harmonic transformation.

T he many results of this work have been previously published
without proofs in Ikeda, Nagasawa and Watanabe [12] , [13] , [14] ,
[15] , [16] , and  [17] .

We would like to express our deep gratitude to  Thomas H.
Savits for his kind help in  preparing the manuscript.

O. Preliminaries

Necessary facts on Markov processes will be summarized in §0.1.
In  §0.2, we shall discuss the symmetric product spaces and their
direct sum o f  a  given compact metrizable space and define several
operations on functions which will play an im portant role in the
future discussions.

§0. 1. Markov processes

L et E  be a  locally compact Hausdorff space with a  countable
open base, and let g ( E )  be the topological Borel field of E, i.e. the
smallest Borel field containing all open sets of E .  A Markov process
X  on E is a collection

X =  (D, g „ P ,  X ,(w ), Of)

o f th e  following objects which satisfy the axioms (M. 1) — (M. 4)
given below.

(1) D is an abstract space,
(2) g „  tE [0, 00) is a  family of increasing Borel fields on Q  (w e
denote the smallest Borel field containing all _B, by -0 - V  t>ogi),
(3) X,(co), tE [0, 00), coG S2 is a function (t, co) E [0, 00) x S2- - )-X ,(w)
EE adapted to g ,  i.e. for fixed t E [0, 00), the mapping w -- X,(û)
is measurable (S2, --B(E)),
(4) 0 „  tE  [0, 00), is a  system of mappings from D to
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( 5 )  P „  x E  E , is a  system of probability measures on (12, g - ) .

Now, we introduce other Borel fields

(0.1) 17i=6 0 2 , g (E ) ; X t (w ), s <t)" )

and
(0.2) g7-= V  t > o 7,=6F(s2, g(E); X s (w), SE  [0,

Clearly T ,  c g ,  and X ,(0 )) is adapted to glt•

Definition 0.1. A  co llection  X= (s2, gt, P , ,  X t, e t )  is called a
M ark ov  p r o c e s s  on E  if  it satisfies the following:

(M. 1) Xtd-h(c0)— Xt(Ohw), for all coE Sd and t, hE  [0, 00),

(M. 2 )  P x [e.0; Xo (a))= x ]=1, for all x E E ,

(M. 3 )  For every tE  [0 , 00) and A E g (E ) , Px [w ; X t (w)E A ] is a
B (E )- measurable function of x,

(M. 4 )  Px [X ,,( d ) E  A lg t]= P x ,( )
[X s ( d ) E  A ] a.a. (0(13 , )  for all t,

SE [0, co) and A E g ( E ) .

The following statements are easy consequences of the definition.

( j )  o t is measurable (Si, 71-)-- >(Q, A .) .
(ii) (M. 3 ) an d  (M. 4 )  are  equivalent to the following two condi-
tions: F o r  any bounded M.-measurable function F(co),

(M. 3)' Ex[F(m)] -A F ( w ) P x [dco] is B (E ) -measurable in  x

and

(M. 4 )' E x [F(e t (0 ')Ig t]=E x tm  [F], a.a. co (P x ).

Now we shall put

(0.3)B ( E ) =  n  g " ( E ) ,
FEU

where T S  i s  the set of all probability measures on ( E , B ( E ) )  and
g " ( E )  is the completion of g ( E )  by ,uE W1 and put

1 )  I f  {M  is a  fam ily o f functions from 0 to a measurable space (S ,  2 ) ,  then
r ( 9 ,  2 ;  f “ )  is the smallest Borel field on e with respect to which all f “ :  e-->(s, g)
are measurable.
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(0.4)0 s t + . 0 .

I f  X  is  a  Markov process, then (M. 3 ) and (M. 4 ) are still valid

when we replace g ( E )  and g ,  by (E) and respectively.

From  now  on, unless otherw ise stated, all the Markov pro-
cesses w e are considering are supposed to satisf y  the following
condition (R . C )  of right continuity ;

(R. C ) .  For every  wES2 the mapping

[0, c o )  t

is right continuous.

Then it follows that  X ( w )  is  progressiv ely  m easurable; i.e., for
every u G  [0, cc), (t, co) )- X ko)ris measurable ( [0, u] Xt2,  g [ o ] ® g „)

g (E ) ) ( 2).
A  non-negative random time T(co): [0, co ] is  ca lled  a

g9t-Markov tim e i f  I T t l  _ 0 ,  for every tE [0, c c ) .  F o r a  given

g,-Markov time, we define a Borel field by

(0.5)_ B T . =  {B_Boo; for every tE [0, co), Bn {T<t} E A }

(Note that i f  T = t  then g3,----- -Bt)•

Definition 0 . 2 .  A  Markov process X = (A P  X „  6 ) i s
called a  strong Markov process if for every g,-Markov time T  and
A E  g (E ),

(S .M) 13,[X,,,E A , T <co -B r]
= Ivr‹.}(0))Pxr,o0)[X,E . A ], a.a. (.0(13 ) ( .

Remark 0.1. ( i ) Since X ( w )  is progressively measurable,
XT( ) (0 ) )  is _O r / { T <co}  -measurable )  a n d  co -- o  is measurable
( { T ‹  co}, goo/ { T<00})--> (9, T . ) ,  (cf. M eyer [31] ).

(ii) The condition (S.M) is equivalent to

2) g [0 , i t ]  is the topological Borel field of [0 , u ]. 2 [0 ,u ]C )gu  is the usual pro-
duct Borel field.

3) /Ir< -1(co) is the indicator function of the set {a :  T (co) <=.0}
4 )  2 2 , / { T < .0 ) = { A E 2 r :A c { T  < 0 0 1 }: the restriction of g r  on  {T < (x)}
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(S. M)' E , [1 .{,< - }F (CT w)I -Br] = I {T < - }Ex T [F ]  a. a. w ( P )  fo r  every
g,-M arkov time T  and bounded T--measurable function F ( 0 ) ) .  Also
th e  following varian t (S. M )"  o f  (S. M )' is useful in applications
(cf. Dynkin [6] ) : i f  F(co, t), (co, 0 G .Q X  [0 , 0 0 ), is bounded and T..
Ogro,-)-measurable then

(S. M r E  [ifT<.}F(07.60, T(0)))1gT] ----  I{T<-}0(T, XT)

where 0 (s , x ) =E , [F (0 ), s)]. W e w rite  6)( T , X T )  sometimes as
Ex T [F(co, t)]1.

t=T

(iii) By D ynk in  [6 ] (p . 102, Theorem 3.12) or T . Watanabe [47] ,
i f  (X „  g t )  is strong M arkov, ( X ,, 23- , )  is strong M ark o v . Hence
without loss of generality we may assume ..43- , = g ,  fo r every strong
Markov process ( X „  g ,).

(iv) Since X ,((o )  is progressively measurable, every hitting time
TA  for any set A . 0 ( E )  is a 40-M arko v  time where --49- ,+0=  nffi+1_
(cf. M eyer [31] ). Hence, i f  g ,  satisfies the condition 4 +0=  g t ,
then every hitting time for a set A E g ( E )  is a  g,-M arkov time.

Definition 0 .3 .  A  Markov process x = (X „ g , )  is called quasi-
le f t continuous if for every increasing sequence of Markov times T,
we have

(Q. L. C) -13[1im X T  < 0 0 ] =  P x [T  < 0 0 ]

for every x E E , where T = lim  T,„

Definition 0.4. A  M arkov process X = ( X t ,  g i )  is called a
Hunt process i f  it satisfies the following conditions:

(H.1) th e  e x is te n c e  o f  left l im its ,  i. e., f o r  every x E  E,

s t t  
X.(co) exists for all t > 0] = 1,

(H.2) ( X „  g t )  is strong Markov,

(H.3) ( X „ g , )  is quasi-left continuous,

(H.4) g-t+o—gi •

We shall define, as usual, the equivalence of two stochastic pro-
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cesses by the coincidence o f their finite dimensional joint distribu-
tions. Then, by virtue of the Markov property, it is easy to see that
two M arkov processes X  and X ' on E  are equivalent if and only
if P ,[X t e A ]  P'y[X;e A ] fo r every x e E  and A E g ( E ) .  Clearly
this is quivalent to saying that X  and X ' induce the same semi-
group on B (E ) 5 , i.e., if 7 ' f (x )=  Z [f (X ,) ] and T : f(x )=
fe B (E ) ,  then T;

A point xe E  is called a trap if

(0.6)P [ { ( ;  if X (w )= x  then X (û )= x  for all t >s} ] =1

for every y .  It is sometimes convenient to distinguish a tra p A E
and to consider that when X , reaches A it has terminated its life.
Such a point A is called the terminal point of the process X, and
the hitting time C(0)) for A,

(0.7)C ( 0 ) )  =  i n f  {t ; X,(0)) =

is called the life time of X .
Here is one of the most fundamental theorems in the theory of

M arkov processes (c f. e. g. D ynkin [6 ]).  L e t  k i=EU  {A } be one
point compactification of E m  and C (E ) be the set of all continuous
functions on E  such that f ( 4 )  0. C ( E )  is  a  real Banach lattice
with norm II f II= supj f (x) I and with the usual order. Let { T , t >0}

be a semi-group of operators on Î ' (E )  satisfying the conditions

(T. 1) if 1 > f > -0, then 1 >  T,f>-0, and

(T. 2) Ttf  - fit- 0  where t 0  for every f G  (E) .( 8 )

Then the theorem reads as follows :

Theorem 0.1. L e t  {T„ t O} b e  a  semi-group satisfying

5) B (E )  is the set of all bounded (real valued) 2 (E )-m e a su ra b le  functions on
E.

