On the syzygy part of Koszul homology on certain ideals

By
Yasuhiro Shimoda
(Communicated by Prof. Nagata, May 9, 1982, Revised Oct. 14, 1982)

1. Introduction.

Let A be a Noetherian local ring, m the maximal ideal of A and M a finitely generated A-module. a will always denote an ideal in A. Let a_{1}, \cdots, a_{r} be a set of generators for a. Then we denote by $K .(a ; M)$ the Koszul complex associated to a. Furthermore, $Z .(a ; M)$ and $B .(a ; M)$ denote the cycle and boundary of the Koszul complex respectively. For an arbitrary positive integer n we set

$$
\widetilde{H}_{n}(a ; M)=Z_{n}(a ; M) /\left[Z_{n}(a ; M) \cap a K_{n}(a ; M)\right]
$$

and name this module the syzygy part of the homology $H_{n}(a ; M)$.
The purpose of this paper is to study some properties of the syzygy part.
Obviously there exists a canonical homomorphism of A-modules

$$
H_{n}(a ; M) \longrightarrow \tilde{H}_{n}(a ; M) \longrightarrow 0
$$

If the canonical map is injective for some integer n, then we call that a_{1}, \cdots, a_{r} is \widetilde{H}_{n}-faithful (cf. [5]). A sequence of elements a_{1}, \cdots, a_{r} is called a d-sequence for M if

$$
\left(a_{1}, \cdots, a_{i-1}\right) M: a_{i} a_{j}=\left(a_{1}, \cdots, a_{i-1}\right) M: a_{j}
$$

for every $1 \leqq i \leqq j \leqq r$ and an unconditioned d-sequence for M if any permutation of a_{1}, \cdots, a_{r} is a d-sequence for M (C. Huneke has defined a d-sequence for $M=A$ in [2]).
A. Simis and W.V. Vasconcelos [6] has defined $\delta(a)=\left[Z_{1}(a) \cap a A^{r}\right] / B_{1}(a)$ for arbitrary ideal a generated by r elements and shown that $\delta(a)=0$ if and only if the canonical homomorphism $\operatorname{Symm}(a) \rightarrow R(a)$ from the symmetric algebra to the Rees algebra is the isomorphism in degree two part of both algebras.

On the other hand, C. Huneke has discussed in [2] that if a_{1}, \cdots, a_{r} is an unconditioned d-sequence for A, then $\operatorname{Symm}\left(\left(a_{1}, \cdots, a_{r}\right)\right) \cong R\left(\left(a_{1}, \cdots, a_{r}\right)\right)$ (see also [3]). Thus we can immediately see that if a_{1}, \cdots, a_{r} is an unconditioned d-sequence for A, then it is \widetilde{H}_{1}-faithful.

Our first result is
Theorem 1.1. Let a_{1}, \cdots, a_{r} be an unconditioned d-sevuence for M, then
a_{1}, \cdots, a_{r} is \widetilde{H}_{n}-faithful for every positive integer n.
Now, M is called a Buchsbaum A-module if every system of parameters is d-sequence for M. Then we have the another result as follows:

Theorem 1.2. The following conditions are equivalent:
(i) M is a Buchsbaum A-module of dimension d,
(ii) $m \widetilde{H}_{n}\left(a_{1}, \cdots, a_{d} ; M\right)=0$ for every system of parameters a_{1}, \cdots, a_{d} for M and every positive integer n,
(iii) $m \tilde{H}_{1}\left(a_{1}, \cdots, a_{d} ; M\right)=0$ for every system of parameters a_{1}, \cdots, a_{d} for M.

Recently N. Suzuki [7] has proved that M is a Buchsbaum A-module if and only if $m H_{1}\left(a_{1}, \cdots, a_{d} ; M\right)=0$ for any system of parameters a_{1}, \cdots, a_{d} for M.

Theorem 1.2 says the above result is valid for the syzygy part.

2. The proof of Theorem 1.1.

In this section we wish to prove Theorem 1.1. For this purpose we need a definition and a few lemmas.

