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Remarks on torus principal bundles

By

Thomas HOFER

In  this paper w e study principal bundles X 14  M  over a com pact complex
manifold M  whose structure group is a com pact complex torus T  =  V IA . The
to ta l space X  o f  such a principal bundle  is usually  not a  Kdhler space even
if the base manifold M  is.

Typical examples a r e  Hopf m anifo lds, o r the  Calabi-Eckmann manifolds
diffeomorphic to  a  product of spheres. These are principal bundles over a  prod-
uct of projective spaces, the fibre is  a n  elliptic curve. Those and  other special
examples have been studied in  detail, see [Cal-Eck], [M aeda], [Nakam ura],
[Akao].

We develop the theory starting from the base manifold M , often assuming
that it (i.e. H2 (M)) has a  Hodge decomposition. For a  T-principal bundle XI> M
we define a  characteristic class cz  e 112 (M, A) (1.3) and invariants e: H°42,

(1 . —).D It w ill tu rn  ou t that these can be computed from cz  and
determine th e  d ,  differentials o f  th e  L e ray  sp ec tra l sequence converging to

C) and of a spectral sequence converging to HV (with a variant computing
H (e )). This spectral sequence was constructed by B orel in  his appendix to
[Hirzebruch] and was used there to compute the Hodge ring of Calabi-Eckmann
m anifolds. Since in  our case all those spectral sequences degenerate on E3 -level,
Betti numbers, Hodge numbers, and  the  space o f infinitesimal deformations of
X  can be computed in  general (Theorem 1.6).

I n  bundles w ith e =  0 th e  to ru s  T  can  be  rep laced  by  any  o ther to rus
of the same dimension (e.g. Calabi-Eckmann manifolds), whereas for e 0  (e.g.
Iwasawa manifold) the periods o f  T  m ust be  re la ted  to  in trinsic  d a ta  o f  M
(Chapter 7, Chapter 8).

If M  is simply-connected, then it is fairly easy to construct simply-connected
bundles, even with first Chern class c, (X) = O. T h e y  d o  n o t  c a r ry  a  U h le r
metric by Blanchard's theorem (1.7), in  fact they cannot carry a complex Uhler
structure for purely topological reasons (11.4).

If  moreover M  is  a  complex surface and T  a n  elliptic curve, then we get
a  lo t  o f interesting simply-connected complex threefolds w ith  c, = O. A ccord-
ing to W all's classification of real six-dimensional manifolds, the only diffeomor-
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phism invariant is the Betti number b2 (M ) .  So we find complex structures with
different Kodaira dimension on the same Coe manifold (Chapter 13).

Small deformations o f  Calabi-Eckmann manifolds have been described in
[Akao], those of the  Iwasawa manifold in [N akam ura ]. Suwa has studied in-
finitesimal deformations of holomorphic Seifert fibre spaces in  general [Suwa ],
[S u w a ,] . I n  our special situation things a re  fairly easy, and  we can describe
the  infinitesimal deformations using the invariants s and y.

This paper is mainly a  result of my stay in  Japan. I had m any interesting
discussions with Japanese mathematicians there b u t  in  th e  first place I would
like to thank K enji Ueno who invited m e to  Kyoto University and helped me
in  m any w ays to understand both m athem atics a n d  th e  w ay  o f  life o f  that
fascinating country.

1. Notation, basic facts, and main theorem

1.1. N otation. T =  VIA always denotes an n-dimensional compact complex
torus, defined by a  lattice A c  V  in  th e  n-dimensional complex vector space
V. M  is  a com pact complex manifold of dimension m, and  n: X -4 M  denotes
a  T-principal bundle.

Canonical identifications concerning the  torus w ill be made frequently. In
p a r tic u la r  w e  u s e  To (T ) = F ne T ) = V, H i (OT ) = 0 V , H P  =  (S 2 1 ) =
Ho (eT)" = = ippo 0  Hp, A = H ,(T, Z), H,(T, =  (T, Z).

W henever the re  is  a  H odge decom position f o r  t h e  cohomology,
HP""(Y, C) Hp denotes the projection onto the (p, q)-component, prp q (co) =: coPq.

Hodge numbers and  Betti numbers of X  will be written in  the  form

111,1b 2 ( X )

111' °h (
x" b1(X)

b0 (X)

1.2. Cocycles. S u c h  princ ipa l b u n d le s  a r e  d e sc rib ed  b y  e lem en ts  of
111 (M,(PM (T ) ) .  For a  te c h  1-cocycle ((h) the  function th,; : u,n U3 T  identifies
(z, t) e U. x T  with (z, t') = (z, chi i (z) + t) E Ui  X  T  in  different trivializations.

1.3. The characteristic c la ss . Taking local sections of the constant sheaves
O-+ A  V  - › T -> 0 w e get an exact sequence of sheaves o n  M

- > 1 - ■ Cm ® V - > em (T).-  0

and from  this the exact cohomology sequence

• • • - ) H (M, A) -4 H°
141 0 V -■ 1-11(0m (T)) -̀4 H2(M, A) -› H °,42 0 V -4 • • •
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So the defining cocycle of the bundle in 111 ((9m (T)) determines a characteristic
class

cz = cz (X ) =  c z ( X  M) e H 2 (M, A) = Z) 0 A  .

The inclusion A  V 'Lz. Cn induces a map from the Z-module H 2 (M, A ) (of rank
b2 (M)• 2n) to the (b2 (M)•n)-dimensional vector space H 2 (M , V) = H 2 (M , C) 0 c

The image of cz  defines a characteristic class

C = CP0 = C(X E H2 (M, C) V

1.4. Basic facts. (a) The translation invariant vector fields H°(6T ) = V  on T
induce an  n-dimensional space o f  everywhere linear independent vector f ields on
X. T h i s  gives ex act sequences

(*) o c  v  ex  -> eem  ->o

( * ) v  0 —* n*S-214 —) —* C. 9 x  c — >  0  .

(b) For the  sheaves of  relativ e vector f ields and of  relativ e differentials and for
the canonical bundle this means

exim = O c c f n

In(Dn
1/4CYC =

= 7r* itrM

(c) e(X ) = 0 ci(X) = eci.(M )

X(QD = c 2 (X) = n * c2(M)

c3 (X) = 0

(d) Furthermore

It in* Ox = e m O C

Rin* e x i m  = (.9m O cO c  V =
M

 (:)C H i (OT )

Ri n e x  = 7r* Ox Oc

Ri1t,S2 /m  = (9m Oc Oc =  em  OC

Ri n* S21 = TE* S210 c

(e) T he long ex act sequences obtained by  pushing forw ard (*) sp lit up  and all
the extensions coincide:
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0 ex —) Om H V 0

11 11 11

0 —) Cm0V 01 -  17: i 7r, x ( )  HIP -+ Om 0

0 —) (21, 0 H7: t —) ten, S21 —) R in  S21* xim —*0

11 11 11

0 0 HV —) n * S-21 0 F17: —) C m 0 H ° 0 H —) 0

Proo f . The invariant vector fields on T  a re  also invariant under changes
of bundle coordinates, so they define global vector fields on X .  This gives (*),
and the second sequence in  (a ) is  ju st th e  d u a l. (b) follows directly from the
exact sequences defining e x im  a n d  S26

o ,e x im -->ex ,g*e m  -40

0 —> rc*S211 —> 52 121-
1, —■ 0

and  ilmaxS21 = n*Amaxf2 0 Am".(2,10 ,  (c) is  a  d irect consequence of the  multi-
plicative property of the Euler characteristic (resp. of the xy-genus) (cf. [Borel] =
[Hirzebruch] App. 11.8) and x (T )  = 0. The Chern classes come from downstairs
because e x  i s  an extension of a trivial sheaf by rc*em . T he first equation in
(d) holds because transition functions act trivially on the cohomology of a fibre,
the rest is an  easy consequence. For (e) observe that since the bundle is locally
trivial, locally (on M) 0 , ( U )  HV is  a direct summand of Hi (n- l (U), e x ) in a
canonical w a y . Therefore ll irc* — ■ e m 0 HV is  surjective.

1.5. Invariants. The relevant information on the bundle X  1 > M  is contained
in the following invariants of  a T-principal bundle:
(a) The extension class o f  the  sequence 0 —) n*Qi —> m 0 H V  0 ,  that

is y e Ext.' (e x , 0  H -'° ,
 pki )  = H 1(s 2 )  0 (H-'

°
) '') or equivalently

y :1 4 1,43

(b) The transgression of  the f ibre bundle, i.e. the f irst possibly  nontriv ial d2-
homomorphism E i.°  in the L eray  spectral sequence of  the constant
sheaf Cx

0 —* 11 1 (M, C) —> 111 (X , C) '(T, C )  H 2( m ,

Together with the transgressions in integral cohomology and homology there are

(5: Fi l  (T, C) H 2  (M, C)

S z : H 1 (T, Z) --+ H2 (M, Z)

z : H 2(M , Z) I -11(T, Z) .
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(c) The f irst possibly nontrivial d 2 -homomorphism H °(R lit*(x ) H 2(ir* ) in the
Leray spectral sequence o f ex

6: H o..,1 f i ck2

(d) The characteristic classes c z  e H 2 (M, A ) and c e H 2 (M, C) 0 V  of the bundle
as defined in 1.3.

