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Generalized divisors on Gorenstein curves
and a theorem of Noether

By

Robin HARTSHORNE

§0. Introduction.

Recently while considering the possible special linear systems which can exist
on a nonsingular plane curve, we rediscovered an old result of Max N oether. The
problem is to find the largest possible dimension of a linear system of degree d
on a plane curve of degree k .  The answer is that the linear systems of maximal
dimension are the ones which "exist naturally" on the curve because of its plane
embedding, namely the linear systems cut out by all plane curves of some other
fixed degree, plus a few extra points or minus a few assigned base points. (See
(2.1) for the exact statement.)

A natural way to approach the problem is by induction on k .  If the divisor
D on the curve C is nonspecial, then 1P(Oc (D)) can be found by the Riemann-Roch
theorem. If on the other hand D is special, then it is contained in a canonical
divisor. The canonical divisors are cut out on C by curves of degree k - 3  in the
plane, so D is contained in a curve of degree k -3 ,  and one can try to use induction.
The trouble is that the new curve of lower degree containing D may not be non-
singular. For this reason we have developed a theory of generalized divisors on
Gorenstein curves, which appears in § 1 .  We believe this theory may be useful
in other contexts, and by way of example have given a new proof of a theorem of
Fujita (1.6) telling when the canonical divisor on a Gorenstein curve is very ample.
This result should simplify the beginning theory of divisors on K3 surfaces as given
in the paper os Saint-Donat [19].

Since any plane curve is Gorenstein, we can use the theory of § 1 , combined
with Bertini's theorem, to formulate and prove Noether's theorem for generalized
divisors on irreducible plane curves. This is done in  § 2 .  It turns out that Noe-
ther's original proof followed the same method, but we must consider that it is
incomplete, because he assumes without justification that a curve of lower degree
containing the divisor D  can be chosen to be nonsingular. Meanwhile another
proof of Noether's theorem, for nonsingular plane curves, has been given by Cili-
berto [4] using a different method.

An important application of Noether's theorem, and indeed the reason for
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which he considered this problem in the first place, is to bound the genus of a space
curve of degree d  contained in an irreducible surface of degree k. Since these
ideas are amply documented elsewhere, we have contented ourselves with a few
remarks (2.2.2) and some references (see also [13].).

I would like to thank the Research Institute for Mathematical Sciences of
Kyoto University for their hospitality while this work was being done, Otto Forster
for helpful discussions about Gorenstein curves, and Arthur Ogus for suggesting
the application to Fujita's theorem.

§ 1 .  Generalized divisors on Gorenstein curves.

A  Noetherian local ring A  of dimension n with maximal ideal m and residue
field k =A lm  is said to be Gorenstein if Ext'A  (k, A)=0 for i * n  and Ext7i  (k, A)=-_qc
[7], p. 63.

Let C be an integral, projective, Gorenstein curve, i.e. an integral projective
curve over an algebraically closed ground field k, all of whose local rings are Goren-
stein local rings. For example, any curve contained in  a  nonsingular surface
or any locally complete intersection curve in a projective space is Gorenstein. Let
0, be the structure sheaf of C, and let ,IC be the constant sheaf of the function field
of C .  A fractional ideal of C is a nonzero subsheaf of ,1C which is a coherent 0,-
module. We define the set GDiv(C) of generalized divisors of C to be the set of
fractional ideals of C .  In particular, this contains as a subset the set of nonzero
coherent sheaves of ideals in 0 , .  These correspond in a 1- 1  manner to the closed
subschemes Z  of dimension 0 of C, which we call the effective generalized divisors
of C.

The set GDiv(C) contains as a subset the group CDiv(C) of locally principal
fractional ideals, which are exactly the Cartier divisors of C .  If Z is a generalized
divisor and D is a Cartier divisor, we define the sum Z+D  by multiplying the cor-
responding fractional ideals. In this way the group CDiv(C) acts on the set GDiv
(C ) .  Since any fractional ideal g  can be written locally as f ' .

 for f  Oc and
S z  0 , ,  we see that any generalized divisor can then be written in the form Z +
( —D) where Z  is an effective generalized divisor and D  is an effective Cartier di-
v isor. For an effective generalized divisor Z we define d=degZ, its degree, to be
the length of the structure sheaf 0 ,  of the corresponding closed subscheme. By
linearity this extends to give a degree mapping GDiv(C)—> Z , which restricted to
CDiv(C) is the usual degree homomorphism for Cartier divisors.