For a sequence of elements a_{1}, \cdots, a_{r} of A we define $I_{j}=\left(a_{1}, \cdots, a_{j}\right)$ and $U\left(I_{j} M\right)=I_{j} M: a_{j+1}\left(a_{0}=0, a_{r+1}=1\right)$ for $0 \leqq j \leqq r$.

Lemma 2.1. If a_{1}, \cdots, a_{r} is an unconditioned d-sequence for M, then $U\left(I_{i-1} M\right)$ $=I_{i-1} M: a_{j}$ for $1 \leqq i \leqq j \leqq r$.

Proof. By definition

$$
U\left(I_{i-1} M\right) \cong\left(a_{1}, \cdots, a_{i-1}\right) M: a_{i} a_{j}=\left(a_{1}, \cdots, a_{i-1}\right) M: a_{j} .
$$

On the other hand, as $a_{1}, \cdots, a_{i-1}, a_{j}, a_{i}$ is also a d-sequence for M, we have

$$
I_{i-1} M: a_{j} \subset I_{i-1} M: a_{j} a_{i}=U\left(I_{i-1} M\right) .
$$

Lemma 2.2. If a_{1}, \cdots, a_{r} is a d-sequence for M, then $U\left(I_{n} M\right) \cap I_{r} M=I_{n} M$ for $0 \leqq n \leqq r$.

Proof. This assertion is similar as Lemma 4.2 in [1]. Let x be an element of $U\left(I_{n} M\right) \cap I_{T} M$, and express

$$
x=\sum_{i=1}^{r} a_{i} x_{i}
$$

for some $x_{i} \in M$. Then we can see

$$
a_{n+1} x=\sum_{i=1}^{r} a_{n+1} a_{i} x_{i}=\sum_{j=1}^{n} a_{j} y_{j}
$$

for some $y_{j} \in M$. Thus $a_{n+1} a_{r} x_{r} \in I_{n} M$, which implies $x_{r} \in I_{n} M: a_{n+1} a_{r}$. But as a_{1}, \cdots, a_{r} is a d-sequence for $M, x_{r} \in I_{n} M: a_{r}$. Therefore, $x \in I_{r-1} M$. Repeating the above argument, we have the desired result.

Proposition 2.3. Suppose that a_{1}, \cdots, a_{r} is an unconditioned d-sequence for M. Then $Z_{n}\left(a_{1}, \cdots, a_{r-1} ; M\right)=B_{n}\left(a_{1}, \cdots, a_{r-1} ; M\right): a_{r}^{m}$ for positive integers n, m.

Proof. We prove this assertion by induction on r. If $r=1$, there is nothing to prove. Suppose that $r=2$. Obviously we may prove this assertion in case $n=1$. Since $Z_{1}\left(a_{1} ; M\right)=0: a_{1}$ and $B_{1}\left(a_{1} ; M\right)=0$, we have the following equalities from Lemma 2.1.

$$
B_{1}\left(a_{1} ; M\right): a_{2}^{m}=0: a_{2}^{m}=0: a_{2}=0: a_{1}=Z_{1}\left(a_{1} ; M\right) .
$$

Now, suppose that $r>2$ and the assertion holds for $r-1$. Let $K .=$ $K .\left(a_{1}, \cdots, a_{r-1} ; M\right)$ and $L .=K .\left(a_{1}, \cdots, a_{r-2} ; M\right)$. Let d. (resp. e.) denote the differential of K. (resp. L.). Then, we can see that $K_{n}=L_{n} \oplus L_{n-1}$ for every $n \geqq 1$ by the definition of the Koszul complex. Thus the differential d. is induced from e. as follows:

$$
d_{n}(u, v)=\left(e_{n}(u)+a_{r-1} v,-e_{n-1}(v)\right) \quad \text { (cf. [7]). }
$$