All these invariants are related to each other, they determine Hodge and Betti
numbers and also the space of infinitesimal deformations of X .  The main general
results that we will prove in  this paper are:

(a) B orel's spectral sequence p ,qE s2 ,t  E ® H v i , t - p + i  w hich com putes the
1.6. Theorem. Let X  Lr> M  be a T-principal bundle as described above. Then:

Hodge numbers of X  degenerates on E3 -level, and the d2 -differential is deter-
m ined by  e and y (4.3).

(b) The same holds for Borel's spectral sequence computing the cohomology li(ex )
(14.7).

(c) Leray spectral sequence E's2' = Hs(M, C) 0 FITT, C) which computes the Betti
numbers o f X  degenerates on E3 -level, and the d2 -differential is determined
by  6  (5.1).

(d) Under the identification I- 11 (T, Z) Hom (A, Z ) the characteristic class c z

142 (M, Z) 0 A  and the m ap b z : H i ( 7 -, z )  _4, H 204 , Z) coincide (6.1).
( e )  6  is obtained f rom  6' by  scalar extension (6.2).
(0  Assume that H 2 (M ) is has a Hodge decomposition. Then 6 determines e and

y, and vice versa (Chapter 6).

The invariant 6  somehow measures the  twisting o f the  bundle modulo torison,
and it also appears in

1.7. Blanchard's Theorem [B lanchard]. Assume that the base space M  is a
Keihler manifold. Then the total space X  is a Kiihler manifold if and only if 6 = O.

A ccording to (c) a n d  (d )  o f  th e  previous theorem, 6 = 0  if  a n d  on ly  if the
characteristic class c z  i s  torsion, and then  a ll the invariants behave like for a
trivial bund le . S o  from  our point of view, this is the  less interesting case . In
contrary, we will construct simply-connected spaces (which requires a  simply-
connected b a se  a n d  6  injective, see C hapter 11), m ainly a s  elliptic principal
bundles over algebraic surfaces (Chapter 12, Chapter 13), where the  topological
structure of X  is determined by simple invariants.

2. Example: Calabi - Eckmann manifolds

These are (non-Kdhler) principal bundles with fibre T  = C /(Z  T Z )  over a
product M = Ptm' X P M 2  o f  complex projective spaces whose total space is diffeo-
morphic to a  product o f spheres S 2 m +1 x  S 2 m2+1 . If (x 0 x„,„ Yo  y ,n 2 ) are
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homogenous coordinates o f  M , th e  bund le  is  trivial over the standard affine
coordinate patches =  {xi 0  0 , y i 0  0 } and the transition functions are given by

1 xk Yi
Ou,k/a

(
x ] , [ y ] )  =  —  log — + "C • log

21c1 xi

S in c e  T  R  i t  is  e a s y  to  show  th a t  th e  bundle is diffeomorphic to S 2 m1  x
S 2 ' " '  Cni+ 1 x  e n v "  w ith  the standard projection to  P'"' X r n 2  v ia

(
1

S 2 m 1 + 1  X  S 2 m 2 + 1  D  (X , y) [x ] [y ], , ,----. (log x i +  T  log yi ) m od Z O T Z  e  U T.
27rt

The Hodge algebra has been investigated in [Borel], 11.9. The Hodge numbers
are (0 m ,  m 2 )

h i "  —X  -

1 if m , and  q = p ,  p + 1

1 if p  > m 2 a n d  q = p ,  p - 1

0 otherwise

  

(see  9 .4). In  4 .3  we investigate the spectral sequence that Borel used fo r  his
com putation. m , =  0 defines a  H opf m anifold. In  the easiest simply connected
case m, = m 2 =  1  w e  g e t a  com plex threefold diffeom orphic to S ' x S ' w ith
Hodge numbers

1

0 1 0

0 1 0 0

0 1 1 0  2

0 1 0 0

1 0 0

1 1

Akao has studied the small deformations in  [A k ao ]. H e  starts from the descrip-
tion of Calabi-Eckmann manifolds as a quotient of (Cm'' — 0) x (Cm2 + 1  — 0) by
an action of the additive group C  via diagonal matrices (e ", e "• 1 ). Deforming
the  identity matrices to  pairs (A, B ) and  dividing o u t scalar multiples (RA, pB)
(defining biholomorphically isomorphic manifolds) one gets all small deformations
(see 15.4).

3. Example: Iwasawa manifold (cf. [Nakamura])

Let G be the complex Lie group biholomorphic to C 3 b u t with multiplication
defined by



Torus principal bundles 233

1 Z_2 Z_ 3 a2 a 3 z2 + a 2 z3 + a 3 + z2 a 1

0 1 Z1 0 1 a, 0 1 z i + a l

0 0 1 0 0 1 0 0 1

A denotes the lattice of Gaussian integers Z 0 i • Z, and F is the discrete subgroup
of G  consisting o f those matrices with all entries in  A .  Then via (z i , z2 , z3 11—
(z1 , z2 )  w e get a  map

X :=  G/F 4 M := C/A x  C / A  T x T .

This is  a n  analytic T-principal bundle, T  = C /A  acting b y  the matrices of the
form a, = a 2  = 0 , a3 e  T  Fixing a local lifting 2 2  fo r the  coordinate z2 o n  T
local trivializations are

7( 1 (U)n (z 1 , z 2 , z 3 )1—qz
1
, z 2 , t) = (z 1 , z 2 , z 3  — z1 2 ) e U x U x T

modF m o d A x A x A

The inverse mapping is given by z3 t  + z 1 f 2 . So the transition functions are
O fi =  z 1 • AU fo r  som e Ai i e A  representing th e  difference between two liftings of
z 2 . The G-invariant holomorphic 1-form —z i  dz 2  + dz 3  o n  G descends to  a  form
to  o n  X  which in local bundle coordinates is

co = dt + 2 2  dz i  .

The invariants are ([Nakamura] o r  Chapter 10)

1 1

3 24

3 6 2 8

1 6  6  1 10

2 6 3 8

2 34

1 1

Another example of N akam ura shows that our resu lts ho ld  only  for principal
bundles. H e constructs a  parallelizable manifold w ith h ' 1 =  1 which is a  non-
principal 2-torus bundle over a n  elliptic  curve. B ut b y  7.4 w e know  hc

x" = 3
in the principal bundle case.

4. Spectral sequences o f  C/Px

4.1. Bundle coordinates. Under a change of bundle coordinates as described
in  1.2, the  leading term o f  a  differential form w = dz, A d f i A d t,'  A  d 6  remains
unchanged b u t  there  a re  additional com ponents com ing from  th e  derivatives
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of Ou:

01lc° = dz, A dz  A  dt A  d lj + jfKkLLdzi, A  d7k A  dti, A  dtf,
l a rCLL

with of course 1K1+ L  =  I  +  J , I  +  ILI = Ï  + IJ1, but only summands with
higher base degree occur, i.e. only those with IK1 + > I  +  I I  and  IK I

4.2. Borel spectral sequence. The sheaf S2Ç can be resolved by the Dolbeault
complex (.91p*, o f  C '- (p ,  .)-forms. The direct image complex not jc' ' '  can be
filtered by the base degree of the  forms: Fsn,,,<sair  consists of those forms that
in  lo c a l bundle coordinates (z , t) can  be  w ritten  a s  a  linear com bination of
dz, A cifi A  dtj A  d ti w ith 1/1 + s.

Taking global sections 4 q  =  F s a q  w e get a  filtered complex ( A r, j )  of
m odules and from  th is the spectral sequence a s  u s u a l. T h is  i s  the filtration
introduced in  [Borel] 4.1, a n d  w e keep the  no ta tion  f ro m  th e re . T h e  usual
spectral sequence graduation is given by (s, t), corresponding to the filtration, i.e.
to  the total base and fibre degree of differential forms. W e also include (p, q)
denoting the (0, - - )-type but p  is constant in each of the sequences and we always
have p + q = s + t.

w a  F sA i  ow  a  F s+ r i g le g+11

Fs+1 4 , g  a . ( F s — r + 1 4 , g - 1 )

p ,gE sr ,t p,g+lEsr+r,t—r+1

G r M q  =  0  P . q E s
0; `

s+t=p+g

N ote tha t p  is not changed by the differential, and q  is determined by p + q =
s + t, so  in  fact there  is a single spectral sequence fo r each p , computing the
cohomology of

L et s k i,  d e n o te  the  bundle of global COE) -(i, j)-forms o n  th e  f ib re s . Then
the first levels can be interpreted a s  follows [Borel]:

gEsd` = 0 F(.94s -  i

P . (1 E14 0

P . q E si t = HV - i  0 Hr.t - P± i

q = 0: p,OEs2, t  =  H sA,40  0  Fite

p = 0: 0 ,gE s2,t =  H O i s  0

T he m ap from  A V  t o  m E d •  is given by locally  taking only th e  well-defined
terms with lowest base degree in  each fibre; these are glued together to a section
of T h e  differential do is then 0  in fibre direction, so the map to

=
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mEse is taking Dolbeault cohomology o n  th e  to r u s .  T he bundle consisting of
the  Hodge spaces f j , ( z ) i s  trivial, and w e are  left w ith a  form  o n  M  times a
cohomology class of T  The next differential dl  equals a of these forms in base
direction. These facts are  described in  [Borel]. We will now investigate d , in
our special situation. The basic  maps are

e:i j o , 1 0,2u 2,0 _ 1.1 0,2

y :  1,oE o,1 foo =

4.3. Proposition. (a) d2 i s  a  derivation on the product o f  Hodge algebras
His_i 0

d2(CO A  / 1 ) =  d 2 0 )  A +
 (1 )  A  d2ti •

(b) d2 (W,d) = 0.
(c) y: 1-1 '

°K V - i s  the invariant introduced in  1.5(a).
(d) e: 1-17: 1

— > I-1 2 i s  the invariant introduced in  1.5(c), i.e. th e  d , map from
L eray  spectral sequence f o r (Dx . It vanishes if  and  only  if  the spectral sequence
f o r p = 0 degenerates at E r -level, i.e. if =

(e) d,. = 0 f o r r > 2.