6) We shall always set inf -A-- co by convention.
7) When E  is already compact, 4 shall be an isolated point of E.
8) Such a semi - group is celled a strongly  continuous, non-negativ e, contraction

semi-group.
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(T. 1 )  and (T. 2 ).  T hen there ex ists a Hunt Process X = (s2, g„
P„ X ,, 0,, C(0))) on E. = EL) {.61} w ith A  as the term inal point such
that

(0.8)T t f ( x ) = E x [ f ( X , ) ]

fo r  all x E.É , t O and f E G." ( E ) .  Such X  is  unique up to equiv-
alence.

It is also well known that the above Hunt process can be given
in  th e  canonical form ; that is , (s2, X„ 6.,) are given by ( i ) —(iii)
below.
(i) S l= S2„ -=the set of all right continuous functions w; tE [0, 00)
--> w(t) E / NE such that for some O<C(W)<+ C X D ,  W (t )  is  in  E  when
t <C (w ) and w (t)=z1 for t C(w).

(ii) X t (w)= W (t), W E S 2„.

(iii) 0,w is defined by (00)(s)—  w (t+s).
There are several ways of, giving ..93,; the following seems to be a
standard one. Let  77 t=a0„, --0(-k ); X s(w ), s<0, T -= V  J1 , and

t>0

(0. 9) 
pE931

where P„ ,uE an, is a  probability measure on  (S2„, 37-) defined by

P„(B) A P , ( B ) p ( d x ) .  Next we set for each t> 0

(0. 10) =  {B 9 ;  for every ,uE 93/ there exists 13, E 3 7 , such
that P [I3,6,B,,] = 0} (").

Then g ', o = 9- ,  is automatically satisfied and we may take g , = 9 „
(cf. M eyer [30] ).

Definition 0 .5 .  A  Markov process X — (X ,,g ,,C (0 ))) o n  E
with dE E  as the terminal point is called a  standard process i f  it
satisfies the following conditions;

(S. 1) (X „ ..0,) is strong Markov,

9) 911=the set of all probability measures on ( E ,  ( E ) ) .
10) B AB „ is the symmetric difference o f B  and B ,; B A B ,= B U B , — BnB„
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(S. 2) (X „ _0,) is quasi-left continuous befere C,

i.e., for any sequence T„ t T o f g,-Markov times, we have P. [XT„
T<C] — Px[T<C], for every xE E.

(S. 3) --Bt+0---gi •

Now consider a  Markov process X = (X „ -0 ,) with the terminal
point A; T,, and :77„. are defined as above.

Definition 0 .6 .  A function A(t , w) ; (t ,  (0) E  [0 , 0 0 )  X Sd ---> A(t , co)
E  (—  0 0 , 0 0 ]  is called a I9,-additive functional if
( j )  f o r  fixed tE [0, 0 0 ) ,  it is j l - ngrmeasurable and
(ii) there exists S2Ac..2,( 1 - 1 ) S2AE 0,(12A)c.QA fo r  all t O, an d
PA..QA] =1 for all x E E , such that if  wE,QA

1) t—>A,(a)) is right continuous,

2) Ao(w) =0, AGO= Asc.)(0)) for t > C (o ) ) ,  and

3) A,,,(w )=A,(co)+24,(Osco) for all t,

If we have further (for (oES2A)

4) t --,4,(w) is continuous,

Or

5) A,(0 )) 0,

then we shall call A (t, (0) continuous o r non-negative, respectively.

Definition 0 .7 .  A  function M , ( (o ) ;  (t, (O E  [0 , 00 ) X  S2—>Mi (co)

E  [0 ,  0 0 )  is called a  g ,-multiplicative functional i f  AG O = —log

M,(w) is a  g,-additive functional.

Given a standard process X = (X „ Px ) on E  with A E a s  th e
terminal point and an t12,-multiplicative functional M , of X  such that
Z [111,]<1 fo r every x  and  t there exists a  un ique  (up to
equivalence) standard process fe= (.X„ :15 )  o n  E  with A E as the

1 1 ) Such a  S2,4 is called a  d e f in in g  set fo r A.
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terminal point such that

(0.11): - P [ A]=E.,[114;; A e g ( E ) .

(cf. Dynkin [6] and Kunita and T. Watanabe [28] ).

Definition 0.8. is called the 111,-subprocess of X.

When 111,((.0)=e- A , where 11,(w) is a  non-negative and conti-
nuous 17,-additive functional, a version of the M,-subprocess is obtained
b y  the following method of curtailment of the life tim e . L et Z(0))
b e  a  goo-measurable random variab le such that P,[Z (0)>tlY 1...]
=e - '  for every x E  and tP 2 )

Put
inf {t ; Z(0))),(0. 12) .(o))
C(w), if { — 0,

(0.13)X 6 0 ) ,  t < C ( w ) ,
j (4, t >C(0)).

Then the stochastic process {IX,(0)), /3 ,} is equivalent to the M,-sub-
process Ï= a t ,  -13:, 5 of X .

Let X = (X „  g ,),  where .0, satisfies :C o = g o  b e  a  right con-
tinuous strong Markov process such that with probability one for all

the left hand limits of X , exist.

Definition 0 .9 .  A  system (n(x , dy ), A ,), where n(x , dy ) is  a
non-negative kernel on E x  E ( " )  and  A , is  a continuous and nonnega-
tive additive functional, is called a  Lévy system of the process X
if for every fG .13+ (E x E) such .that f(x , x )= 0, w e have

(0.14) f (X s_, X ,)] = Ea N f  ( X s )dA ,1,

where

12) By enlarging D and g c  i f  necessary, we can always assume such Z  exists.
13) L et ( S ,  g )  and ( S ',  g ')  be two measurable spaces. v (x , A ), x E S ,  A G g ' is

called a k ernel on (S , g) X  (S ', g ' )  if fo r  fixed A E g ' ,  it is  a  2-measurable func-
tion o f x, an d  fo r fixed x E g ,  it is a  measure on ( 5 ' ,  g ' ) .  When S  and S '  are
topological spaces and g  and g '  are topological Borel fields we call it sim ply a
kernel on S X S'.
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(0.15) (x )=E n(x , dy )f (x , y).

It is known [45] that every Hunt process with a reference meas-
ure( " )  possesses a  Lévy system. Suppose X  possesses a Lévy system
(n(x , dy ), A ) and let D  be an open set of E .  Let r p  inf {t ; X i (co)

E D } .  For B i c D  and B 2 c E — D , B ,E g (E ) ( i= 1 ,2 ) and f (x , y )
=1 8 1 (x )I5 2 (y ), ( 2 )  w e have from (0.14)

[e- À " ;  X E  B 1 ,  X r D
E  B2]

X e )]=E .S : e - '12 1 (X s)n(X „ B OdA s j,

where À is a positive constant. In particular,
TD

E,[e ; XT ,  E B ,] = E ,[ o e'IB ,(X s)n(X „ E— D )dA s l .

Therefore, if  we define a  kernel by

B)—  n ( x ,  B )  
n(x, E— D)

where x E D , B cE — D , and B E g (E ) ,  then we have

E x [e- A'.; XrD _EB ,, X r D E  
B

2]

= E , S pe's IB ,(X s )n(X , E— D).77 B (X „ B OdA s i0
=E r [e 'To IB,(X-,)11B(X- B _, B2)] •

A s a  consequence of this formula we have

Theorem 0 .2 .  Suppose X  possesses a Lévy system; then we
have for every open set D c E  and B B (E) such that B cE— D,

(0.16) P ,  [X , E BI X „_]=,UB(X T D _, B)

and further

(0.17) E,[e-ArDIE(X,„)I B)Ex[e-A'DIX,_]

14) m (d x )  is a reference measure f o r  X  if  fo r  every FE_B(E)

Sm (d x )E .[ -o e - tIF(X t)d t] = 0 implies E4S mo e- t/E(X t)dt1=0
fo r every x. (This was first introduced as the condition (L )  in Meyer [30]).

15) /n(x ) is the indicator function of a set B.
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a.s. ( 1 3 , )  on {X ,_E D , r p > 0 . } .

§ 0 .2 .  Symmetric product spaces and their direct sum

Let S  be a compact Hausdorff space with a countable open base
(i.e. a compact metrizable space), and let S ( ") (n=1,2, •••) b e  the
n-fold product o f  S  with the product topology. The symmetric
n-fold product space S" of S  is the quotient space S ( ") /— , where—
is the equivalence relation of the permutation; i.e., x'—y, x ,yES ( ' ) ,
i f  y  is obtained from x  by a permutation of coordinates. By the
quotient topology S " is compact. Let S °= {8 }, where 8 is an extra
point, and let S  be the topological sum of S", n=0, 1, 2, • • -.(") Then

S is  a  locally compact and non-compact Hausdorff space with a
countable open base; let

(0.18)

be the one-point compactification of S .  It is convenient to introduce
the notation S = {J }. T h e n  S  i s  the sum o f  S", n=0,1, 2,

00.

Example 0 .1 .  Assume that S  consists of a single p o in t: S

= {a} . Then S"= {[a,a, • • • ,a]} , which we can identify with n .  Thus
S can be identified with the set Z + of all non-negative integers, and
S with Z +=Z +U { ± 001 the compactification of Z .  M o r e  general-
ly  i f  S  consists of k-points; S = {a, a2, • • • ,  ( 4 } , then

k

S " =  { [a 1 , •  • •  , a, • • • a 2 , •  • •  , a k , .",a 5 ] ;  n i+  n 2 +  •  •  •  +  n k =

which we can identify with {(n1, n 2 , • ,  n k ) ;  n,EZ+, n,+ n2+ •-• +nk
-

= n} . Accordingly S = U  S "  can be identified with Z+ x Z+ x  x

=  { ( n i ,  n 2 , nk); n i EZ+}.
Let p  be the natural mapping: S'" ) ---. S" which maps x S ( ")  to

1 6 )  Cf. Bourbaki [3 ] p .3 5 . We shall write S =  S " .