With notation as above, let (u, v) be an element of $B_{n}(K): a_{r}^{m}$. Then we have

$$
\begin{equation*}
a_{r}^{m} u=e_{n+1}(t)+a_{r-1} w \tag{2.3.a}
\end{equation*}
$$

$$
\begin{equation*}
a_{r}^{m} v=-e_{n}(w) \tag{2.3.b}
\end{equation*}
$$

where $t \in L_{n+1}, w \in L_{n}$.
Since both $a_{1}, \cdots, a_{r-2}, a_{r}$ and a_{1}, \cdots, a_{r-1} are the unconditioned d-sequences for M of length $r-1$, we get $v \in B_{n-1}(L): a_{r}^{m}=Z_{n-1}(L)=B_{n-1}(L): a_{r-1}$ by induction. This implies $e_{n-1}(v)=0$ and $a_{r-1} v=e_{n}\left(w^{\prime}\right)$, where $w^{\prime} \in L$. Using (2.3.a) and (2.3.b), we have the following equalities;

$$
\begin{aligned}
0 & =a_{r-1} a_{r}^{m} v+a_{r-1} e_{n}(w) \\
& =a_{r}^{m} a_{r-1} v+e_{n}\left(a_{r-1} w\right) \\
& =a_{r}^{m} e_{n}\left(w^{\prime}\right)+e_{n}\left(a_{r}^{m} u\right) \\
& =a_{r}^{m}\left[e_{n}\left(w^{\prime}+u\right)\right] .
\end{aligned}
$$

This leads

$$
a_{r}^{m} w^{\prime}+a_{r}^{m} u \in Z_{n}(L)=B_{n}(L): a_{r}
$$

by induction. Hence

$$
w^{\prime}+u \in B_{n}(L): a_{r}^{m+1}=Z_{n}(L) .
$$

This implies

$$
0=e_{n}\left(w^{\prime}+u\right)=e_{n}(u)+a_{r-1} v .
$$

Thus $(u, v) \in Z_{n}(K)$.
Conversely, let (u, v) be an element of $Z_{n}(K)$. The equation

$$
\begin{equation*}
0=d_{n}(u, v)=\left(e_{n}(u)+a_{r-1} v,-e_{n-1}(v)\right) . \tag{2.3.c}
\end{equation*}
$$

Then $v \in Z_{n-1}(L)=B_{n-1}(L): a_{r}^{m}$, since $a_{1}, \cdots, a_{r-2}, a_{r}$ is a d-sequence of length $r-1$. Thus there exists $w \in L_{n}$ such that
$a_{r}^{m} v=e_{n}(w)$.
On the other hand, $e_{n}(u)+a_{r-1} v=0$ shows that $e_{n}(u)=0$ in $K .\left(a_{1}, \cdots, a_{r-2}\right.$; $\left.M / a_{r-1} M\right)$.
As $a_{1}, \cdots, a_{r-2}, a_{r}$ is an unconditioned d-sequence for $M / a_{r-1} M$, by induction we get

$$
u \in B_{n}\left(a_{1}, \cdots, a_{r-2} ; M / a_{r-1} M\right): a_{r}^{m} .
$$

Hence there exist $x \in L_{n}$ and $t \in L_{n+1}$ such that

$$
\begin{equation*}
a_{r}^{m} u=e_{n+1}(t)+a_{r-1} x . \tag{2.3.e}
\end{equation*}
$$

From (2.3.d) and (2.3.e), we have

$$
0=e_{n}\left(a_{r}^{m} u\right)+a_{r}^{m} a_{r-1} v=e_{n}\left(a_{r-1} x\right)+e_{n}\left(a_{r-1} w^{\prime}\right) .
$$

Thus we get

$$
a_{r-1} x+a_{r-1} w \in Z_{n}(L) .
$$

Therefore, as $a_{1}, \cdots, a_{r-2}, a_{r-1}$ is an unconditioned d-sequence for M,

$$
a_{r-1} x+a_{r-1} w \in B_{n}(L): a_{r-1}^{m} .
$$

This implies that

$$
x+w \in B_{n}(L): a_{r-1}^{m+1}=B_{n}(L): a_{r-1} .
$$

Hence, there exists $t^{\prime} \in L_{n+1}$ such that

$$
\begin{equation*}
a_{r-1} x+a_{r-1} w=e_{n+1}\left(t^{\prime}\right) . \tag{2.3.f}
\end{equation*}
$$

Combining the above equations (2.3.d), (2.3.e) and (2.3.f), we get

$$
\begin{aligned}
& a_{r}^{m} u=e_{n+1}(t)+a_{r-1} x=e_{n+1}\left(t+t^{\prime}\right)+a_{r-1}(-w) \\
& a_{r}^{m} v=e_{n}(w)=-e_{n}(-w) .
\end{aligned}
$$

Therefore, $(u, v) \in B_{n}(K): a_{r}^{m}$.
q.e.d.