Pro o f . d2 (co) is com puted by lifting the cohomology class to  a  g lobal Cc°
form  o n  X , then taking a n d  projecting back to  E 2 .  Since the projection
respects wedge products, d2 behaves like a  differential. This proves (a). Because
w e HV can be lifted to  the  Xclosed form rr*co, a ll d,.(co) vanish for r > 2. So
(b) h o ld s . (e) follows because statements (a ) and  (b) hold  a lso  fo r  r > 2, and
the generators dt, and di, of I- Pi' are not affected by higher d because of their
degrees.

(c): We resolve

0 —> (2„1,, —> 7r* S-21 —> Cm  0 H —> 0

by

0 — > 0 HP )
 — > 0

where .4q(U) consists o f those (1, q)-forms o n  rc*(U) tha t a re  harmonic in fibre
direction, i.e. which in local bundle coordinates can be written as E W  A  dt, +
with w, and ri being forms on  M . T he  m ap  to  sik,f"  0  H P )  i s  the (well-defined)
projection to  EW 1 A  dt,. Then y as defined in  1.5 is  the connecting homomor-
phism H°(.94'• 0  H P )  1- 11 (s41, it is the obstruction to  lifting dt, to  a global
section of 7r,Qk: Locally o n  a  system o f trivializing neighbourhoods (UŒ)  for
the bundle on  M, it can be lifted to dti , and the difference of two liftings on Uoefl

is dt, — (6 dt1 a n d  defines a  1-cocycle in  safe  w h ic h  m ust be  a  boundary since
the sheaf is acyclic. Thus there is a  0-chain (pc,) e H° (.41,

1,11  such that (dt, — pOE)
is  a global form , the lifting to  F A ',  and  its differential p 5  i s  y(dt,). B ut this
is exactly how the differential in the spectral sequence works.
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So it rem ains to  show (d): The d2 differential H° (M, It 1 rc e x ) ->H 2 (n* Ox )
of Leray spectral sequence may be computed by using th e  same resolution of
e x  as a b o v e : 12.7r„ ex = ( it ,.9 1 V ,) . An element of H° (M, It i n(9 x ) is represented
by  a  cocycle ( -61frœ)  where tp„ e F(1( 1 . 4 1 " ) ). I ts  im age in  H2(it, e x ) is repre-
sented by the  cocycle (60) -= (x0 ), x xfi E n1t -1 (UŒ n Up), SIT' ° ). T he same argu-
mentation a s  in  (c) b u t with di, instead of dt, proves the assertion.

4.4. Corollary. The spectral sequence degenerates at E3-level and the d 2 -
differential is wholly determined by the tw o m aps H P

4.5. Remark. The Leray spectral sequence for S2f, also converges to
b u t h a s  E2 -term  E j = Hi(Rin,,S21X). Except fo r p = 0 th e  higher direct image
sheaves are non-trial, the twisting being measured by y. The d2 -differential, on
th e  o ther hand, is determ ined by e , and the  L eray  spectra l sequence should
degenerate if e = O.

5 .  Leray spectral sequence of C,

Taking de Rham cohomology (with complex valued forms) instead of Dolbeault
cohomology, w e get th e  usual Leray spectral sequence converging to fr(X, C).
H ere the constant sheaf Cx  is  re so lv e d  b y  th e  d e  Rham complex (,s26 , d )  of
Cm-forms, the filtration is again defined by base degree. Everything works like
described above, now defining a spectral sequence with

Esit = ffs(M, C) Ht(T, C) .

The basic m a p  is  6: E3. 1 = H (T, C) = H2(M , C ). W ith  th e  same argu-
ments a s  in  4.3 we get:

5.1. Proposition. (a) d2  i s  a derivation on the product of cohomology rings
H*(M, C) C), i.e. d2 (coUn)= d 2 coUn + coU d2 q.

(b) d2 (lis(M, C)) = O.
(c) = 0 f o r r > 2.

5.2. Proposition. The following statements are equivalent:
(i) The Leray spectral sequence for Cx  degenerates at E2-level
(ii) 6: H (T, C) H  2  (M, C) is  the zero map
(iii) The restriction m ap H 2 (X, C) H 2 (T, C) takes a non-zero value in H P
By Blanchard's Theorem (1.7), for a Kiihler base space these statements are equiva-
lent to X  being a Kahler manifold.

Pro o f . All the Rtir C , are constant, and any element of H P  H2 (T, C) =
H° (M, R2n ,C ,)  i s  a  Kahler class a n d  therefore induces isomorphisms in the
cohomology of the fibres. So (i) ( i i )  ( i i i )  i s  the statement of [Deligne], (2.11).

5 .3 .  Proposition. Let i: T -+ X  denote the inclusion of a fibre.
(a) For each p  there is an exact sequence

HP- 2 (M, C) 0 Hi (T, C) H P (M , C )  HP(X, C)

where d2 (co 0 0) = (DU 6(0).

H V  and fq. 1 H W .
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(b) There is an ex act sequence

0  H  i (M, C) 74  H i  (X, C) H  (T, C) L3 H 2 (M, C) 7 1 .> H2 (X, C) .

(c) I f  6  is  non-zero, then th e  pull-back n*: H2 m(M, C) —> H2 "1(X , C) from  top
dimensional cohomology of  the base space (m = dim c M ) is the zero map.

Proof. The pull back map occurs in Leray spectral sequence as the compos-
ite  HP(M) = E/.° HP(X ) ([Whitehead], XIII.7.2*). Since the spectral
sequence degenerates o n  E3 -level, the  first m ap only divides out the im age of
f  E v -2, F o r  p = 2  w e can  ex tend  th e  sequence to  th e  le f t  b y  the
standard spectral sequence argument. In top dimension, since the target space is
one-dimensional, it suffices to show that f  is  non-zero . B ut if b e H 1 (T ) is any
element with 6(b) 0 , a n d  a e  H 2 m - 2 (M )  is  th e  Poincaré dua l o f  6(b) ( [Dold]
VIII.8.13), then f (a®  b )= aU b  is  non-zero in H2 m(M).

5.4. Leray - Serre spectral sequence in (integral) homology. (see [Whitehead],
XIII.4.9, XIII.7) T h is  is a  first quad ran t spec tra l sequence  w ith  E p2  =

H p (X , Hq (F)) (H q (g i) the local coefficient system of the fibration) converging to
th e  homology o f  X  with differentials dr : Erp Erp_2,q+1. Always EZ,,„ = Hq (T)
and , since H0 (97 )  i s  trivial, Ep

2 ,0  =  H (M ). T h e re  is  a com m utative diagram
([Whitehead] XIII.7.8, 7.9)

H2(X , T)

H2 (X) Hi(T)

E2,0 - d 2 E 1

where 7r, is  the surjective ([Whitehead] XIII.7.3) projection m ap  to  H.(X , pt) =
H.(X) in relative homology and ô ,,  is  the  connecting homomorphism from the
long exact homology sequence of the pair (X, T ) .  The transgression is by defini-
tion the (well-defined) map ô. 0

5 .5 .  Leray- Serre spectral sequence in  integral cohomology. This is dual to
5.4. The transgression is  n o w  the  com position  of the  connecting homomor-
phism H 1 (T, Z) H 2 (X, T; Z) and the inverse of the injective m ap H2 (M, Z) =
H2 (M, pt; Z) H 2 (X , T; Z).

Since there are no higher differentials or possibly nontrivial local coefficient sys-
tems involved, statement 5.3(b) holds also in integral cohomology and homology:

5.6. Proposition. There are ex act sequences

(a) 0 Hl (M, Z) Hi (X, Z) (T, Z) H 2 (M, Z) 14 H 2 (X, Z).
(b) H 2(X , Z )  H 2 (M , Z )  H 1 ( T, Z) H , (X, Z) 1 *) H (M, Z) —O

5.7. Corollary. c 1 (X) =  tr*c i (M ) is z ero if  and only if  c i (M) e im
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6. Relations between the invariants

6 .1 .  Theorem. Under the identification I- 11 (T, Z) = Hom(A, Z) the character-
istic class c z  e H 2 (M , Z) 0 A  and the map b z : 111 (T, Z) H 2 (M, Z) coincide.

Pro o f . We resolve C , by the de Rham complex and compute 6 z  analogous
to  the proof of 4 .3(d). It is easy to see that this corresponds to  a tech cocycle
representing c z .

6 .2 .  Proposition. 6  is obtained from b z  by  scalar extension:

6 = idc: H i (T, C) = Z) C  H 2 (M  Z) 0 C = H 2 (M, C) .

In  particular, 6 commutes with complex conjugation.

Pro o f . This follows from the universal coefficient theorem (e.g. [Dold], VI.7.8)
because 6 and 6 z  are the transgressions in cohomology with complex and integral
coefficients (Chapter 5).