Note that we do not attempt to define addition of two generalized divisors.
An examination of the possible closed subschemes of lengths 1, 2, and 3  of an
ordinary double point on a curve should convince the reader that there is no group
structure on GDiv(C) compatible with the degree function.

For any generalized divisor Z, corresponding to a fractional ideal SCJC, we
define its inverse —Z to be the inverse fractional ideal S '  which is locally I f
,1C P S  c 0 , ) -  .  Then —Z is another generalized divisor. To establish good pro-
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perties for this operation, we need a lemma.

Lemma 1 . 1 .  L et C  be an  integral Gorenstein curve. L e t  g  be a torsion-free
coherent sheaf on C .  Then

a) g . 4 ( g ,  0 c ) = 0  f or all i> 0
b) g  is reflexive.

Pro o f . The question is local, so let us pass to the local ring A  of a closed
point of C, and let the stalk of g  be the finitely generated torsion-free A-module M.
If M  has rank r, then we can embed M  in K r, where K  is the quotient field of A.
Choosing a  suitable common denominator for the generators of M , we can find
an inclusion M  A r .  Let us write the quotient as R,

M  --> Ar --> R —>

so that R  is an A-module of finite length. Now applying the functor Hom,(-, A)
we obtain an exact sequence

0 —> —> E xt(R , A) 0

and isomorphisms

Ext i
A (M, A) —> Ext À

+ 1 (R, A)

for i > 1 .  Since A  is a  1-dimensional Gorenstein ring, E x t(R , A )= 0  for j * 1 ,
and Ext 1

A (• , A ) is a  dualizing functor for finite length A-modules [7, pp. 63, 64].
In particular Ext i

A (M, A )=0  for i > 0 ,  and R' —Ext 1
A (R , A ) is another finite-

length A-module with the same length as R .  Applying the functor Hom(., A ) once
more we obtain

13 —> M s ' s '  —> Ar  E x t 1(K , A) —> Ext i (le  , A )  =  O.

The last term is 0 by part a) applied to M ". On the other hand R "=E xt l (R', A)
is isomorphic to R .  Now comparing with the original sequence, from which there
are natural maps to this one, we find M - g lir s ',  so M  is reflexive.

Proposition 1 .2 .  O n an integral Gorenstein curve C the m inus operation Z
— Z f o r generalized divisors obeys the usual law s o f  arithm etic: — (— Z )=Z ;

— (Z ±D)=(— Z )+(— D) w here D  is  a C artie r div isor; and  deg( — Z)= —degZ.

P ro o f  This follows immediately from the lemma, which shows that for any
fractional ideal 3 , (c5 - 1 ) - 1 =3 .

From here we can develop the usual theory of linear systems and associated
sheaves, provided we remember never to add two generalized divisors.

The set GDiv(C) contains as a subset the group PDiv(C) of principal divisors
(f ) for nonzero elements f  G K (C)*. We say Z  and Z ' G D iv (C ) are linearly equiva-
lent if Z ' =Z +(f )  for some f  K * .  The set of effective divisors linearly equivalent
to Z  is denoted I Z  I and is called the complete linear system of Z.
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To conform with the usual convention, we define the sheaf _E(Z) associated to
the generalized divisor Z to be the inverse o f  t h e  fractional ideal <5 correspond-
ing to  Z .  Thus fo r  a  closed subscheme Zc C, £ ( — Z )= < 5 ,. The generalized
divisors Z  and Z ' are linearly equivalent if and only if _C(Z)04...C(Z) as Cc -modules.
Thus the set of generalized divisors modulo linear equivalence is in  1 -1  correspon-
dence with the  set of isomorphism classes of torsion-free rank  1  coherent 0, -

modules.
If s E H

°
(_C(Z)) is a non-zero section of _A Z ), it defines an inclusion 0, — ...f(Z)

and by dualizing an inclusion _C( — Z) —  0 ,  Thus £ (— Z ) is identified with the
ideal sheaf (9 ,, of some effective generalized divisor Z ', which we denote also Z(s).
The mapping s Z ( s )  induces a bijection from the projective space of lines in
H°(_C(Z)) to the complete linear system I Z I .

Finally, we have the Riemann-Roch theorem and Serre duality.

