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Introduction. Let S be a compact Hausdorff space with a coun-
table open base, S” the #n-fold symmetric product of S, S =Qo S/”\ the
topological sum of S* where S°= {6}, @ an extra point, and S=S§
U {4} the one-point compactification of S. The purpose of this paper
is to investigate a class of semi-groups {T,; {Z=>0} of linear opera-
tors defined on the space B(g) of bounded measurable functions on
S with a special property, which will be called the branching pro-

perty;

1) A~ R~ A~
T.f(x)=(T.f)|s(x), x€S, fEB(S),

where ~ is a mapping from B(S), the space of bounded measura-
ble functions on S, to B(S) defined by

.]“Ilf(xj)’ When X = [xl> X2yt xu]y
j=

2) f\(x)zll , when x=29,

0 , when x=4.

When the semi-group T, is positivity preserving and contraction,
there corresponds a Markov process on /S\with the semi-group by the
general theory of Markov processes. We shall call the Markov pro-
cess a branching Markov process. Branching processes are inves-
tigated by many authors as a mathematical model for the population
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growth of particles (cf., e.g., Harris [8]).

This paper will consist of three parts. In the first part we shall
give some equivalent formulations of the branching property. The
most important one is the equivalence between the branching property
and the property B. III (Theorem 1.2). Roughly speaking, the pro-
perty B. IIl is eéquivalent to say that if there are n-particles they
move independently of each other before the splitting (branching)
time, and when they split into m-particles this happens only through
the event that just one of the original #n-particles splits into
m— (n—1)-particles and the other (z—1)-particles continue the same
motion as before. Several versions of the property which is equivalent
to the Property B. III are adopted as a definition of branching proces-
ses by some authors, but the equivalence between the branching
property (1) and the Property B. III, as far as the authors know, has
not been proved in full generality. This equivalence will play an
important role especially in constructing branching Markov processes
from given fundamental quantities. The equivalence will be proved in
part I, while the construction itself will be treated in part II. Using
the strong Markov property of the branching Markov process, one
can easily see that there are two fundamental quantities which will
uniquely determine the process. They are the non-branching part
X° (Definition 1.2) of the branching Markov process and the branch-
ing law n(x,dy) (Definition 1.3). The first one is a Markov pro-
cess on SU {4} with 4 as the terminal point (it must be remarked
that the state space is not S but S), which describes the behavior
of a particle before its first splitting. The second one is a stochas-
tic kernel on S><§ such that =(x, S)=0 for every x<.S, which gov-
erns the law of the splitting. We shall prove that a large class of
branching processes is uniquely determined by X° and = (such a
branching Markov process will be called an (X°, =)-branching Markov
process).

In part II, we shall first give a general theorem of piecing out
for Markov processes. This theorem will provide a simple way to
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piece out the sample functions of a given Markov process by an ins-
tantaneous distribution (Definition 2.1). Thus, the problem of cons-
truction for branching Markov processes is reduced to construct a
Markov process on g from the given non-branching part X° (a
Markov process on S) and an instantaneous distribution from the
given branching law (Theorem 3.5), and prove that the constructed
Markov process by the piecing out theorem has the property B. III.
This is, however, an immediate consequence of the way of construc-
tion of the non-branching part on § and the instantaneous distribu-
tion. We shall give several examples of branching Markov processes
in part II. To do this, it is sufficient to specify non-branching parts
and branching laws. We shall give there related fundamental equa-
tions for these processes, while the general form will be derived in
part I for (X° =)-branching Markov processes. These are: a linear

integral equation on the large state space S of renewal type

@ a0 =TY@+| e ds dyuc—s ),
xeé\, te [0, oo),

ay
where f= B(S); and a non-linear integral equation on S

@ ot 0=Tw+\ | K ds dnFlLy; w9,
xS, te [0, o0),
where fe B(S) and

Flx; gl = x(x dy) 2(y), g€ B(S).

We shall call (3) and (4) M-equation and S-equation respectively.
These equations are defined in terms of the non-branching part X°
and the branching law z only.

A detailed discussion for the equations will be given in part III,
which may be understood as an analytical version of part II. We shall
construct a (minimal) solution of the M-equation, following Moyal
[33], and show that it defines a semi-group with the branching pro-
perty (1). A solution #(f, x) of the S-equation can be constructed by
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the usual method of successive approximation and from the solution
one can define a semi-group T, on B(g) putting T,j/‘\(x) = ﬁlu(t, x;),
when x=[%1, X,, -+, x,]. Clearly it has the branching] property.
Thus these constructions provide two independent ways of analy-
tically constructing an (X° =)-branching process. On the other
hand, it is easy to show that there is an intimate relation between
the solutions of the S-equation and M-equation: that is, the minimal
solution of the M-equation provides the one for the S-equation, while
a solution of the M-equation can be constructed from the solution
of the S-equation. In other words, the M-equation is a linearization
of the S-equation. By this relation we can investigate the solution
of the S-equation (a non-linear semi-group on B(S)) in terms of the
M-equation (a linear semi-group on B(/S\)).

Assuming some regularity conditions, we shall discuss the infini-
tesimal generator of a branching semi-group. In doing so, we shall
derive two fundamental differential equations: the backward equation
and the forward equation. The backward equation is a quasi-linear
evolution equation. Such a class of equations was considered in, e.g.,
Kolmogoroff-Dmitriev [24] and Bartlett [1] for some of the simplest
cases, and by It6-McKean [19] and Skorohod [43] for branching
processes with diffusing particles. In the case of branching Brownian
motion, this class of non-linear differential equations is a particular
case of the equations discussed by Kolmogoroff, Petrovsky and
Piscounoff [25]. The forward equation is a linear evolution equation
involving functional derivatives. We shall prove the uniqueness of
solutions of the forward equation and apply it to give another proof
of the branching property of the minimal solution of the M-equation.
Finally, in Chapter IV, we shall discuss the equation related to the
number of particles. In particular, we shall see that the first moment
defines a nonnegative but not necessarily contraction semi-group. A
probabilistic treatment of such a semi-group was treated by Hunt
[10] and Knight [23]. A branching Markov process also seems to
provide one of the natural and “nice” model of creation of mass.
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In Chapter V, we shall discuss transformations of branching
Markov processes; i.e., operations on a branching Markov process to
get a new branching Markov process. Some interesting examples
will be given for killing, drift and harmonic transformation.

The many results of this work have been previously published
without proofs in Ikeda, Nagasawa and Watanabe [12], [13], [14],
[15], [16], and [17].

We would like to express our deep gratitude to Thomas H.
Savits for his kind help in preparing the manuscript.

0. Preliminaries

Necessary facts on Markov processes will be summarized in §0.1.
In §0.2, we shall discuss the symmetric product spaces and their
direct sum of a given compact metrizable space and define several
operations on functions which will play an important role in the

future discussions.

§0.1. Markov processes

Let E be a locally compact Hausdorff space with a countable
open base, and let B(E) be the topological Borel field of E, i.e. the
smallest Borel field containing all open sets of E. A Markov process
X on E is a collection

-X: (-Qy gt; Px) Xt(a))y 01)

of the following objects which satisfy the axioms (M.1)— (M. 4)
given below.

(1) £ is an abstract space,

(2) B, te [0, ) is a family of increasing Borel fields on 2 (we
denote the smallest Borel field containing all B, by B..=\ ~,B.),
3) X.(0),te [0, ), =2 is a function (¢, )€ [0, =) X 2— X, (0)
€FE adapted to B, ie. for fixed t [0, =), the mapping w—X,(w)
is measurable (2, B,)—(E, B(E)),

(4) 0,,te][0, ), is a system of mappings from 2 to £,
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(5) P.,x€E, is a system of probability measures on (2, B.).

Now, we introduce other Borel fields

.1) T, =6(2, B(E); X.(0), s<HH®
and
0.2) T =V 50Tl =0(2, B(E); X.(@), SE [0, =2)).

Clearly J1,c B, and X,(w) is adapted to Jl,.

Definition 0.1. A collection X= (@, B,, P., X.,6,) is called a

Markov process on E if it satisfies the following:

(M.1) X,..(0)=X,(0,0), for all v€Q and t, he [0, o),

M.2) P.lo; Xo(w)=x]=1, for all x€E,

(M. 3) For every t€ [0, ) and A€ B(E), P.lo; X, (0)EA] is a
B(E)- measurable function of x,

(M.4) P,[X,..(o/)EA|B]=PxwlX()EA] a.a. o(P,) for all ¢,
s€[0,o0) and A= B(E).

The following statements are easy consequences of the definition.