6 .3 .  Theorem. A ssume that H 2 (M ) has a  Hodge decomposition. Let de-
note com plex  conjugation. Then identify ing H l (T, C ) with (D ETV  we can
write

E = Pr o2 ° (514 ,'

=  pr 11 0 (5110 .

e o pro ,  = pr 0 2  o 6 ,

      

6(a'° a o1 ) = e ( a io , •  ,) + ) + y(a
01

) + c(d") (aim
" T  a  G H7: 1)

Pro o f . All the  maps follow the  same pattern: Take a  closed 1-form co on
T, lift it to a global 1-form th on X  that locally can be written as =  co +
where rh, is  a  1-form o n  UOE• T h e n  the  exterior derivatives o f the  nOE define  a
closed global 2-form on  the  base  which represents the im age of co. F o r  6  we
have to take de Rham  cohom ology w hile e  a n d  y  a re  defined by Dolbeault
cohom ology. The claims follow from

6(dt 1) = d(il ) = 0(riD + (n!) = c(A ) + y(dt i)

6(df i ) = d(nD = OW ( ) + 0(nD = y(dt i ) + OA )

6.4. Corollary. (a) 6 =  0  < r >  y = 0  and  e= O.
(b) E  injectiveô  injective.
(c) ô injective ô z  injective.

Pro o f . (a )  a n d  ( c )  a r e  obvious. (b): O  = c5(a) = S(al °  a ° 1 )  o a io ) = 05

c ( a ol. )a l ( ) a 01 0 a = O. S o  6  is  injective.

The first Hodge numbers are

hc,"  = + dim ker E

111' °  = ±  dim ker y

b1 (X ) = b 1 (M ) + dim ker
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6.5. Relation between integral and complex structure on the torus. (cf. [GH]
p. 300 if  o r [Wells] V I.1 .6 ) W e have to connect integral structure and Hodge
decomposition of the cohomology of the torus.

Let (A, ....1. 2 „) be a basis of A  = H i (T, Z), embedded in the complex vector
space V with basis (e, e „ )  and corresponding complex coordinates (t, t „ ) .  Let
Q = (co,) b e  the (n x  2n) period  m atrix , i.e . its v-th colum n contains the t-
coordinates of A .  S o  Q  is  the matrix of the C-linear map

t/J: H i  (T, A C (11(A,) = Ecoivei

induced by the inclusion A  c  V  w ith respect t o  the bases (A, ... A 2 ,,) of A 0  C
and (e, en )  o f V. If (x ,... x )  is  the real coordinate system of V  whose unit
vectors are the Av ,  then the coordinate change is

ti = E coivxv •

Coordinates o f V  descend to coordinates of T  = V IA . So w e get tw o bases of
the de Rham cohomology H i (T , C ). The first one consists of (d x , . . .d x )  and
reflects the integral structure H i (T, Z) H i (T, C), it is dual to the basis (2 .1. • • A2.)
of A 0  C = H ,(T , C ). The second basis is formed by (dt, d t „ ,  cif di„), where
the first vectors span 1-11.'' and the last ones span H V .  The differential forms
are transformed as

dti = Ecoivdxv

cif = E Foi ,dx v

So the change of basis 1-11.'' }IV  —>I-11 (T, C) is described by la = (10 `Q), where
1S2 and IQ  correspond t o  the injections of H V  and H V , respectively. The
inverse of 5  is usually denoted by f i = (H ill) , H  = ( I r) . So Q • H = L, s? • /7 =
0, 17 • 52 + 17 • (2 = 12 „  and

dx v E n v i dti + Ert v i clii

Let c z  = ,,vcick
H2(m, z) is given
the dua l basis  of
torsion) (6.1).

The invariant
D • ti-2- w ith  respect

e H 2 (M, Z)(:)
by  the integral

/1, )  and

6  is described
to  the (dt i , di e ):

A  be the characteristic class, i.e. 6 z : H i (T, Z)
(b2 (M) x 2n)-matrix D := ( 1,„) w ith respect to
some basis (a l  . . .a b 2 )  o f H2 (M, Z )  (ignoring

b y  D  w ith respect t o  the (dx v ) (6 .3) and by

6(dt 1) = E I tvC ° iv ) (Xic =  E  . 1ci (Xk
k v

where
 ( , j )

 i s  the (b2 (M) x n)-matrix D
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The characteristic class c z  e H 2 (M, Z) 0 A  can be considered as an  element
of H2 (M, C) (pc  (A 0  C ) .  The invariant c  defined in  1.3 is then c = id e
H2 (M, C) V, i.e.

C =  E 0R) = Ekvroivock 0 ei = ki k ® e1 .

N ow  assume th a t  H2 (M ) h a s  a  Hodge decomposition, the projections t o  the
different components being described by matrices P2 0 ,  P11, P02 w ith respect to
the (Œk ) a n d  some bases of the Hodge components such that P02 P=  20' Then
the composite m atrix has the form

P • D • ti2-  =
P20

P l i

P
02

• D • (T2 (Q) =
E
c c
0  E

   

where E  and C  describe e and y, respectively (6.3). The symmetry in the matrix
comes from the fact that (5 commutes with complex conjugation.

The characteristic class c z  had been defined by the cohomology sequence of
0 - + A  O m  0 V - ■ (9,(T) - > 0. Since the first inclusion of sheaves factorizes over

9,  1 7 ,  in  cohomology we have

H 1 ((O,,,,(T )) H2(M, A) fni2 0 V

H (M , C ) 0 V

Thus the obstruction m ap fo r  a  given c z  be ing  the characteristic class of some
bundle sees only c = E k i 0G4  e i a n d  projects th e  H2 (M , C)-part to  i t s  (0, 2)-
com ponent. In  matrix notation this is P02 . D • IQ, i.e. the 0-block in the matrix
for P • D • 'b. '  a b o v e . This proves

6.6. Proposition. Consider any element "C'z  e H2 (M, Z) 0 A  or, equivalently,
H t ( T : _ , ,  H 2—t 5m  Z). T h is  i s  th e  characteristic class o f  som e T-principal

bundle on M  if  and  only  if  the obstruction

= Pro2 0 31„1 0: H42A 

is zero, where 3 = Ø id c : H 1 (T, C) H 2 (M, C).

6.7. O n  th e  o ther hand , if  w e start w ith  tw o m aps ° H I P  and
H4 2 , we define 3: 111 (T, C) H 2 (M , C) b y  the form ula in  6.3. Then

these invariants com e from  a  bundle if  =  ®  id c  f o r  some 3 z: H 1 (T, Z) - +
H2 (M, Z).
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7. Bundles with e = 0

7 .1 .  Proposition. T here is an injective map

0: Pic(M) 0 z  A  = 1-1'((9t) O z  A I- 11 ((P,(T))

compatible w ith taking characteristic classes, i.e. if  E yi A i i s  a  combination of
line bundles in Pic (M) 0 A  then the characteristic class c z  o f  0 ( E .ri A i ) equals
E c1 (21) e H 2 (M , A).

Pic (M) 0 A ((9M(T))

Icz

1-12 (M , Z )  A H2(M, A)

Pro o f . Consider the following diagram of Z-modules (with exact rows) ob-
tained by tensoring the  exponential sequence by A  a n d  applying the inclusion
A c4 V. T h e  rightm ost vertical homomorphism m aps E e C* Oz  A  to
E log  • 2 ;  e  V mod A.

0  — 0. A C O z A  CXP C * O AA 0

0  — 4 , /  — >  V T 0

Sheafifying over M  and  taking cohomology yield the following diagram . Short
diagram chasing shows th a t 0  is  injective.

H i  (A) — > O z  A (elya Oz A 1420 Hio42 a z  A

H i (A ) _ ,  H cm,, c ) c H i ( ( Q m ( T ) )  _ 4 112(M, A) ,  H 2
 o c

7.2. Corollary. I f  H 2 (M ) has a Hodge decomposition, then the im age of  0,
i.e. the set of  isomorphism classes of  principal bundles constructed in the previous
proposition, equals

im  0 = {Isomorphism classes of  T-principal bundles with
c z e n  H 2(m  z)) 0 A}

= {Isomorphism classes of  T-principal bundles with s = 0}

Moreover, any EL  E  (11 1 fl H2 (M, Z)) A  i s  th e  characteristic class o f  such a
bundle.

Pro o f . This follows from c 1 (H 1 (( )) =  H J 1 (1 Z), 6.2, 6.3, and 6.6.

7.3. Remark. T he torus itself does not play any particular role here.
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7.4. Fibre bundles over curves. If dim M = 1, then e vanishes for dimension
reaso n s. S o  th e  H odge num bers h P  behave like fo r  a  p ro d u c t . T h e  Betti
numbers, however, can be smaller: Consider for example th e  primary Kodaira
surfaces (cf. [BPV] p . 147) which are bundles over an elliptic curve with 141' 1 =  2
and b 1(X) = 3.

7.5. Elliptic fibre bundles over Pm. H ere of course e = 0, so  in  th e  non-
trivial case y must be  a surjective map onto H 1 C .  B ut then multiplication
b y  y(dt) is  a n  isomorphism except in  first a n d  to p  cohomology o f P m . This
means IV  =  =  h z ,.+1 = hr1,m+1 1, the  other Hodge numbers are zero.

8. Bundles with E # 0

8 .1 .  The image of the map H2 (M, Z ) :2 WAY  induced by the inclusion Z
z w 2  H oxi 2.(9A1 is an additive subgroup A = (H 2 (M, Usually A is dense in H i 2 .

H 1 (T, C ) 

p

f l i i
/

H 1 (T, Z )  - ) .  A'

6 16z I E

112  (M  , Z ) - >  A
v Z \  ,

H2 (M , C) pr02 > 11,7' 2

The above diagram implies

8.2. Proposition. Let A' = pr o , (H i (T, Z)) H V  be the dual lattice o f A.
Then e(A') c A n e(FIV ).

So the cohomology classes connected to bundles with e 0  0 are those not coming
from line bundles on M.