Corollary 2.4. Suppose that a_{1}, \cdots, a_{r} is an unconditioned d-sequence for M and put $K .=K .\left(a_{1}, \cdots, a_{r-1} ; M\right)$. Then

$$
I_{r-1} K_{n} \cap Z_{n}(K)=I_{r} K_{n} \cap Z_{n}(K)
$$

for an arbitrary positive integer n.
Proof. Let u be an element of $I_{r} K_{n} \cap Z_{n}(K)$, then $u=y+a_{r} x \in B_{n}(K): a_{r}$ by Proposition 2.3, where $y \in I_{r-1} K_{n}$ and $x \in K_{n}$. This implies that

$$
a_{r}^{2} x+a_{r} y \in B_{n}(K) \subset I_{r-1} K_{n} .
$$

Hence,

$$
\begin{aligned}
x \in I_{r-1} K_{n_{K_{n}}}: a_{r}^{2} & =\bigwedge^{n} A^{r} \otimes\left(I_{r-1} M: a_{r}^{2}\right) \\
& =\bigwedge A^{r} \otimes\left(I_{r-1} M: a_{r}\right) \\
& =I_{r-1} K_{n}: a_{K_{n}},
\end{aligned}
$$

because a_{1}, \cdots, a_{r} is an unconditioned d-sequence for M. Thus, $a_{r} x \in I_{r-1} K_{n}$. Therefore, $u=y+a_{r} x \in I_{r-1} K_{n}$, as desired.

Proof of Theorem 1.1. Let $K^{\prime}=K .\left(a_{1}, \cdots, a_{r} ; M\right)$ and $K .=K .\left(a_{1}, \cdots, a_{r-1} ; M\right)$. First, we show that

$$
Z_{n}\left(K^{\prime}\right) \cap I_{r} K_{n}^{\prime}=B_{n}\left(K^{\prime}\right)
$$

for any positive integer n. We prove this by induction on n. We may assume that $n \leqq r$.

If $r=1$, then $B_{1}\left(K^{\prime}\right)=0$ and $Z_{1}\left(K^{\prime}\right)=0: a_{1}$. Let x be an element of $Z_{1}\left(K^{\prime}\right) \cap\left(a_{1}\right) K_{1}^{\prime}$, then there exists $y \in K_{1}^{\prime}=M$ such that $x=a_{1} y$. Thus we have

$$
y \in 0: a_{1}^{2}=0: a_{1} .
$$

Hence $x \in B_{1}\left(K^{\prime}\right)$.
Suppose that $r \geqq 2$ and that the assertion holds for $r-1$. As $K_{n}^{\prime}=K_{n} \oplus K_{n-1}$, d^{\prime}, the differential of K^{\prime}, is induced from the differential d. Now, let (u, v) be an element of $Z_{n}\left(K^{\prime}\right) \cap I_{r} K_{n}^{\prime}$, where $u \in I_{r} K_{n}$ and $v \in I_{r} K_{n-1}$. Then
(a) $0=d_{n}^{\prime}(u, v)=\left(d_{n}(u)+a_{r} v,-d_{n-1}(v)\right)$.