Theorem 1.3 (Riemann - R o c h ) . For any generalized divisor Z  on the integral
Gorenstein curve C,

IPCS(Z))—h1(..f(Z)) = d+l—p a

where d=degZ and pa is the arithmetic genus of C.

Pro o f . Write — Z = Z ' — D  where Z ' is  an effective generalized divisor and
D is a Cartier divisor. Then _C(Z)---,=_L(D — Z')=<5,,(D). Now use the cohomology
sequence associated to the exact sequence

0 --> ,,(D) --> _C(D) --> 0,, --> 0

and the usual Riemann-Roch theorem for _E(D).

For duality we must introduce the canonical divisor o n  C .  Recall that any
projective variety X has a  dualizing sheaf  co, in  the  sense of [11 , III, §7 ]. F o r
an integral curve C, this dualizing sheaf is torsion-free of rank 1 o n  C .  Further-
more, C is Gorenstein if and only if coc  is invertible [10, V , § 9 ] . So in  our case
of an integral Gorenstein curve C, coc is invertible, and the associated Cartier di-
visor K,, defined up to linear equivalence, is the canonical divisor on C.

Theorem 1.4 (Serre duality). For any generalized divisor Z  on C, Hi(_C(Z))
is dual to 111.- i(X(K,—Z)) f or i=0, 1.

P ro o f  First observe that the statement makes sense, because K, is a Cartier
divisor, so we can consider th e  generalized divisor K, — Z .  By symmetry it is
enough to consider th e  c a se  i= 1 . Then by the duality theorem [11, III, 7.6], or
simply by the  definition of a dualizing sheaf [ibid, p. 241], 111(_C(Z)) is dual to
H om (4Z ), co,)=H °(-1/0=mGC(Z), coc )) =-H°(_C(K,—Z)).

Now we will see how some of the standard results about nonsingular curves
can be adapted to the case of an integral projective Gorenstein curve. A point
P E C is a base point of a linear system b on C if P  SuppZ for every divisor Z E b.
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If a linear system I Z I has no base points, then its general member does not contain
any singular point of C in its support. Thus Z  is a Cartier divisor, and _C(Z) is
generated by global sections. Conversely, if Z  is a Cartier divisor and _A Z) is
generated by global sections, then I Z I has no base points [11, II, 7.8]. However
in general _E(Z) can be generated by global sections even though I Z I has base
points. I f  Z I has base points, we can define the base locus B of I Z I as the scheme-
theoretic intersection of all effective Z' E I Z I .  Then B is an effective generalized
divisor. However we cannot in general consider I Z—B1, and so we cannot define
an associated base-point-free linear system (see example (1.6.1) below).

Proposition 1 .5 .  L et D  be a Cartier divisor on the integral projective Goren-
stein curve C . T hen:

(a) The complete linear system ID1 has no base points if and only if for every
point P E  C,

dim I D — P  =  dim I D I-1 ;

(b) D is very ample if and only if for every subscheme Zg_C of length 2,

dim D —Z I =  dim I D I —2 .

P ro o f  The proof is the same as the proof of [11, 1V, 3.11, using the criterion
that I D I is very ample if and only if it "separates points and tangent vectors".
The only difference is that instead of considering divisors of the form Z = P + Q
and Z=2P for a smooth point P, we must consider all possible schemes of length
2 supported at a point P.

We say that an integral Gorenstein curve C of arithmetic genus pa > 2  is hy-
perelliptic if there exists a finite morphism f: C--9.P 1 of degree 2 .  Considering the
associated linear system on C, we see that C is hyperelliptic if and only if there is
a linear system g• of Cartier divisors, of dimension 1 and degree 2 , without base
points.

Theorem 1.6 (Fujita [6]). L e t C  be an  integral projective Gorenstein curve
of arithmetic genus pa.

(a) If pa > l ,  the canonical linear system I K I has no base points.
(b) If  pa >2 , then K is very ample if and only  if  C is not hyperelliptic.

P ro o f  Using (1.5) the proofs are almost the same as for nonsingular curves
[11, IV 5.1 and 5.2]. For (a), to show I K I has no base points we must show for
each P E C  that dim I K—P I =dim I K I — 1 . By Riemann-Roch and duality, this
is equivalent to dim I P I = 0 .  If on the other hand for some P, dim I P I = 1 , then
necessarily I P I has no base points. Hence P  is a  smooth point of C , and the
linear system I P I  determines a  morphism of degree 1 from C  to P ' .  It follows
that w h i c h  h a s  pa =0, a contradiction.