For fixed M, there is a restriction on the periods o f a  torus T which is the
fibre of a principal bundle over M  with e 0: The dual lattice must be mapped
to  the (countable) set A .  This means that in  contrast to y fo r  a  given M  there
are  only few possible tori T  for which a  T-principal bundle with, say, injective
s exists.

9. Fibrations by elliptic curves

9 .1 .  Now suppose the fibres are 1-dimensional. Then after choosing a  gen-
erator dt for HIT '°  th e  d2 differentials become (up to sign) multiplication by y(dt)
and  e(d1) in  th e  Hodge algebra o f M  (4.3). T he only possibly non-zero terms
and differentials are
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p ,q - l r p + q - 3 ,2 HV I •q-
2 0

p, qEIV  q -1 , 1  = m i q -1 0  H o.,1 0  T  p -
r 1 m q 0 1-14'°

p, q + 1W q + 1 ,  0  = Flf,e+ 1 0

The F r i' a re  a l l  1-dimensional b u t they help to rem em ber th e  effect o f d2 o n
th e  HW: T h e  m a p  s ta r tin g  a t HW i s  multiplication b y  e(dT), the one
starting at Fri; 0 1-11,. °  multiplies by y(dt) and the last one starting at HW 0 H P
by y(dt) -  e(di).

9.2. We take (1, r) as basis of A , 1 as a generator of V  and use the notation
from 6.5. The change of bases is now

1
dt = dx , + 2 • dX2 d X i _ (t- • d t  -  T • dO

T — T

= dx, + Y  • dx 2d x  2  =  
1
 (  d t + c lT ) .

T — 2

T h u s  a n y  e A  can be w ritten as

•  - - 2
- • 1 + • T .

— T — T

W ith cz  = a 0 1 + b 0 r e  H2 (M, Z) 0 A  a n d  c = 0 1 e H 2 (M, C) 0 V  we can
write the relations between the invariants as fo llow s. A  is  the obstruction for
c  being the  characteristic class o f  a  bundle (6.6).

— T • -cz = a 0 1  + b 0 r =  TO1+_
T — T T — T

c = (a + T ' 0  1 = 0 1

= (a + T • b)
° 2

 =  n°2

5: -  a =
1

• —  T '
T — T

dx 2 b  =
1
 ( + F1)

T — 2

dtH4a + T •b=

dti-+a+T •b =F1

e: d f  (a + 7c • b)°2  = ri °2

Y: d tt-qa +1-6 ) 11 =  //11
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9.3. In  order to construct an  elliptic principal bundle with & # 0 , we have
to find a, b eH 2 (M, Z ) and TEC —R  such that A = (a ± T • b) °2 =  0  and E(dt) =
( a  + ,T • No2 o i.e. a° 2  =  T • b°2 b u t  b °2 O .  This is equivalent to finding a,
b E H 2(M , Z) such that a °2 a n d  b° 2  a re  linear dependent over C  but independent
over R, and T  is  the ra tio  between them.

9.4. Elliptic bundles over M  = Pm' x Pm'• S in c e  hì 41 = = 0, the charac-
teristic class m ap is bijective in th is c a s e . I f  w e vary the transition functions
defining the Calabi-Eckmann manifolds by parameters A i  =  l  +  k1 t, 22 = 12  ±
k2T e A

1
Ou,k1(Ex],[3 ] ) = —

2 ,2 ri
(A ,• log +  22 log

x iY ;

w e get a  family of fibre bundles with characteristic classes

Cz  =  H1 ( )  +  112 2 2  = (11H1 +  121/2) 1  +  ( k i +  k 2 H2 ) C )  e H 2(M, A)

where H 1 a n d  H2 are generators for the integral cohomology of the two factors
(the Chern classes of the hyperplane bundles). These a re  all elliptic principal
bundles over M .  N ow  e = 0  and y(dt) = 2 1 H1 + 22 H2  e

Since the  Hodge numbers o f M  are  concentrated in the diagonal

r + 1 0 r <

hrd = + 1 m , < r < M2

+ m2 — r + 1
 

M 1  r + n12

(assuming m 1 m 2 ), for a given p the only contributions to  the spectral sequence
are

p,pEip-2,2 = 0
 H ' 1

F u c f p f q  1 p,p+1E2p,1

p,p-lEip-2, 1 = 0  K O  _) } g i p =  p ,p E ip ,0

B oth are multiplication b y  y(dt) in  th e  first fa c to r . S o  if  A , a n d  22 a re  both
non-zero, the maps are injective for p m2 and surjective for p > m 1 + 1  which
implies the  result stated in  Chapter 2  (even if m, = 0).

10. Iwasawa manifold

10.1. We are now able to compute the invariants of the bundle introduced
in  C h a p te r  3 . The global holomorphic form  co is  a  lifting  of d t with c.t) = 0
which means y = 0 in the spectral sequence. O n the other hand, if superscripts
distinguish between th e  tw o  factors o f M  =  T  x  T , fo r  th e  complex conjugate
&T) = =  —  d f l  A  dt 2 e H 2 ,  s o  b(c/F) = e(dT)= — dl' A  d t 2  e  H,i 2 a n d  b(dt)=
e(dE)= —dt i A  dt 2  e  H ie  in  th is exam ple. W e can com pute th e  characteristic
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class:

6(dx 1 ) = —
I

6(dt +
2

1
=  - -

2
(dt 1 A  dt2  d T i  A  df2 )

1
=  - -

2
((dx1 + i • dx1) A (dx1: + i • dxi) + (dx1 — i • dx1) A (dX? — i • dX3))

= — dxi A  dx1: + dx A  dx3,

b(dx 2 ) = 6(dt — dl)

= (—dt 1 A  dt 2  + clf 1 A d i 2 )

= + d x 2 • 21•  d (dx — t• dx 2 ))1) (dxi + i • dxi) + (dx, — t • x2
2

= —dx1 A dx3 — dx A  ci.x?

Thus

cz  — (—dx1 A cb4 + dx1 A dx3) 0 1 + (—dx1 A dx3 — A dx ) 0  i

E F12 (M , Z ) 0  A

10.2. T-bundles over T  x  T. L et us investigate to which extent the  GauB
la ttice  can be replaced by a  different o n e  in  th e  above construction. So we
start w ith a n  elliptic curve T, se t M =  T x  T  and  ask  if  th e re  is  a  T-principal
bundle  o n  M  w ith  y =  0  a n d  e O. T h u s  cz  = a 0 1 +  b O T  w ith  a , b e
( w e  0  wi4 2 )n  H 2 (m,  Z) su ch  th a t a ' + TV' = 0 but b 0 (see 9.2). If we write

a = a • dt 1d t 2  + ci • c/F1d E 2 , b = )Y • dt 1d t 2  +  •  c/T1d E 2

then by dt i = dx  + tclx i
2 and c7i + tfi = 0 the integrality condition is equivalent to

7c13+ - 0 e Z , 13+13€Z ,

Tt(13 + "#) e Z , + •T13 e Z ,

tt(rfl + -t -#) E Z , T2fi 'VP E Z

Since the equations are  homogeneous, it suffices to find fi e C such that all the
expressions are rational. One of ,6 + tf l + Tie  must be non-zero, so the lattice
must satisfy the conditions

-r +-TeQ, r f e Q .

These are  also sufficient because T2
16

2 132 ± fr3) — 2 sf(f3 + #), any
0 f i  e Z with tf ,6 and  (t + 'f) 16 integral will do.
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The invariants can be computed from the spectral sequence (9.1), see 13.6.
They are  the  same as fo r the  Iwasawa manifold (with T = i  and /3 = 1 )  given
in  Chapter 3.

1 1 .  Topology of the total space

W e will now investigate homotopy a n d  homology properties o f  th e  bun-
dle. S in c e  n 1 (T )  is  th e  only nontrivial homotopy group o f  a  torus, the long
exact homotopy sequence of the  bundle yields

1 1 .1 . Proposition. n i (X)':—:' ni (M )  f o r  i  3. T he first homotopy groups fit
in the ex act sequence

O - + n 2 (X )  n 2 (M) —> ni(X )— >n,(M)—  O.

1 1 .2 . Proposition. (a) If  b i (M )= 0, then there is an ex act sequence

0 H  (X , C) 1(T, 4 ,  H 2(m ,  C )  H 2(x 3 C )  4  H 2(T,

(b) I f  n i (M )= 0, then there are ex act sequences

0 H i  (X , z) 4 H (T, Z) H 2 (M, Z) -n--** H2 (X, Z) H 2 (T, Z)

H2 (T, Z) 4  H 2 (X, Z) H 2 (M , Z ) H  (T, Z) 4  H I (X, Z) 0.

P roo f. If b(M) = 0, then we can extend the sequence from 5.3(b) one step
further to the  right because E1- 1 = 0 (Serre spectral sequence, [Whitehead] XIII
7.10). But for Z-coefficients (5.6) we must assume that the base space is simply
connected in  order to conclude that the local coefficient system is trivial.

1 1 .3 . Proposition. (a) bi (X )= 0 if and only if b i (M )= 0 and .6: 1- 11 (7; C)
H2 (M, C) is injective.

(b )  In  that case, the restriction to the fibre H 2 (X , C) H 2 (T, C) is zero, the
pull-back H2 (M, C) — > H2 (X, C) is surjective, and

b2 (X )= b 2 (M)— b i (T )= b 2 (M)—  2n.