Thus, by Corollary 2.4

$$
v \in Z_{n-1}(K) \cap I_{r} K_{n-1}=Z_{n-1}(K) \cap I_{r-1} K_{n-1}=B_{n-1}(K) .
$$

Hence there exists $t \in K_{n}$ such that $v=d_{n}(t)$. On the other hand, from (a), we have

$$
0=d_{n}(u)+a_{r} v=d_{n}(u)+a_{r} d_{n}(t)=d_{n}\left(u+a_{r} t\right) .
$$

Thus, by Corollary 2.4

$$
u+a_{r} t \in Z_{n}(K) \cap I_{r} K_{n}=Z_{n}(K) \cap I_{r-1} K_{n}=B_{n}(K) .
$$

Hence, there exists $w \in K_{n+1}$ such that

$$
u+a_{r} t=d_{n+1}(w), \quad \text { i. e., } \quad u=d_{n+1}(w)+a(-t) .
$$

Therefore, $(u, v)=d_{n+1}^{\prime}(w,-t) \in B_{n}\left(K^{\prime}\right)$. This completes the proof of Theorem 1.1.
Now, we show some corollaries which are immediate from Theorem 1.1.
Corollary 2.5. Let A be a Noetherian local ring and m the maximal ideal of A. Suppose that a_{1}, \cdots, a_{r} is an unconditioned d-sequence for A. Then a_{1}, \cdots, a_{r} is \tilde{H}_{n}-faithful for an arbitrary positive integer n.

Corollary 2.6. Let M be a Buchsbaum A-module and a_{1}, \cdots, a_{r} a subsystem of parameter for M. Then a_{1}, \cdots, a_{r} is \widetilde{H}_{n}-faithful for an arbitrary positive integer n.

Proof. This follows from the fact that a_{1}, \cdots, a_{r} is an unconditioned d-sequence for M.

Now, assume that $l\left(H_{m}^{i}(M)\right)<\infty$ for every $i \neq d(d=\operatorname{dim} M)$. Then by [4], there exists an m-primary ideal q such that any system of parameters a_{1}, \cdots, a_{d} for M contained in q forms an unconditioned d-sequence for M. Thus

Corollary 2.7. If a_{1}, \cdots, a_{r} is contained in q and a subsystem of parameters for M, then it is \tilde{H}_{n}-faithful for an arbitrary positive integer n.

3. The proof of Theorem 1.2 .

In this section we will prove Theorem 1.2. In proving this theorem, we need the following key proposition.

Now let a_{1}, \cdots, a_{r} be an arbitrary sequence of elements of A. We put $I=\left(a_{1}, \cdots, a_{r}\right)$ and let J be any ideal such that $I \cong J \cong m$. We call that a_{1}, \cdots, a_{r} is a strong d-sequence for M if $a_{1}{ }^{k_{1}}, \cdots, a_{r}{ }^{k_{r}}$ is a d-sequence for M for positive integers k 's. Then we have

Proposition 3.1. If $J \widetilde{H}_{1}\left(a_{1}{ }^{k_{1}}, \cdots, a_{r}{ }^{k_{7}} ; M\right)=0$ for every positive integer k_{j} $(1 \leqq j \leqq r)$, then a_{1}, \cdots, a_{r} is a strong d-sequence for M.

Proof. First we show that

$$
\left(a_{1}, \cdots, a_{i}\right) M: a_{k}^{2}=\left(a_{1}, \cdots, a_{i}\right) M: a_{k}
$$

for every $i \geqq 0$ and $k \geqq i+1$.
Indeed, let x be an element of $\left(a_{1}, \cdots, a_{i}\right) M: a_{k}^{2}$. Then there exists the following equation

$$
a_{k}^{2} x=\sum_{j=1}^{i} a_{j} x_{j}
$$

where $x_{j} \in M$. Let $[\cdot, \cdots, \cdot]$ denote an element of a free module in a Koszul complex. Now, let n be an arbitrary positive integer and fix this number. Then, as

$$
\begin{aligned}
& {\left[x_{1}, \cdots, x_{i}, 0, \cdots, 0,-x, 0, \cdots, 0\right] } \\
\in & Z_{1}\left(a_{1}, \cdots, a_{i}, a_{i+1}^{n}, \cdots, a_{k-1}^{n}, a_{k}^{2}, a_{k+1}^{n}, \cdots, a_{r}^{n} ; M\right)
\end{aligned}
$$