B ranching M ark o v  processes 247

the equivalence class p X  containing x. Then p  extends to a mapp-

ing from the sum U  S ( ")  o f S ( ")  to S .  We shall write p X =  [X 1 , x 2 ,

x „ ]  when x = (x 1 , •••, x„) G  S .
Now we shall define for each m =1, 2 , •• • , a  mapping r :  S x S

X • • • X—  as follows. Let x 1 , • • •, x E  S  then there happens just
one of the following three cases;
1) x 1 = f o r  some i,
2) x i =8 for every i ,  or
3 )  all x i a re  different from d ,  but there is some x i different from
a.
Then we set

' d ,  if the case 1 )  happens,
8 ,  if the case 2 )  happens,

(O. 19) r(xi, x2, •••, x ,„)
• • • X21. •  • X 2 n 2  •  •  X i

• • • , x ) , if the case 3 )  happens,

where we take all x 1 =  [ x 11, x 12, •••, x,„,] such that x 1 # 8  in the case 3).

Example 0 . 2 .  In Example O. 1 ,  in the case S =  { a}  y  is given
simply by

r(ni, n2 , • • • , n)=n2+ n 2 + n 1 E Z t

In the case S =  {a1 , a2 , •••, a k }  n E  S  is given by n  ( n 1 ,  n2, • • , nk)
or n = A  and

r( , ,  •  . . ,  _  +  n 2 + • • ±  re,
n i  t e  

(

i f  rti * A  for all i,
i f  otherwise.

Now we shall introduce the following function spaces which are
supposed to be real unless otherwise stated.

(0.20)B ( S ) =  the set of all bounded Borel functions on S,
(0.21)C ( S )  =  the set of all continuous functions on S,

(0.22)B ; K  ( S )  = B ( S ) ;  f 11 sup I f(x) I < r}xFs
(0 . 23) C ' (S ) =  c(s)n 137 (S).
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We shall denote by " "  the closure with respect to the norm,
and so

(0.24)B 7 ( S ) - -  { f E B ( S ) ;  Ilfil<r},
(0.25)C ( S ) =  { f  G C ( S ) ;  Ifflf<r}.
For r =  1 , we shall omit the subscript r;

(0.26)B *  ( S ) =  BP ( S )=  { f  B (S ) ;  if fii <1} ,

(0.27)C * ( S ) =  { f E C ( S ) ;  Ilfil<1}.
B (S ),  C (S " ),  B (S ),  C (S ),  B () and C ('4 )  are defined similarly.

When we consider fE  B (S ) as  a function on / ..S we shall always
Put f (A )= 0 .  The supremum norm of B (S ') ( r e s p .  B (S ),  B (S ))  is
denoted as if f n ,  (resp.11 Il s , Further we shall introduce

(0.28)B o ( S ) =  { f E B ( S ) ;  l i m  f ( x ) = 0 1 ,  and
x->,‘11

(0.29)C o ( S ) = C ( S ) n B o ( S ) .

The set of all (not necessarily bounded) Borel functions are denoted
as T ( S ) ,  (S "), •••etc. T h e  subclass of each function space intro-
duced above formed of all non-negative elements is denoted by "t",

e.g., B(S)+, C(S)+, B*(S)+, --e tc . For f  B ( S )  o r  B ( , ) ,  th e  res-
triction of f  on S" is a  function in  B (S '),  which we shall denote as
f is n . In particular f i s is  the restriction f  on S.

Next we shall define servera l operations on functions which will
play an important role in the future discussions. First o f a ll, "/N"

is a  mapping

defined by
1, if  x = a,

(0. 30) 7(x) —  f (x 1)f (x 2).-f (x „), if  x =  [x i  , x2, • • •, x„],
if  x =

Since f ( x ) f ( x 2 )  •  • • (x ”) is invariant under the permutation of x 1 x 2 ,
•••, x„, it is well defined. Clearly " r "  maps B * (S ) into B o (S ) and
C * (S ) into Co ( S ) .  Next for f E i -3*(S ) and gE  B (S ) define a func-
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0, if x = ,
g(x ), i f  x=xES,

g ( x )  II A x ), i f  x= [x 1 , x2 , • • x„] GS",k-1 i-1
i L k

0, i f  x = J.

tion  <f g> E 0(, N)  by

(0. 31) <fl g> (x) =

Clearly <f g> E B o ( S )  ( r e s p . Co (S ) )  provided f E  B * ( S )  (resp.
f E C * ( S )  and g c  C ( S ) ) .  Further we shall introduce the following
operator Nz from f E  B ( S )  to 7Ei586 )  defined by

0, i f  x=8,

f ( xi) + f(x2) + • • • + f (x „),
(0.32): 6 )  < 1  I f > (x ) i f  x =  [x 1 , x 2 , • • , x„]

,O, i f  x = J.

L em m a 0.1. F o r ev ery  0 < r  < 1 ,  there  ex ist positiv e cons-
tan ts a„ b,, c „ d, a n d  e„ such that

(0.33) — gll f o r a l l  f , g E (S ),

(0. 34) II<fl u> — < gl v >IL s <b,liul! • if —gll+c r ilu—vil
f o r all f , g E  B 7 (S ) and  u, vE B (S ),

1 (0. 35)i i tl ( g  f )— < f l  h>lf s<d rIl (g —  f)— hll

+e,11hIllif—g11
f o r all f , g E  ( S ) ,  h E  B ( S )  and  t >O.

In  particular, w e have f ro m  (O. 3 5 ) that f o r every f  E ( S )  and
hE B (S )

(0. 36) lim   1   { (f+  eh) —7} — < f i h>11 s =0.
e.o

P ro o f .  For x =  [x 1 , x2, • • • , x„] ES " w e have
Zs. n

(0. 37) f (x ) —  g(x )= H f (x ) —  H g (x 1)
i = 1

= E(f(x,)— g(x „))f (x i )• • • f (x„._,)g(x k,)• • • g(x„).
k= 1
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Hence if  f , gE  1137(S ) (r <1), we have

ÎJÎ sup (nr" - 1 )1ff — g

which proves (O. 33). Next,

< flu> (x) — < gl v>(x) = E { u (x )  H f (x ,)— v (x ,)  II g(x ,)}
1 = 1

= E  (u(x „)—  v (x 0)  f i  g ( x )  Eu(x,) (LI f ( x i ) —  H g (x i )),
k _ 1 1=1 i k i * 1

an d  by th e  sam e way a s  above, we have

IH f (x) — H g (x ,)1 <(n -1 .) r - 2 11f— gil,

provided f , gE  B ,,'(S ). Therefore

v>its <(sup nr - 1 )11u—vli

+ (sup n ( n - 1 ) r - 2 )ijulf • f—

which proves (0. 34). Finally,

< f I h >(x )=E  h (x k )  H f ( x )
k -1

=E h(xk)f(x i)• • - f (xk_i)g(x„i)• • g(x„)
k 1

+ E h ( x k ) f ( x ,) • • • f ( x k , ) { f ( x k ,)•••f (x „)—  g(x,,)• • • g(x„)}
k=1

and  hence by (O. 37)

1 'N(g— f )(x )— <f ih>(x )

=M i
t  (g (x k ) — f(x k ))— h(x k )}  f (x i)•••f (x ,_,)g(x k ,)•••g(x „)

+ E h(x k )f  (x i )• • .f  (x1) {  f(x,,,)• ••f(x„) —  g(x,„)•• • g(x„)}  .

Since

If (x k ,)••-f (x „)—  g(x „,)• - •g(x „)1<(n — k )r — k - i llf —  gll,
w e have

II 1i (g.- —1) — < f I h> II s <(sup nr - i)11  i
t  (g  f )  1 1 1 1
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+ (sup n(n —1) _r" 2)1f121111f — gd,2

which proves (O. 35).

Lem m a 0.2. ( i )  T h e  l in e ar h u ll  o f  t h e  su b se t  { f :  f
E C*(S)+} ( " ) o f  Co (S )  is  dense in Co (S).

(ii) For ev ery  T > 0 , the linear hull of the subset

{7; f(s, x)= g(s)h(x) G C*( [0, T] x S)+1 (1 "

o f Co ( [0, T] x S ) i s  dense in Co ( [0, T ] x  S ).  In particu lar,  the
linear hu ll o f  {fT f E C* ([0, T] x S)+} is  dense in  Co ( [0, T] x S).

P ro o f .  First o f  a l l ,  w e note that the linear hull is given by
c,f i ; L  E C* (S t ), c, : rea l constants} . By the Stone-Weierstrass

theorem, the linear hull o f {fi(x ,)f2 (x2 )--f„(x.) ; f iE C(S )+1 is dense

in C ( S ) ,  and hence the linear hull o f  {E  f , ) (x ,); C*(S)+1
IT i =1

is  dense in C(S"). ( 1 ")  B u t  b y  a combinatorial lemma, ( " )  w e  have

.11 n m n 1

Z n  f , , - ( 0 ( x i )  =  ( Efk(xi)) — 11(E f5,(x i))
mr i = 1 1 = 1  1 1 = 1 ( k i • • • • . k n - i )  1 = 1  9 = 1

n — 2

n(E fkX xi))---+  (-1 ) — Erif5(x1),
( k ) . k n - 2 )  1 = 1 — 1 k  1 = 1

w h e re  E  denotes the su m  o ver a ll (k 1 , k2 , • • •, k , )  such that 1

< k n  and all k, are different. This implies E H f„ ( ,) (x ,) belongs to
IT •=1

the linear hull o f  { f (x,)• • • f (x„) ; f EC * (S )'}  =  f f  I 5n; fE C*(S)+1
and hence the linear hull o f  { » s n; fE C*(S)'} is  dense in C(S").