(i) 6, is measurable (£, J1.)—(®, Jl.).
(ii) (M. 3) and (M. 4) are equivalent to the following two condi-
tions: For any bounded Jl.-measurable function F(w),

(M. 3)’ E.[F(»)] ESQF(Q)P, [do] is B(E)-measurable in x
and
(M. 1)/ E.[F(6, )| B)=Ex [Fl, aa. o(P.).

Now we shall put
(0.3) B(E)= N B(E),
peEIM

where 9% is the set of all probability measures on (E, $(E)) and
B+(E) is the completion of B(E) by =M and put

1) If {fa.} is a family of functions from @ to a measurable space (S, B), then
(6, B; fo) is the smallest Borel field on & with respect to which all fo: 6—(S, B)
are measurable.
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(0. 4) B=NPB, 0<t<+ oo,

x€E

If X is a Markov process, then (M. 3) and (M. 4) are still valid
when we replace B(E) and B, by B(E) and 3, respectively.

From now on, unless otherwise stated, all the Markov pro-
cesses we arve considering arve supposed to satisfy the following
condition (R.C) of vight continuity;
(R.C). For every w=Q the mapping

[0, )2t —>X,(0)EE

is vight continuous.

Then it follows that X,(w) is progressively measurable; i.e., for
every ue< [0, o), (¢, ) —X,(0)Tis measurable ([0, #] X2, Bro,.; & B.)
—(E, B(E))®.

A non-negative random time T(w): 2—[0, =] is called a
B-Markov time if {T<t}eB, for every te [0, ). For a given
B,-Markov time, we define a Borel field by

(0.5) Br={BeB..; for every t& [0, o), Bh (T<tyed}
(Note that if T=t then B,=38,).
Definition 0.2. A Markov process X=(8, B, P,, X,, 0, is

called a strong Markov process if for every B,-Markov time T and
Ae B(E),

(S.M) P.[ X €A, T<<oo|B;]
= lir<ey (0) Pxr e [X,E A], a.a. o(P)®.
Remark 0.1. (i) Since X,(w) is progressively measurable,
Xrwy (@) is Br/{T<<oo}-measurable® and o— 6Oy, is measurable
({T<oo}, B./{T<<oo})—(2, I..), (cf. Meyer [31]).
(ii) The condition (S.M) is equivalent to

2) B[0,u] is the topological Borel field of [0, #]. Bro,ui®Bw is the usual pro-
duct Borel field.

3) Iir<=}(w) is the indicator function of the set {w: T(w)<lco}.

4) Br/{T <o}={A€Br: AC{T < o}}: the restriction of Br on {T <co}.
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(S. M) E.[I1cc)F(0r0)| Br) =1 pce}Ex, [F] a.a. o(P,) for every
B,-Markov time T and bounded Jl.-measurable function F(w). Also
the following variant (S.M)” of (S.M)’ is useful in applications
(cf. Dynkin [6]): if F(w, 1), (0, £)E82X [0, =), is bounded and JI..
QR By, .y-measurable then

(S- M)” Ex [[(T<eo)F<‘9va T(a))) I-@T] = [(T<°°}0( T, Xr)

where 0(s, x)=E,[F(o,s)]. We write 0(T, X;) sometimes as
Ex, [F(o, D],

(iii) By Dynkin [6] (p. 102, Theorem 3.12) or T. Watanabe [47],
if (X,, B,) is strong Markov, (X,, B,) is strong Markov. Hence
without loss of generality we may assume B,=, for every strong
Markov process (X, B,).

(iv) Since X,(w) is progressively measurable, every hitting time
T, for any set A€ B(E) is a B,,-Markov time where B, .= D_C—E,,%
(cf. Meyer [31]). Hence, if B, satisfies the condition @,:.):@,,
then every hitting time for a set A€ B(E) is a B,-Markov time.

Definition 0.3. A Markov process x=(X,, B,) is called quasi-
left continuous if for every increasing sequence of Markov times 7,
we have

(Q.L.CO) P [lim X7, = X;, T<<oo] =P,[T<<oo]

n->co

for every x€ E, where T=1im T,.

n->»co

Definition 0.4. A Markov process X=(X,, B,) is called a
Hunt process if it satisfies the following conditions:

(H.1) the existence of left limits, i.e., for every x*=E,
P,[X:-o(w)Eli?l X,(w) exists for all £>>0] =1,

(H.2) (X,, B,) is strong Markov,
(H.3) (X,, B,) is quasi-left continuous,
(H4) gk+0:$t-

We shall define, as usual, the equivalence of two stochastic pro-
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cesses by the coincidence of their finite dimensional joint distribu-
tions. Then, by virtue of the Markov property, it is easy to see that
two Markov processes X and X’ on E are equivalent if and only
if P,[X,eA]l=P.[ X A)] for every x€E and A= B(E). Clearly
this is quivalent to saying that X and X’ induce the same semi-
group on B(E)®, ie., if T.f(x)=E.[f(X)] and T, f(x)=E.[f(X))],
feB(E), then T,=T;.
A point x€E is called a trap if

(0.6) P,[{w; if X.(w)=2x then X,(w)=2x for all t=s}]=1

for every y. It is sometimes convenient to distinguish a trap 4 E
and to consider that when X, reaches 4 it has terminated its life.
Such a point 4 is called the terminal point of the process X, and
the hitting time ¢(o) for 4,

0.7 (o) =inf{t; X,(0)=4},®

is called the life time of X,.

Here is one of the most fundamental theorems in the theory of
Markov processes (cf. e.g. Dynkin [6]). Let E\=EU {4} be one
point compactification of E™ and E(E ) be the set of all continuous
functions on /E such that f(4)=0. /C\(E) is a real Banach lattice
with norm | f||=sup|f(x) | and with the usual order. Let {T, =0}

K= EaS

be a semi-group of operators on C(E) satisfying the conditions
(T.1) if 1>£>0, then 1> T,f>>0, and
(T.2) IT.f—fl|—0 where ] 0 for every fe/(f(E).“’

Then the theorem reads as follows:

Theorem 0.1. Let {T,t=0} be a semi-group satisfying

5) B(E) is the set of all bounded (real valued) B(E)-measurable functions on
E.
6) We shall always set inf $=-+o by convention.
7) When E is already compact, 4 shall be an isolated point of E.
8) Such a semi-group is celled a strongly continuous, non-negative, contraction
semi-group.
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(T.1) and (T.2). Then there exists a Hunt process X= (2, B,
P, X, 6, ¢(w) on g‘zEU{A} with 4 as the terminal point such
that

0.8) T.f(x)=E.[f(X)]

for all xe}/E\, t=0 and f= /C\(E). Such X is unique up to equiv-
alence.

It is also well known that the above Hunt process can be given
in the canonical form; that is, (2, X,, 6,) are given by (i)~(iii)
below.

(i) 2=4,.=the set of all right continuous functions w; ¢& [0, o)
ﬂw(t)eﬁ such that for some 0=<¢(w)=<+ oo, w(¢) is in E when
t<<¢(w) and w(t)=4 for t=¢(w).
(ii) X.(w)=w(t), we,..
(iii) 6w is defined by (6.w)(s)=w(t+s).
There are several ways of, giving B,; the following seems to be a
standard one. Let Jl,=4(2,., .@(E\); X.(w), s<8), 57L°=t\>/o J1, and
(0.9) F= N T O
preEIM

where P., n=9R, is a probability measure on (&2,., 71..) defined by
PM(B)ngP,(B)/z(dx). Next we set for each >0
(0.10) F,={BeTF; for every u=IM there exists B,= T, such

that P,[BAB,] =0}%%,

Then F,,,=%F, is automatically satisfied and we may take B,=%,,
(cf. Meyer [30]).

Definition 0.5. A Markov process X=(X,, B, ¢(w)) on E
with 4€ E as the terminal point is called a standard process if it
satisfies the following conditions;

(S.1) (X., B,) is strong Markov,

9) M=the set of all probability measures on (E, B(E)).
10) BAB, is the symmetric difference of B and B,; BAB,=BUB,—BNB,
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(S5.2) (X,, B,) is quasi-left continuous befere &,

ie., for any sequence 7,1 T of B,-Markov times, we have P,[X,
—=X;, T<¢]=P,[T<Z(], for every x€E.

(S 3) @t+0 = Q: .

Now consider a Markov process X=(X,, $,) with the terminal
point 4; 91, 9., T, and Jl. are defined as above.

Definition 0.6. A function A(¢, w); (¢, w)E [0,90) X 2— A(¢, ®)
€ (—oo, oo] is called a B.-additive functional if
(i) for fixed t€ [0, o), it is JL.(B,measurable and
(ii) there exists 2,C2 2,9, 6,(2,) 2, for all £=0, and
P.[24]1=1 for all x&E, such that if w=2,

1) t—A,(») is right continuous,
2) A(0) =0, A,(0)=Acw(0) for t=¢(»), and
3) Ai(0)=A.(0)+ A,(0,0) for all ¢, s=0.

