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Abstract. A domain in a complex 3-dimensional projective space is
said to be large, if the domain contains a line, i.e., a projective linear subspace
of dimension one. We study compact complex 3-manifolds defined as non-
singular quotients of large domains. Any holomorphic automorphism of a
large domain becomes an element of the projective linear transformations. In
the first half, we study the limit sets of properly discontinuous groups acting
on large domains. In the second half, we determine all compact complex
3-manifolds with positive algebraic dimensions which are quotients of large
domains.

1. Introduction.

The theory of discrete subgroups of PGL (2,C) has a long history. Let Γ be
a discrete subgroup of PGL (2,C). We say that the action of Γ at a point z ∈ P 1

is discontinuous, if there is a neighborhood W of z such that γ(W ) ∩ W = ∅
for all but finitely many γ ∈ Γ. Following B. Maskit [Ms], we call a subgroup
Γ ⊂ PGL (2,C) whose action is discontinuous at some point z ∈ P 1 by Kleinian
group.

Let Γ ⊂ PGL (2,C) be a Kleinian group. The set Ω(Γ) of points z ∈ P 1 at
which Γ acts discontinuously is called the set of discontinuity of Γ. The set Ω(Γ)
is a Γ-invariant open subset in P 1 on which Γ acts properly discontinuously. The
geometry of the quotient space Ω(Γ)/Γ is one of the main theme in the classical
Kleinian group theory. The celebrated finiteness theorem of L. Ahlfors says that,
for a finitely generated Kleinian group Γ, Ω(Γ)/Γ is a finite union of compact
Riemann surfaces which are punctured at finitely many points.

If we seek for a higher dimensional version of the Kleinian group theory, we
must first define the set of discontinuity for a given discrete subgroup. Fix n ≥ 2.
Take a discrete subgroup Γ ⊂ PGL (n + 1,C) acting of P n. Consider, as above,

2000 Mathematics Subject Classification. Primary 32J17; Secondary 32M05, 32Q57, 32D15.

Key Words and Phrases. compact non-Kähler manifold, projective structure, algebraic
dimension.

This research was supported by Grant-in-Aid for Scientific Research (C) (No. 19540100),
Japan Society for the Promotion of Science.

http://dx.doi.org/10.2969/jmsj/06241317


1318 M. Kato

the set Ω(Γ) of points z ∈ P n at which Γ acts discontinuously. Then it is true that
Γ acts on Ω(Γ), but the action is not properly discontinuous in general. Therefore,
we must find another definition of the set of discontinuity to get a good quotient
space.

In this paper, we restrict ourselves to the case n = 3. Some part of the
following arguments may apply for every odd n. We say that a discrete subgroup
Γ of PGL (4,C) is of type L, if Γ has the property

(L) there is an open subdomain W ⊂ P 3 biholomorphic to
{
[z0 : z1 : z2 : z3] ∈ P 3 : |z0|2 + |z1|2 < |z2|2 + |z3|2

}

satisfying γ(W ) ∩W = ∅ for any γ ∈ Γ \ {1}.

In the first half of this paper, we shall study some properties of groups of type
L. For such discrete subgroups, lines in P 3 play the same role as points in Kleinian
group theory. Let Γ be a discrete subgroup of type L. Using lines, in stead of
points, we define the set Ω(Γ) of discontinuity of Γ (Definition 5). The action of
Γ on Ω(Γ) is properly discontinuous (Theorem 2.5), and Ω(Γ)/Γ becomes a good
space. There are many discrete subgroups of type L. Indeed, most of the flat
twistor spaces over conformally flat real 4-dimensional manifolds are the quotient
spaces of subdomains in P 3 by the actions of type L groups. Further, given two
groups Γ1 and Γ2 of type L, we can get another type L group Γ ' Γ1 ∗ Γ2 by an
analogous operations of Klein combinations ([K1]).

A domain Ω in P 3 is said to be large, if it contains a projective line. Let Ω
be a large domain. Then any holomorphic automorphism of Ω appears to be an
element of PGL (4,C) ([K1]). A properly discontinuous group Γ of holomorphic
automorphisms of Ω is of type L (Proposition 1). Further, if the action of Γ on Ω
is cocompact, then Ω is a connected component of Ω(Γ) (Theorem 3.1). This fact
seems to justify our definition of Ω(Γ).

In the latter half of this paper, we shall study the compact quotient Ω/Γ with
positive algebraic dimension. By [K5, Theorem A], we see that Ω is dense in P 3

in this case. Thus by Theorem 3.1, we have Ω = Ω(Γ). To give the statement of
our result, we recall the definitions of Blanchard manifolds and L-Hopf manifolds.

Definition 1. A 3-dimensional compact complex manifold is called a Blan-
chard manifold, if its universal covering space is biholomorphic to the complement
of a single line in P 3.

Definition 2. A 3-dimensional compact complex manifold is called an L-
Hopf manifold, if its universal covering space is biholomorphic to the complement
of two disjoint lines in P 3.
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For the structure of such manifolds, see [K3], [K2], and [KK]. Now we have the
following.

Theorem 1.1. Let X = Ω/Γ be a compact complex manifold which is a
quotient of a large domain Ω ⊂ P 3 by a fixed point free and properly discontinuous
group Γ of holomorphic automorphisms of Ω. If X admits a non-constant mero-
morphic function, then X is biholomorphic to either P 3, a Blanchard manifold,
or an L-Hopf manifold.

In [K5], a proof of this theorem was given under an additional condition on the
complement P 3 \ Ω. We use freely results of Sections 1, 2 and 4 in [K5], but not
those of Sections 3 and 5.

In view of Theorem 1.1, if Ω(Γ)/Γ contains a compact component of positive
algebraic dimension, Γ may be classified into a class analogous to the elementary
groups in the Kleinian group theory.

We conclude Introduction by a remark that we cannot hope for an analogue
of Ahlfors’ finiteness theorem for Ω(Γ)/Γ. A counter example can be given by the
twistor construction from the finitely generated subgroup of conformal transfor-
mations of S4 defined by M. E. Kapovich and L. D. Potyagailo [KP].

Acknowledgements. The author is thankful to Professor Fumio Sakai for
the helpful discussions on the adjunction formula. Professor Akira Fujiki kindly in-
formed him a valuable remark on the insufficient argument in deriving Proposition
10 in the original version, to whom he would like to express deep appreciation.

2. Discontinuous groups in the projective 3-space.

By a line, we shall mean a complex projective linear subspace of dimension 1
in P 3. The lines in P 3 are parametrized by the Grassmannian manifold Gr(4, 2).
A line ` in P 3 corresponds to a point in Gr(4, 2) denoted by ˆ̀. By using Plücker
coordinates, Gr(4, 2) can be identified with a quadric in P 5, and each element of
PGL (4,C) induces an automorphism of P 5 which leaves the quadric invariant.
Therefore we have the group homomorphism

PGL (4,C)
ρ→ PGL (6,C),

with

ρ(PGL (4,C)) ⊂ Aut(Gr(4, 2)).

In the following, for a subset S ⊂ P 3, we denote by Ŝ ⊂ Gr(4, 2) the set of points
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corresponding to lines contained in S.
Let U be the domain in P 3 defined by

U =
{
[z0 : z1 : z2 : z3] ∈ P 3 : |z0|2 + |z1|2 < |z2|2 + |z3|2

}
.

The notation U is used to indicate this domain throughout this paper. Note that
the complement P 3 \ [U ] is also biholomorphic to U . The lines in U constitute a
bounded Stein domain Û ⊂ Gr(4, 2), which is biholomorphic to

{X ∈ M(2,C) : X∗X ¿ I}.

For any line ` in P 3, the family of open sets containing ` and biholomorphic to U

forms a fundamental system of neighborhoods of ` in P 3.
We recall here several results of Myrberg [My]. Let Γ be a subgroup of

PGL (n + 1,C) and {σm} be an infinite sequence of elements of Γ. Let σ̃m ∈
GL (n + 1,C) be a representative of σm such that ‖σ̃m‖ = 1, where for a matrix
A = (ajk) of size n + 1, we put ‖A‖ = max0≤j,k≤n |ajk|. We say that {σm} is a
normal sequence if the following conditions are satisfied.

1. The sequence {σm} consists of distinct elements of Γ.
2. The sequence of matrices {σ̃m} can be chosen to be convergent to a matrix σ̃.

The projective linear subspace defined by the image of the linear map σ̃ : Cn+1 →
Cn+1 is called the limit image of the normal sequence {σm} and denoted by
I({σm}). Similarly the projective linear subspace defined by the kernel of σ̃ is
called the limit kernel of {σm} and denoted by K({σm}). Here r = rank σ̃ is
called the rank of the normal sequence. Note that I({σm}), K({σm}), and r are
determined independently of the choice of representatives σ̃m. Obviously, we have
dim I({σm}) = r − 1 and dimK({σm}) = n− r.

Theorem 2.1 ([My, Satz 8’]). Let V = {F (z) = 0} be a non-singular
hypersurface in P n. We assume that V is not cylindrical, i.e., the set of vectors
{gradx F : x ∈ V } spans Cn+1. Let {σm} be a normal series in PGL (n+1,C) such
that every σm leaves V invariant. Choose a representative σ̃m ∈ GL (n + 1,C)
of σm with ‖σ̃m‖ = 1. Suppose that the series of linear transformations {σ̃m}
converges to σ̃ ∈ M(n + 1,C) with rank σ̃ = 1. Then the limit kernel K({σm}) is
tangential to V at some point.