Now in order to prove the linear hull of {7; f E (S )+} is dense
in  Co (S ) ,  it is su ffic ien t to  show that any continuous linear func-

17) C 's ( S ) n =  { f E C * (S ) ,  f  0 }  ff . : continuous on S, 0 f< 1 } .
18) C([0, T ]x S ) ---  I f  f  (t , x ); continuous on [0, T ] x  S ), C * ([0 , T ]x  S )+ = (f =

f  (t ,  x ); continuous on [0, T ]  >< S, 0 < f< 1 }  and :?== i(t,x ) is defined by (0.30) for
each fixed t.

19) E  denotes the sum  over all permutations x  on (1,2, •-•,n).

20) C f. Ryser [38].
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t io n a l p  on Co ( S ) ,  (i.e., any signed Radon measure ,u(dx) on S with

finite total variation) such that , ( 7 ) =  R x )p (d x )  =  0  for every f

E C * ( S Y  is identically zero. Suppose, therefore, that ,a(7)=  0  for
every f  C *  (S )+ , then for every 2(0 <1) , f  C * ( S ) +, and hence

-
p (2 f ) = E 2" 7(x) p (dx) =O . Thus we have :fN(x )p (d x ) = 0  forn=0 sn sn
every f EC* (S ) ' (n = 0 ,  1, 2, • • •). B ut w e  have shown above that

the linear hull o f {.î1 0 ;  f E  C * ( S ) + }  is dense in C ( S ) ,  and nence
i_t! 0 = 0  for every n=0, 1, 2, • • •. This proves p= 0 ,  and the proof of
(i) is  complete. ( i i )  can be proved in  a  similar way.

Lemma 0.3. ( i )  Let

(0. 38) R =  the s e t  o f  all s ig n e d  R adon m easures p  on S
w ith f inite total variations.

Then f o r V 1 , V 2 , V k E - R ,  there ex ists one and only one 1 R such
that

(0. 39) i t ( f ) =  llv,(f), fE c*(S)+.
1 - 1

W e shall denote this p  as

(0.40)i t =  vi*v2i......  k

then

(0.41) P I= *-1v21*••• * hiki ( 2 1 ) ,  and

(0. 42) p ( S ) =  v,(S).

Hence, in  particular, p  is  positiv e (resp. a  probability  m easure)
i f  all p i are  positiv e  (resp. Probability  measures).
(ii) L et vo (d t,d x ) be a  signed R adon measure on  [0, n o )  X S  with
f in ite  to tal v ariatio n  an d  vi(t, -), vk(t, •)EffZ. s u c h  th at , f or
every  E E _B (S ), v ,(t , E ) i s  a  bounded B orel measurable function
in  t  then there ex ists one and only one p (d t,d x ), a signed measure
o n  [0, cc) x S  w ith f inite total v ariation such that

21) 1AI ----A++,(k- , where p•=1-e—A- is  the Jordan decomposition of FE.R.
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(0. 43) :Nf  (s , x )p (d s , d x )= (s, x )v o (ds, dx )ilv ,(s ,
s (J.-)x s 1=1

f  E C *([0, 00) x ,

where vi (s, - 5 =L v i ( s ,  d x ) R s ,  x ) .  W e shall denote this p  as

(0.44) 1-t =  o®  v i* v2 * ' •  •  49.4

then

(0. 45) = I vo I 0 I vi I *I v d  * • • I vk I
and

(0. 46) [0, 00) x S )= 1)0 (d s , d x )ilv i (s, S ).
(0,-).s i=1

Hence it is positiv e  ( r e s p .  a  probability  m easure) if vo, vi, • • •
are positiv e (resP. probability measures).

P ro o f . It is sufficient to prove the case k = 2 ; then

1(.4 , 2( Î ) =  E- f  ( x i ) • •  . . f ( x „ ) . f ( 3 0 • •  . f (  ) v i ( d x ) W d y ) •

Let y  be the mapping S x S —> S  defined in  (O. 19) then tt E g  defined
by

P l s h =  E (v1lskxv21 s i)  o y - 1 , k, .1 =0 , 1, 2, • • •,
ti = k

clearly satisfies 1.2(?) = ( 7 5  • 1),(7 ) .  T h e  uniqueness follows from
Lemma O. 2. (O. 41) an d  (O. 42) follow from the definition and the
following property o f  product measures 12><Iii =  jAi X H .  ( i i )  can
be proved in  a  similar way.

Example 0 .3 . I n  Example O. 1 , if S= { a}  , th en  S= Z + and
hence .R= {(a,,) 0 such that ia„l <0 0 }  f  G C * ( S ) + is determined
by a constant A such that 0  A< 1 and R i) = A '.  If g—(a„);7=0 then

-

g ( f )=E a„,1 " , which is nothing but the generating function of p. If

(b„),7=0 then  p*v = (e„) 0 ,  where c,, =  E  akb,. W e rem ark also
k + 1 = o t

f ( i ) = i2 .
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I f  S = { a 1 , a 2 , • • • ,a,} , then S = { n =(n ,,n 2 ,••• ,n k ) ; n i G Z +} and

f E  C * (S ) +  is determined by constants (A] , •••, A i ) ,  0 A <1  b y  the

relation Ai = f ( e )  where e i = (0, • • • , 0, 1, 0, • • • , 0). Then :Nf (n)=27% .2 -- - 2;:k.

-R = { (a..., ,k )  such that E  a„,...„„i <0.0 } and P(. -i ND = La „
0 , . . - k 4 '

2 ; 2 •••

" . k4 1 . I f  v= (b„,.„2 .„,)E gZ , then it* 1 )---  (C „

10 , 2" n k ) ,  where c„

Finally, /r.( ri ) = n i i i i+n ,222+•••+rikA k.

I. Branching Markov processes

A  branching process is a  random motion of particles each pro-

ducing new particles o f the same character o r  dying out and new

born particles will continue the motion independently each other. Let

particles move on a  topological space S  then if, at time t ,  there ex-

ists n  particles, they define a point X ,E S "  where S " is the n-fold

symmetric direct product o f S  defined in  § 0 .  2 .  Thus, we have a

stochastic process X ,, whose state space is S = SU {A}, where S  is

the sum o f S" , n= 0 , 1, 2,•••. ( ' )  If the m otion of a particle is Marko-

vian , then the process X, will be a Markov process. It is, therefore,

natural to define a  branching process as a M arkov process X  on S\

with the independence property o f particles. The independence pro-

perty o f particles can be formulated in many ways; so we will adopt

one of them as the definition in  §1 . 1  and give several equivalent

formulations in §1. 2. Similar formulations of a branching process

were given by several authors, especially by M oyal [35] and Skorohod
[43] .(") Finally, we shall show that under certain general conditions

every branching M arkov process X  is uniquely determined by a Mar-

kov  process X° on S , called the non - branching part o f  X  (Defini-

tion 1 . 2 ) , an d  a  stochastic kernel n(X , d y )  on S X , ca lled  the

branching law  o f X  (Definition 1. 3 )  ;  X° describes the behavior of

22) S(" ) = {a}. O  is the state that all particles died out and 4  is  the state o f ex-
plosion.

23) Cf. also Harris [8 ] (Chapter I I I ) ,  Mullikin [36] and Silverstein [42] for dif-
ferent formulations o f branching process.
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a  particle of X  before its first splitting, and n(X , d y )  describes the
law o f th e  splitting. T h is process X  will be called th e  (X °, n)

-branching Markov process. The construction of a (X°, 70-branching

Markov process for given X ° and ir will be discussed in Chapter III
and Chapter IV.

§ 1 .1  Definitions

Let S  be a compact Hausdorff space with a countable open base,
and define the symmetric product spaces S", n=0, 1, 2, • ,  their direct

-
sum S = L  S "  and its compactification S = S U (4}  as in  §0.2. L e t

"=0
X= (S2, g „ P x , xe:S, X,, 0,) be a  right-continuous Markov process on
S , and le t T , be the semi-group on B (S )  induced by X , i.e.,

(1. 1) f (x ) [f (X , ) ] ,  f E B ( ) .

Definition 1 .1 . A  Markov process X  on is called a  branch-
in g  Markov process if  it satisfies

(1.2)f ( x )  ( T i f )  , ( x ) ,  x E /S' ,

for every f B *  (S ). ( 2 4 )

By taking fE. C* (S), 0 < f <1 , w e  have T , A )= (J)  = 0 ,

but 7(x)>0 for all x E. S. Hence, we have P4 [X,= A] =1  for every
t and, by the right continuity of

X t = I, for all t >0 ] =1.

Quite similarly we have

Pa [ X, =8, for all t O] =1.

Now suppose X  is strong Markov such that then, since
the hitting time e4(ea) for LI (resp. 8), where

e4(resp. ea) = inf {t ;  X ,=  (r e s p .  a)} ,

2 4 ) Clearly (1.2) is true fo r every f E B * (S )  l i l t  is  t r u e  fo r  every  fE  C*(S ).
Then (1.2) is true for f E B * (S ) .
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is a  Markov time (c f. Remark O. 1  (iv )),

13 „[e 4 = + 00 or for all e4 t <0 0 , X, =.4]

+ cK)] + E.,c[Px„[X ,= J for all t > 0 ] ;  e.d<+ cxD]i

= 6'4= + 00]+E,11;) 4 [X , =  for all t O] ; e4 <+ 00] =1.