If we have further (for wE2,)

4) t—A,(») is continuous,
or
5) A, (a’) =0,

then we shall call A(¢, w) continuous ov non-negative, respectively.

Definition 0.7. A function M,(0); (¢, 0)E [0, o0) X 2—M,(w)
€ [0, =) is called a B-multiplicative functional if A,(w)= —log
M,(w) is a B,-additive functional.

Given a standard process X=(X,, P.) on E with 4€E as the
terminal point and an Jl,-multiplicative functional M, of X such that
E.[M]<1 for every x and =0, there exists a unique (up to
equivalence) standard process X= (X,, P) on E with 4 E as the

11) Such a 24 is called a defining set for A.
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terminal point such that
(0.11) P(X,€A)=E.[M; X.€A], AcH(E).
(cf. Dynkin [6] and Kunita and T. Watanabe [28]).

Definition 0.8. X is called the M,-subprocess of X.

When M,(w)=e¢"*“, where A,(») is a non-negative and conti-
nuous Jl,-additive functional, a version of the M,subprocess is obtained
by the following method of curtailment of the life time. Let Z(»)
be a B.-measurable random variable such that P.[Z(w)>t|Jl.]
=¢™* for every x€E and £.9?

bt £t A(0)=Z(0))
_ inf{t; A,\(v)=Z(w)},
0.12 w)= -
©.12) R A
— X,(0), t<¢(w),
(0.13) X,@):{A () éé&;

Then the stochastic process {X,(w), P.} is equivalent to the M,-sub-
process X= (.Y,, P, 8) of X.

Let X=(X,, B,), where B, satisfies B,.,=B,, be a right con-
tinuous strong Markov process such that with probability one for all
P, the left hand limits of X, exist.

Definition 0.9. A system (n(x, dy), A,), where n(x, dy) is a
non-negative kernel on EX E® and A, is a continuous and nonnega-
tive additive functional, is called a Lévy system of the process X
if for every fe B*(E X E) such.that f(x, x)=0, we have

t
(0.14) E[SfX., X)) =E[ | Nr(X)aa],

s<t

where

12) By enlarging £ and . if necessary, we can always assume such Z exists.

13) Let (S, 8) and (S’, B’) be two measurable spaces. v(x, 4), xE S, Ac B is
called a kernel on (S, B)X(S’, B’) if for fixed AEB’, it is a B-measurable func-
tion of x, and for fixed xE3, it is a measure on (S’, B’). When S and S’ are
topological spaces and B and B’ are topological Borel fields we call it simply a
kernel on SXS’.
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(0.15) N ()= ntx, anfes, 9.

It is known [45] that every Hunt process with a reference meas-
ure™® possesses a Lévy system. Suppose X possesses a Lévy system
(n(x, dy), A) and let D be an open set of E. Let rp=inf{¢; X,(0)
&D}. For B,cD and B,cE—D, B.eB(E) (i=1,2) and f(x, y)
=I;,(x) I;,(»),"” we have from (0. 14)

E.[e"?; X., €B,, X.,€B,]

B[S X, X1 =E[ (e L, (Xon(X., Byda.],

$=7p

where A is a positive constant. In particular,
E.le*; X, cB]—E. [Swe—» L(X)n(X,, E—D)dAS] .
0
Therefore, if we define a kernel by

T,(x, B)— n(x, B)

n(x, E—D) "’
where x& D, BCE—D, and BE3B(E), then we have
E. [e—)w”; XTD—EBI» XTDEBZ]

_E. [gw L(X)n(X., E— D)IIy(X,, Bg)dAs:|
=E.r [e_’\"u Isl(XTD—)HDCXTp-, BZ)] .
As a consequence of this formula we have

Theorem 0.2. Suppose X possesses a Lévy system:; then we
have for every open set DCE and B B(E) such that BCE—D,

(0.16) P[X.,eB|X., 1=0,X.,_, B)
and further
0.17) E. e[ ,(X. )| X, ] =11,(X,, , BYE.[e™>»]| X., ]

14) m(dx) is a reference measure for X if for every FEB(E)
§ @) B[ etir(x)dt =0 impies B (Tetie(xar]=0

for every x. (This was first introduced as the condition (L) in Meyer [301).
15) 1Is(x) is the indicator function of a set B.
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as. (P)on {X.,_ €D, rp>>oc0}.

§0.2. Symmetric product spaces and their direct sum

Let S be a compact Hausdorff space with a countable open base
(i.e. a compact metrizable space), and let S™(n=1,2,---) be the
n-fold product of S with the product topology. The symmetric
n-fold product space S” of S is the quotient space S’/~, where~
is the equivalence relation of the permutation; i.e., x~y, x, y&S,
if y is obtained from x by a permutation of coordinates. By the
quotient topology S* is compact. Let S°= {9}, where 8 is an extra
point, and let S be the topological sum of S*, =0, 1, 2, ---.® Then
S is a locally compact and non-compact Hausdorff space with a
countable open base; let

(0.18) S=SUia

be the one-point compactification of S. It is convenient to introduce
the notation S*={4}. Then S is the sum of S”, =0, 1, 2, .-,
—+ oo,

Example 0.1. Assume that S consists of a single point: S
—
={a}. Then S"={[a,a,---,a]}, which we can identify with ». Thus
S can be identified with the set Z* of all non-negative integers, and
N N
S with Z*=Z*J{+ oo} the compactification of Z*. More general-
ly if S consists of k-points; S= {ai, a., -*-, a,}, then

”ny ny "y

S”: {[alv'“)aly aZ;‘“» a29 Tt ak) “.,ak] ; n1+n2+”'+nk=n}’
which we can identify with {(#n,, #., -+, n.); n.€Z*, n,+n.+---+mn,
k

co —_— T
=n}. Accordingly S=J S" can be identified with Z*X Z*X-.- X Z*

n=0

={(ny, o, *++, M) ; MEZ*}.
Let p be the natural mapping: S® —S” which maps xS to

16) Cf. Bourbaki [3] p.35. We shall write S=U S™.

n=0
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the equivalence class px containing x. Then p extends to a mapp-
ing from the sum O S® of S™ to S. We shall write px= [x;, X, *--,
x,] when x=(x,, _,0 x,)eSM,

Now we shall define for each m=1,2, .-, a mapping 7: §><,/S\
><-~-></S\——>/S\ as follows. Let x1,---,x,,,6§ then there happens just
one of the following three cases;

1) x,=4 for some i,

2) x,=0 for every i, or

3) all x; are different from 4, but there is some =x; different from
0.

Then we set

‘4, if the case 1) happens,
0, if the case 2) happens,

(0.19) (%1, %oy o0, X)) =
Lp(xlly ttt, xlnly le; tty x2n27 ttty xmly
‘s, Xum,), if the case 3) happens,
where we take all x,= [x,1, X5, **-, £,,,] such that x;#d in the case 3).

Example 0.2. In Example 0.1, in the case S= {a}, r is given
simply by

N
7Ny, My, o )=+ o+ -+ 0, nEZ.
[N 0 .
In the case S={a, a, -, @}, nES is given by n= (n,, #n,, -+, 1)

or n=4 and
. n'+n’+--+n", if n'#4 for all i,
r(n', n® -, nm)={ .. .
Y| R if otherwise.

Now we shall introduce the following function spaces which are
supposed to be real unless otherwise stated.

(0. 20) B(S)=the set of all bounded Borel functions on S,
(0.21) C(S)=the set of all continuous functions on S,
(0.22) B¥(S)={feB(S); llfHEquEglf(x)|<1’},

(0.23) Cr(S)=C(SHNBI(S).
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We shall denote by “——" the closure with respect to the norm,
and so
(0.24) BX(S)={feB(S); |IfI<r},
(0.25) CHS)={fec(S); IflI<r}.
For =1, we shall omit the subscript 7;
(0. 26) B*(S)=B¥(S)={feB(S); [fl<1},
(0.27) C*(S)={fec(S); IflI<1}.

B(S"), C(S"), B(S), C(S), B(S) and C€(S) are defined similarly.
When we consider f= B(S) as a function on S we shall always
put f(4)=0. The supremum norm of B(S")(resp. B(S), B(S)) is

denoted as || |[s», (resp.] lls, || [I3). Further we shall introduce
(0. 28) B,(S)={feB(S); lirrj f(x)=0}, and
(0. 29) Co(S)=C(S)NBy(S).

The set of all (not necessarily bounded) Borel functions are denoted
as B(S), B(S"), ---etc. The subclass of each function space intro-
duced above formed of all non-negative elements is denoted by ‘“*”,
e.g., B(S)*, €C(S)*, B*(S)*, ~-etc. For f=B(S) or B(/S\), the res-
triction of f on S* is a function in B(S"), which we shall denote as
fls». In particular f|s is the restriction f on S.