and as $a_{k} \in J$, we have

$$
\begin{aligned}
& \quad a_{k}\left[x_{1}, \cdots, x_{i}, 0, \cdots, 0,-x, 0, \cdots, 0\right] \\
& \in\left(a_{1}, \cdots, a_{i}, a_{i+1}^{n}, \cdots, a_{k-1}^{n}, a_{k}^{2}, a_{k+1}^{n}, \cdots, a_{r}^{n}\right) \\
& \quad \\
& K_{1}\left(a_{1}, \cdots, a_{i}, a_{i+1}^{n}, \cdots, a_{k-1}^{n}, a_{k}^{2}, a_{k+1}^{n}, \cdots, a_{r}^{n} ; M\right) .
\end{aligned}
$$

Thus we conclude that

$$
a_{k} x \in\left(a_{1}, \cdots, a_{i}, a_{i+1}^{n}, \cdots, a_{k-1}^{n}, a_{k}^{2}, a_{k+1}^{n}, \cdots, a_{r}^{n}\right) M .
$$

Claim.

$$
a_{k} x \in\left(a_{1}, \cdots, a_{i}, a_{i+1}^{n}, \cdots, a_{k-1}^{n}, a_{k}^{p}, a_{k+1}^{n}, \cdots, a_{r}^{n}\right) M
$$

for every $p \geqq 2$.
We prove this by induction on p. If $p=2$, there is nothing to prove. Suppose that $p>2$ and that the assertion holds for $p-1$. Hence we may assume that

$$
a_{k} x \in\left(a_{1}, \cdots, a_{i}, a_{i+1}^{n}, \cdots, a_{k}^{p-1}, \cdots, a_{r}^{n}\right) M .
$$

Then $a_{k} x$ may be written as

$$
a_{k} x=\sum_{j=1}^{i} a_{j} t_{j}+\sum_{j \neq k} a_{j}^{n} t_{j}+a_{k}^{p-1} t
$$

where $t_{j}, t \in M$. On the other hand, as $a_{k}^{2} x \in\left(a_{1}, \cdots, a_{i}\right) M$, we have

$$
\begin{aligned}
a_{k}^{p} t & =a_{k}^{2} x-\sum_{j=1}^{i} a_{k} a_{j} t_{j}-\sum_{j \neq k} a_{k} a_{j}^{n} t_{j} \\
& \in\left(a_{1}, \cdots, a_{i}, a_{i+1}^{n}, \cdots, a_{k-1}^{n}, a_{k+1}^{n}, \cdots, a_{r}^{n}\right) M .
\end{aligned}
$$

Thus we get $a_{k}^{p} t=\sum_{j=1}^{i} a_{j} s_{j}+\sum_{j \neq k} a_{j}^{n} s_{j}$, where $s_{j} \in M$. Since

$$
\begin{aligned}
& {\left[s_{1}, \cdots, s_{k-1}, t, s_{k+1}, \cdots, s_{r}\right] } \\
\in & Z_{1}\left(a_{1}, \cdots, a_{i}, a_{i+1}^{n}, \cdots, a_{k-1}^{n}, a_{k}^{p}, a_{k+1}^{n}, \cdots, a_{r}^{n} ; M\right) .
\end{aligned}
$$

we know that

$$
a_{k}^{p-1} t \in\left(a_{1}, \cdots, a_{i+1}^{n}, \cdots, a_{k-1}^{n}, a_{k}^{p}, a_{k+1}^{n}, \cdots, a_{r}^{n}\right) M
$$

which completes the proof of the claim.
Let us continue the proof of Proposition 3.1. By the above claim we know that

$$
\begin{aligned}
a_{k} x & \in \bigcap_{n, p}\left(a_{1}, \cdots, a_{i}, a_{i+1}^{n}, \cdots, a_{k-1}^{n}, a_{k}^{p}, a_{k+1}^{n}, \cdots, a_{r}^{n}\right) M \\
& =\left(a_{1}, \cdots, a_{i}\right) M
\end{aligned}
$$

which shows $x \in\left(a_{i}, \cdots, a_{i}\right) M: a_{k}$.
To establish the proof of Proposition 3.1, we only need to show that