Thus, we have the following

Theorem 1.1. I f  a  branching M ark ov  process X =( X „ g i )  is
strong M ark ov  such that g i+0 =g t ,  then 4 and a are  traps.

Example 1.1. Consider th e  simplest case  when S = { a}  (cf.

Example 0. 1 and 0. 3), then S —Z + = {0, 1, 2, • • •} and — Î = {0, 1,
2, •••, + o0}. E v e ry  f E C * (S ) + is  g iven  b y  a  real number 2, 0 À
< 1 ,  and f (i) = 2' . Hence

T .1311(t)Al ,
i=0

where { P ( t ) }  is the transition matrix. Therefore a  Markov chain

on Z - ]  is  a  branching Markov process if  a n d  only i f  its  transition
matrix {P, ; ( t ) }  satisfies

EP(02i = (E P11(02i) , 2<1, i =0, 1, 2, • •
(1. 3)

This is equivalent to

(1.4)P , ; ( t ) =  Z IT t 0, i , EZ +,
tn —1

where the summation is taken over all  ( r i , r 2 ,s u c h  t h a t  r„,E Z+
an d  r i + r 2 + • • • +r,=j. ( 1 . 4) was adopted by Kolmogorov-Dmitriev

[24 ] as the definition of the single-type branching process with con-

tinuous time.
In the case S = a2, ak} , S—(Z + )*=- { n=(n i, 1121 • • •, nk ); n,

E Z - }  and (Z+)*LJ { + 00 } . Then, quite similarly, we see that

a  Markov chain X, on (Z ')k  U {+ ° O }  is a branching Markov process
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if and  only i f  its transition matrix {P„,„,(t)}  satisfies

(1.5)
{E .p ,, m ( t) 2 7.4.2...4»,_ n  i k  i ( E  p e  .

" 
m  ( t ) 2 ri2 7 2 . . .4 , k)ni

m 

w h ere  m— (mi, m2, •••, n — (fli, n 2 ,  • • . ,  ni), 0< A 1< 1  a n d

e 1 = (0, 0, • 1, 0, • • • , 0), (i = 1, 2, • • k).

From now on, unless otherwise stated, all branching Markov
processes X= (X „  _Of ) we shall consider are  supposed to be strong
M arkov  such that ..B io=gt. 2 "

According to the in tu itive meaning explained at the beginning
of this chapter, we shall define

(1. 6) e,(w )=n, i f  X,(0)) c S ", n=0, 1, 2, • • •, 0 0 , ( 2 6 )

and ca ll it th e  number o f  particles at time t. The hitting time
e , for J  and ea for 8  are  defined above and we shall call them the
explosion time and  the ex tinction tim e, respectively. Further, we
shall define

(1 .7 )r ( w )  = in f {t ; “ c o ) E 0 ( 0 ) ) )

and define ro , r 1 , r 2 ,  • • • ,  inductively by

(1. 8) ro (co) =0, r i  (w ) =  r (c o ) and

r„ (co) =z-„_ 1 ( c o )+ r (0 , 1 ( , ) 0)).

We shall se t also

(1. 9) r . ( o ) )  lim D„(0)).

r1 , r2 , ••• , r .  are  all M arkov times and r „  is called the n - th  splitting
(or branching) time of the process X.

It should be rem arked  th at many important quantities for the
process X  can be expressed in  the form T,?, B * ( S ) .  For ex-

25) Also we shall take d  a s  the term inal poin t of X ; so  e j  is identified with
the lifetime C.

26) .5"- -  (A).
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_13„[e4> t ] =  T ,R x ), for f 1 ,

P x [ea< t ]  =  T , R x ) ,  for f—=0,

and

(1. 12) E [A ] = T  T (x ), for f A ,  0 < 2 < 1 .

For fE /3 + (S ) , define ef(w) by

(1. 13)E [ ( )  Axt(w».
If f =ID , where ID is the indicator function of D E ( S ) ,  we write

instead of Cfp. ( t<e 4 )  is the number of particles in D at time

t.

Remark 1.1. For a certain problem, it happens that S  contains

a  p o in t 17 such that i f  we s e t  T = {a, V, [17, 17 ] , [F, 17, 17 1, •••} , then

[X,E. T  for all t s i f  X, E  T ] =1, X E S , a n d  it may be natural

to call 6;W  {w} as the number of particles. Then the extinc-

tion time is the first hitting time er  f o r  the s e t  T .  (C f. Example

3. 4 ( C )  of Chapter III, where S= D U  {F } is  the one-point compac-

tification o f a  bounded domain D  in  RN).

Now le t  X = (2, ge, Xt, P ,  xE :SN, 0,) b e  a  branching Markov

process, and for each n=1, 2, •• • define a  new Markov process X7, on
SU  {A } in  the following way :

X =  (2°, B?, X , xE S"U { 4} ),

where 9 2 = S2, , -17 =Px , x E S "U  {4} , and

{X,(0)), i f  t <r(co),
.70=

i f  t r(w).

The point LI is considered as the term inal point of X „ and so r(w)
is identified with its life time C ° ((o). ( " )

2 7 )  To be precise, P 1[7 (w ) = ( 0.)] = 1 ,  x S n  ,  b u t P] [T(co) 4 . 0 ]  = 1  and
P`:,EC°(.)=0J=1.
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Definition 1.2. JO, is called the non-branching part o f  X  on
S .  X ° -:=7 Jf is called simply the non-branching part o f  X.

Thus, the non-branching part of X is a  strong Markov process

X° on S U {d} with zl as its terminal point, which will describe the

behavior o f a  particle o f X  before its first splitting.

Next we shall consider the following

Assumption 1.1. X r _ = lim  X _ j  exists a lm ost surely o n  {s-

< 0 9 } , and there exists a  stochastic kernel r(x, E )  on S x :SN  such that

for each A>0, x E S ,  and

(1. 14) E ,  [ e ,  X r EEI E) E r  [CA ' I LA
a.a. on  {1- < 00} .

Definition 1.3. Suppose a branching Markov process satisfies

the Assumption 1. 1. Then we shall call 7-c(x , E )  the branching law
o f  X. A lso, w e shall say that a  branching Process Possesses a
branching law  n  if and only i f  it satisfies the Assumption 1. 1 with

the kernel 7r.

The existence of a branching law for a  branching Markov pro-

cess X is generally assured : fo r example, i f  X  is  a  H unt process

with a  reference measure, it possesses a  branching law (cf. Theorem

0.2 of §0. 2).

Remark 1.2. F o r  a  branching law, we can always assume

n (X , S ) =0, x S. T o  g iv e  a branching law, it is equivalent to give

the following system (q„(x), z„(x, dy))7= 0 , (where q„(x)EB (S )+
and 7E* (X , d y ) is  a  stochastic kernel on S x S", n =0, 1, 0 . 0 )  by the
relation

(1. 15) q„(X)=-7r(X, S'), n = 0 ,  2, •••, + Do,

(1. 16) 7r„(X, dy)=7c(x,dyns”)/q„(x), n=0, 2, • • • , + 00. ( 2 8 )

2 8 )  If qn (x )=0 , take as zn(x, dy) any probability measure 7r?:(dy) on S .
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We shall call (q„(x),r„(x,dy)),7= 0 the branching system of the pro-
cess X.

§ 1 .2 .  Fundamental theorem.

W e have formulated in the previous section the independence

property o f  particles o f  a  branching process in terms of its semi-
group in  th e form  (1. 2). In  this section, we shall give other

mathematical formulations of the independence property and discuss

their equivalence.
-

Let S ,S =U  S ", and be as above. Let X =  (D, , 0,)
n= 0

be a  right continuous strong Markov process with z1 and 8 as traps

such that 0 , 0 =..B,: and it is  not assumed apriori to be a branch-

ing Markov process. Define E, r, r„ , n=0, 1, 2, • • •, + c>c), in  the same

way as in the previous section.

Definition 1.4. ( i )  X  is said to satisfy the condition (C. 1)

if fo r every xE. S,

(C. 1) P.„ [ro , e j ,  v.. <00 ] = P x [r..,<00].

( i i ) X  is said to satisfy the condition (C. 2 )  if for every

X E  S,

(C. 2) P r[r =s ] =0, for a ll s> 0 .

We note that i f  X  is quasi-left continuous (cf. §0 . 1 . Definition

O. 3 ) ,  then (C. 1 )  and (C. 2 )  are automatically satisfied. As for

(C. 1 ) , we have

P„[lim = X , . ,  r_ < c o ] = Px [r-<c.D ]

also, it is clear that i f  r - ‹  °C)  and lim  X,, exists, then this lim it

must be A and consequently for xE S we have

Px[X ,„,,= A , r-<0 .0 ] = P ,[e 4 = r- 00] Lro. <0.9].

As for (C. 2 ) we need only remark that T s  is an accessible Markov
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time.
Now we shall construct several stochastic processes from the

process X= (S2, „  X „P „,0 , ) .

(A )  T h e  process .-k = '§'?„ xE  S) .

It is  a stochastic process on defineddefined by ( i ) - ( i v )  below.
-

( i ) Let .2( ")  b e  the n-fold product of .S2 and 12= U ..(2 ( ")  b e  th e ir
11- 1

SUM .

( i i ) (J ), t 0, JE Q ,  is defined for Cii= (toi, (02, • • •, to„) ES2( ")  by

(1. 17) fet(i6) = r(X,((01), Xt(to2), Xt(to,,)),

where r  is defined in §0.2 (0.19).