To prove (b), suppose that I K I is not very am ple. Then for some subscheme
Z  C  of length 2 , dim I K—Z I =dim K j — 1. Using Riemann-Roch and duality
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we find dim I Z  I = 1 .  If I Z  I has no base points, then it defines a morphism of
degree 2 to P', so C is hyperelliptic.

Now suppose I Z  I has a base point P .  It cannot have two distinct base points
since it has degree 2  and positive dimension. For any smooth point Q GC, with
QIZP we consider the exact sequence

0 ---> (Z— Q) --> _E(Z) —> k(Q) —> 0

and its cohomology sequence

0 Ir(i(Z— Q)) — > H
°
(_C(Z)) —> k.

Since h°
(..E(Z)) = 2 , we see that h°

(_C(Z — Q))> 1. Hence Z — Q is effective, so there
is a  divisor in  I Z  I whose support contains Q . Since P  is a base point, we see
that for any smooth point QG C, the divisor P-F Qe IZ

Now consider the canonical morphism p : C—>P', which is well-defined by
(a) since p a > 2 .  By construction, for the given point P, and for any smooth point
Q,

dim I K —P I = dim I K — 1 .

This means that p(P)=p(Q), so p(C) is a point. But p(C) spans P P .'  by construc-
tion, so p a = l ,  a contradiction. This completes the proof.

Example 1 .6 .1 .  It can happen that an integral Gorenstein curve C with p 0 =1
has a  linear system I Z  I of dimension 1 and degree 2  with a base point. Let C
be a nodal plane cubic curve, with node P .  Let b be the linear system of Cartier
divisors C fl L  where L  is a  line passing through P .  This has dimension 1 and
degree 3. It is Cartier and has P for a base point, so we can consider Z =C  n L
— P . Then I Z  I is such an example. I Z  I contains all divisors of the form P-FQ
where P is the node and Q is any other po int. In particular, for Q, Q' two smooth
points of C , we have PH -Q --P-FQ '. This does not imply b e c a u s e  i t  i s
not allowed to subtract P from the generalized divisor PH-Q.

Remark 1 .6 .2 . Our proof of (1.6) is completely different from Fujita's, since
he deduces (b) from the deeper theorem of Noether which states that if C is not
hyperelfiptic, then its canonical embedding ,o(C) is projectively Cohen-Macaulay
[6], p. 3 9 .  Another proof of (1.6), with a  slight restrictive hypothesis, is given
by Catanese [3], p. 91, who studies more generally canonical and pluricanonical
morphisms of reducible Gorenstein curves.

Example 1 .6 .3 . Any irreducible plane curve C  of degree 4  si a  non-hyper-
elliptic integral Gorenstein curve of arithmetic genus pa = 3 .  Indeed, the canonical
divisor is Oc (1) which is very am ple. Hence C is not hyperelliptic.

Remark 1 .6 .4 . One can extend some of this theory of generalized divisors to
varieties of higher dimension. Let X  be an integral scheme of dimension n , and
let GDiv(X) be the set of reflexive fractional ideals. Then the group CDiv(X)
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of Cartier divisors acts on this set, and taking the inverse of a fractional ideal gives
an operation Z-+— Z having the properties of (1.2). So one can develop the theo-
ry  of linear equivalence, sheaves _C(Z), and linear systems a s  above.

The problem is, to what do these generalized divisors correspond geometrical-
ly ?  Put another way, under what conditions is the ideal sheaf S z  o f  a  closed sub-
scheme Z  of X reflexive? If one examines carefully the proof of [14, 1.3] one sees
that instead of X normal, it would be sufficient to assume X satisfies Serre's con-
dition S2 , and is Gorenstein in codim ension 1. Indeed, one only needs to know
that for dimO x = 1 , any torsion-free sheaf is reflexive, which is our Lemma (1.1)
above. So for example if  X is a Gorenstein variety, the result [loc. cit. 1.3] and
its corollary [loc. cit. 1.5] will hold, and we find that S z  is reflexive if and only if
Z  is  a  closed subscheme of X  all of whose associated primes have codimension I.