$$
\left(a_{1}, \cdots, a_{i}\right) M: a_{j} a_{k}=\left(a_{1}, \cdots, a_{i}\right) M: a_{j}
$$

for every $0 \leqq i<k \leqq j \leqq r$. Now let x be an element of (a_{1}, \cdots, a_{i}) M: $a_{j} a_{k}$ and n be an arbitrary positive integer. Then we have
(b)

$$
a_{j} a_{k} x+\sum_{p=1}^{i} a_{p} x_{p}=0
$$

where $x_{p} \in M$. Multiplying a_{R}^{n-1} to the above equation (b),

$$
a_{j} a_{k}^{n} x+\sum_{p=1}^{i} a_{k}^{n-1} a_{p} x_{p}=0
$$

This shows that

$$
\left[x_{1}, \cdots, x_{i}, 0, \cdots, a_{j} x, 0, \cdots, 0\right] \in Z_{1}\left(a_{1}, \cdots, a_{i}, a_{i+1}^{n}, \cdots, a_{r}^{n} ; M\right) .
$$

As $a_{j} \in J \subseteq I$, we have $a_{j}^{2} x \in\left(a_{1}, \cdots, a_{i}, a_{i+1}^{n}, \cdots, a_{r}^{n}\right) M$. Therefore,

$$
a_{j}^{2} x \in\left(a_{1}, \cdots, a_{i}\right) M+\bigcap_{n}\left(a_{i+1}^{n}, \cdots, a_{r}^{n}\right) M=\left(a_{1}, \cdots, a_{i}\right) M
$$

by Kull's intersection theorem. This implies that $x \in\left(a_{1}, \cdots, a_{i}\right) M: a_{j}^{2}$. But as $\left(a_{1}, \cdots, a_{i}\right) M: a_{j}^{2}=\left(a_{1}, \cdots, a_{i}\right) M: a_{j}$ by virtue of the first assertion, we have $x \in\left(a_{1}, \cdots, a_{i}\right) M: a_{j}$. Thus we have proved that a_{1}, \cdots, a_{r} is a d-sequence for M.

Finally, if we put $b_{i}=a_{i}{ }^{k i}$, then it is easy to see that b_{1}, \cdots, b_{r} is also a d-sequence for M by the same routine in the previous proof.

Proof of Theorem 1.2. If M is a Buchsbaum A-module, then

$$
m H_{1}\left(a_{1}, \cdots, a_{d} ; M\right)=0
$$

for every system of parameters a_{1}, \cdots, a_{d} for M by the main Theorem in [7]. On the other hand, by Corollary 2.6 we have

$$
H_{1}\left(a_{1}, \cdots, a_{d} ; M\right)=\widetilde{H}_{1}\left(a_{1}, \cdots, a_{d} ; M\right) .
$$

Hence (i) implies (ii). (ii) implies (iii) is trivial. (iii) implies (i) follows from Proposition 3.1 in case $J=m$.

Jôhoku Gakuen High School
2-28-1 Tôshin-cho
Itabashi-ku, Tokyo 174

References

[1] S. Goto and Y. Shimoda, On Rees algebras over Buchsbaum rings, J. Math. Kyoto Univ., 20 (1980), 691-708.
[2] C. Huneke, The theory of d-sequences and powers of ideals, to appear in Adv. in Math.
[3] C. Huneke, On the symmetric and Rees algebras of an ideal generated by a d-sequence, J. of Alg., 60 (1980), 268-275.
[4] V.P. Schenzel, N.V. Trung and N.T. Cuong, Verallgemeinerte Cohen-MacaulayModuln, Math. Nachr., 85 (1978), 57-73.
[5] A. Simis, Koszul homology and its syzygy-theoretic part, J. Alg., 55 (1978), 28-42.
[6] A. Simis and W.V. Vasconcelos, The syzygies of the conormal module, Amer. J. Math., 103 (1981), 203-224.
[7] N. Suzuki, On the Koszul complex generated by a system of parameters for a Buchsbaum module, Science Reports of Shizuoka College of Phermachy, Department of General Education, 8 (1979), 27-35.