( i i i ) 7̀/i = cra i, _0 (./S ) ;  je 5 (c76); s < j -"/„. = 772,.
1> 0

(iv ) F o r

(1. 18) [Ai = P r i x P x  •• • x P,„[A  n D'") ],  if x =  [x „ •••, x„] E S"

=Px lA nS 2i, if .t• =0 or

Px  is well defined by the following

Lemma 1 .1 .  Fo r every A E A.., the right-hand side of  (1. 18)

is independent o f  the  order of (x „ x 2 , •••, x„) and hence it depends
only on x = [x 1 , x 2 , • ••, x ] .

P ro o f. It is sufficient to show that Ex , X E x , x  x E ,„[g i( je  t i)
g 2 (5 -e,2 )••• g ,(k '„)] is invariant under the permutation of (x 1 , x  , • • • ,

x,,) fo r every 0  < t i <  < •  •  •  <  t ,  and g,, g 2 , g , E C o ( S ) .  For this,

by virtue of Lemma O. 2 , we can assume g ,= X ,  f E C * ( S ) .  Then,
the assertion is clear since

q

i l ( j7 1 1(6 ) ) 1 ( 271
2 (

63.)) . . .7 (Z4(63))  = 11 II f i ( X t k o i ) ) ,
1-1  i= 1

where (6= (w 1 , co2 , •••, to„), i s  invariant under the permutation of

2 9 )  From this definition it is clear that .5-f- has d and a as traps.
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G0 1 0 ) 2 ,  • • • ,  0 ) , , ) •

(B) T h e process X , =  (Q, JC" ) , P ,  x E  S ") , n =1 , 2, • • • : For
each n=1, 2, • • •, X „ is  a  stochastic process which is obtained by
stopping X  at tim e T  o n  S". Therefore S2, {P x } ,  x E S " ,  are the
same as these o f  X , and .X " )  is defined by

(1. 19) X t')((.0 )= t > 0 ,  (DE- S2.

(C) The process Je„---(s2),i ,  xG S ') ,  n =1 , 2, • • • . For
each n=1, 2, •••, X . is  a  stochastic process which is obtained from

the 1  defined in  (A )  just a s  th e  process X . is obtained from the
process X ; i.e., 1 .„  is the stopped process o f  1  o n  S "  a t tim e i-,
w h ere  is  the first leaving time from S " .  To be precise S2( ")  is  the
n-fo ld  product o f  12, and ')(co) = 1,Ai-(,z)(5)) r(XtA7c.->)((.0 1),

X 1 - )(0 ), , ) )  for 6)- =  (col, (0 2 ,  •  •  WO, where i-(6)) =min hc(foi), 7 ( 0 ) 2 ) ,  •  •

T ( ( 0 0 }  .  { 15x} X E  S ", is  defined by (1. 18).

Definition 1.5. ( 1 )  X  is said to have the property  B .I  i f  it
has the following

Property  B.I. The prccesses X and are equivalent.
(2) X  is said to have the property  B.II i f  it has the following

Property  B.II. The processes X„ and .X„ are equivalent for each
n ,(n = 1, 2, • • •).

(3) X  is said to have the property  B.III i f  it has the following

Property  B.III. For xE S ", n=2, 3, • ••, we have

TCf(x)=  (T? f  ) s ( x ) ,  for all f E B * ( S ) ,  and
t

(ii)? s ,  y )  * ( x ;  ds dy ) =
0 s

= < T ` f ( s , • ) ( V (s, y )  qp(• ; ds dy ))1s> (x ) ( ")

3 0 )  T  :)̀*N(s, -)(x )= E x q ( s ,  x s ) ; s x E  S .  T h e  right-hand side is equal to,

i f  x =  [xi , x 2 , ••• , x o ], R 1 1 ; - - iT  R s, • ) ( x . i ) j y) 1P(x i; ds dy ), where s ,  y )
o

= n  f ( s , y ;)  i f  y — • , E S n.
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for all f E  B *( [0 , .0 ) x  S ) ,  where

T ) 7(x )= E x [7 (X i ) ;  t  < r ]  and

*(x ; ds dy )= P x [X ,E  d y , re d s].

We have now the following fundamental

Theorem 1.2. L e t X= (A p91
, P , X 1)  be a  right continuous

strong M arkov  process on ,./S  such that with a and A as
traps. Then it holds that:
(a) X  is a branching M arkov process if and only i f  it has the
Property B.I;
(b) I f  X  has the property B. I  then it has the property B. II;
(c) I f  X  has the property B. II and satisfies the condition (C. 2)
then it has the property B. III;
(d) I f  X  has the property B. III and satisfies the condition (C. 1)
and (C. 2 ) ,  then it is a branching M arkov  process.

Proof.
( i)  Proof o f (a) : First we shall show that i f  X  is  a branch-

ing process, then it has the property B. I. For this, it is sufficient
to show that for 0 -< t i  < t2G • • • < t g , g , ,  g 2 ,  • - • ,  g , E  C o (S )  we have

_ E [g i(x t ,)g -z (x,2) - - - g a ( x t , ) ] = k i [ g i ( i i ) g x i -c,2) . . . g , ( j ( t ,)].

By virtue of Lemma 0.2 we can assume g,=_Î where f , C * ( S ) .
By the definition of -P r , when xE , x 2 , • • •, x,,] E S",

= H  .E„[ h f";(x- 21)],

and hence what we should prove is the following equality

(1 .20 ) Ex [II f i ( .)] 11 [nfi(x t,)].

When q=1, (1 . 2 0 )  is  (1 .2 )  its e lf . Suppose (1 .20 ) is  tru e  for q=
1, 2, • • r — 1 , then

r - 1  r s ,

& [1 -r1 ? X X I X  E x [1 1  f i(X t )r t ,- a ( X t , - 1)]j 1J = 1 .



264 Ik eda, N agasaw a, Watanabe

-

= E  [II

-

=E x  [II f ,(X ,)g (X f ,
1=-1.

=  I1E x 1 [ f .,(X „ .)g (X „ )]

=  Ex ;  [ f i (X ,)] ,
=1 j - 1

where we s e t g = f — i•(T,,_,,_ i f- ) I s .  Therefore (1 . 2 0 )  holds for
every q. Suppose, conversely, that X  has the property B. I. Then,
for x=  [x l , x 2  •  •  •  y  -TY,

E x [RX,)] =Éx [7(2- t ) ] = f e C * ( S ) ,
i =1

which proves that X  satisfies (1 . 2) ; i.e., X  is a  branching Markov
process.

(ii) ) Proof o f (b) : Obvious.

(iii) Proof o f  (c) : Assume X  has th e  property B. II and

satisfies the condition (C. 2 ) .  Then for x =  [xi, x 2, •••,x „iES " and
f E B * (S ) ,

E x [RX,); t < r ]

= E x [? (X ) ;  t < r ]

t < i - ]

E,,X  • • • x  E,[II f (X ,(00)- II,(.0>t)(coi)]

= I lE x ,[f (X t) ; t]
i

Hence, the first condition of the property B. III is satisfied. Next,
let f B * (  [0, cc) x S ) .  By the condition (C. 2 )  we have

[ U { = (wi ; (02; • • • t o . ) ;  r(wk) = ( j ) } ]  =0 ,

n=2 , 3, • • •, and hence i f  x =  [x i , x 2 , •--, x„],

i x [k r ,  X r) ; r < t ]
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= E x C f (r, JC,-")) ; < t ]

- -É x [R f ,  Ï . n >  f < t ]

•• • x b));  i ( 6 ) )  = r( o ) , ) < t ]

= P i  X ••• X  P[doh•••dco„] [ ;f= {Ry(toi), X r(.,)(coi))

•1-[=(.0<,coo)) •R•r(w1), X ,N 1) (0 0 ) .1 -troo,),,}]

= {1-17=iE„ [R s, X s ) ;  s < r] y )}i=1 s
•P r i [X ,E d y ,

which proves that X  satisfies the second condition of the property
B. III.
( i v )  Proof o f  (d) : We shall prove a proposition which includes
Theorem 1. 2, (d ) a s  a  special case.

L et T ( x ,  d y )  be a  kernel on ( [0, 00) X S ) x  S  satisfying
( i ) T ( x ,  • )  is a  signed Borel measure on S  with finite total varia-
tion for every (t, x ) e [0, 00) x S,

(ii) T ( • ,  B )  is Borel measurable on [0, 00) x S for every B E ( S )
and

(iii) r , s (x , dy ) T ° . ( x ,  d z ) r( z ,  d y )  f o r  every  t ,  s E  [0, 00),

x e  S .  Set f ( x )  A T ( x ,  d y ) f (  y ) .

Let Vp(x; d s d y )  be another kernel on S x [0 , 00 ) x (S — S )) sat-
isfying

( i ) qr(x; • ) is  a  signed measure o n  [0, 00) x (S  —  S) with finite
total variation on [0, t] x  (S —  S ) for every t > 0,

(ii) Ijr( • ; r) is measurable on S  for any Borel subset r  of [0, 00)
x (S— S) and
(iii) qr I (y  ; (s) x  (S —  S ))= 0 for every ye S and s > 0, where Ilk I
denotes the total variation of Jr.

Furthermore, we assume that T , and qp satisfy
t+s

(1.21)r ) ( x ,  d y ) k ( y ; d r d z ) f ( z ) = s - s * ( x ;  d r d z )  f (z ) ,s-s 
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for every f E  B(S— S).
Now we extend T, and *  to kernels T t (x , dy ) and * (x ; dt dy),

x, yE S, t [ 0 ,  c o )  by

(1.22)V ) ( x ,  d y ) iN(y )--- T ?f (x ) , f E  B* (S )

(1.23)d s  d y ) R s ,  y )

= t
o <7 f ( s ,  •) s q.•(• ; ds dz )R s, z )> (x )

(cf. Lemma 0. 3). The support of r ° ) (x , dy ) is concentrated on S"
when xE S" and it defines a  semi-group on B(S).