Next we shall define serveral operations on functions which will
play an important role in the future discussions. First of all, “A~”
is a mapping

~: B¥(S)2f—f=B(S)

defined by
1, if x=20,

(0. 30) FCx) = FRDF ) F(2), i x= [, %o -, ],
0, if x=4.

Since f(x,)f(x.)---f(x,) is invariant under the permutation of x,, .,
.-+, %,, it is well defined. Clearly “~” maps B*(S) into B,(S) and
C*(S) into C,(S). Next for f€B*(S) and g= B(S) define a func-
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tion (f|gyeB(S) by
0, if x=9,
g(x), if x=x&8S,

O30 SNOE =035 o f(x), if 2= 51, %, -, 1] €S,

0, if x=4.

Clearly {f|g>€B,(S) (resp. C,(S)) provided fe=B*(S) (resp.
feC*(S) and g C(S)). Further we shall introduce the following
operator v from f& B(S) to f&B(S) defined by

[0, if x=9,
(0. 32) F) = A1 F>(x) = lf(xl) F A+ (),

if X = [xl, X2y *°*, xn]y
0, if x=4d.

Lemma 0.1. For every 0<r<<1, there exist positive cons-
tants a,,b,,c,,d, and e, such that

(0.33) If-gls<alf—gl for all f,geB*(S),
(0.34) I<flu=—<glo>|s<b,lull- I /- gll+c.lu—o]
for all f, geBX(S) and u,ve B(S),
©0.35) @D —<flh>ls<d.|-F(g—)—hl
+elhllf-gl

for all f, ge BX(S), he B(S) and t >0.

In particular, we have from (0.35) that for every f= B*(S) and
he B(S)

(0.36) lim[|-1- ((FF o) =F} = <f1 h>[ s =0.
Proof. For x=[x, %, +-+, x,] ES" we have
0.37) ) —g(®) =T £(x) — 11 g(x)

= (50— gD F(H) - f (H0-1) 8 (n2) -+ 8 (%),
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Hence if f, g& B¥(S) (r<C1), we have
17=&ls<sup G f—gll,
which proves (0.33). Next,
Fluy (@) = g0y (%) = 3 (e T fCx) —v(x) I g}
=3 () —v(x)) I g(x)+ Tl (1 f(x) — T g(x)),
and by the same way as above, we have
[ f(x) — M g(x) | <=7 f— g,
provided f, g€ B}*(S). There\fore
1< f1wy—<glvylls< (sup ™) [u—]
+ (sup 2(n—1)7" ) [Jull - | - gl
which proves (0.34). Finally,
S () =3 h(x) T f(x)
S NIENVESDTICAPIENEIEN
BB PG ) () FC5) — ) 4]
and hence by (0. 37)
R AIORTGING
S CCOR (EA BN TEN SIEREN ANV e BN-eD
+ A f ) ) () — (i) 82}
Since

f(Za) = f(20) — 8(x001) - (2D | < (n—R)r" 7| f— g,

we have

|-~ =< fI < (sup m )| F-(g—f)—
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+ (sup 21 s ) g 7 gl
which proves (0. 35).

Lemma 0.2. (i) The linear hull of the subset {ﬁ f
eC*(S)"" of €,(8S) is dense in C,(S). '
(i) For every T=>0, the linear hull of the subset

(Fif(s, ) = g()h(x) € C*([0, T] X S)H*»

of C,([0, T]1XS8) is dense in C,([0, T xS). In particular, the
linear hull of {f/;\feC*([O, T xXS)* is dense in C,([0, T] % S).

Proof. First of all, we note that the linear hull is given by
{X‘, c,»ﬁ; f:eC*(S"), ¢;: real constants}. By the Stone-Weierstrass
tl’:elorem, the lirear huil of {fi(x1)fu(x2)--f,(x,); f:€ C(S)*} is dense
in C(S™), and hence the linear hull of {Zfifw(i)(xi): fieC*(S)Y
is dense in C(S")."” But by a combinato;iallillemma,(”’ we have

S fro@) = IEAGED — 5 T A0

n=1) i=1

o on=2

TS IS ) =+ (C DTS,

ckn-2) i=1 ¢

where E o denotes the sum over all (ky, k., -, k) such that 1
(kys r)

<k;,<m and all k; are different. This implies ZH fw(,)<x) belongs to
the linear hull of {f(x,)-- f(x) fEC*(S)*} = {f] o3 fECH(S)Y)
and hence the linear hull of {fl st; fEC*(S)*} is dense in C(S™).

P
Now in order to prove the linear hull of {f; f& C*(S)"*} is dense
in C,(S), it is sufficient to show that any continuous linear func-

17) C*(S)*={feC*(S),f=0}={sf: continuous on S, 0<f<1}.

18) C([0, TI1xS)={f=rf(, x); continuous on [0, TIXS}, C*([0, TIXS)*={f=
f(t, x); continuous on [0, 7T1xS, 0<f<1} and }'=} (t, x) is defined by (0.30) for
each fixed ¢.

19) 2 denotes the sum over all permutations = on (1,2, -, ).

T
20) Cf. Ryser [38].
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tional # on C,(S), (i.e., any signed Radon measure x(dx) on S with
finite total variation) such that ,u(/]?)Zg ]/’\(x)p.(dx)=0 for every f
€ C*(S)" is identically zero. Suppose, tl:erefore, that u(_/f\)zO for
every f& C*(S)", then for every 2(0<2<1), 2= C*(S)*, and hence
ﬂ(;})zéo/l“gsnf(x)/; (dx)=0. Thus we have sz(x),‘(dx)zo for
every f€C*(S)" (n=0,1,2,---). But we have shown above that
the linear hull of {_ﬂs"; fEC*(S5)*} is dense in C€(S*), and hence
#|sn=0 for every n=0,1,2, ---. This proves #=0, and the proof of

(i) is complete. (ii) can be proved in a similar way.

Lemma 0.3. (i) Let

(0. 38) R=the set of all signed Radon wmeasures p on S
with finite total variations.
Then for vi,vs, -, € R, there exists one and only one p= R such
that
~ k A~

(0. 39) /z(f)=iI}lui(f),fEC*(S)+.
We shall denote this p as
(0. 40) u:yl*uz*..-:kyk’
then
(0.41) [ = [vi] #]wa| %o [0, |40, and

k
(0.42) n(8) =11 v,(S).

i=1

Hence, in particular, p is positive (resp. a probability measure)
if all v; are positive (vesp. probability measures).

(ii) Let vo(dt, dx) be a signed Radon measure on [0, o) X S with
finite total variation and v,(t, -), -, w(t, -)ER such that, for
every E€ B(S), v.(¢, E) is a bounded Borel measurable function
in t then there exists one and only one n(dt,dx), a signed measure
on [0, =) XS with finite total variation such that

21) |p|=p"+up, where p=p"—p" is the Jordan decomposition of pER.
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©043) | T wus an={ 7 ouds, dn 1, P,
[0,>)x 8 [heo)x S i=1
fEC*(10, 00) X S)T,

where v;(s, j/‘\)=8 vi (s, dx)f\(s, x). We shall denote this n as
S

(0.44) 2=, Quikupke ey,

then

(0.45) I A DA I EIEE I PN

and

(0.46) #(10, 023 % 8)=({ ~v(ds, dx) 11u.Cs, ).

Hence p is positive (resp. a probability measure) if vy, vi, -+, v

are positive (vesp. probability measures).

Proof. It is sufficient to prove the case k=2; then

w( PP =32\ re-r 0 f(m@nmay.

n,m=0

Let y be the mapping S X S— S defined in (0.19) then = R defined
by
/llsn: kz (VIISkXVZISj)Or_I) k,j:O,l,Z,"',
n=k+j

clearly satisfies u(?)zul(}\)-ug(j/‘\). The uniqueness follows from
Lemma 0.2. (0.41) and (0.42) follow from the definition and the
following property of product measures |[AXpu|= || X|x]. (ii) can

be proved in a similar way.

Example 0.3. In Example 0.1, if S={a}, then S=Z" and
hence R= {(a,)i., such that 3|a,|<leo}. feC*(S)* is determined
by a constant A such that 0=<{2<<1 and j/‘\(i)=/1". If n=(a,):-, then
u(?)=%a,j", which is nothing but the generating function of . If

v=1(b,)7 then pxv=_(c,)7., where c¢,= > a,b,., We remark also

k+l=n
F(@) =ia.
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If S={a,,a,, ---,a}, then S={n=n,, n,, -, n,); n.€Z*} and
feC*(S)* is determined by constants (A1, 0, 4, 0<<A;,<<1 by the
relation 1;=f(e;) where e;= (0, -+-, O,T,hO, -++,0). Then /f\'(n) = AR A4k,
R={(@yuys,) such that 3 |@yy.,| <00} and u(f) = Sy K22+

v If u=(b,,,_,,z...,,,)eﬂl,',lf.ﬁén uxv="_Cpy npn,), WHETE C,pupn, = =
e W

N
Qj,..j, b1112...1k . Finally, f(n) =MAi+ Nodot o0+ Wids.