Proof. Put σ̃ = (σ̃`
k). Since rank σ̃ = 1, there are non-zero constant vectors

c = (c`) and σ̃ = (σ̃k) in Cn+1 such that σ̃`
k = c`σ̃k. Since V is not cylindrical,

there is a point α of V , such that
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n∑

`=0

∂F

∂z`
(α)c` 6= 0 (1)

holds. The tangent hyperplane Tσ−1
m (α) = σ−1

m (Tα) is given by

n∑

k=0

( n∑

`=0

∂F

∂z`
(α)

)
σ̃`

mkzk = 0.

The coefficients

n∑

`=0

∂F

∂z`
(α)σ̃`

mk, k = 0, . . . , n

of the tangent hyperplane tends to

( n∑

`=0

∂F

∂z`
(α)c`

)
σ̃k, k = 0, . . . , n

as m → +∞, where all the limits are not zero by (1). Note that K({σm}) is given
by

∑n
k=0 σ̃kzk = 0. Therefore, the limit of the sequence of hyperplanes {Tσ−1

m (α)}
coincides with K({σm}). At the same time, we see that K({σm}) is tangential to
V at some accumulation point of the sequence {σ−1

m (α)}. ¤

Theorem 2.2 ([My, Satz 8]). Let V = {F (z) = 0} be a non-singular
hypersurface in P n. We assume that V is not cylindrical. Let {σm} be a normal
series in PGL (n + 1,C) such that every σm leaves V invariant. Then the limit
image I({σm}) is contained in V.

Proof. Put I = I({σm}) and K = K({σm}) for short. Suppose that I

is not contained in V and we shall derive a contradiction. Let σ the projection
defined by the limit σ̃. Put i = dim I, then n − i − 1 = dimK. Take any point
w ∈ I. Then the fibre of the projection σ through w ∈ I is an (n− i)-dimensional
projective linear subspace Lw containing K. Suppose that σ(V \K) is contained in
a proper subvariety, say V0, of I. Then we have n−1 = dimV ≤ dimLw+dim V0 ≤
(n − i) + (i − 1) = n − 1. Hence we see that dim V0 = i − 1 and V is contained
in σ−1(V0). This contradicts the assumption that V is not cylindrical. Hence Lw

intersects V outside K. Since every σm leaves V invariant, we see that w is a limit
point of some point in V \K and we have I ⊂ V . ¤
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From now on through out this paper, we assume that Γ is of type L, if not
stated otherwise explicitly. A normal sequence {σm} of Γ defines a normal sequence
{σ̂m}, σ̂m = ρ(σm), of PGL (6,C). Thus {σm} defines I({σ̂m}) and K({σ̂m}) in
P 5.

Definition 3. A line ` in P 3 is called a limit line of Γ, if there is a normal
sequence {σm} of Γ with ˆ̀∈ I({σ̂m}).

Later, we shall see that I({σ̂m}) consists of a single point for type L groups (see,
Corollary 2). Let L = L (Γ) denote the set of limit lines of Γ.

Definition 4. The union

Λ = Λ(Γ) =
⋃

`∈L (Γ)

|`|

of the support of limit lines of Γ is called the limit set of Γ.

Here we often indicate by |`| the support of a line ` in P 3 in order to express
explicitly the set of points on the line.

Definition 5. The set

Ω(Γ) = P 3 \ Λ(Γ)

is called the set of discontinuity of the group Γ.

By the property L, Ω(Γ) is non-empty and contains many lines.

Theorem 2.3. Let {σm} be a sequence of distinct elements of Γ. Then
there are limit lines `I , `K , and a subsequence {τm} of {σm}, such that {τm} is
uniformly convergent to `I on P 3 \`K in the following sense that, for any compact
subset M ⊂ P 3 \ `K , and for any neighborhood V of `I , there is an integer m0

such that τm(M) ⊂ V for any m > m0.

Proof. Put sm = σ̂m for simplicity. By replacing {sm} with its subse-
quence, we can assume that the sequence of representatives {s̃m} ⊂ GL (6,C)
converges to a linear map s̃ : C6 → C6 with rank s̃ = k. Let LI , LK be the
projective linear subspaces in P 5 defined by the limit image and the limit kernel
of {sm}, respectively. Here we have dim LI + dimLK = 4. Since Gr(4, 2) is not
cylindrical, we see that LI is contained in Gr(4, 2) by Theorem 2.2. If dimLI ≥ 1,
then B =

⋃
ˆ̀∈LI

|`| is an algebraic surface contained in Λ(Γ). This is absurd, since
Ω(Γ) contains a line which does not intersect B. Consequently, we have that LI
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is a single point. Let `I be the line in P 3 corresponding to the point LI . By
Theorem 2.1, LK is a hyperplane tangent to Gr(4, 2) at some point ∞. Hence
Gr(4, 2)∩LK parametrizes lines in P 3 intersecting the line `K which corresponds
to ∞ ∈ Gr(4, 2). Let M be any compact subset of P 3 \ `K . Take a neighborhood
W of `K which is biholomorphic to U and has no common points with M . Put
M1 =

(
P 3 \W

) ⊃ M . Note that M1 is filled with lines and the set M̂1 ⊂ Gr(4, 2)
which parametrizes lines in M1 is a compact subset in Gr(4, 2) \ LK . By another
theorem of Myrberg [My, Satz 1], we see that {sm} is uniformly convergent on
any compact subset in P 5 \ LK .

It is clear that `I is a limit line. We shall show that `K also is a limit line. Let
[z0 : · · · : z5] be a system of homogeneous coordinates on P 5 such that Gr(4, 2) is
given by 〈z, z〉 = 0, where

〈z, z〉 =
5∑

i=0

z2
i .

Then, for each s̃m ∈ GL (6,C), there is λm ∈ C∗ such that

ts̃m · s̃m = λmI.

Hence we see that s−1
m is represented by the transposition ts̃m of s̃m and there-

fore the sequence {s−1
m } is also a normal sequence. Obviously we see that

{ts̃m}converges to the linear map ts̃ : C6 → C6, and that s̃ and ts̃ are matri-
ces with rank 1 which satisfy ts̃ · s̃ = s̃ · ts̃ = 0. Let L′I , L′K be the projective linear
subspaces in P 5 defined by the limit image and the limit kernel of {ts̃m}, respec-
tively. Namely, L′I is the projective linear subspace corresponding to Im ts̃, and
L′K is the one corresponding to Ker ts̃. Since Ker ts̃ = (Im s̃)⊥, L′K coincides with
the tangent hyperplane to Gr(4, 2) at the point LI = ˆ̀

I . Since Im ts̃ = (Ker s̃)⊥,
L′I coincides with the point ˆ̀

K . Thus, in particular, `K is a limit line of the
sequence {σ−1

m }, and the theorem is proved. ¤

In the course of the proof above, we have shown the following corollaries.

Corollary 1. Let `0 be a limit line of Γ. Then there are a limit line
`∞, and a normal sequence {σm} of distinct elements of Γ such that {σm} is
uniformly convergent to `0 on any compact set in P 3 \ `∞ and that {σ−1

m } is
uniformly convergent to `∞ on any compact set in P 3 \ `0.

Corollary 2. Let Γ be a properly discontinuous group acting on a large
domain. Then, for any normal sequence {σm} in Γ, the limit image I({σ̂m}) in
Gr(4, 2) consists of a single point.
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Theorem 2.4. Λ(Γ) is a closed, nowhere dense Γ-invariant subset in P 3.

Proof. Let x be any point in Λ(Γ). Since x is on a limit line, say `0, there
is a normal sequence {σm} of Γ with I({σ̂m}) = ˆ̀

0 by Corollary 1. Then {σ ◦σm}
is a normal sequence with I({σ̂ ◦ σ̂m}) = σ̂(ˆ̀0). Since the limit line σ(`0) passes
through the point σ(x), Λ(Γ) is Γ-invariant.

To show that Λ(Γ) is closed, let {xm} be a sequence of points of Λ(Γ) such
that limm xm = x for some point x ∈ P 3. Let `m be a limit line through xm.
By Corollary 1, for each m, we can find a limit kernel line `m,∞ and a normal
sequence {σm,k}k such that I({σ̂m,k}k) = ˆ̀

m and such that the sequence {σm,k}k

is uniformly convergent to `m on compact sets in P 3 \ `m,∞. Taking a subse-
quence of {σm}, we can assume that the `m are all distinct and that {ˆ̀m} and
{ˆ̀m,∞}m are convergent in Gr(4, 2). Since {ˆ̀m,∞}m is convergent, we can choose
a line ` such that |`| ∩ ⋃

m |`m,∞| = ∅ and that limk σ̂m,k(ˆ̀) = ˆ̀
m by Corollary

1. Fix any metric on Gr(4, 2) and consider distance of points on Gr(4, 2). Let
δm be the minimal distance from ˆ̀

m to any other ˆ̀
j in Gr(4, 2). Choose k(m)

such that dist(σ̂m,k(m)(ˆ̀), ˆ̀
m) < δm/2 and that the σm,k(m) are all distinct. Then

{σm,k(m)}m is a sequence of distinct elements of Γ, and {σm,k(m)(`)}m is conver-
gent to a limit line passing through x. Thus Λ(Γ) is closed.