We define kernels * ( ") (x ; d t d y )  (n =0 , 1, 2 , ...) on S x ( [0, co)
x S ) by

0 0 ) ( x ;  t, dy )=a 1.„} (d y )

(1. 24)0 ( 1 ) ( x ;  t, dy) =  0
1 qp(x; ds dy)

ø ( x ;  t ,  d y ) =  i
o L ,tp, (x ; d v  d z ) 0 ' ) (z ; t— v , dy )

and
d t d y )=d t ek )(x ; t, dy ).

Moreover set for each k =0, 1, 2, --

(1. 25) T k )(x , dy )= 1 ,4p( k) (x ; ds dz ) n ( z ,  dy)

and

(1.26)r k ) f ( x ) =  L I T ) (x, dy )f (y ), f E  B (S ).

-
Proposition 1.3. When E T ik ) f (x ) , f E B (S ) , converges, set

k = 0

(1. 27) T tl(x )= A 7T )R x).

Then T :7(x ) has the branching property:

(1.28)T f ( x ) =  ( T , P s ) (x ) , xE S.
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Proof of the proposition consists of several steps.

Lemma 1.2. 1 1" )  an d  Ips")  satisf y  the following relations for
f E  B (S ) and 0  <k <n ;

t-ps
(1.29)V p ( x ;  dr d y )f (y )—  r ° ) M  q p ( •  ; dr d y ) f ( y )1 (x )

: s 0 s

(1. 30) D ( t ) f (x) = 4, (dr)0 ( k) (t— r)f (x ) ( " )

(1. 31) T ")f ( x )  =  : iks— k) (dr) V ! ), f (x )

(1. 32) TP) n )v f ( x )  = ',*(dr)17.'...7 1 )f ( x ) .

P ro o f. By (1.23) we have

 

s l,tr(x; dr d y r g  ( y ) l i
t

+ s  <T , g lir(• ; dr dy)k  (y)> (x)

 

and by (1 . 2 1 ) this is equal to

L,*(• ; dr+ t, dy )g (y )> (x )

j o<T ?T g ; dr dy )g(y )> (x )

=  r i < T ?  g  ,s,k( • ; dr d y )g (y )> (x )

f l s=1'?[ kjp(• ; d r d y )2  ( y ) 1 ( x ) ( 3 2 ) .
o s

Thus (1.29) is proved if f  is of the form gE  C * (S ). By virtue
of Lemma O. 2, (1.29) holds for every fE  B (S ).

31) o (n )(t) f (x ) f s 0 (n )(x ; t , d y ) f (y ) ,

,p(n-k)(dr ) f (x ) = f s t p(n-k)(x ;  dy  d y )f  ( y ) . f  E B (S).
32) l';<f ig >=<7 ' f  I V g>.

Indeed, by (0.36)

f  j g>=1im M (  f  +Eg— 1`)/€} —limET;(f +  g ) - 1 "  f
E 4,0

=iiM(T?fd—cTF, —g —  f ) /e =<T ? f  j T g >.4,u



268 Ik eda, N agasaw a, Watanabe

(1. 30) is a  usual formula for iteration of convolutions. (1. 31)
follows from (1. 25) and (1. 30).

Now
t--,,

T  T  f ( x ) =  ,Y) )
 0  •tif.(dr) n ; 12„f} (x )

T *(dr) 1 T±T,'2,f(x)0

and by (1. 29) this equals

dr0(r+v )T "._; 12 ,f (x )= t 1jr(dr)T t(f ,7 1 )f ( x ) .
0 v

which proves (1. 31).

Lemma 1.3. Fo r m > n-1, m *n, x = [x 1, x 2 , •••, x „] ES", we
have

(1.33) Umqp(x; ds dy ). /f N(s, y )

f ( s , D Id s  d y ) . /A s, y )>(x ),

f o r every f E  B* ([0, 00) x S ).

P ro o f. For 0 <A<1, we have from (1.23),

Usqp(x; ds dy),Ç.
Nf (s , y )  = ds dy ):k s, y )

=Ço <Tr) (2f (s, •))1 ,qp(• ; ds dy ),(s, y )> (x )

rf (s , •  )1 ,tp, ( • ; ds d y ) R s ,  y ) >  ( x ) .

Comparing the coefficients of 2 ' we have (1. 33).

Remark 1.3. By (1. 33) we see that, i f  xE S " ,  •Ik (x ; ds dy )
has no mass on for k <n  —1 and k = n  with respect to dy .

Lemma 1.4. F or every x = [x 1 , x 2 , • • • , x„] E S  m n  — 1 ni=/= n,
and fi(s, x), • • • , f„,(s, x) B( [0, 00) x S ) ,  we have
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1(1. 34) ÇAsn;kk(x ; d s y7r(i))}

S m

d s  dy )1
m !

1  E  f ,co (s, Y )}
7r0 

oi=i•

1

1 ) ( n _ i ) 1 E (Ir 5 n _n + i rtfp(x i; ds dy°)

1 m-.+1
(m — n+1)! E 7 r(Q )

 H  f a- 0 ) ( s ' 
Y 2)1}h =1

X H T ?f  4• ( ; ) ( s , • ) ( x i ), ( " )

where E  denotes the sum over all permutations i t  on (1 , 2„•••, m ),

E the sum  over all ordered choices (q 1 , q2 , • • • ,q , ,_ „„)  f rom
(a i. ' , ' - , .- i)

(1, 2, • • •, m ) ,  E ( q) the sum over all permutations i t  on (q1,

and E c4 ) the sum over all permutations h  on (di, •••, 4„_,) which is

the rem ainder o f (1 , 2 , •••, m ) excluding (q 1 , •• • , q,„—± 1 ).

P ro o f . Let f i B ([0 , 0 0 )x  S ),  i= 1 ,  2, • • •, m ,  th en  b y  a  com-
binatorial lemma on perm anents, ( " )

(1.1/1, (x ; d s  dy ){ ./111 f7, 0 ) (s, y i )}

q r(x ; d s  d y ){ (E  f g )(s , y )0 e n
0 - 1

—  E  (E fk ,)(s , y ) +  • • •  +  ( - 1 ) - 1 E  f k ( s ,  y ) }
( k1,•• , km-1) q k

and b y  (1 . 3 3 )  this is equal to

ÇoiJs m - n+iTp, ( x  •  d s  d y ) { ( E  f 0 )}  (s, y )  . 7' 1( E f q (s, • ) ) ( x i )
g=1 0 =1

m  -1 t h  -

E f k )(s , y ) • II r
1

,)( E  f k ,(s , • )) ( - X  j )
h m - 1 ) ( 0 - - 1 0 =1

Now applying again the lemma on permanents to the in te g ra n d  {  } ,

33) y= [y i, y2 . • • . ,  yn], y)=Cy. • • . , y n -, 11.
34) C f . Ryser [38].

x
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the above expression becomes,
rn—n+1

(X i  ;  d s  d y )1 E f ir ( r ) (s, y r )
7T r•---1

• r i  r : f m • C r j ) ( S ,  •  )  ( X i ) }

where r =1, 2, •••, m — n+1 , {7, 5 ; 1 < j5 n }  =  { m — n + 2 , m — n+3, •••,
i i

m} ,  and 7E is  a permutation on {1, 2, •••, m} . Since

E =  E  E 6 )  E ( a )
,

7r OD '", 7r

this is equal to

E  E E (i)E ( q)* ( xi; ds dy )
C s'rn-n'i

—  n +1

• E  f 5 0 (s, y r ) • II T?fa,7rco (s, • ) (x 5).
r= 1 j■Ai

Now (1. 34) is clear since m != „,C - 1 ( n - 1 ) ! ( m — n +1 ) ! .

Lemma 1.5. Fo r x = .1(2, • • • , xn ] ES",

r t n r
(1. 35) E d s  d y ) T n R y)  H 7T ) TÇ'2./f N (x 5 )

r1 + . . .+ 1 - n = r  0 1 - 1  S

—  E H 7Ti ) (x 5 ) ( " ) ,

r ,+ . . .+ r = r + 1  j= 1

f o r every f E B * ( S ) .

P r o o f .  Set T P ) 7T2V/>(x ;) = g ( rl) ( y ) ;  then if  r i  = 0 , g ( 'f )  is inde-
pendent of y by the semi-group property o f T P .  I f  r i  t h e n  b y
(1. 32)

g( j )  (V ) 1 1 P(X  j ;  ds dy)7T2,7 1 ).A y ) .
s

Hence the left-hand side o f (1. 35) is equal to
n

i +•.• + k-=1
E d

" 
(—  erk+' ) (v ))11 g ( ' (v ).

j k

Çt

35) denotes the sum over all ( r i , r 2 ,— , yn) such that ri O, i=1, 2,

• • • .  n and r i+ r2 + •••rn =k .
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Writing r k + 1 as  r ,  and noting d e ) (v)---- 0 , this equals
t

i +  + r , , = r  +1 0k=1
E E d „ (-g 'k )(v )) • II e l ) (v)

g ( ri)  (0) = E 7T17(x3).
3= 1 j +  + r , , = + 1  5 = 1

Lemma 1 .6 . For x = [xi, x2, •••, x„1 ES" and r 0  w e  have

(1. 36) T7(7(x)=  En
3=1

fo r  e v e r y  f E  B *(S ).