I. Branching Markov processes

A branching process is a random motion of particles each pro-
ducing new particles of the same character or dying out and new
born particles will continue the motion independently each other. Let
particles move on a topological space S then if, at time #, there ex-
ists » particles, they define a point X,&S" where S* is the n-fold
symmetric direct product of S defined in §0.2. Thus, we have a
stochastic process X,, whose state space is /S\=SU {4}, where S is
the sum of S”, #=0,1, 2,---.*® If the motion of a particle is Marko-
vian, then the process X, will be a Markov process. It is, therefore,
natural to define a branching process as a Markov process X on é\
with the independence property of particles. The independence pro-
perty of particles can be formulated in many ways; so we will adopt
one of them as the definition in §1.1 and give several equivalent
formulations in §1.2. Similar formulations of a branching process
were given by several authors, especially by Moyal [35] and Skorohod
[43].%®  Finally, we shall show that under certain general conditions
every branching Markov process X is uniquely determined by a Mar-
kov process X° on S, called the non-branching part of X (Defini-
tion 1.2), and a stochastic kernel zn(x,dy) on S ><§, called the
branching law of X (Definition 1.3); X° describes the behavior of

22) SW={s}. & is the state that all particles died out and 4 is the state of ex-

plosion.
23) Cf. also Harris [8] (Chapter III), Mullikin [36] and Silverstein [42] for dif-
ferent formulations of branching process.
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a particle of X before its first splitting, and =(x, dy) describes the
law of the splitting. This process X will be called the (X° )
-branching Markov process. The construction of a (X°, n)-branching
Markov process for given X° and = will be discussed in Chapter III
and Chapter IV.

§1.1 Definitions

Let S be a compact Hausdorff space with a countable open base,

and define the symmetric product spaces S”, #=0, 1, 2, -+, their direct
oo P

sum S=U S” and its compactification S=SU {4} as in §0.2. Let

n=0

X=(2 4, P., xeé\, X,, 6,) be a right-continuous Markov process on
/S\, and let T, be the semi-group on B(/S\) induced by X, i.e.,

(1.1) T.f(x) = E.[f(X))], f€B(S).

Definition 1.1. A Markov process X on S is called a branch-
ing Markov process if it satisfies

~ ST~ A~
1.2) T, f(x)=(T.f)]|s(x), xS,

for every f€ B*(S).*
PSS

By taking f&C*(S), 0<f<1, we have T.f(d)=T,f(4) =0,
but f/'\(x)>0 for all x=8. Hence, we have P,[X,=4] =1 for every
t =0 and, by the right continuity of X,,

P, X,=4, for all t=0]=1.
Quite similarly we have
P:;[X,=0, for all t{=0]=1.

Now suppose X is strong Markov such that B,,,=%, then, since
the hitting time e.(es) for 4 (resp. ), where

e (resp. e;)=inf{f{; X,=4 (resp. )},

24) Clearly (1.2) is true for every f&B*(S) if it is true for every f=C*(S).
Then (1.2) is true for f&B*(S).
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is a Markov time (cf. Remark 0.1 (iv)),

P.le,=+ oo or for all e, <t<Too, X,=4]
=P.[es=+ o] + E.[Px,, [X,=4 for all 1=0]; e,<+oo]]
=P.le,=+ 0] +E,. [Py X,=4 for all t=0]; es,<+oo]=1.

Thus, we have the following

Theorem 1.1. If a branching Markov process X=(X,, B,) is
strong Mavkov such that B,.,=B,, then 4 and 8 are traps.

Example 1.1. Consider the simplest case when S={a} (cf.
Example 0.1 and 0.3), then S~Z*=1{0,1,2, -} and S~Z*={0,1,
2, .-, +oo}, Every f€C*(S)* is given by a real number 2 02
<1, and f({)=4. Hence

T.76) =3 PO,

where {P;;(¢#)} is the transition matrix. Therefore a Markov chain
AN

on Z* is a branching Markov process if and only if its transition

matrix {P,;(¢)} satisfies

SIPL (¥ = (iplf(t)af)f, 0<a<<1,i=0,1,2, -+,
(1. 3) j=o0 i=0
P.. ..()=1

This is equivalent to

(1.4) P,()=X11P,,.(£), t=0, i jeZ"

m=1

where the summation is taken over all (74, 7., -+, #;) such that », € Z*
and 7,-F7.+--+7,=j. (1.4) was adopted by Kolmogorov-Dmitriev
[24] as the definition of the single-type branching process with con-
tinuous time.

In the case S={a;, as, -, @}, S~(Z")'={n=>ny, 1o, -+, M) ; #;
eZ*} and §~(Z+)”U {4+ co}. Then, quite similarly, we see that
a Markov chain X, on (Z*)* {+ oo} is a branching Markov process
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if and only if its transition matrix {P,.(¢)} satisfies

ZPn,m(t)li"lx;"Z"'iz’.: Hiil(zpe,-,m (t))‘i"lzg’z,,,iz‘k)"i
(1. 5) m m
P, ..(t)=1,
Where m:(mly mZ) Y mk)) n:(nly n27 ) nk)y 0;],<1 and

i—tk

ei:(O) O, Y 17 Ov R 0)) (i:lv 2) B k)*

From now on, unless otherwise stated, all branching Markov
processes X=(X,, B,) we shall consider are supposed to be strong
Markov such that B, =!B,.'(2‘”

According to the intuitive meaning explained at the beginning
of this chapter, we shall define

(1.6) E(w)=n, if X,(0)ES", n=0,1,2, -, + 00,

and call it the number of particles at time t. The hitting time
€4 for 4 and es for @ are defined above and we shall call them the
explosion time and the extinction time, respectively. Further, we
shall define

1.7 t(0) =inf {t; &(0) #&(0)},
and define 7, 71, 72, +++, inductively by
(1.8) 70(w) =0, 7, (w) =7(») and

7,(0) = 7,1 (@) + 7(6r0_100)0).
We shall set also

1.9 Tw(w) =1im 7, ().

n->co

Ti, T2, ***, T are all Markov times and r, is called the n-th splitting
(or branching) time of the process X.

It should be remarked that many important quantities for the

process X can be expressed in the form T,;‘\, fe B*(S). For ex-

25) Also we shall take 4 as the terminal point of X; so e, is identified with
the lifetime ¢.
26) S=={4}.
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ample,

(1.10) P.le,>t] = T.f(x), for f=1,

(1.11) P.leo<t]=T,f(x), for f=0,

and

(1.12) E.[i] = T, f(x), for f=2, 0<1<1.
For f€ B*(S), define &/(w) by

(1.13) &/(0) = F(X.()).

If f=1,, where I, is the indicator function of D& B(S), we write
&7 instead of &/». & (t<Te,) is the number of particles in D at time
t.

Remark 1.1. For a certain problem, it happens that S contains
a point F such that if we set T={0, 7, [F,V], [F,V,F], -}, then
P.[X.eT for all t=s if X,eT]=1, xS, and it may be natural
to call &(w)=&"""{w} as the number of particles. Then the extinc-
tion time is the first hitting time e, for the set 7. (Cf. Example
3.4 (C) of Chapter III, where S=D {F} is the one-point compac-
tification of a bounded domain D in RY).

Now let X=(®, 8, X,, P,, xeé\, 6,) be a branching Markov

process, and for each n=1,2, --- define a new Markov process X on
S"U {4} in the following way:
X)=(2, B, X!, P2, x€S"U {4}),

where 2°=0, B'=RB,, Pl=P,., x=S"U {4}, and

0__
;=

{X,(a)), if t<<t(w),
4, if t=7(w).

The point 4 is considered as the terminal point of X, and so r(w)
is identified with its life time ¢°(w).®?

27) To be precise, Pllr(0)={0(w)]=1, x&S” but Pjlt(w)=+c0]=1 and
Pi(e)=01=1
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Definition 1.2. X! is called the non-branching part of X on
S, X°=X? is called simply the non-branching part of X.

Thus, the non-branching part of X is a strong Markov process
X°® on SU {4} with 4 as its terminal point, which will describe the
behavior of a particle of X before its first splitting.