This gives a  reasonable notion of generalized divisors on  an  integral Goren-
stein scheme of higher dimension.

Remark 1 .6 .5 . Various authors [2], [5], [16], [18] have considered compacti-
fications of the generalized Jacobian of an  integral curve by considering torsion-
free rank 1 sheaves in addition to invertible sheaves. Thus th e  space o f linear
equivalence classes of generalized divisors is represented by a projective scheme
P, containing as an open subset the generalized Jacobian P, which is a group scheme
parametrizing linear equivalence  classes of Cartier divisors. P  is irreducible (and
hence P is dense in i f  a n d  only if the curve has planar singularities [1], [16].

§2. Noether's theorem.

Theorem 2.1. (N oe ther) L et C be an irreducible plane curve of  degree k, and
let Z  be a closed subscheme of finite length d>0 of  C . L et £ (Z )  be the associated

1 torsion-free sheaf  (r z ,c •  L e t  P a= ( k - 1 )  ( k -2 )  b e  the arithmetic genus of  C.
2

1) If  d> k(k —3) then

h
°
(_E(Z)) = d+1 — Pa

2) I f  d_k(k —3), w rite d=kr —e with 0<r <k —3 and 0  <e <k . Then

1 r (r + 1 )  i f  e> r+1
2

— (r+ 2 )— e  if .
h
°(_E(Z))<

Furthermore, equality occurs if and only if
a) Z = C  fl CH -Z, where C ' is a  curve of  degree r —1 and Z , is a subscheme

of length k—e, in the first case, or
b) Z = C  n C"—E where E is a subscheme of length e and C" is a curve of degree

r containing E, in the second case.
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Pro o f . For the first statement, we use Serre duality and the Riemann-Roch
theorem . Let K c  denote a canonical divisor on C .  Then hi (C(Z ))=h°(X (K c — Z))
by duality. On the other hand for a plane curve C of degiee k , the dualizing sheaf
coc  is isomorphic to 0 ,(k -3 ). so K , has degree k(k - 3 ) .  Hence K , — Z  has nega-
tive degree, so A _E(K c — Z ))=0  and 121(_C(Z ))=0. Now statement 1) follows from
Riemann-Roch.

For the second statement we use induction on k .  For k < 3  the statement is
vacuous so there is nothing to prove. So we may assume that k > 4  and that the
theorem has already been proved for curves of degree <k .

Lemma 2 . 2 .  Suppose that Z  is contained in an irreducible curve D  of degree
k - 1 .  T h e n  the theorem holds on C f or an y  Z '=Z +C  n F w here F is a curve of
degree  a>0 . In particular (taking a=0) it holds for Z on C.

P ro o f  Since the divisor cnF corresponds to  the invertible sheaf Oc(a),
we may write _ C ( Z ) =.4 Z +a) .  Then since the canonical divisor is Oc (k-3),
using Serre duality we find

(1) h°(_C(Z)) = hi(S(k  — a — Z )) = h i (ci z ,c (k — 3 — a))

where S z ,c  is the ideal sheaf of Z on C.
Let J ,  denote the ideal sheaf of Z  as a subscheme of I:1 2 ,  and let S c b e  the

ideal sheaf of C .  Then from the exact sequence of sheaves

---> S z .c 0 ,

twisted by k - 3 — a, we obtain an exact sequence of cohomology groups

O =  1 1 1 ( c(k — 3
 — a)) —› 1 1 1 (Sz(k — 3

 — a)) —> IP(Sz,c(k — 3
 — a)) —>

H 2(S c (k — 3 — a)) — > 112(.1,(k — 3 — a)) — > O.

Note first that if a>k - 3, then degZ'>k(k —3) so the result is true by 1).
Hence we may assume a<k - 3. Next observe that TP(S z (k-3—a))—H 2(ep2
(k -3— a))=0  since k - 3 — a > 0 .  On the other hand, since S c =- 0 p2 ( —k), 112(..1c

1(k —3 —a))= H2(0 p2(—a —3)) which has dimension (a+1 )  (a+2 ) . Thus we find
2

(2) 1,i(L1 z ,c (k — 3 — a)) = h l (S z (k — 3 — a))+ 2
1  (a+1)(a+2) .