P r o o f .  First we note the following identity which can be easily
verified. If F= F(n i , n2, •-• , nk), (ni; a  non-negative integer),

(1. 37)E  F(ni, n2, •• • , nk)
n i + n2+ •••+ n k =rs.

T .,
L , 0 1 7 r a ) ,  n ( 2) ,  ' • ' ,  n7 .1. ( 0 )•

n i . + n 2 + •• •+ n k = n Tr

We shall prove (1 . 36) by induction on r. If r = 0 , then (1. 36) is
just (1. 22). Now assum e (1 . 36 ) is true fo r r =1, 2, • ,  r ,  then
using (1 . 31), the induction hypothesis, and (1 . 37) successively, we
have

T ri) R x .,) t qp(x ; ds dy )7T 2 s :7=(y )
o s

=0U m q p (x ; d s  d y )[ E 7T2).,7(y. , )  ( 3 6 ). r 1 + • • • - i - r m = r  3 = 1

* ( x ; d s  d y ) [ E 1 n TnRY7T(i))1
m = 0 r i+ • • • + r m — r  f f t , ,  i r  3 =1

1 = E  E .* (x ; d s ,  d y ) [  ,E  7T.2.?:((y„-0 ))1.
m = 0 0  S j= 1

Put fi(s, y) = 7T.-!:\f (y )  ;  then by (1 . 34) the above equals

E  E E" ( -7
1

m = 0  r i + • • • + s „ , = ,  0  i = 1 ( t iq , , i )  ( n - 1 )

1
m — n + 1

‘stn 11,1
* ( X i ;  d s  4 ° )

( m — n + 1 ) !
E (: ) f a „ ( „) ( 5,y ) }

h = 1

3 6 )  y=Eyi, y 2 . •••, ym].
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•H T :1 4 ( ; )  (s, • ) (x i ) ( " )

- E  E 0)  1 E co
( n - 1 ) !

(x 1 ; dsdy°) • IE ( 2 )( s ,  3 1 ) }1 (a)
(m — n+1)! f"(h)

•H T f ( J ) (s ,•)(x 5 ). ( 3 8 )

By applying (1 . 37) and the induction hypothesis in  { ,  the above
line becomes

 E E (1)
=15 0 „,C„_ 1( n - 1 )  !

1 

*(x i ; ds dy °) { E ( 2 )f g h (s, y 1 ) } II T ? fi i ( n ( s ,  • ) (x i )
Sm - 4 * 1h = 1

1

1 E E (1) Ea)
i i  o M C n - 1  ( q 1 , • . 9 m - n + 1 ) ( n - 1 ) !

ds dy °) • T r7 (y 0 ) . ,I IT ?f 4 u ) (s,•)(x 5 )
s mnl

= ,t jp (x i; ds dy°)7T..!!?(y°)—0 0 r i +  • • • + r . - -  r  e n - n + 1

r ( T n f ) ( x 5 ) (by (2 .32 ))

—  E n 7(x 1) (by (2. 30)).
1+ + , , , ,  + 1  j=1

Thus (1 . 36) is proved for every r.

Now we are ready to complete the

Proof  of  Proposition 1.3. By (1.36), when x=  [x l , x 2 , •••, x n ]
E S",

T  ,f (x )=E  r r ) f (x )> =0

37) y°= •
38) E ( ')  is ( fo r  a  fixed (q i, qm-n..1)) the sum over all (r4 ,,-- - ,r ,„_ „  e) such that

e i i +r.,+•••+rc ^ p ,- i+r* — r and E°  is  ( fo r  fixed (41, •. qm i )  an d  r* such that 0 <
r * < r )  the sum over all (roi, rq2, •••rq .- .,i)  such that rqi +rq, + • • • +rq ,,,,,- ,=r* , where
r *  and r i  are all nonnegative integers.

sM-71+1

(q )
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= H n i ) Rx i )
r = 0  r i + • • • + r , = s  j = 1

=  ( E  TT )  f (x ; ) )
i = 1  > = 0

proving the branching property.
In order to complete the proof of (d ), we set for a  given strong

Markov process X on with the Property B. III, (C. 1) and (C. 2),

T? f(x)— E%.[f(X t ); t <7.] ,

IIP(x; dr , d y ) =  P rE d r , X r E d y ]  .

Then, as is easily seen, T and Iv satisfy all the conditions (i), (ii)
and (iii) above. Note that (1. 21) is a sim ple consequence of the
Markov property. It is easy to see by Property B. III and the strong
Markov property that 1T )  and  qr(') defined above are exactly

T k ) f ( x ) =  E x [ f ( X t ) ;  <t < r k +1] ,

* ( k ) (x dr dy )= Px [rk d r ,  X „  dy], k  = 0 , 1, 2, - • • .

By (C. 1),

T S *(x )=E,[7(X 1)]

=  Ex L iN( X ,) ;  rk < t< rk + ik=i

TT) fix)
k = 0

and hence T , has the branching property by Proposition 1. 3.

C o ro lla ry . Let X  and X' be two branching Markov processes
which satisfy the condition (C. 1) and (C. 2) and possess the
branching la w . If  their non-branching parts and branching laws
coincide, ( " )  then they are equivalent.

3 9 )  To be precise, the non-branching parts are equivalent and E?[7-c(X rc'o_, E);
4") < t i  defines the same measure on 'SN — S for every E Eg (4—  S), xE S. and t >: 0,
where ( X ,  P , ° )  denotes the non-branching p a r t . (In  this case we shall say also
that r and 7C' are equivalent.)
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P ro o f .  We have r  f (x )=  7 7 f (x ) for any f E B(S) and xE S.
Since X  and X ' have the property B. III, we have from the property

B. III (0 ,

TU(x)= 77f (x)  for every f E  B (S) and xE S.

Now for x E S

(1. 38)0 ( 1 1 ( x ;  t, dy)=P, [r t, X,E dy]

= E,[7r(X,_, dy) • P„[• r <t

E,[7r(X 7 _  ,  d y );  < t ]

=  .E [7 r(X _  d y ); C ° < t] .

Since the non-branching parts X° and X "  are equivalent and so are
7r and 7LI ,  we have 0( 1 ) (x; t, d y )= - 0" 1 ) (x ;  t ,  d y ).  Then by the pro-
perty B. III ( i i ) ,  * ( x ;  ds (x ;  ds dy). Therefore, the follow-
ing relation

7 f ( x ) =  t
oL * (x  ;  ds dy) n ,T V (y ) ,  f E  B (S ),

implies 7T ) 7 7 " ) , n=0, 1, 2, ••• by induction, and hence

T f (x ) ")f (x) = " f ( x )  T ;  f (x ) ,

which proves the assertion of the corollary.

By this corollary, i f  X  is  a  branching M arkov process on ,r 4
which satisfies the condition (C. 1 )  and (C. 2 )  an d  possesses the
branching law T r, then X  is uniquely determined by the non-branch-
ing part X° and the branching law 7C.

Definition 1. 6. Let X ( 4 0 )  be a  branching Markov process which
satisfies the conditions (C. 1 )  and (C. 2 )  and possesses the branching
law n. Let X° be the non-branching part of X. Then we shall call
X  the (X°, 70-branching Markov process.

4 0 ) It should be remembered that we are always assuming that X—(Xt, _BO is
strong Markov such that .T c +0 =2 c .
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Under certain general conditions every branching Markov process
is given as an (X ° , 70-branching Markov process. In fact, we have
noticed already that (C. 1 )  and (C. 2) are satisfied i f  X  is quasi-left
continuous, and that X  possesses the branching law if the Lévy sys-
tem of the process X  exists. Thus, in particular, we have the fol-
lowing

Theorem 1. 4. I f  a branching Markov process X  is a Hunt
process with a reference measure, ( 4 1 )  then X  is given as an (X°, 7r)
-branching Markov process.

The construction of an (X°, r)-branching Markov process for the
given X ° and iv will be discussed in Chapter III and Chapter IV.

§1.3. M-equation and S-equation

Let X= (X e , P x )  be a branching Markov process on Set, for
f B ( S ) ,

u (t , x )=  T , f (x ),

then u(t, x )  satisfies

(1. 39) u(t, x ) =  f  (x )+ t V p(x ; dr dy )u(t —  r, y ) ,0  s
where

(1.40) f  (x )  E x [f (X ,)  ; t  <

and

(1.41) *(x ; d r dy )= P r [XT E dr]

Indeed, (1. 39) is a direct consequence of the strong Markov property
(cf. Remark O. 1  ( i i ) )  applied to the Markov time r.

Now we assume X is an (X °, 70-branching Markov process, then
by (1.38)

(1.42)* ( x ;  d r  dz) K (x ; dr dy )7r(y , dz ), x S,

4 1 )  C f. §1.1, footnote (14).
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where K (x : dr dy ) is a kernel on S x (  [0, 00) X S )  given by

(1.43)K ( x ;  d r  d y ) = 1 3 ?[C° Edr,

Therefore, if we set

(1.44)F ( x ;  f ) = 7 r ( x , d z ) / Z z ) ,  f E  B ( S ) ,

then (1. 39) can be written in the form

(1.45)u ( t ,  x )—  r'f (x )+ t
o s If (x ; dr dy )F(y ; u(t— r, •)),

x G S.

Here, we have used the branching property u(t, x) = u (t ,  )1s (x).
We shall call the equation (1. 39) M -equation. It is an equation

on S  and it holds for any strong Markov process (but, of course, if
X  is a branching Markov process, 11 and possess certain struc-
ture, namely the Property B. III). T h e  equation (1. 45) will be cal-
led S -equation. It is a non-linear equation on S .  The detailed study
of these equations will be given in part III, Chapter IV.
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