Next we shall consider the following

Assumption 1.1. X,_=lim X._1 exists almost surely on {r

n->o00 "

<Coo}, and there exists a stochastic kernel =(x, £) on S X § such that
for each >0, xS, and EG.@(é\),

(1.14) E.[er, X.€F|X. ]=n(X._, E)E.[eV|X._]

a.a. on {r< oo},

Definition 1.3. Suppose a branching Markov process satisfies
the Assumption 1.1. Then we shall call z(x, E') the branching law
of X. Also, we shall say that a branching process possesses a
branching law = if and only if it satisfies the Assumption 1.1 with

the kernel .

The existence of a branching law for a branching Markov pro-
cess X is generally assured: for example, if X is a Hunt process

with a reference measure, it possesses a branching law (cf. Theorem
0.2 of §0.2).

Remark 1.2. For a branching law, we can always assume
7(x,S)=0, x€S. To give a branching law, it is equivalent to give
the following system (q.(x), =.(x, dy))i.,, (where ¢,(x)=B(S)*
and x,(x, dy) is a stochastic kernel on SXS”, #=0,1, ::-, ) by the

relation
(1' 15) q”(x) :n(x! S")’ n:O’ 2’ ...’ + 00’
(1.16) (%, dy)==n(x,dyNS")/q.(x), n=0,2, -, +c00®

28) If gu(x)=0, take as m=n(x,dy) any probability measure 7=x(dy) on S™.
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We shall call (q,(x), 7.(x, dy))w, the branching system of the pro-
cess X.

§1.2. Fundamental theorem.

We have formulated in the previous section the independence
property of particles of a branching process in terms of its semi-
group in the form (1.2). In this section, we shall give other
mathematical formulations of the independence property and discuss

their equivalence.

Let S,SzLj S and :S\ be as above. Let X=(@, 8, X,, P.,0,)

n=0
be a right continuous strong Markov process with 4 and @ as traps
such that B,,,=B,: and it is not assumed apriori to be a branch-
ing Markov process. Define &,,7,7,, #=0,1,2, ---,+ co, in the same

way as in the previous section.

Definition 1.4. (i) X is said to satisfy the condition (C.1)
if for every xS,

(C.1) P.lr.=€,, 1o<<oo] =P, [r.<loo].

(ii) X is said to satisfy the condition (C.2) if for every
xS,

(C.2) P [r=s5]=0, for all s>0.

We note that if X is quasi-left continuous (cf. §0.1. Definition
0.3), then (C.1) and (C.2) are automatically satisfied. As for

(C.1), we have
P lim X. =X, r.<{oo] =P, [r.<loco];

n—>oco0

also, it is clear that if r.<Ceo and lim X, exists, then this limit

n—>c0

must be 4 and consequently for x&S we have
P.[X. =4, r.<<co] =P.[es=r., To<l 00] = P, [r.<oo].

As for (C.2) we need only remark that 7T'=s is an accessible Markov



Branching Markov processes 261

time.
Now we shall construct several stochastic processes from the
process X= (2, B,, X,, P,, 6,).

(A) The process X= (5, .%,, :)V(“ Fx, xe 8).

It is a stochastic process on S defined by (i)-(iv) below.
(i) Let £ be the n-fold product of £ and 2= CJ £ be their
n=1

sum.
(i) )?,(cﬁ), t=0, cT)EE.?V, is defined for &= (o, 0., ***, 0,) E L™ by

(1.17) X (@) =r(X.(0), X,(0), -, X(0,)),
where 7 is defined in §0.2 (0.19).
i) Th=o(@ BS); Xu(@); s<t), F=V T
t>>0
(iv) For Aefﬁ,ﬂ,
(1.18) P.|A] =P, X P,X X P, [ANZ"], if x=[x,, -+, x,] €S
=P.[AN&], if £=8 or 4.
fpx is well defined by the following
Lemma 1.1. For every AETl., the right-hand side of (1.18)

is independent of the order of (%1, x., -+, x,) and hence it depends
only on x= 1%, X,, -+, X.].

Proof. 1t is sufficient to show that E, XE,X:-- XEx,[gl(y(,l)
gg()?,z)---gq()?,q)] is invariant under the permutation of (x4, %,, -,
x,) for every 0<{t,<t,<<---<<t, and g1, &, -**, &= C,(8S). For this,
by virtue of Lemma 0.2, we can assume g; =j/‘?, f;€C*(S). Then,

the assertion is clear since
ACACHACACHESNC HCIIES 81§76 HEH)

where @= (v, @, **, w,), is invariant under the permutation of

29) From this definition it is clear that X has 4 and 9 as traps.
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(wlv Woy *°°y Wy ).
(B) The precess X,=(@, X", P, x€S8"), n=1,2,--: For
each n=1,2 .-+, X, is a stochastic prccess which is cbtained by

stopping X at time ¢ on S*. Therefore 2, {P.}, x€S", are the
same as thcse of X, and X{” is defined by

(1.19) X"(0)=X,uwm(0), =0, nE=0.
(C) The process X,-——(!f”), )?5"), Iﬁx, xeS"), n=1,2,---. For
each n=1,2, -+, jfv is a stochastic process which is obtained from

the X defined in (A) just as the process X, is obtained from the
process X; i.e., XV is the stopped process of X on S" at time 7,
where % is the first leaving time from S”. To be precise £ is the
n-fold product of £, and X(0) = X nr@ (@) = r(Xiprar(01), =+,
X ron(@,)) for @=(wy, @, -+, 0,), where #(@)=min {c(w,), c(w.), -+,
w(0)}. (P x€S", is defined by (1.18).

Definition 1.5. (1) X is said to have the property B.I if it
has the following

Property BI. The processes X and X are equivalent.
(2) X is said to have the property B.II if it has the fellowing

Property BIL. The processes X, and X, are equivalent for each
n, (hzl, 2, ).
(3) X is said to have the property B.III if it has the following
Property BIIl. For x=S", n=2,3, ---, we have

A~ — N
(1) TF(x)=(Tf)|s(x), for all f=B*(S), and
@ {1,765 v dsdy) =
Ve o1 fs vl dsaynisy @

30) T?J/"\(s,')(x)=Emf?(s, xs); s<tl, x&€S. The right-hand side is equal to.
n pt n
if x=[x1, %2, xal, .ZISO{H,Z:‘Tgﬂs, ')(Xj)}g ﬂs. ) ¥(xi; ds dy), where ?(s, ¥)
. i= i s

= Hlf(s, y5) if y=[y, -, ynlES™
s
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for all f& B*([0, =) X S), where

T F(x) = E.[f(X,); t<<] and
Y(x; dsdy)=P.[X.€dy, r=ds].

We have now the following fundamental

Theorem 1.2. Let X=(2, 8, P., X,) be a right continuous
strong Markov process on S such that Biyo=B, with & and 4 as
traps. Then it holds that:

(a) X is a branching Markov process if and only if it has the
property B,

M) If X has the property B.1 then it has the property B.I1I;
(¢) If X has the property B. 1l and satisfies the condition (C.2)
then it has the property B.III;

(@) If X has the property B. Il and satisfies the condition (C.1)
and (C.2), then it is a branching Markov process.

Proof.

(i) Proof of (a): First we shall show that if X is a branch-
ing process, then it has the property B. 1. For this, it is sufficient
to show that for 0<<¢,<<t,<<---<<t,, &1, &, -, £, C,(S) we have

E, [gl(Xu)gz(Xzz)"'ga(Xu)] :Ex [gl()?:l)gz(jqu)"'ga(X,q)]o
By virtue of Lemma 0.2 we can assume g;=/f; where f,=C*(S).
By the definition of T’x, when x€ [x,, %o, -+, x,] €57,

~ 4 /N~ ” q I\

E.\: [J]-;Ilfj(Xt;)] = El Eri [113. fJ(X‘i)] )
and hence what we should prove is the following equality
(1.20) E.[1 7(X,)] = L., (1 (X,)).

When ¢g=1, (1.20) is (1.2) itself. Suppose (1.20) is true for g=
1,2, ---,v—1, then

E.[117(X,)] = Bl F(X) T F.(X,, )]
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r-1 A~ /\/\ o~
:E—‘:[Elff(le)(Ttr—fr,fr)IS(XH.1>]

B [jijﬁcx,,.)g(Xf,_)]

~[E, [T /(X,)8(X, )]

~1E,, [ill?,-(x,,)],
where we set g=f, —1'<Tl.~fr_,fr\)[s- Therefore (1.20) holds for
every g. Suppose, conversely, that X has the property B.I1. Then,

for x=[x1, %, -, %.],

”

E.[f(X)) =E<[ (X)) = TIE, [ F(X)], fEC*(S),

which proves that X satisfies (1.2); i.e., X is a branching Markov
process.

(ii) Proof of (b): Obvious.

(iii) Proof of (c): Assume X has the property B. II and
satisfies the condition (C.2). Then for x= [%,, %., -+, x,] €S" and
fEB*(S),

E.[f(X); t<x]
—EA(X®); t<<]
—EF (X 1<
= B X X B [ILA(X0)) - Trcopsa (@)
—TIE.,[f(X); «>1].