Lastly, we shall show that Λ(Γ) is nowhere dense. Let x be any point in Λ(Γ).
By Corollary 1, there are lines `0, `∞ in P 3 and a normal sequence {σm} such
that x ∈ `0 and that limm σ̂m(K̂) = ˆ̀

0 for any compact set K ⊂ P 3 \ `∞. By the
property L, we can set K as a single line ` contained in Ω(Γ). Then, for every
neighborhood W of x, there is an integer m0 such that W ∩σm(`) 6= ∅ for m ≥ m0.
Hence W contains a point in Ω(Γ). Thus Λ(Γ) is nowhere dense. ¤

Theorem 2.5. The action of Γ on Ω(Γ) is properly discontinuous.

Proof. Take any compact set M in Ω(Γ). Suppose that there is an infinite
sequence {σm}m of distinct elements of Γ such that M ∩ σm(M) 6= ∅ for any m.
By Corollary 1, replacing {σm} with its normal subsequence, we can assume that
there are limit lines `K and `I such that {σm} converges uniformly on P 3 \ `K to
`I . Since Ω(Γ) has no intersection with limit lines, we see that M ∩ (`I ∪ `K) = ∅.
Therefore {σm(M)} converges to a subset on `I . This contradicts the assumption
that M ∩ σm(M) 6= ∅ for any m. ¤

By the argument above, given a group Γ of type L, we can define canonically
the quotient space Ω(Γ)/Γ, which we denote by X(Γ),

X(Γ) = Ω(Γ)/Γ.
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There are examples of Γ of type L for which X(Γ) is not connected. Such an
example can be constructed easily by using the group given in [K4].

3. Discontinuous group actions on large domains.

In this section, we shall show that a large domain which covers a compact
manifold is a connected component of Ω(Γ).

Proposition 1. Let Γ be a group of holomorphic automorphisms of a large
domain Ω in P 3. Suppose that the action of Γ on Ω is properly discontinuous.
Then Γ is of type L.

Proof. Fix a system of homogeneous coordinates on P 5 such that Gr(4, 2)
is given by 〈z, z〉 =

∑5
i=0 z2

i = 0. By the assumption that Ω is large, there is an
relatively compact subdomain W ⊂ Ω which is biholomorphic to U . The lines
in W are parametrized by Ŵ ⊂ Gr(4, 2). Since the action of Γ on Ω is properly
discontinuous, the set

S =
{
σ ∈ Γ \ {1} : σ̂(Ŵ ) ∩ Ŵ 6= ∅}

is finite. Let ` be a line in W . For σ ∈ S, if ` intersects σ(`), we have 〈ˆ̀, σ̂(ˆ̀)〉 = 0.
Suppose that the set

Yσ = {ζ ∈ Gr(4, 2) : 〈ζ, σ̂(ζ)〉 = 0}

is a proper analytic subset of Gr(4, 2). Then the set

V = Ŵ \
⋃

σ∈S

Yσ

is not empty. Take a point ˆ̀′ ∈ V . Then, we can choose a neighborhood W ′ of
`′ which is biholomorphic to U and satisfies σ(W ′) ∩W ′ = ∅ for all σ in S, and
hence in Γ. Thus it is enough to show the following.

Lemma 1. Under the assumption of Proposition 1, the set

Y = {ζ ∈ Gr(4, 2) : 〈ζ, σ̂(ζ)〉 = 0}

is a proper subvariety for any element σ ∈ Γ of infinite order.

Proof. To prove the lemma by contradiction, we assume that
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〈ζ, σ̂(ζ)〉 = 0 (2)

holds for any ζ ∈ Gr(4, 2). Suppose that σ̂ is represented by S ∈ SL (6,C). Since
σ̂ leaves Gr(4, 2) invariant, we have

〈Sz, Sz〉 = 〈z, z〉 for all z ∈ C6. (3)

By the assumption (2), there is a constant c ∈ C∗ such that

〈z, Sz〉 = c〈z, z〉 for all z ∈ C6. (4)

Lemma 2. Under the conditions (3) and (4), the matrix S is conjugate in
GL (6,C) to the diagonal matrix of the form

(
αI3 0

0 α−1I3

)
,

where I3 is the identity matrix of size 3, α satisfies α2− 2cα + 1 = 0, and |α| 6= 1.

Before giving the proof of Lemma 2, we shall complete the proof of Lemma
1. By Lemma 2, we see that both {σ̂m}m and {σ̂−m}m are normal sequences in
PGL (6,C), both of which have 2-planes as limit images. Let V +

I (resp. V −
I ) be

the limit image of {σ̂m}m (resp. {σ̂−m}m). Note that V +
I ∩ V −

I = ∅ and that
σ̂ fixes every point of V ±

I . By Theorem 2.2, the 2-planes V ±
I are both contained

in Gr(4, 2). By Griffiths-Harris [GH, pp. 756–759], we know that a 2-plane in
Gr(4, 2) is one of the Schubert cycles σ2(p) or σ1,1(h), i.e., the set of all lines
through a fixed point p ∈ P 3 or the set of all lines lying on a fixed plane h ⊂ P 3.
Suppose that one of V ±

I is σ1,1(h). Since σ̂ fixes every point of V ±
I , σ fixes every

lines on h. This implies that σ fixes every point of h. Hence we have h ⊂ Λ(Γ).
This contradicts the assumption that Ω is large. Hence both V ±

I are of type σ2(p).
Suppose that V +

I = σ2(p) and V −
I = σ2(q). Since the line `pq passing through

both p and q is a member of V +
I ∩ V −

I , this contradicts V +
I ∩ V −

I = ∅. Thus we
obtain Lemma 1. ¤

Proof of Lemma 2. By (3) and (4) we have

tSS = I, tS + S = 2cI. (5)

Choose P ∈ GL (6,C) such that
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J = P−1SP (6)

is the Jordan canonical form of S. By (5) and (6), we have

2cI − J = P−1tSP. (7)

Put K = 2cI − J . Then we have

KJ = I, K + J = 2cI, (8)

and also

J2 − 2cJ + I = 0, K2 − 2cK + I = 0. (9)

Recall that S = ρ(σ̃), where σ̃ is a representative of σ ∈ Γ. Let Jσ be the Jordan
canonical form of σ̃. In view of (9), we can check that the sizes of Jordan blocks of
Jσ are at most 2 by using Plücker coordinates. Suppose that Jσ is not diagonal.
Then Jσ is of one of the following forms;

u′0 = α0u0 + u1, u′1 = α0u1, u′2 = α2u2 + u3, u′3 = α2u3 (10)

u′0 = α0u0 + u1, u′1 = α0u1, u′2 = α2u2, u′3 = α3u3. (11)

In the case (10), the line ` : u0 = u1, u2 = u3 satisfies σ(`)∩` = ∅. Suppose that we
are in the case (11). If α0 = α2 = α3 holds, then Jσ fixes every point on the plane
u1 = 0. This contradicts the fact that Γ is properly discontinuous on Ω, since Ω is
large and hence any plane intersects Ω. If α2 6= α3 holds, then ` : u0 = u1, u2 = u3

satisfies σ(`) ∩ ` = ∅. If α0 6= α2 = α3 holds, then ` : u0 = u2, u1 = u3 satisfies
σ(`)∩ ` = ∅. Thus we infer that Jσ is diagonal. Hence J and K are also diagonal,
and we have

J =

(
αIp 0

0 α−1Iq

)
, K =

(
α−1Ip 0

0 αIq

)
(12)

for some p ≥ 0 and q ≥ 0 with p + q = 6, where Ip, Iq are identity matrices. By
the relation PJP−1 = t(PKP−1), we have easily p = q = 3. If |α| = 1, then for
any point x ∈ P 3 and any neighborhood V of x, there would be infinite number of
integers m with σm(V )∩ V 6= ∅. Since Γ is properly discontinuous and σ is of the
infinite order, this is absurd. Hence we have |α| 6= 1. Thus we obtain the lemma.

¤
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For a properly discontinuous group Γ of holomorphic automorphisms of a
large domain Ω in P 3, we can define Ω(Γ) and Λ(Γ) by using Proposition 1.

Theorem 3.1. Let Γ be a group of holomorphic automorphisms of a large
domain Ω in P 3. Suppose that the action of Γ on Ω is properly discontinuous. If
the quotient space Ω/Γ is compact, then Ω coincides with a connected component
of Ω(Γ).

Proof. We claim that Ω ⊂ Ω(Γ). To verify this, suppose contrarily that
there is a point x ∈ Ω ∩ Λ(Γ). Then there are limit lines `I , `K such that x ∈ `I ,
and a sequence {σm} of distinct elements of Γ such that {σm} converges uniformly
on P 3 \ `K to `I . Let ` be a line contained in Ω. Displacing ` a little if necessary,
we can assume that `∩`K = ∅. Let Kx be a compact neighborhood of x contained
in Ω. Put K = Kx ∪ `, which is a compact set contained in Ω. Since {σm(`)}
converges to `I , we see that σm(K)∩K 6= ∅ for infinitely many m. This contradicts
the assumption that Γ is properly discontinuous on Ω. Thus the claim is verified.