P roo f. (a) follows directly from the preceeding th eo rem . F or (b) note that
with 6 = d 2 : E3' 1 E V  also d2 : E

°
2 ' 2 E  is  injective. Thus b2 (X ) = b2 (M) —

bi (T ), and  H2 (M, C )  H 2 (X, C) is  surjective.

1 1 .4 . Corollary. I f  b i (X )= 0, then  m -f o ld  products H 2 (X , C) 0 • • 0
H2 (X, C) H 2 m(X, C) are  z e ro . In particular, there is no K aler structure on the
topological manifold underlying X.

P roo f. B y the proposition, all those products com e from  downstairs. So
(m + 1)-fold products vanish for dimension reasons. B y  5.3 this holds already
for m.

1 1 .5 . Proposition. (a) X  is simply connected if  and  only if  n i (M ) is zero
and S z  is  surjective.



( b )  In that case
H 2 (X , Z), thus H 2 (X ,

Proof. I f  M  is
homotopy sequence.
proof o f  11.3.
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the inclusion of  a f ibre induces zero in homology: H 2 (T, Z) 12

Z) = ker 6z .

1-connected, then Sz  coincides w ith n2 (M) t 1 (T ) in the
So (a) follows from 11.1. The proof of (b) is  dua l to  the

Analogously:

11 .6 . Proposition. A ssume that M  is simply-connected. Then 111 (X , Z) = 0
if  and only if  S z  is  injective, and in that case H 2 (X , Z) >H 2 (T, Z) is zero.

Note that by the universal coefficient theorem (e.g. [Dold], VI.7.8) if M is simply-
connected then 5 z is  the dual of Sz . So if 67  i s  surjective, then .5 z  i s  injective.
The converse is  b y  n o  means true, how ever. B ut if (5 z  i s  an injection on to  a
direct summand of 1-12 (M, Z), then Sz  i s  surjective.

11 .7 . In  general, if  w e only assume th a t M  is simply connected, then the
universal covering of X  is also a fibre bundle over M , with connected fibres
since rr,(T ) generates n i (X ) .  The fibre I  is a  covering space of T, it is compact
exactly if this covering is finite, i.e. if X  has finite fundamental group. In  fact,

is an  Abelian complex Lie group, and M  is a  ft-principal b u n d le . If, for
example, T  is  a n  elliptic curve, then X  is  the  quo tien t o f a  C*-bundle (total
space o f  a  line bundle with zero section removed) by a  linear Z-action exactly
if  rc l (X ) is  n o t  f in ite . T h e  m ost extrem e case is that b 1 (X ) equals the fibre
dimension n. Then i" is C" and the bundle is the quotient of an affine principal
bundle by the lattice A.

If, on  the  other hand, it i (X ) is finite, then we can replace the torus T  by
a  finite covering 1 which is a compact complex torus again and get a principal
bundle with simply-connected to ta l space.

1 2 .  Elliptic fibrations over surfaces

This might be the easiest interesting c a s e . Since the total space is a  complex
3-manifold, we can use C.T.C. Wall's results on the topology of real 6-manifolds:

12 .1 . Theorem (C.T.C. Wall's classification of 6-manifolds). L et X  1 > M  and
X ' '4 A4' be two elliptic principal bundles with structure groups T  an d  T ' over
corn pct complex surfaces M  and M '. A ssum e that X  and X ' are simply-connected
with torsion-free homology and that the second Stiefel-W hitney classes of the under-
lying real 6-manifolds (w,(X )= (M) mod 2, w2 (X') = n'*c i (M ) mod 2) are zero.
Then the following statements are  equivalent:
(a) X  and X ' are diffeomorphic.
(b) X  and X ' are (orientend) hom otopy  equivalent.
(c) b 2 (X )= b 2 (X )  and b,(X )= b3(X ').
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Pro o f . This is [W all], Thm. 5 and 6, applied to our s itu a tio n . Here triple
products in  H2 (X) are  always zero (11.4). Since the characteristic classes of X
are pull-backs from M  and the pull-back morphism I-44 (M )  H4 (X) is zero (5.3),
the  first Pontrjagin class always vanishes. Therefore the  Betti numbers b2  a n d
b3  a re  th e  only remaining parameters in the classification.

12.2 . Theorem (Almost complex structures on 6 - manifolds) ([Wall, Thm. 9).
The homotopy classes of almost-complex structures on the 6-manifold underlying
a compact complex 3-manifold X  are in 1-1 correspondence to elements in H2 (X, Z)
that reduce to the second Stiefel-Whitney class o f  X.

12.3 . Proposition. L e t  X  b e  an  elliptic principal bundle over a  simply-
connected compact complex surface M  and assum e th at the transgression S z :
H2 (M, Z) H,(T, Z) is surjective with torsion-free kernel (or that S Z : Hi (T, Z)
H2 (M, Z) is an injection onto a direct summand). Then:
(a) n i (X) = O.
(b) H2 (X, Z) is a free abelian group of  rank b 2 (X )= b 2 (M)— 2.
(c) H3 (X, Z) is a free abelian group of  rank b 3 (X )= 2 . b2 (M) — 2.
(d) X  is diffeomorphic to  a  connected sum (S3 x  S 3 )# • • • #(S3 x  S 3 )1i Y where

Y  is obtaned from 5 6  b y  disjoint surgery operations S 3 x D 3 —> S6 .
(e) There is no Kdhler manifold diffeomorphic to X .

Proo f . (a) and  (b) follow from 11.5. P o in caré  duality a n d  Universal Co-
efficient Theorem  ([D old], VIII.8.1, VI.7.10) im p ly  H3 (X, Z) H 3 (X, Z)
(H3 (X, Z))v 0 Ext (H 2 (X, Z), Z), so from (b) we deduce that H3 (X, Z) is torsion-
free. The rank is determinded by e(X )= O. (d) is contained in [Wall], (e) is 11.4.

12.4 . Remark. S o  in  order to construct interesting bundles o n  a  simply-
connected surface M , w e start w ith a  candidate  for a  characteristic class c z  =
a1 0 A i + a 2  0  e H2 (M, Z) 0 A .  A  corresponding principal bundle exists if
the obstruction A  = A ,•a 2  + /12 4 2 e H,i 2 vanishes (6.6). This is always fulfilled
if the ai a r e  Chern classes of line bundles.

By the preceeding proposition, X  will be simply-connected if ch, a 2  fo rm  a
basis of a  d irect summand of H2 (M, Z ) .  Moreover, if  c l (M ) is  in  th e  span of
the  ai then  c 1 (X ) w ill be zero (5.7). T hen by  12.1 the  diffeomorphism class of
the total space is determined only by b2 (M ) .  If H2 (M) has a  Hodge decomposi-
tion, then s  and y  are  determined by c z  (9.2).

12.5 . Computation of the Hodge numbers. According to 9.1 the  only non-
trivial terms in the spectral sequence o f ex  a r e  0,qEq2-1, 1 _)• 0,q+1E1,0. Contribu-
tions come from

0, 3E1,1

0,2E1,1

0,1E1,0

0,0E0,0

0,1E3,1

= H (
1
1,i2 0 1-1 (

7
1:1

= 0  H 7,1

= 11?i 1

= C

= 0 ,2 r2 , 0



1,q-lEq2-2, 2

l ' qE q ' 12

1,q+1EV-2,0

Rovig-2 0

0  F q , 1 0 H  q o  %ID

N

FI,V+ 1  0  H r

=
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Thus

hc," = 1 = + dim ker e = + h 2  — dim im e =

The other Hodge numbers a re  no t so  easy  to  compute, because multiplication
in  the Hodge ring of M  is involved . F o r p = 1 the information is contained in
(see 9.1):

12.6. Surfaces with hile  = = O. In  this case, the only nontrivial terms
in the spectral sequence o f  0 3 appear in

1,3E 3,2 = 2 0 H I.,

Li r o,2 _ 14 1,1 YEI E, T4 1,1 _  1,2p2,1
" M  "\-% $  " M

1,0 E 3 ,1  = Hiti = 1,1 E 3, o

The morphism y e — e is  injective i f  one  o f the  m aps is nonzero, i.e. if  6  0 O.
Assuming this (otherwise all Hodge numbers equal those o f M  x  T ) we get

= dim ker y = 11,41 — dim im y  hi'2 = — 1 hjc' 3  =  h° '2 .