Hence, the first condition of the property B.III is satisfied. Next,
let fe B*([0, =) X S). By the condition (C.2) we have

Po[Ul (@=(on, 00, 00, 05 (o) =<0} ] =0,
x€S,, n=2,3, -, and hence if x=[x,, x,, -, X.],

E.[ (s, X); r<t]



Branching Markov processes 265

E.[f(r, X); <<t
LF G Xe)5 2 <t
B, X X B, [f(, XP); (@) =x(0) <1]

I
o

i
L

I
M-

[\ P x P dodo) T, A0, Koo

i=1

. [(T(w.')<7(w;))} ~f/'\(r(w,-), XT(OJ;)(‘D»')) . I(T(«:;)Sl}]
5| B (s X5 s<e) s 3
i=1JSJ0 Ji

P, [X.cdy, reds)],

which proves that X satisfies the second condition of the property
B. III.
(iv) Proof of (d): We shall prove a proposition which includes
Theorem 1.2, (d) as a special case.

Let T7(x,dy) be a kernel on ([0, o) X S) X S satisfying
(i) Ti(x,-) is a signed Borel measure on S with finite total varia-
tion for every (¢, x)€ [0, o) X S,
(ii) T9(-, B) is Borel measurable on [0, =) X S for every B B(S)
and

Gi)  T0.(x, dy):Xs To(x, d2) Tz, dy) for every t, s& [0, o),

x€S. Set Tef(x)=\ Tix, dy)f(y).

Let y-(x; dsdy) be another kernel on SX {[0, o) X (§—S)} sat-
isfying
(i) «(x; ) is a signed measure on [0, o)X (S—S) with finite
total variation on [0, ] X (§—S) for every ¢>0,
(ii) «(-; ) is measurable on S for any Borel subset I' of [0, o)
X (8—S) and
(i) || (y; {s} X (S—S8)) =0 for every y=S and s>>0, where ||
denotes the total variation of .

Furthermore, we assume that 7T, and +- satisfy

tt+s

.2 { 190 an (| ws ar asr@ =" wix; aranyss,

s
0
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for every f€ B(S—S).
Now we extend 7, and +r to kernels T,(x, dy) and y-(x; dt dy),
x,yeS,te [0, ) by

e | 7O dpfin) = Tifw, fe B Sy
(1. 23) S;Ss"’("; ds dy)fis, y)

=fereses off, wes asanis ) @

(cf. Lemma 0. 3). The support of T{”(x, dy) is concentrated on S*
when x=S” and it defines a semi-group on B(S).

We define kernels ¢(x; dt dy) (n=0,1, 2,---) on SX ([0, o)
X 8) by

0(°)(x; t, dy) :5(x) (dy)

(1. 24) 09 (x; £, dy) = S(}p(::; ds dy)

0P (x; 1, dy) = S;Ssmlr(x; dv d=)0%"(5; t—v, dy)
and
YP(x; dt dy) =d,0® (x; ¢, dy).

Moreover set for each £=0,1, 2, ---

(1.25) T®(x, dy) = S;st,b‘(")(x; ds dz) T, (5, dy)
and

20 T =\ 106 s, reBS).

Proposition 1.3. When éT}“ Rx), e B(S), converges, set

.27 T, F(x) =§DT§”}'\(x).

Then T,}‘\(x) has the branching property:

—

(1.28) T.f(x)=(T.f|s)(x), x<S.
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Proof of the proposition consists of several steps.

Lemma 1.2. T{ and ° satisfy the following relations for
fEB(S) and 0<k<n;

a2y (7wt arapsy -1 [ v arapren @
(1.30)  0(DF(R) = (A0 —r)f ()
W3 T = e En O
132 TOTES@ ={v@n TEs.
Proof. By (1.23) we have

(" wees arapzn={"<rigl{ v arapze @

and by (1.21) this is equal to

[<rg § v ar+t ane> @

=S:< TiT'g

gs:rwc-; dr dy)B(y))> (%)

- T?S:cr?g

Ss"”(' cdr dy)B(y)) (%)

))

=12 (' wes arapen @™

Thus (1.29) is proved if f is of the form g, g&C*(S). By virtue
of Lemma 0.2, (1.29) holds for every f& B(S).

3) 0™(D) £ (0)=[0"(x; 1, dy)f (),

YDA f () = [ (¥ (x; drdy)f(y). FEBCS).

32) TXflg>=<{T:fIT:g>.
Indeed, by (0.36)

T ©=limTH(F+eg— /e ~lim [ T(7+cg) ~Tif1/e

N\
=1€iﬂ(T?f+eT?g— T:f)/e=<Tif|ITig>.
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(1. 30) is a usual formula for iteration of convolutions. (1.31)
follows from (1.25) and (1.30).
Now

TOTL, f(x)=T {S;—v«#(dr) T, } (%)
"1 T po
and by (1.29) this equals
\“d00+ 01 i = {w@n Ter.
which proves (1.31).

Lemma 1.3. For m>n—1, m#n, x= (%, %, -+, x,] €S", we
have

(1.33) S;Ssm"’(“ ds dy)fis, )
=(areres 1w dsanfts e,
for every fe B*([0, o) XS).

Proof. For 0<Ci<<1, we have from (1.23),

S;SS‘P(x; ds dy)/l/f(S, y) :gu/l"‘g Ssm«]r(x; ds dy)?(s, ¥)

t
0

={«mares, »If v asanifs yy @

0

= <reres 1| v ¢ dsdy) fs 30> .

Comparing the coefficients of A" we have (1.33).

Remark 1.3. By (1.33) we see that, if x&S", y(x; dsdy)
has no mass on S* for k<<z—1 and k=# with respect to dy.

Lemma 1.4. For every x= [x,, %o, -+, %,) €ES", m>n—1, m*mn,
and fi(s, x), -+, fa(s, x) € B([0, ) X S), we have
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wsey  (§ v dsan L5 e
= (s dsan L5 7ronts, 90}

w(x;:; dsdy®)

M-n+1

(gl s 1osef

0i=1 an—l (q1:92, ---.q,,,_,.ﬂ)(n — 1) !

x Ei T?f,;;(j)(s, DICHR

where > denotes the sum over all permutations n on 4,2, m)),

> the sum over all ordered choices (i, q:, -+, qu_rs) from

(@107 ym-nyy)

1,2,--+,m), 9 the sum over all permutations n on (@1, "y Qmonir)s
and Z‘” the sum over all permutations # on (4y, -, §..) which is

the remainder of (1,2, -, m) excluding (g, -+, qu_rs1)-

Proof. Let f,eB([0,)XS), i=1,2, -, m, then by a com-
binatorial lemma on permanents,®®

S;Ssm1p(x; dsdy) {;jlj—llfw(n(sy J’i)}
=S;Ssm¢p(x; ds dy) {@f\:))(s’ ¥)

- (ET,)(SJH---+(—1)'”"k22‘.ﬁ(s,y)},

Ckyy oy km-1) \g=1

and by (1.33) this is equal to

(S, asay) {(/zf\)} G530 ITYE G, ) ()

0i=1

-5 Br)ennr(Ene o)

(kyyoeeykm—1) \g=1

+}

Now applying again the lemma on permanents to the integrand { },

33) y=[y1, 3z 921, ¥ =[¥1. 32, ", Ym-na].
34) Cf. Ryser [38].
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the above expression becomes,

m—n+1

[ sl e dsan {8 frents 90

0i=1

. H T_?f’/l'(rj)(s) ) (xj)}’
Ji

where 7=1,2,---, m—n-+1, {r;; 1;1;;1} ={m—n+2 m—n+3, -,

m}, and = is a permutation on {1,2, ---,m}. Since

2 2 E(q) E(q)

@1 dmonsy) &

this is equal to

s = sosol v dsay

=1(q1 """ dm—pe1) T

m—n+1

: rgl Sonin (S, yr)'ginfﬂam(S, ) (x).
Now (1.34) is clear since m!=,C,..(n—1)!(m—n+1)!.
Lemma 1.5. For x=[x, %, -, x,] €S,

(1.35) = S S«,b(x,,dsdy)T(")f(y)HT“’)T(’ 27 x)

ri+ -+ rg=r

- 5 ATORE®,

rikeekrg=r+1 j=1

for every fe B*(S).

Proof. Set T5°)T§2"3]/‘\(x,-)=g"”(v); then if 7;=0, g%” is inde-
pendent of v by the semi-group property of 7®. If #,=1, then by
(1.32)

g @ =\ v ds ayy TR,

Hence the left-hand side of (1.35) is equal to

5 ([ Sa-gmonmgmw.