Now we consider Z  as a  closed subscheme of the curve D  of degree k - 1.
The same arguments, taking into account SD  O p 2 (  —  k  +1) and ...C,(KD) - -O D (k -4 )
give

(3) hi (S z ,D(k — 3 —a)) / I V  z ( k  —
3

 — a))+ 2
1 a (a+  1 )

and
(4) li' (.±Jz D(k — 3— a)) h° (-CD(Z+ a —1)) ,
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where -ED denotes the torsion-free sheaf on D  associated to a generalized divisor.
Combining, we find

(5) tk fc (Z )) =  1?(_E D (Z + a —1)) + a+ 1 .

It is useful also to use the same method to compute 121(_C(Z')). Again using Serre
duality and the lower part of the exact cohomology sequence above, one finds

(6) 111(4 ( Z ) )  h 1(_L ',(Z+ a — 1)).

Thus we are in a position to apply the induction hypothesis to a  generalized
divisor Z "  associated to the sheaf 4 ,(Z + a -1 ) on D .  If degZ"> (k-1) (k - 4 )
then 171(_ED (Z"))=0, so 111(_Cc (Z ))= 0 . Therefore the equality of 1) in the theorem
holds, and this is better than the inequalities of 2), for generalized divisors of any
degree. So we may assume degZ"< (k — 1) (k -4 ). I f  Z "  is  no t effective, then
a = 1  and IP(2",(Z))=1 in which case the bounds of the theorem ho ld . Thus we
may assume Z "  is effective, and apply the induction hypothesis to Z "  on D.

As functions of d (keeping a fixed), the bound on h° (4 (Z ) )  we wish to prove,
and the bound on h° (_L',(Z+a+1)) given by the induction hypothesis, are both
functions made of line segments of slopes 0 and 1. To prove that one graph lies
below the other, it is sufficient to consider the highest corners of the lower graph.
In other words, if we write degZ'=d'=kr' — e  and degZ "= d"=(k  —1)r" —e", it
is sufficient to consider the case e" =O.

So let d—kr—e as above. Then

d ' = d+alc = k(r+a)—e
and

d " = d+(a-1)(k —1) = (k-1)(a+r-1)—(e—r).

It is thus sufficient to consider the case e— r=0, and r"—a-kr — 1 . The induction
hypothesis then gives

1A-CD(Z"))_- (a+r)(a+r+1) .
2

Then by (5)

1 Ii3(_Cc (Z )). (a+r)(a+r+1)+a+1I .
2

On the other hand, r' =a+r, and e' =e—r so what we want to prove is

1 11̀)(4 (Z ))_ _ (a+r+1)(a+r+2)—r ,
2

which is the same.
In case of equality, by induction we must have Z"---D f") D " where D " has

degree a + r -1 .  But ...ED (Z " )-4 (Z + a — l) so  i ' D (Z)-_-.0,(r). By completeness
of the linear system of curve sections of any degree, Z=D  fl C' for some curve
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C ' of degree r. Thus Z  is contained in  a curve C ' of degree r, so we can write
Z =C  n C'— E where E— C n c'—z. i s  a  generalized divisor of degree e=r.

Here we have been discussing the case e " = 0 .  From the proof above we see
th a t e " =0  corresponds t o  e '= r .  Hence the only other case where equality is
possible is for e "=1 , e =r+1 , in which case the same argument applies to show
that Z  is of the form C fl C'— E, so Z ' =Z +C  (1F is also of the same form. This
completes the proof of the lemma.

Proof  of theorem (continued). Let Z  be  a  subscheme of C  of degree d <k
(k - 3 ) .  B y  the Riemann-Roch theorem, h°(_C,(Z)) is larger for a special divisor
(i.e. one for which 1/1(4 ( Z ) ) * 0 )  than for a nonspecial divisor, so we may assume
Z  is s p e c ia l .  T h e n  111(4 .(Z ) )*  O. B y  d u a l i t y  111(4 ( Z ) ) =f f ( 4 ( k  —3 — Z))=
h
°(.9 z ,c(k — 3 )) * O .  The exact sequence used in the proof of the lemma shows also