Thus Ω is contained in a connected component, say Ω0, of Ω(Γ). Since Ω is
Γ-invariant, so is Ω0. Therefore, by Theorem 2.5, Ω0/Γ is a connected complex
spaces which contains Ω/Γ. Since Ω/Γ is compact, we infer that Ω/Γ = Ω0/Γ.
Hence Ω = Ω0. ¤

4. Free abelian group actions on P 2 and P 3.

This is a preliminary section for the later arguments. First we shall study free
abelian actions on domains in P 2.

Lemma 3. Let G be a free abelian subgroup in PGL (3,C). Then for a
suitable conjugate group G0 of G in PGL (3,C), one of the following occurs.

(A)

G0 ⊂







λ 0 0
0 µ 0
0 0 ν


 : λ, µ, ν ∈ C∗



 .

(B)

G0 ⊂







1 λ 0
0 1 0
0 0 µ


 : λ ∈ C, µ ∈ C∗



 with Ja =




1 1 0
0 1 0
0 0 a


 ∈ G0,

where a 6= 1.

(C)

G0 ⊂







1 λ µ
0 1 0
0 0 1


 : λ, µ ∈ C



 with J(2, 1) =




1 1 0
0 1 0
0 0 1


 ∈ G0.
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(D)

G0 ⊂







1 0 λ
0 1 µ
0 0 1


 : λ, µ ∈ C



 with J(1, 2) =




1 0 0
0 1 1
0 0 1


 ∈ G0.

(E)

G0 ⊂







1 λ µ
0 1 λ
0 0 1


 : λ, µ ∈ C



 with J(3) =




1 1 0
0 1 1
0 0 1


 ∈ G0.

Proof. In the following, we discuss as if G is a subgroup of GL (3,C). Since
G is abelian, we can assume that G0 is contained in the set of upper triangular
matrices. Suppose that G0 contains J(3). Since any element which commute with
J(3) is of the form

(
1 λ µ
0 1 λ
0 0 1

)
, G0 is in Case (E).

Suppose that G0 contains J(2, 1). Then G contains no elements conjugate
to J(3). Take any S, T ∈ G0. Since S, T commute with J(2, 1), we can set S =( s1 s2 s3

0 s1 0
0 0 s4

)
and T =

( t1 t2 t3
0 t1 0
0 0 t4

)
. If s1 6= s4 for some S ∈ G0, then replacing G0 with

its suitable conjugate group in the upper triangular group, we can assume that
s3 = 0. Then, by ST = TS, it follows that t3 = 0 for any T ∈ G0. Hence G0 is in
Case (B). If s1 = s4 for any S ∈ G0, G0 is in Case (C).

Suppose that G0 contains J(1, 2). Take any S, T ∈ G0. Since S, T commute

with J(1, 2), we can set S =
( s1 0 s3

0 s2 s4
0 0 s2

)
and T =

( t1 0 t3
0 t2 t4
0 0 t2

)
. If s1 6= s2 for some

S ∈ G0, then replacing G0 with its suitable conjugate group in the upper triangular
group, we can assume that s3 = 0. Then, by ST = TS, it follows that t3 = 0 for
any T ∈ G0. Hence G0 is in Case (B). If s1 = s2 for any S ∈ G0, G0 is in Case
(D).

Suppose that Ja ∈ G0 for some a ∈ C∗ − {1}. Take any S ∈ G0. By
SJa = JaS, S can be written as S =

(
1 λ 0
0 1 0
0 0 µ

)
. Hence G0 is in Case (B). If J1 ∈ G0

but Ja /∈ G0 for any a 6= 1, we are in Case (C). If G0 contains
(

a 0 0
0 1 1
0 0 1

)
in stead

of Ja, we can replace G0 with another upper triangular conjugate group of G in
PGL (3,C) such that Ja ∈ G0. Hence this case can be settled as above.

The remaining case is that every element of G0 is conjugate to a diagonal
matrix. In this case, all the elements of G0 can be diagonalized at the same time.
Hence G0 is in Case (A). ¤

Let X, Y be locally connected topological spaces. A surjective continuous map
f : X → Y is called an even covering if every point on Y admits a connected neigh-
borhood V such that every connected component Ṽ of f−1(V ) is homeomorphic
to V by f |Ṽ .
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Lemma 4. Let Wj, j = 1, 2, be (connected) topological manifolds, and
ϕ : W1 → W2 a continuous map which is locally homeomorphic everywhere. Let
Gj be a group of homeomorphisms of Wj whose action on Wj is free and properly
discontinuous. Assume that, for every σ1 ∈ G1, there is a unique element σ2 ∈ G2

such that ϕ ◦ σ1 = σ2 ◦ ϕ. If the quotient space W1/G1 is compact, and if the
correspondence ϕ∗ : G1 → G2 which sends σ1 to σ2 is a group isomorphism, then
ϕ is surjective and an even covering. Further, if ϕ is injective, then ϕ is a home-
omorphism of W1 onto W2.

Proof is easy. This lemma will be used throughout the proof of the next lemma.

Lemma 5. Let W be a subdomain in P 2. Suppose that an finitely generated
free abelian subgroup G of PGL (3,C) acts on W . If the action of G is free and
properly discontinuous, and if the quotient manifold W/G is compact, then, one of
the following occurs, where the homogeneous coordinates of P 2 is that of Lemma
3.

I. (a) G ' Z and G is in Case (A), or Case (B) with |a| 6= 1,
(b) W = P 2 \ {[z0 : z1 : z2] : z2 = 0 or [0 : 0 : 1]},
(c) W/G is biholomorphic to a Hopf surface,

II. (a) G ' Z2 and G is in Case (A),
(b) W = P 2 \ {[z0 : z1 : z2] : z0z1z2 = 0},
(c) W/G is biholomorphic to a complex torus,

III. (a) G ' Z3 and G is in Case (B),
(b) W = P 2 \ {[z0 : z1 : z2] : z1z2 = 0},
(c) W/G is biholomorphic to a complex torus,

IV. (a) G ' Z4 and G is in Case (D) or Case (E),
(b) W = P 2 \ {[z0 : z1 : z2] : z2 = 0},
(c) W/G is biholomorphic to a complex torus.

Proof. Denote by `j the line defined by zj = 0 on P 2. We check the cases
of Lemma 3. If rankG = 1, it is known that W/G is a Hopf surface and Case I
occurs (see, [K2, Proposition 4.2]). Therefore we assume that n = rankG ≥ 2 in
the following.

Step 1: Suppose that G is in Case (C). Since J(2, 1) fixes every point on `1,
we see that `1 ∩ Ω = ∅. Put x = z0/z1 and y = z2/z1. Then G contains only
elements of the forms

{
x′ = x + 1

y′ = y
or

{
x′ = x + λ + µy

y′ = y
.
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This implies that the holomorphic function y is well-defined on the compact mani-
fold W/G. Hence y is constant on W/G and hence on W . This is absurd. Therefore
Case (C) does not occur.

Step 2: Suppose that G is in Case (E). First we consider the case where
`2 ∩W = ∅. On P 2 \ `2, we introduce new coordinates (u, v) by





u =
z0

z2
− 1

2

(
z1

z2

)2

v =
z1

z2

.

Let {σj}j=1,...,n be a basis of G, where σ1 = J(3). Then

σj =




1 λj µj

0 1 λj

0 0 1




can be written as a translation

τj : (u, v) 7→
(

u + µj − 1
2
λ2

j , v + λj

)
.

Since the group of translations {τj}j=1,...,n acts properly discontinuously on W ,
we see that the 2-vectors

(
µj − 1

2
λ2

j , λj

)
, j = 1, . . . , n

are linearly independent and span C2 over R. Hence rankG = n = 4 and W =
P 2 \ `2. Thus G is in Case IV.

Next we consider the case where `2 ∩W 6= ∅. We shall show that this case
does not occur. Since the action of G on `2 ∩ W is properly discontinuous, we
have n = 2 and λ2 /∈ R. Since the quotient manifold E = (`2 ∩W )/G is a finite
union of compact curves which admit holomorphic affine structures, we see that E

consists of a single elliptic curve and that `2 ∩W = `2 \ {[1 : 0 : 0]} by Lemma 4.
Take an open covering {Uj}j=0,1,2 of P 2 such that Uj = {zj 6= 0}. Let (x0, y0) =
(z1/z0, z2/z0) be coordinates on U0. Similarly, we put (x1, y1) = (z2/z1, z0/z1)
on U1, and (x2, y2) = (z0/z2, z1/z2) on U2. Then the meromorphic 2-form on P 2

defined by
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ω = dx2 ∧ dy2 = x−3
1 dx1 ∧ dy1 = y−3

0 dx0 ∧ dy0

is G-invariant. Therefore ω defines a meromorphic 2-form on the compact surface
S = W/G. Hence the canonical divisor KS is given by KS = −3E. By Nishiguchi
[N, Proposition 1.2], a compact non-Kähler surface with a non-zero effective anti-
canonical divisor is of class VII. Hence, if S is non-Kähler, then S is of class VII.
Then, we have, in particular, that the first Betti number of S equals to 1. This
contradicts the assumption n ≥ 2. Suppose that S is Kähler. By the construction,
S admits a holomorphic projective structure. It is known by Kobayashi-Ochiai
[KoOc2] that a compact Kähler surface with a holomorphic projective structure
is either P 2, complex torus, or a compact quotient of a unit ball in C2. The
surface S is, however, non-simply connected, has non-trivial canonical bundle, and
contains the elliptic curve E. This is a contradiction. Thus Kähler case doesn’t
occur either.