Tid kT y=r

35) p denotes the sum over all (1,72, -, 7s) such that »; >0, i=1,2,

TiHrata., 1=

s, nand ri+retorp=k.
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Writing #,+1 as 7, and noting dg®(v)=0, this equals

5 Sdcewon nerw

ri4cdrg=r+1

= 3 Hg(’”(O)— > HT"”f(x)

riddrg=r+1 j=1 ridrtrg=r+l j=

Lemma 1.6. For x=[x,, X, -, x,] €S" and r=0 we have

(1. 36) TOf(x)= X 11 TS fx,),

ri4ragdeckry=r j=1
for every fe B*(S).

Proof. First we note the following identity which can be easily
verified. If F=F(n,,n., -, n), (#;; a non-negative integer),

(1. 37) 2 F(nly nZ) °tt nk)

Ny ngd Ny =1

= EF(”wm»nw(z), s Bre).

nyknpteebnp= nk'

We shall prove (1.36) by induction on ». If =0, then (1.36) is
just (1.22). Now assume (1.36) is true for »=1,2 ---, 7, then
using (1. 31), the induction hypothesis, and (1.37) successively, we

have

T’(r'l'l).?\(xj) = S’S Y(x; dsdy) Ty-)s?(y)

Sl vasan| = nTRR) @

Fedrm=r j=1

=Si({ wcas as dy)|: 5 Isaref y,,(,)):l

Fibetrm= —m! 7

oo

-5 5 (@[ Lsireis.m].

m=0 ry+-kry=r

Put f.(s,y)=T¢" f( y); then by (1.34) the above equals

©o t n 1
"'Z=0 '1+§"’"='S° E "'C"—l (a1, qu n+1) (n 1)'

) m—n+1
Vemnit i @5 090 {2 T o 90

2(4)

36) y=L[y1, y2., ym].
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'fl;lf T fizg ()27

L

i=1 a1 (10" dmop+1) (7’1_1) 1%
: . @ 1 (@) m—n+1 0
gsm-ml‘l"(xi; dey ) {E Tm=nF DT> 11131 f”(")(s’ i)

(m—n+1)! 7
: I;éI T?fb?r(i) (s, )(x,).%®

By applying (1.37) and the induction hypothesis in { }, the above
line becomes

w© u Ot 1 - 1 @
EOESO ,,,C,,_l (ql.;qm_”u)z (n—l)' zﬁ-}

[ dsdy®)- (52 17,0590 I T2 i s 2
1

1 .
SO ___ = @
0 mcn—l (@11 qm=n+1) (n—l)! =

53]

[ ]

¥ ds dy®) - TEF(y O T g (5,0) (1)

_% ZS = Ssm_”dgqu(x,-;dsdy°)T5’_‘2J/”\(y°)

m=0 i=1J0 ry+-dry=r

I TTZf) (x) (by (2.32))

= S AT fx)  (by (2.30)).

ridc o rg=r+1 j=1

Thus (1.36) is proved for every 7.

Now we are ready to complete the

Proof of Proposition 1.3. By (1.36), when x= [x4, %5, -+, %,]
ES”,

T.f(x) =3 T x)

- 3D =0y, 5, Yuenal.

38) XM is (for a fixed (q1, ***, dm-n.1)) the sum over all (74, ***, 74,1, #*) such that
Yo+ rgt o+ 7 ge+r¥=7 and 2@ is (for fixed (¢1,'*.@m-n.1) and ¥ such that 0<
7*<7) the sum over all (7a,, 7a2, ***7au-n+1) such that ra;+7e,+ -+ +7em-n-1=7%, where
7* and r; are all nonnegative integers.



Branching Markov processes 273

-3 S OT¢fx)

r=0ry4-4ry=r j=1

— (ST fx,)

j=1 r=0

=1I Tt /\(xi)’
j=1

proving the branching property.
In order to complete the proof of (d), we set for a given strong
Markov process X on S with the Property B.III, (C.1) and (C.2),
Tif(x)=E.[f(X,); t<<],
v(x; dr dy)=P.[r€dr, X.=dy].
Then, as is easily seen, T and ¥ satisfy all the conditions (i), (ii)
and (iii) above. Note that (1.21) is a simple consequence of the

Markov property. It is easy to see by Property B. Il and the strong
Markov property that T{® and +* defined above are exactly

Tgk)f(x) =E. [f(Xt); T <t <<tpl,
VP (x; dr dy) =P.[nedr, X., €dy], k=0,1,2, ---.
By (C.1),
T, f{x) = E.[ F(X)]
:éEx [,f/'\(X:) N Tkgt<7k+l ]

—IT® fx)
k=0
and hence T, has the branching property by Proposition 1. 3.

Corollary. Let X and X’ be two branching Markov processes
which satisfy the condition (C.1) and (C.2) and possess the
branching law. If their non-branching parts and branching laws
coincide, ™ then they are equivalent.

39) To be precise, the non-branchi/rlg parts are equivalezl\t and El[=(X¢o-, E);
¢°<t] defines the same measure on S—S for every E€B(S—S), x&S. and t=0,
where (X!, P?,¢") denotes the non-branching part. (In this case we shall say also
that = and =’ are equivalent.)
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Proof. We have Tf(x)=T7f(x) for any f€B(S) and xES.
Since X and X’ have the property B.III, we have from the property
B.III (i),

Tf(x)=T.\f(x) for every f€B(S) and xES.
Now for xS
(1. 38) 0 (x; t,dy)=P.[-<t, X.Edy]
=E.[z(X._,dy) P.[:<?[X:]]
=E.[n(X._, dy); r<t]
=E:[n(Xo.,dy); O <t].
Since the non-branching parts X° and X’ are equivalent and so are
7 and n/, we have 0°0(x; ¢,dy)=0""(x; {,dy). Then by the pro-
perty B.III (ii), ¢(x; ds dy)=+'(x; dsdy). Therefore, the follow-

ing relation

T =\ | wix dsan Ter (), feBES),
implies T"=7T,",#=0,1,2,--- by induction, and hence

T.f(x) = 5 T¥f () = ST (2) = T/ f (=),

n=0
which proves the assertion of the corollary.

A\

By this corollary, if X is a branching Markov process on S
which satisfies the condition (C.1) and (C.2) and possesses the
branching law =z, then X is uniquely determined by the non-branch-
ing part X° and the branching law =.

Definition 1.6. Let X“® be a branching Markov process which
satisfies the conditions (C.1) and (C.2) and possesses the branching
law z. Let X° be the non-branching part of X. Then we shall call
X the (X°, n)-branching Markov process.

40) It should be remembered that we are always assuming that X=(X;, B;) is
strong Markov such that Broo=Bs.
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Under certain general conditions every branching Markov process
is given as an (X°, r)-branching Markov process. In fact, we have
noticed already that (C.1) and (C.2) are satisfied if X is quasi-left
continuous, and that X possesses the branching law if the Lévy sys-
tem of the process X exists. Thus, in particular, we have the fol-
lowing

Theorem 1.4. If a branching Markov process X is a Hunt
process with a reference measure,* then X is given as an (X°, )
-branching Markov process.

The construction of an (X°, z)-branching Markov process for the
given X° and = will be discussed in Chapter III and Chapter IV.

§1.3. M-equation and S-equation
Let X=(X,, P,) be a branching Markov process on § Set, for
fEB(S),
u(t’ x) = T!f(x)J

then u(¢, x) satisfies

139wt m =T @+ | v drdypuit-r,p,
where

(1. 40) T0f (x) = E.[f(X)); 1<<c],

and

(1.41) w(x; dr dy) =P.[X.€dy,c=dr].

Indeed, (1.39) is a direct consequence of the strong Markov property
(cf. Remark 0.1 (ii)) applied to the Markov time r.

Now we assume X is an (X°, r)-branching Markov process, then
by (1.38)

(1.42) Yv(x; dr dz) =SSK(x; dr dy)=(y,dsz), xS,

41) Cf. §1.1, footnote (14).
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where K(x: dr dy) is a kernel on SX ([0, o)X S) given by
(1.43) K(x; drdy)=P[¢°edr, Xp_-=dy].

Therefore, if we set

(1.44) F(x; f)=g7r(x, ds) flz), feB*S),

then (1.39) can be written in the form

(1. 45) u(t, £) = T2 (%) + S;SSK@; dr dy)F(y; u(i—7r, ),
xe S,

Here, we have used the branching property u(t, x)=u€7)Ts(x).
We shall call the equation (1.39) M-equation. It is an equation

on S and it holds for any strong Markov process (but, of course, if
X is a branching Markov process, T{ and ¥ possess certain struc-
ture, namely the Property B.III). The equation (1.45) will be cal-
led S-equation. It is a non-linear equation on S. The detailed study

of these equations will be given in part III, Chapter IV.
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