If moreover 6: C) H 2 (M, C) is injective, the Betti numbers are determined
by 11.3 (and e(X) = 0). T h e n  the invariants are (with e := dim im a, g := dim im y)

1 1

1 — g 1 —  e 0

h°
Ai 2—  g  h )

(42 — e b2(M) — 2

4 2+ — 1 + 14 2 —  1 4 2 2 b 2 ( M )  — 2

— e —g b2(M ) — 2

1 — e 1 —  g 0

1 1

13. Examples of elliptic fibrations over surfaces

13.1 Surfaces with b1 =  0  and b 2 =  2 . L e t  M  be a compact complex surface
with b 1 =  0  and  b 2 =  2 , consequently with Euler characteristic e = c 2 = 4. A
look on the classification table ([BPV], Chapter VI) shows us that Miyaoka-Yau
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inequality cl < 3 'c 2 h o ld s , a n d  th a t  x(em ) = 1 — + ni 2 m u s t  b e  positive
(in the algebraic case this is clear because 2/4,4°  =  bi (M )= 0, and for the possibly
non-algebraic elliptic surfaces w e know  x >  0  unless a ile  f ib re s  a re  (possibly
multiple) non-singular elliptic curves, w hich w ould im ply e(M) = 0 ([BPV],
111.11.4, V.12.2 and the remark preceeding it)). Together with Noether's formula

1 (,2 + c
2 ) = x((9m ) e  Z  this only leaves the invariants

12 ‘- 1

c2i = 8 C 2  -  4 , x(em) =  1

So M  is either rational, i.e. a  (simply-connected) Hirzebruch surface Er (for r =  1
a  blown-up P 2 ,  otherwise M  is  minimal), or i t  is  surface of general type with
these special invariants. In the latter case M can either be the blow-up of a ball-
quotient surface with d  = 9, c 2 =  3  (the only known example being Mumford's
fake P 2 )  which m ust have infinite fundamental g roup , o r i t  i s  m inim al. For
minimal surfaces of general type with those invariants tw o constructions due to
Beauville a n d  Kuga (cf. [BPV], V11.11) a re  known, b u t  both lead to infinite
fundam ental groups. I n  any  ca se  fo r  a  bundle w ith y 0  the invariants are
those of Calabi-Eckmann manifolds:

1

0 10

0 1 0 0

0 1 1 0  2

0 1 0 0

1 00

1 1

1 3 .2 . Bundles over Hirzebruch surfaces. L et M  b e  one  o f the  Hirzebruch
surfaces Er . Then n i (M) = 0, =  0 ,  and b2 (M ) =  2 . So for any given charac-
teristic class in H2 (M, Z )  A there is a unique b u n d le . If Sz  is  an isomorphism,
then the  to ta l space o f this bundle is diffeomorphic to  S3 x S 3 a n d  th e  Hodge
numbers are  the same as  in  the  Calabi-Eckmann case.

Such bundles have been constructed by M aeda, also in  higher dimensions
over base spaces which are  Pm2-bundles over Pm' ([Maeda]).

1 3 .3 . Bundles over other rational surfaces. Every blow - u p  a d d s  a direct
summand Z  to  H2 (M , Z ). Let o-: M  Er b e  a  k-fold blow-up of Er . If we take
the pull-back of the characteristic class of a bundle on Er a n d  add all the classes
of exceptional divisors (in  o rder to  k ill c,(X)), we can define a  lo t o f simply-
connected bundles with torsion-free homology a n d  ci (X) =  0  o n  M . T h e  in -
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variants are

0 1 0

0  b 2 (M) — 1 0 b2(M) — 2

0  b 2 (M) — 1 b2 (M) — 1 0 2 . b2 (M) — 2

0  b 2 (M) — 1 0 b2(M) — 2

1 00

with b2 (M) = k + 2, the  diffeomorphism type is determined by this invariant.

1 3 .4 . Simply connected surfaces. Since the minimal model l a  o f  a  simply
connected compact complex surface M  is again simply connected, the  Enriques-
Kodaira classification ([BPV], Chapter VI) tells us that the minimal model must
be either rational o r  K3 o r  proper elliptic (i.e. of Kodaira dimension ic = 1) or
of general ty p e . In  any case b2 (M )  b 2 (1//-  ) 1 .  Since there is always a  rational
surface with isomorphic second cohomology (the intersection form does not play
any role here), the  to ta l space of any simply-connected elliptic principal bundle
(with torsion-free homology a n d  w2 = 0) over any simply-connected surface is
diffeomorphic to  a  bundle over a  rational surface, which m eans that there are
complex structures of different Kodaira dim ension  on  the  same differentiable
manifold. If the second Stiefel-Whitney classes coincide, they are even homotopic
as almost-complex structures.

1 3 .5 . Remark. If X  is any complex 3-fold diffeomorphic to  S3 x S 3 w ith
Kodaira dimension K(X ) = 2, then its algebraic dimension is also 2 and by [Akao]
P art I, Theorem 1 and (the proof of) Corollary 3, it adm its a  torus action with
possibly singular quotient space M  of general type whose minimal resolution is
a  (then simply-connected) surface I I  w ith  h 2 =  0 . By [Akao], Corollary 4, the
rational cohomology ring of M  equals the one of x

1 3 .6 . Bundles over an abelian surface. N ow  w e consider a n  elliptic fibre
bundle over a n  abelian surface, assuming (5 0 0. A s before, we se t e := rank 2,
g := rank 7. B ut now  w e a lso  have to  consider th e  m ap  1-1Ï  HP°

multiplication by y(dt). Its rank h can take the values 0 (<=>g = 0), 1 (e.g. y(dt) =
dt i  A  dE2 ), or 2 (e.g. y(dt) a  K aler fo rm ). Furthermore we need f  := rank(FIV e
H°

Ai l -- K1,42 ) (induced by multiplication by e(di) on the first and by y(dt) on the
second sum m and). But f  = 2  if e  = 1 and f  = h  if e = 0 , and  g  is determined
b y  h , s o  th e  parameters for the spectral sequence a re  only  e e {0, 1 } a n d  h e
{0, 1, 2},  not bo th  z e r o . Then the invariants are:
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1 1

5 — f — g 3 —  e 4

3 h 8 — f  — g 3 — e 8

1 6 — h 6 — h 1 10

3 — e 8 — f  — g 3 — h 8

3 —  e 5 — f  — g 4

1 1

F or e 0, i.e. e = 1, there are  three possible sets of Hodge numbers, and  they
all occur for small deformations of the Iwasawa manifold, see 14.6.

13.7. Fibrations over a K3 surface. According to 12.6, the invariants of a
bundle with (5 injective can take three different sets of values depending on the
ranks g  a n d  e  o f  y  a n d  e. I n  a n y  case X  is simply-connected with trivial
canonical bundle.

1 — g

1

1 — e

1

0

1 20 — g 1 — e 20

1 20 20 1 42

1 — e 20 — g 1 20

1 —  e 1 — g 0

1
1

For example, one can take the Calabi-Eckmann fibration over P 1 x  P 1 and pull
it  b a c k  to  a  K3-surface w hich is a  2-sheeted cover ramified along a  smooth
curve of bidegree (4, 4).

But this is only one exam ple. The most interesting ones may be those with
e 0, which should be quite numerous if the Picard number is small.

1 4 .  Infinitesimal deformations

1 4 .1 . W e w ill now  study th e  space H ' ( 0 )  o f  infinitesimal deformations
o f X .  Combining the exact sequence from Leray spectral sequence fo r  e x im ,
0 ,  and 7E*0, (horizontal) and cohomology sequences from 1.4(e), we obtain the
diagram
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0 —) Fe(Gom) H°(7r*Om) 0

1

0-+ H 1(z* Ox1m ) —) 1-11(e xim ) H° (12.11t* (9xim ) H2 (n* (9xim )

1 1 1

—) I-11(n, ex ) —) I- 11 (e x ) H°(Rin*Ox) H2(7r*ex)

1 1

— ■ F11 (0m ) 1-1'(1r*em) Fr(R l ir* n*Om) H2(0m)

1 1

H 2  (n* Ox im) H2(ex1m) 1-11(R17t*6)xim)

H2(n* ex)

14.2. W ith all the isomorphisms from above this becomes

—) H ° (0m ) —) H ° ((9m ) 0

1Y51

0 —) I-M 1 V  —) V —) F1?-' 1 C) V C) V

0 —0E11 (740x ) H i ( e x )  _ +  H o,1 0  H o(e x ) H 2(ir* e x )

1

H i (em) Hi(eem) FICT" 1-1°(0m) 142(0m)

1

C) V - 4 f i ' 2  0 V  H(7)..,1 0  v  0  H ONi l

H2 (n* ex)

14.3. Remark. The vertical connecting homomorphisms y', y 4 , y 5 are in-
duced by (the dua l o f) y  (1.5(a), 1.4(e)), y5 i s  y ',  tensored b y  the identity of
H V . The horizontal d2-map s '  is e 0 i d , .  The maps with a superscript occur
in Borel spectral sequence which we will investigate in 14.7.

14.4. In the m uch more general situation of a holomorphic Seifert fibre
space Suwa considers the following decomposition of I- 11 (0 x )  derived from the
above diagram [Suwai



0
1

A F

1

1
AD

0

0

0

0

254 Thomas 116fer

0 0

0 DA T

0 H (e x

0 GAp

0 0

Here

AT  := coker y5

A ,:= ker e 3

A p:= ker

A D  := ker y" f l ker E2

deformations preserving th e  T-action w ith quotient
space M

deformations o f  T

deformations of M  preserving the  fibration

deformations destroying the fibre structure

A T  is  the space of infinitesimal 'twist deformations', i.e. deformations which are
still T-principal bundles with the same structure group over the fixed base space
M .  A ll o f them  a re  unobstructed ( [Suwa ], Thm. 3.3). 63  i s  the obstruction
m ap fo r  a  deformation o f  T  inducing a  g lobal infinitesimal deformation. The
deformations in  A T  A, 0  A , are still torus principal bundles.

1 4 .5 . Invariants of the deformations. U nder a  deformation in  A  := A T @
A, 0  Ap , the characteristic class cz  (an d  therefore also S) remains unchanged if
the cohomology of the deformed manifolds M ' and  T ' is identified with that of
M  a n d  T, respectively. For A T -deformations M  a n d  T  a re  not changed, so E
and y also remain the same.