Step 3: Suppose that G is in Case (B). Let {σj}j=1,...,n be a basis of G, where
σ1 = Ja. Put

σj =




1 λj 0

0 1 0

0 0 µj


 .

First consider the case where `1 ∩W 6= ∅. Since [1 : 0 : 0] and [0 : 0 : 1] are fixed
by G, these two points are excluded from `1 ∩W . Put z = z2/z0. Then each σj

acts on `1 ∩ W as z 7→ µjz. Since the action of G on `1 ∩ W ⊂ C∗ is properly
discontinuous, we see that n = 1, |a| 6= 1, `1 ∩ W = C∗ by Lemma 4, and that
G = 〈σ1〉 ' Z. This case is settled at the beginning of the proof.

It remains to consider the case where W ⊂ P 2 \ `1 ' C2. Put (x, y) =
(z0/z1, z2/z1). Then the σj are of the form

{
x′ = x + λj

y′ = µjy
.

Suppose that `2 ∩ W 6= ∅. Then the quotient manifold E = (`2 ∩ W )/G is
a finite union of compact curves which admit holomorphic affine structures, we
see that E consists of a single elliptic curve, `2 ∩W = C by Lemma 4, and that
G = 〈Ja, σ2〉 ' Z2. The quotient space V = C2/G is a line bundle over the
elliptic curve defined by E = C/〈1, λ1〉. The inclusion map j : W → P 2 \ `1
induces an open embedding j : W/G → V . Since W/G is compact, this is absurd.
Therefore we have W ⊂ P 2 \ {z1z2 = 0}. Define q : C2 → P 2 \ {z1z2 = 0} by
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q(u, v) = [u : 1 : e2πiv].
Suppose that log y has a single-valued branch on W , which we denote also

by log y. The holomorphic map ϕ : W → C2, ϕ(x, y) = (x, log y), is an open
embedding. Since G is properly discontinuous on W , each element of G induces a
transformation of C2 by the 2-vectors

(λj , log µj), j = 1, . . . , n. (13)

Since the action of G on ϕ(W ) is properly discontinuous, these 2-vectors are
linearly independent over R. Hence by Lemma 4, we have rank G = 4 and
ϕ(W ) = C2. Therefore W = q ◦ϕ(W ) = P 2 \{z1z2 = 0} follows. This contradicts
the assumption that log y is single-valued on W . Thus log y is multi-valued on W .

Let W̃ ⊂ C2 be a connected component of q−1(W ), where log y is single-
valued. Let G̃ be the group generated by the translations of C2 defined by

τ0(u, v) = (u, v + 2πi), τj(u, v) = (u + λj , v + log µj), j = 1, . . . , n

and put

G̃W =
{
τ ∈ G̃ : τ(W̃ ) ⊂ W̃

}
.

Since W̃/G̃W is compact, we have rank G̃W = 4. Since log y is multi-valued on W ,
τm
0 ∈ G̃W for some non-zero integer m. Hence we have rank G = rank q(G̃W ) = 3.

Thus we are in Case III.

Step 4: Suppose that G is in Case (D). Let {σj}j=1,...,n be a basis of G, where
σ1 = J(1, 2). Put

σj =




1 0 λj

0 1 µj

0 0 1


 .

Every element of G fixes every point on `2. Hence `2 ∩ W = ∅. Put (x, y) =
(z0/z2, z1/z2). Then the σj are of the form

{
x′ = x + λj

y′ = y + µj

.

Since the action of G is properly discontinuous, we see that the 2-vectors
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{(λj , µj), j = 1, . . . , n} (14)

are linearly independent and span C2 over R. Hence rank G = 4 and we have
W/G ' C2/L, where L is the lattice in C2 spanned by (14). Hence W = P 2\{z2 =
0} and we are in Case IV.

Step 5: Suppose that G is in Case (A). First consider the case where `0∩W 6=
∅. Then we see that `0 ∩ W = `0 \ {[0 : 1 : 0], [0 : 0 : 1]} and G ' Z as above
cases. Hence this case is settled at the beginning of the proof. The other cases
where `j ∩W 6= ∅, j = 1, 2, can be settled similarly.

Next we consider the case where W ⊂ P 2 \ {z0z1z2 = 0} ' C∗ × C∗. Put
(x, y) = (z0/z2, z1/z2). Then the σj are of the form

{
x′ = ajx

y′ = bjy
.

We have to show that W = P 2 \ {z0z1z2 = 0} and rankG = 2. By a similar
argument in Step 3, we see that both log x and log y are multi-valued on W .
As in Step 3, we define q : C2 → C∗ × C∗ by q(u, v) = (e2πiu, e2πiv) and W̃

be a connected component of q−1(W ). Let G̃ be the group generated by the
transformations of C2 defined by

σ0(u, v) = (u + 2πi, v)

σ1(u, v) = (u, v + 2πi)

τj(u, v) = (u + log aj , v + log bj), j = 1, . . . , n

and put

G̃W =
{
τ ∈ G̃ : τ(W̃ ) ⊂ W̃

}
.

Since the action of G̃W on W̃ is properly discontinuous and its quotient by G̃W

is compact, G̃W forms a lattice on C2 and rank G̃W = 4. Since log x and log y

are multi-valued, certain non-zero powers of σ0 and σ1 are contained in G̃W .
Therefore rankG = rank q(G̃W ) = 2 and the action of G on C∗ ×C∗ is properly
discontinuous. Therefore, by Lemma 4, W coincides with P 2 \{z0z1z2 = 0}. Thus
G is in Case II. ¤

Now we go to the three dimensional case. Let Ω and Γ be as in Section 1.
Let π : Ω → Ω/Γ be the canonical projection. By [K2, Theorem 1.3], we have
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Proposition 2. If Ω is large, Γ ' Z, and if Ω/Γ is compact, then Ω/Γ is
an L-Hopf manifold.

The following fact is useful.

Proposition 3. If Ω is large and if Ω/Γ is compact, then Γ is not isomor-
phic to Z2.

Proof. Assuming Γ ' Z2, we derive a contradiction. Since Γ is abelian,
there is a system of homogeneous coordinates [z0 : z1 : z2 : z3] on P 3 such that
H3 is Γ-invariant, where by Hj we indicate the plane defined by zj = 0.

Sublemma 1. Γ consists of diagonal matrices.

Proof. Since Ω contains a line, we have Ω ∩ Hj 6= ∅ for any j. Consider
the restriction of Γ to H3, which we denote by ΓH3 . Obviously, ΓH3 is in Case II
of Lemma 5. Let {σ, τ} be a basis of Γ. Then σ and τ are of the following form.

σ =




a0 0 0 s0

0 a1 0 s1

0 0 a2 s2

0 0 0 1


 , τ =




b0 0 0 t0
0 b1 0 t1
0 0 b2 t2
0 0 0 1


 .

Introducing new coordinates

w3 = z3, wj = zj + λjz3 j = 0, 1, 2

for suitable constants λj ∈ C, we can assume that

(a0 − 1)s0 = (a1 − 1)s1 = (a2 − 1)s2 = 0.

Since the action of σ on H3 is not trivial, some ak, say a0, is not equal to 1, and
hence s0 = 0. By στ = τσ, we have also t0 = 0. Hence H0 is Γ-invariant. Since
ΓH0 ' Z2 is conjugate to the group of Case (A) of Lemma 3 by Lemma 5, we
have s1 = s2 = t1 = t2 = 0. ¤

By `jk, we indicate lines defined by zj = zk = 0. Put ej = [δ0
j : δ1

j : δ2
j : δ3

j ],
0 ≤ j ≤ 3, where δi

j is the Kronecker’s delta.

Sublemma 2. Ω = P 3 \⋃
j<k `jk.

Proof. Put W = P 3 \⋃
j<k `jk. Since ΓHj

is in Case II of Lemma 5, we
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have easily that Ω ⊂ W . Thus it is enough to show that any boundary point x of
Ω is contained in some `jk. Suppose that x ∈ W ∩ ∂Ω. Take a sequence {Nj}∞j=1

of neighborhood of x such that W ⊃ Nj ⊃ Nj+1 and that
⋂∞

j Nj = {x}. Let F

be a closed fundamental region on Ω with respect to Γ. For each Nj there is an
element σj ∈ Γ such that σj(F )∩Nj 6= ∅. For each j, there is a point yj ∈ F such
that σj(yj) ∈ Nj . By the definition of Nj , we have

lim
j→∞

σj(yj) = x, yj ∈ F ⊂ Ω.

Since F is compact, replacing {yj}j with its subsequence, we can assume that
there is a point y ∈ F such that

lim
j→∞

yj = y. (15)

For an element A = (aij) ∈ GL (4,C), define the norm of A by |A| = max{|aij |}.
We indicate by σ̃ a representative in GL (4,C) of σ ∈ PGL (4,C). Replacing
{σj}∞j=1 with its subsequence, we consider the convergent matrix sequence {σ̃j}∞j=1,
|σ̃j | = 1. Put σ̃ = limj→∞ σ̃j . Let σ : P 3 → P 3 be the rational map defined by
the linear map σ̃ : C4 → C4. Note that the limit σ̃ is also diagonal matrix, since
Γ consists of diagonal matrices by Sublemma 1. Let K(σ) be the projective linear
subspace in P 3 corresponding to the kernel of σ̃, and I(σ) the one corresponding
to the image of σ̃. Then we have dim I(σ) + dim K(σ) = 2. It is not difficult to
check that the sequence {σj}∞j=1 is uniformly convergent to I(σ) on any compact
subset of P 3 \K(σ) ([My]). We have rank σ̃ ≤ 3, since Γ is properly discontinuous
on a non-empty open subset of P 3.