th a t  h°(,g z , c ( k - 3 ) )  =11°0  z (k — 3)). S o  th is  is  non-zero, hence there exist curves
(possibly singular, reducible, ...) of degree k -3  con ta in ing  Z .  L et I ,/,(k —3)1
denote the linear system of all curves (meaning Cartier divisors) on P 2 of degree
k -3  containing Z .  Let the fixed component of this linear system be a  curve F
of a degree a> O. Let Z ' be the scheme-theoretic union of Z  and C n F .  Then
Z ' is another closed subscheme of C , of degree d ' > d . On the other hand, by
construction, all curves of degree k - 3  in 1=1 2  containing Z contain Z ', so ii°(.9z (k -3 ))
=h °( î  '( k - 3 ) ) .  T h is  im plies 111(4(Z ))=17 1(± c ( Z ) )  and so  b y  Riemann-Roch
IP(X ,(Z ))=h °(..Cc (Z ) )— d '+d . Therefore, since the bound we wish to prove, as
a function of d, consists of line segments of slopes 0 and 1, it is sufficient to prove
the theorem for Z '.

Now let Z "=Z '— C  n F .  This is an effective generalized divisor on C  since
Z' contains C r1 F .  If f= 0  is the equation of F, there is an exact sequence

O -  n F,F

In other words, Z "  is the residual intersection of Z ' and F, in the sense of [15], p.
3 8 1 . Twisting by k -3 we obtain an exact sequence

a
-÷ z " ( k  — 3

 — a)) -* z'(k — 3 )) Ir(S c n F ,F (k  
— 3 )) •

Since F  is the fixed component of the linear system I S z ,(k —3)1 , the m ap a  is
the zero map, and so  f  is  an isomorphism. It follow s that the linear system

(..1z
,, (k —3—a)l of curves of degree k —3 —a containing Z " has no fixed component.

Adding to these curves arbitrary curves of degree a+2 we see that the linear system
— 1)1 has no fixed component and is not composed with a p e n sil. Hence

by one of the Bertini theorems [20], p. 30, a general member of this linear system
is either irreducible or is  of the form prD  with D  irreducible and p =char.k> O.
But some of the divisors in our linear system contain an arbitrary curve of degree
a+2, so this latter case cannot occur.

We conclude that Z " is contained in an irreducible curve of degree k -1 . S in c e
Z '=Z "-FC  n F the lemma implies that the theorem holds for Z '.  Note this argu-
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ment works also in the two extreme cases when F =0 , so  Z  itself is contained in
an irreducible curve of degree k-1, or degF=k —3, so Z"=0, in  which case the
lemma is trivially t r u e .  So the theorem is proved.

Remark 2 .2 .1 . This theorem was stated by Noether [17, §5] fo r a  nonsingular
plane curve. H is idea, like ours, is  to  use induction on k .  However, we cannot
accept his proof today, because he assumes without justification, that the movable
part of the linear system of curves of degree k -3  containing Z  (which we called
IS 2 (k-3— a)I) contains an  irreducible nonsingular curve of degree k-3— a. Re-
cently a  different proof, in  the case C  nonsingular, has been given by Ciliberto
[4]. Note that our proof is more general, in that it holds also for singular curves,
and in arbitrary characteristic.

Remark 2 .2 .2 . One can use this result, as did Noether, to  obtain  an  upper
bound for the genus of a curve Y of degree d lying on an irreducible surface F of
degree k in 1=4 .  First we use the theorem (2.1) to bound 121((g z (l)) where Z  is  a
subseheme of length d of an  irreducible curve C in  a  plane H .  Thus we obtain
a  new proof o f  [12, 5.4], under slightly m ore general hypotheses: Z  need not
consist of d distinct points. To apply this result, we let H be a  general plane in
P 3,  let Z = Y n H  and le t C=F n H .  Then, as in [12, §6], we obtain a n  upper
bound for the arithmetic genus of a  curve Y of degree d, which may be reducible
o r non-reduced, lying on  an  irreducible surface F  of degree k  in  P 3 ,  provided
d>k(k —1):

1pa(Y)<-
d 2  

+ —

1  

d (k -4 )+ 1 +  f( f+ 1  k  f  )
2 k  2 2

where d= f (modk) and 0 < f<k.
This is a new proof, closest to Noether's original proof [17, §6] of this bound.

Other modern proofs of this result are given by Harris [9], Hartshorne [12, 6.1],
Gruson and Peskine [8] (cf. Remarque 3.7), and  Ciliberto [4, 3.31]. N ote that
Gruson and Peskine prove more, since they establish this same bound under the
weaker hypothesis that Y is not contained in any surface of degree <k.
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