1 4 .6 . Deformations of the Iwasawa manifold. F o r  th e  Iwasawa manifold
the com putations are very easy because the tangent sheaf is  triv ia l and  y  is
O. T he  connecting homomorphisms in  the  vertical sequences a re  a lso  0 , and
we compute dim 111 (e x ) = dim 1-11 (7c,Ox ) = 6, dim A T  2, dim Ap = 4 and A, =
A D = O. Therefore each infinitesimal deformation of M  induces an  infinitesimal
deformation of X  w hich is still a  T-principal b u n d le . B ut deformations o f  T
cannot be  globalized — anyway A  i s  a  very special lattice. In  fac t, th e  small
deformations have been computed by Kodaira and Nakamura, see [Nakamura],



Torus principal bundles 255

Sect. 3. The Hodge numbers of the deformations are also given there. E remains
nonzero in  all cases while y  can take different values, see 1 3 .6 . Depending on
y  (i.e. h = 0, 1, 2 in 13.6), three different sets of values for the Hodge numbers
occur (A T ,  A , — 0, and  the  complement):

1 1 1 1

3 2 2 2 2 2 4

3 6 2 2 5 2 1 5 2 8

1 6 6 1 1 5 5 1 1 4 4 1 1 0

2 6 3 2 5 2 2 5 1 8

2 3 2 2 2 2 4

1 1 1 1

(Recall that while Hodge numbers are constant in  complex-analytic families of
Kdhler manifolds, they a re  only upper-semicontinuous in the non-Kdhler case,
see [Wells], V.6.5, V.6.6.)

14.7. Spectral sequence converging to m e ) .  In  general we can compute
f l i (Ox ) = Hm- n-H (S21 0 i t * i rm ) v  using Borel spectral sequence for p =  1  b u t with
a tw ist by ,Y(m . Such twists with vector bundles on the  base  space have been
included in  [B o re l]. Writing the twisted Hodge space H q(S2f, 0 il -m ) as Fif,e(Y (m )
the spectral sequence is (again p + q = s + t  but only considering the case p  = 1)

l 'q fs it =  n s ( i t fm ) 0 C) Hiis-1(irm )0

(HOx i m -s 0 f in  -t+1 ( 6 ,T )  0  H m-s±i ( e m )  0  H13.,n -ty

=  (HOjvi m-s 0 Wr7:.1,ri-t+1 0 V $ H m -  s  (e  m ) 0  H O .,n -t)v

f i n + m - q  x ) v G r H l r 'q  ( Y ( X ) =
1, qt- so;t

s+t=1-1-q

( . '  here means Serre duality.) The spectral sequence has no ring structure any
m ore but still a HW-module structure H iiii(Y m ) 0  Hriis — ■ H - i+ s ( i (m ). With the
same arguments like in  4 .3  one can show

14.8. Proposition. L e t E: H 4 2  HY - 1  a n d  jY: 01-V T-l'i be
the iterates derived from E and y by Leibniz' rule. T h e n  ii2 (w  0  =  w  •  ( (9) + "j, (3)).
T he higher differentials are zero.

The differential is thus



1, qEs2, t

1,12

1,q+1Es2+2,1-1

H°Ais(itrm) 0 H P - 10  1-1,tis- 1 (dr,) W .'

0  I i i i.S+1Gy(m ) 0 HCT,t- 1HO,s+ 2 H p-2
M
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(1,q+1Es2+2,t -1 )v HO,m-s-2 0 HO .,n - t+ 2  0  v  0  H m -s -1 (e m ) H O T,n -t+1

FIZim- s 1 - 1 ' " +1 V  0  H m - s+1 (e m ) 0 FI c
r'''

A  careful consideration of those maps shows

14.9. Proposition. (a) )3̀ ' is the connecting homomorphism in the cohomology
sequence o f 1.4(e).

(b) 4v is the d2 -morphism f1,94 rn- s- 2 0 + 2 I n i m - s  F r i l , n - t + 1  f rom  the
spectral sequence o f ex , tensored by  id,.

(c) Ev is not so easy  to describe but it vanishes if  e = O.

I n  order to compute 1-11 (e x )  w e have to  take  s + t - 1 = q = n + m —  1.
Since only s <m  + 1 and  t < n + 1 can give contributions, we need to consider
only s = m — 1, in ,  m + 1 and  get the  following spaces and  d2-differentials (first
in spectral sequence notation, then their duals):

1,n+m-2En2t-1,n 1,n+m-lEn2a +1,n-1 0

1,n+m-2ÊT-2,n+1 1,n+m-1 "Ér2n,n

0 ,  1,n+m-1En21-1,n+1 1,n+mÊn2t+1,n

HOt i m -1 (itrm )  0  H p - 1  0  H  m -2 (1 / -m ) 0  in n H m ( M )  0  H O ,,n-1 _ 3,, 0

Arm ) 0 HCm,,m j(m )  0  a lr ,n  -1  0 1 (y (m )  0  H o: .

H zi m-i ( A rm )  0  a iro H n (ir m ) f fpn

0 I-IV  0  V $  H2 (0,,,)V2 L'2
-  HO(0m ) I-1;t' 1 4— 0

Fni 2 0 V O V0 H 1(em )4- 0

0 4—FQ4 1 0 V4 ' H° (0A4)

15. Special cases

15.1. If the  spectral sequence degenerates, the invariants are

h r ( e x )  i +  i E r  ( n1 )  /i v  ( n i ) .  h i ± i  ( e m ) )

E (n ) (n + h i (e m ))
i+ j= r
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15.2. Remark. In the case Vfriq = 0 for g > 0, all the y-differentials are zero.
All remaining differentials come from E, but this is zero because h,;,1i 2 = O. T h e re -

fore the spectral sequence degenerates, and h r( 0 ) = (
n)  

+ E(

rn —  i

)

1(1
.

(em).
r

15.3. Bundles over curves. In  this case always e 0, and

1,qESi t  =  FeviS(Arm ) 0  f q .,t - 1 0 H i ( y ( m ) 0 117 .,t

i s  non-zero on ly  fo r  s = 0, 1, 2 . T h e  only possibly non-zero m aps a r e  r:
H  joe((m)0Hp-1_,H1.41(s-34)01n,t-i. But H,(,Y (,)=Hs(A rm )  and fl itis+1 (.1fm )=
H s+1 Gytfm 2,

5) s o  the  only  case w here both are non-zero is  M  a n  elliptic curve,
s = O. T h e re fo re  the spectral sequence degenerates fo r non-elliptic curves, and
the cohomology is given by 15.1.

If M is an  elliptic curve, then HV (* m ) = The first summand of 1.4kir
is the starting point of r  (for s = 0) and the second one receives 3t -1 (for s = 2),
and r  is nothing but y 0 idH-,: 0  H IV  0  H t - 1 .  So in the non-

trivial case th is  m a p  is  surjective w ith a  kernel of dim ension (n — 1)
( t

In the spectral sequence we still have

1,two,t: ker r

H '  Hp - ,  e wp,
coker

n n + 1
Assuming y  0  we get h ' (e ) =  (n  —  1 )(

n

) +  n (
)  (

n+ — n
( )

g — 1 g )
Depending on  the  genus g  of the  curve, the  result is thus

hr(e x ) = (n + 3 ) (f l)
(g = 0)

hr(e x ) = (n + 1) ( n  +  1 ) ( g  = 1, y = 0)
r )

h r ( e x )  =  n (
n +

)
(g = 1, y 0 )

r 

h r ( e x )  n  ( it) (  n
( ( n  +  3 ) g  —  3 ) ( g  2 )— 1

15.4. Calabi- Eckmann manifolds. Here h° (0m ) = in? + 2m1 + mi + 2m2 , and
le(0m ) = 0 if i >  0, and the spectral sequence degenerates by 15.2. Thus 1-11 (0 x )
H1(eT ) e fr(em ). O nly 'fibre deformations' (dim A F = 1) and 'fibre destroying
deformations' (A D  H ° (0m ), dim AD = (1111 + 2)m1 + (m2 + 2)m2 )  o c c u r . While
all small deformations have Kodaira dimension —co, th e  algebraic dimension
drops for the 'fibre destroying deformations' ([Akao], P art II, Prop. 2 and  3).
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15.5 . Elliptic fibrations over manifolds with hi
(41 = O. H e r e  th e  diagram

reduces to

0

0

H ij( ' 1

0 1-11(7r e x ) H 1 (Os)

0 H '(0 ,) 1-11 (e 0 m )

ly4

0 H°42 H , 2- >

H 2 (n l , eX)

I f  w e  assum e th a t  in  a d d itio n  44 2 =  0 , th e n  I- 11 (ex ) Fi1(em) 111 (eT) CD,

H° (0m ). I f  X  is  a  nontrivial elliptic fibration w ith  e = 0  o v e r  a  K3-surface,
h° (9,) =  1, hl (ex ) = 20, 112 (0x ) = 19, h3 (e x ) = 0. Besides th e  1-dimensional AF

only Ar -deformations coming from the base space exist, but y4 gives an  obstruc-
tion for lifting those deformations to X.

15.6 . If M is a surface of general type with
and  x(em ) = 6 by  Hirzebruch-Riemann-Roch.

041 = hi
(4,2  =  0, then H° (0m ) = 0

15.7 . Rigid spaces. In  order to construct
y1 e c 2  and  e3 + y 4 injective and y5 surjective.
of general type w ith Vf ri l  = 0  such that e:

any ball quotient surface with 0 0 p9 = x(C9m ) —

a  rigid to ta l space, we m ust get
Any bundle o n  a  rigid surface

is  non-zero will do , e.g.
1

1 = —
3 

c2(M) — 1.
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