If rank σ̃ = 3, then K(σ) is a single point and I(σ) is a plane. Since σ̃ is
a diagonal matrix, K(σ) = em for some m, 0 ≤ m ≤ 3, and I(σ) = Hm. Since
y in (15) is a point in F ⊂ Ω, and since em 6∈ Ω, we obtain em 6= y. Hence
y ∈ P 3 \K(σ). Since {σj}j is uniformly convergent on P 3 \K(σ), we have

x = lim
j→∞

σj(yj) = lim
j→∞

σj(y) ∈ I(σ) = Hj .

This shows that Hj ∩ ∂Ω is not empty. But this contradicts Lemma 5 Case II,
since in this case, we have Hj \ (

⋃
k `jk) ⊂ Ω. Thus rank σ̃ 6= 3.

If rank σ̃ = 2, then K(σ) and I(σ) are lines. Since σ̃ is a diagonal matrix,
K(σ) = `ij for some i, j, 0 ≤ i < j ≤ 3, and I(σ) = `km, k < m, where
{i, j, k, m} = {0, 1, 2, 3}. Since y in (15) is a point in F ⊂ Ω, y /∈ `km = K(σ).
Therefore, we have x ∈ I(σ) = `ij . This contradicts the assumption that x ∈ W .
Thus rank σ̃ 6= 2.
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If rank σ̃ = 1, then consider {σ−1}∞j=1 and consider the limit matrix, which
we denote by σ̃′. Then rank σ̃′ = 3 and apply the same argument of rank = 3 case
above. Then we can conclude that this case does not occur either.

Thus there is no boundary point of Ω in W . ¤

Sublemma 3. The action of Γ ' Z2 on P 3 \ ⋃
j<k `jk is not properly

discontinuous.

Proof. By Sublemma 1, every element of Γ is represented by a diagonal
matrix in SL (4,C). For σ ∈ Γ, let aj = aj(σ), j = 0, 1, 2, 3, be the diagonal
components of a representative of σ. Namely we have

σ([z0 : z1 : z2 : z3]) = [a0z0 : a1z1 : a2z2 : a3z3].

Consider the set of positive real numbers {|aj(σ)| : 0 ≤ j ≤ 3}, which we indicate
by ∆(σ). By δ(σ), we indicates the numbers of distinct elements of ∆(σ).

Step 1: Consider the case where Γ \ {1} contains an element σ with δ(σ) = 1.
The restriction ΓH3 of Γ to W ∩H3 is given by

σH3 : [z0 : z1 : z2 : 0] → [a0z0 : a1z1 : a2z2 : 0], |a0| = |a1| = |a2|,

which is not properly discontinuous on W ∩H3.

Step 2: Next consider the case where Γ \ {1} contains an element σ with
δ(σ) = 4. Suppose that

|a0(σ)| < |a1(σ)| < |a2(σ)| < |a3(σ)|. (16)

Put

U =
{
[z0 : z1 : z2 : z3] ∈ P 3 : |z1|2 + |z2|2 < |z0|2 + |z3|2

}

Σ =
{
[z0 : z1 : z2 : z3] ∈ P 3 : |z1|2 + |z2|2 = |z0|2 + |z3|2

}

and [U ] = U ∪Σ. Then U is a tubular neighborhood of the line `12. We cover the
domain P 3 \ `03 by two open sets U1, U2, where Uj ' C3. Define systems of local
coordinates

(x, y, s) =
(

z1

z3
,
z2

z3
,
z0

z3

)

on U1, and
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(u, v, t) =
(

z1

z0
,
z2

z0
,
z3

z0

)

on U2. Then we have

u = s−1x, v = s−1y, t = s−1

on U1 ∩ U2. We consider tubular neighborhoods Tx, Ty, Tu, Tv of x-axis, y-axis,
u-axis, and v-axis, respectively, in P 3\(`12∪`03) as follows. Take positive numbers
p0, p1, p2 so that the equality

∣∣∣∣
a1

a3

∣∣∣∣
p0

=
∣∣∣∣
a2

a3

∣∣∣∣
p1

=
∣∣∣∣
a0

a3

∣∣∣∣
p2

holds. Similarly, take positive numbers q0, q1, q2 so that the equality

∣∣∣∣
a1

a0

∣∣∣∣
q0

=
∣∣∣∣
a2

a0

∣∣∣∣
q1

=
∣∣∣∣
a3

a0

∣∣∣∣
q2

holds. We define

Tx = {(x, y, s) ∈ U1 : |y|p1 + |s|p2 < r|x|p0} (17)

Ty = {(x, y, s) ∈ U1 : |x|p0 + |s|p2 < r|y|p1} (18)

Tu = {(u, v, t) ∈ U2 : |v|q1 + |t|q2 < r|u|q0} (19)

Tv = {(u, v, t) ∈ U2 : |u|q0 + |t|q2 < r|v|q1}, (20)

where r is a small positive number such that the closures of these four tubular
neighborhoods do not intersect each other. Now consider the set

K = Σ \ {Tx ∪ Ty ∪ Tu ∪ Tv}.

Then K is a connected compact set contained in Ω. Topologically, K is the real 5-
manifold S2×S3 with four 5-dimensional open disks deleted which do not intersect
each other. We claim that σn(K) ∩K 6= ∅ for any n 6= 0. Indeed, on U1, we have

σ(x, y, s) =
(

a1

a3
x,

a2

a3
y,

a0

a3
s

)
.

On U2, we have
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σ(u, v, t) =
(

a1

a0
u,

a2

a0
v,

a3

a0
t

)
.

Therefore the closures of the four tubular neighborhoods Tx, . . . , Tv are σ-invariant.
Further, by the inequalities (16), we see that, for n > 0, σn is (weakly) shrinking
on U1 to the center [0 : 0 : 0 : 1], and (weakly) expanding on U2 from the center
[1 : 0 : 0 : 0]. In particular, we have

σn(Σ ∩ Tx) ⊂ [U ]

σn(Σ ∩ Ty) ⊂ [U ]

σn(Σ ∩ Tu) ⊂ P 3 \ U

σn(Σ ∩ Tv) ⊂ P 3 \ U.

Hence we infer that σn(K)∩K 6= ∅, since K is connected. By the similar argument,
we can verify the claim for all n < 0.

Step 3: By the argument above, we see that δ(σ) = 2 or 3 holds for any
σ ∈ Γ \ {1}. Suppose that there is an element σ ∈ Γ \ {1} such that δ(σ) = 2. If
|ai(σ)| = |aj(σ)| = |ak(σ)| 6= |al(σ)| for some {i, j, k, l} = {0, 1, 2, 3}, we have a
contradiction by the same argument as in Step 1. Therefore, by a permutation of
z0, . . . , z3, we can assume that

|a0(σ)| = |a1(σ)| 6= |a2(σ)| = |a3(σ)|

holds. We claim that there is an element τ ∈ Γ such that |a0(τ)| 6= |a1(τ)|. Indeed,
if contrary, the set

K = {[z0 : z1 : z2 : z3] ∈ W : |z0| = |z1|}

would be a Γ-invariant set. Since K ' S1 × (C2 \ {(0, 0)}) ' S1 × S3 × R has
two ends, the quotient of K by a free properly discontinuous action of rank = 2
free abelian group cannot be a compact manifold by a theorem of Hopf [H]. Thus
Γ contains τ such that |a0(τ)| 6= |a1(τ)|. Then δ(σnτ) = 3 holds for sufficiently
large n > 0. Therefore Γ always contains an element σ such that δ(σ) = 3.

Step 4: For σ ∈ Γ with δ(σ) = 3, there are two possibilities,

|a0(σ)| < |a1(σ)| = |a2(σ)| < |a3(σ)| (21)

and
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|a0(σ)| = |a1(σ)| < |a2(σ)| < |a3(σ)|. (22)

If σ satisfies (21), then by the same argument as in Step 3, we have an element
τ ∈ Γ such that |a1(τ)| 6= |a2(τ)|. Similarly, if σ satisfies (22), then we have an
element τ ∈ Γ such that |a0(τ)| 6= |a1(τ)|. Then, in both cases, δ(σnτ) = 4 for
sufficiently large n > 0. This contradicts the conclusion of Step 2. Thus we have
disproved all possibilities of δ(σ), and the sublemma is proved. ¤

Proposition 3 follows immediately from Sublemmas 2 and 3. ¤

Lemma 6. Let S be a compact reduced irreducible 2-dimensional complex
space and C an irreducible curve on S. Let ΩS be a domain in S such that the
Hausdorff dimension of S \ΩS is less than 1, and hence C ∩ΩS 6= ∅. Suppose that
a properly discontinuous infinite group Γ of holomorphic automorphisms of S is
acting freely on ΩS and C and that the quotient spaces ΩS/Γ and (C ∩ΩS)/Γ are
compact. Then there is a subgroup Γ0 of Γ which have the following properties.

(1) Γ0 has index less than three in Γ.
(2) Γ0 is isomorphic to either Z or Z2.
(3) C ∩ ΩS is biholomorphic to either C or C∗.
(4) (C ∩ ΩS)/Γ0 is a non-singular elliptic curve.

Proof. Let ν : S̃ → S be the normalization of S. Put Ω̃S = ν−1(ΩS).
Take an irreducible component C̃ of ν−1(C) such that C = ν(C̃). Let a ∈ C̃ be a
point on the boundary of Ω̃S . Assume that both S̃ and C̃ are non-singular at a.
Let W = {(z, w) : |z| < 1, |w| < 1} be a polydisk on S̃ centered at a = (0, 0) such
that C̃ ∩W = {w = 0}. Take a point (z0, 0) ∈ C̃ ∩ Ω̃S ∩W . Then there are small
constants 0 < ε < 1− |z0| and 0 < δ < 1 such that the set

Tδ = {(z, w) ∈ W : |z − z0| < ε, |w| < δ}

is contained in Ω̃S . Since the Hausdorff dimension of S \ ΩS is less than 1 by
assumption, so is S̃ \ Ω̃S . Therefore, we can choose 0 < δ1 < δ such that the image
by ν of the set

Σ = {(z, w) ∈ W : |z| < 1, |w| = δ1}

does not intersects S \ΩS . Then, there are positive constants δ2, δ3 with δ2 < δ1 <

δ3 < δ such that

R = {(z, w) ∈ W : |z| < 1, δ2 < |w| < δ3} ⊃ Σ
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is contained in Ω̃S .
The union H = R∪ Tδ3 is a Hartogs domain contained in Ω̃S whose envelope

of holomorphy is ∆ = {(z, w) ∈ W : |z| < 1, |w| < δ3}. Let π : ΩS → ΩS/Γ
denote the natural projection. By a theorem of Ivashkovich [Iv, Corollary 1], the
holomorphic map (π ◦ ν)|H : H → ΩS/Γ extends to a holomorphic map from of
∆ \A, where A is a closed set of isolated points in ∆.

We claim that π ◦ν : Ω̃S → ΩS/Γ cannot be extended outside of Ω̃S (cf. [K5,
Lemma 2.2]). If the claim is verified, then we see that

∆ ∩ (C̃ \ Ω̃S) ⊂ A. (23)

To verify the claim, suppose that there is a point c ∈ ∂Ω̃S ⊂ S̃, and a neighborhood
Ñ of c in S̃ such that π ◦ν extends holomorphically to a map ϕ : Ñ → ΩS/Γ. The
group Γ lifts to a group Γ̃ of automorphisms of S̃. The domain Ω̃S is Γ̃-invariant
and the quotient space Ω̃S/Γ̃ gives the normalization ν̃ : Ω̃S/Γ̃ → ΩS/Γ. Let
π̃ : Ω̃S → Ω̃S/Γ̃ be the canonical projection. Obviously, we have π ◦ ν = ν̃ ◦ π̃.
Since Ñ is normal, the extended map ϕ lifts to ϕ̃ : Ñ → Ω̃S/Γ̃. Put b = ϕ̃(c).

We can take a relatively compact small connected neighborhood B centered
at b such that each connected component of π̃−1(B) is biholomorphic to B via
π̃. Since ϕ̃ is continuous, there is a connected neighborhood W ⊂ Ñ of c in S̃

such that ϕ̃(W ) ⊂ B. Since the Hausdorff dimension of S \ ΩS is less than 1 by
assumption, so is S̃\Ω̃S . Therefore we can assume that W∩Ω̃S is connected. Since
W ∩ Ω̃S is connected, it is contained in a connected component, say B̃, of π̃−1(B).
Thus we have a lifting ψ : W → B̃ of ϕ̃|W . Obviously ψ is the holomorphic
extension of the inclusion j : W ∩ Ω̃S → Ω̃S . Since B̃ is relatively compact in Ω̃S ,
j(W ∩ Ω̃S) = ψ(W ∩ Ω̃S) is relatively compact in Ω̃S . This is absurd. Thus our
claim is verified.

Since a is on the boundary of C̃ ∩ Ω̃S and is a non-singular point of S̃ and C̃,
the inclusion relation (23) implies that C̃ \ Ω̃S has no accumulation points other
than the singular points of S̃ and C̃. Hence, C\ΩS is a non-empty closed countable
subset of C.

Take the normalization µ : Ĉ → C of C. Then µ−1(C \ ΩS) is a non-empty
closed countable set. The group Γ induces an infinite group Γ̂ of holomorphic
automorphisms of Ĉ and the quotient µ−1(C ∩ ΩS)/Γ̂ is compact. By a theorem
on the cardinality of ends due to Hopf [H], the complement µ−1(C \ ΩS) should
be a set of cardinality less than three.

Since Ĉ admits an infinite group of holomorphic automorphisms, Ĉ is either
P 1 or an elliptic curve. Since µ−1(C \ΩS) is non-empty and Γ̂-invariant, Ĉ is not
an elliptic curve. Hence Ĉ ' P 1 and the set µ−1(C \ ΩS) consists of at most 2
points and so does C \ΩS . If C \ΩS consists of a single point, then Γ0 = Γ ' Z2
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or Z. If C \ΩS consists of two points, then there is a subgroup Γ0 of Γ with index
at most 2 such that Γ0 ' Z. In both cases, (C ∩ΩS)/Γ0 is an elliptic curve. Thus
we have the lemma. ¤

Corollary 3. Let Γ be a group of holomorphic automorphisms acting on
a large domain Ω in P 3. Suppose that there are a curve C and a surface S in P 3

which are Γ-invariant and satisfying C ⊂ S. We assume the following.

(1) The action of Γ on Ω is fixed point free, properly discontinuous and cocompact.
(2) The Hausdorff dimension of S \ Ω is less than 1.

Then Γ ' Z and Ω/Γ is an L-Hopf manifold.

Proof. Since Ω is large, Γ is a subgroup of PGL (4,C). The corollary
follows from Propositions 2, 3 and Lemma 6. ¤

Corollary 4. Let Γ be a group of holomorphic automorphisms acting on
a large domain Ω in P 3. Let C be a curve in P 3. We assume the following.

(1) The action of Γ on Ω is fixed point free, properly discontinuous and cocompact.
(2) C is Γ-invariant and (C ∩ Ω)/Γ is an elliptic curve.

Then Γ ' Z and Ω/Γ is an L-Hopf manifold.

Proof. By the assumption (2), Γ is an abelian with rank ≤ 2. Then the
lemma follows from Propositions 2 and 3. ¤

5. Compact quotients with positive algebraic dimensions.

In this section, we shall prove our main Theorem 1.1. Let Ω and Γ be as in
Section 1 and put Λ = P 3 \ Ω. Let π : Ω → Ω/Γ be the canonical projection. We
assume that the complex manifold X = Ω/Γ admits a non-constant meromorphic
function. By a variety, we shall mean an irreducible reduced complex space. By
a curve (resp. surface), we shall mean a variety of dimension 1 (resp. 2), unless
stated otherwise.

In [K5], we have shown the following fact.

Theorem 5.1 ([K5, Theorem A]). Suppose that X = Ω/Γ admits a non-
constant meromorphic function. Then the complement P 3\Ω is contained in S∪A,
where S is a finite union of complex hypersurfaces in P 3, and A is a closed subset
of P 3 \ S with the Hausdorff dimension of A not more than 2. In particular, Ω is
dense in P 3.

By Theorems 5.1 and 3.1, we have Ω = Ω(Γ) in this case. Hence Λ = Λ(Γ). Thus
we have the following.
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Proposition 4. Λ is a union of lines.

Note that Λ may well contain uncountably many lines.

5.1. The algebraic reduction.
A non-constant meromorphic function f defines a meromorphic map X
// P 1. Since Ω is large, π∗f extends to a Γ-invariant rational function F

on P 3. Thus we have a commutative diagram of meromorphic maps

Ω
i //

π

²²

P 3

F

²²
X

f // P 1,

where i is the natural inclusion, and π is the canonical projection. We eliminate the
base locus of F by successive blowing-ups of P 3 to obtain a non-singular 3-manifold
M and a bimeromorphic holomorphic map u : M → P 3. Then u∗F : M → P 1 is
holomorphic. Consider the Stein factorization of u∗F , then we obtain a ramified
covering v : C → P 1 with the commutative diagram

M
F̃ //

u

²²

C

v

²²
P 3 F // P 1,

(24)

where C ' P 1 and F̃ is a surjective holomorphic map with connected fibres. Each
element of Γ induces a bimeromorphic map of M and a biholomorphic map of C.
Since the group of automorphisms γ of C induced by Γ which satisfy v ◦ γ = v

is finite, we can choose a normal subgroup Γ1 of Γ with a finite index such that
each element g ∈ Γ1 induces an identity map on C. Thus replacing X = Ω/Γ with
X1 = Ω/Γ1, we can assume that each member of the pencil

St = {z ∈ P 3 : F (z) = t}, t ∈ P 1,

is Γ-invariant. Further, replacing Γ1 with its subgroup of finite index if necessary,
we assume that all irreducible components of the members of the pencil are Γ-
invariant. In the course of the proof of Theorem 5.1, we see that the analytic
set S appeared in that theorem is a finite union of members of the pencil which
correspond to singular fibres of the algebraic reduction.
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Let B denote the base locus of the pencil. Except for a finite number of
points, say t ∈ P 1, t = a1, . . . , as, s ≥ 0, F (z) = t defines a reduced irreducible
algebraic set and St is non-singular outside B. For t ∈ P 1, we put

Ωt = Ω ∩ St, Λt = Λ ∩ St.

Lemma 7. The set

E = {t ∈ P 1 : Λt \B has positive Hausdorff dimension}.

has Lebesgue measure zero in P 1.

Proof. See [K5, Proposition 2.1].

Proposition 5. If X is not an L-Hopf manifold, then B ⊂ Λ.

Proof. Suppose that there is an irreducible component C of B such that
C 6⊂ Λ. Since B is Γ-invariant, and since it has only finite number of irreducible
components, there is a subgroup Γ1 of Γ with finite index such that C is Γ1-
invariant. By Lemma 7, there is a member St with t ∈ P 1 \ (E ∪ {a1, . . . , as}).
Since C ⊂ St, we have the proposition by Corollary 3. ¤

Remark 1. For L-Hopf manifolds, B is not necessarily contained in Λ.

Lemma 8. If X is not an L-Hopf manifold, then the meromorphic function
field of X is isomorphic to the pure transcendental extension of C of degree 1.

Proof. Suppose that there are two meromorphic functions f1, f2 on X,
which are algebraically independent one another. Then, there are 2 pencils

Sν
t = {z ∈ P 3 : F ν(z) = t}, t ∈ P 1,

where F ν is the rational function on P 3 obtained by extending π∗fν , ν = 1, 2.
Choosing t1, t2 ∈ P 1 suitably, we have a Γ1-invariant curve C in the intersection
S1

t1 ∩ S2
t2 , where Γ1 is a subgroup of Γ with a finite index. Then, by the same

argument as in the proof of Proposition 5, X is an L-Hopf manifold. Let ϕ :
X // C be the algebraic reduction of X over a curve C. Since X contains
many lines, ϕ|` is non-trivial for some line `. Hence C is rational. ¤

Remark 2. For L-Hopf manifolds, the algebraic dimensions can be 0, 1,
and 2.
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5.2. Singular fibres of the algebraic reduction.
In the following in Section 5, we impose on X the following

Assumption. X is neither P 3, an L-Hopf manifold, nor Blanchard
manifold. (25)

Our aim is to disprove the existence of X under the assumption above. By Propo-
sition 5, we have

B ⊂ Λ. (26)

By (26), we can choose a meromorphic function f on X such that f : X → P 1

gives the holomorphic algebraic reduction of X. In the following, we indicate by
f−1(t) the reduced complex analytic subset in X defined by f(x) = t. We indicate
f−1(t) by f∗(t) when we consider it as a complex space with the structure sheaf
OX/f∗mt, or the effective divisor on X defined by f∗mt, where mt is the maximal
ideal in OP 1,t. Put

A = {t ∈ P 1 : f∗(t) is singular}. (27)

For any t ∈ P 1, we have St ∩ Ω ⊂ St \B by (26), and

f−1(t) = (St ∩ Ω)/Γ.

Proposition 6. Any fibre of f contains no positive dimensional images of
a simply connected manifold.

Proof. This follows from Proposition 5, and consequently, the fact that
St ∩ Ω is a subdomain of the affine variety St \B. ¤

We recall the following key fact.

Lemma 9 ([K1, Lemma 5.9]).∗) If the algebraic dimension of X is positive,
then there is a subgroup Γ1 of finite index in Γ such that Γ1 leaves invariant a
plane H in P 3.

Replacing Γ with Γ1, we can assume that Γ leaves the plane H invariant. Put

M = (H ∩ Ω)/Γ.

∗) Another proof will appear in [K6].
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Lemma 10. M is contained in a single fibre of the algebraic reduction.

Proof. Suppose that a connected component M0 of M is not contained in
any fibres of f . Then, for any t ∈ P 1, H∩St is a closed algebraic curve in P 3. For
t ∈ P 1 \ (E ∪A ), the Hausdorff dimension of (St \B)∩Λ is equal to zero. Hence
the curve Ct = H ∩ St intersects Λ in a set of Hausdorff dimension zero outside
B. Therefore Ct contains an irreducible component C such that C ∩ (B ∪Λ) is of
Hausdorff dimension zero. Since there is a finite index subgroup Γ1 of Γ such that
Γ1 leaves C invariants, we see that X would be an L-Hopf manifold by Corollary
3. Thus, by Assumption (25), each connected component of M is contained in a
fibre of f .

Now suppose that there are connected components M1 and M2 of M such
that f(M1) 6= f(M2). Let aj = f(Mj), j = 1, 2. Then the meromorphic function
F |H has distinct constant values a1 and a2 on non-empty open sets of H. This
is absurd. Therefore all the connected components of M are contained in a single
fibre of the algebraic reduction. ¤

By Lemma 10, we can assume

M ⊂ f−1(0) (28)

without loss of generality.

We insert here an easy lemma. Suppose that an infinite group G ⊂ PSL (3,C)
acting on P 2 leaves invariant a curve C ⊂ P 2. By a theorem of Burnside on in-
finite subgroups of matrices, G contains an element γ ∈ G of the infinite order.
Replacing γ with its suitable power, and choosing a suitable system of homoge-
neous coordinates [z0 : z1 : z2] on P 2, we can write γ as one of the following
matrices.

(a)




1 0 0
1 1 0
0 1 1


 (b)




1 0 0
1 1 0
0 0 1


 (c)




1 0 0
1 1 0
0 0 α




(d)




1 0 0
0 1 0
0 0 α


 (e)




1 0 0
0 αp 0
0 0 αq


 (f)




1 0 0
0 α 0
0 0 β




(29)

Here p, q ∈ Z with 1 ≤ p < q, gcd(p, q) = 1, and α, β are constant complex
numbers which satisfy no relations such that αr = 1, βs = 1, αrβs = 1 with
r, s ∈ Z, rs 6= 0.
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Lemma 11. Let ϕ(z0, z1, z2) be the defining homogeneous polynomial of C.
Put m = deg ϕ. Then we have the following.

1. If Γ contains an element γ of the form (a), then ϕ is of the form

ϕ(z0, z1, z2) =
∑

i+2j=m

aijz
i
0w

j , w = z0z1 + 2z0z2 − z2
1

where aij ∈ C.
2. If Γ contains an element γ of the form (b), then ϕ is of the form

ϕ(z0, z1, z2) = G(z0, z2),

where G(x, y) ∈ C[x, y] is a homogeneous polynomial of deg G = m.
3. If Γ contains an element γ of the form (c), then ϕ is a monomial of the form

ϕ(z0, z1, z2) = azi
0z

m−i
2

where a ∈ C∗.
4. If Γ contains an element γ of the form (d), then ϕ is of the form

ϕ(z0, z1, z2) = zk
2G(z0, z1)

where G(x, y) ∈ C[x, y] is a homogeneous polynomial with deg G = m− k.
5. If Γ contains an element γ of the form (e), then ϕ is of the form

ϕ(z0, z1, z2) =
m∑

i=0

aiz
m−i
0 zji

1 zki
2

where ai ∈ C, ji + ki = i and pji + qki = n. Here n ∈ N is a constant
independent of i.

6. If Γ contains an element γ of the form (f), then ϕ is a monomial

ϕ(z0, z1, z2) = azi
0z

j
1z

k
2

where a ∈ C∗ and i + j + k = m.

Proof. Easy by calculation. ¤

Now we go back to studying the fibre f−1(0) which contains M . Suppose that
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f−1(0) contains an irreducible component D which is not contained in M and
D ∩M 6= ∅. Then, the hypersurface S0 ⊂ P 3 contains H and D̃ as its irreducible
components, where π(Ω ∩ D̃) = D. The set C = H ∩ D̃ is non-empty. Put
BH = B ∩ H. Replacing Γ with its subgroup of a finite index, we can assume
that Γ leaves invariant every irreducible components of C and BH . Note that
∅ 6= BH ⊂ H, BH ∩ Ω = ∅, ∅ 6= C ⊂ H, and C ∩ Ω 6= ∅. Note also that every
compact curve on H intersects BH , since H \ BH is an affine open set. Let ΓH

denote the restrictions of Γ to H. Note that the restriction of Γ to ΓH is an
isomorphism.

Lemma 12. If ΓH contains an element of an infinite order which is conjugate
to one of (b), (c), (d), (f) in the list of (29), then Γ is an Abelian group with
rank ≤ 2.

Proof. Suppose that γ ∈ ΓH is the element of the infinite order which is
conjugate in PSL (3,C) to one of (b), (c), (d), (f) in the list (29). Then plane
curves left invariant by Γ are among the curves defined by ϕ of the forms (2), (3),
(4) of (6) in Lemma 11. Therefore we see that C∪BH is a finite union of projective
lines. This implies that Γ leaves invariant at least a projective line `0 in BH and a
non-empty union of projective lines C. Note that H ∩Ω ⊂ H \BH ⊂ H \ `0 = C2.
Therefore Γ acts on H ∩Ω and on C ∩Ω as an affine transformation group. Hence
(C∩Ω)/Γ is a union of compact curves with holomorphic affine structures, namely,
a union of elliptic curves. Therefore Γ is an Abelian with rank ≤ 2. ¤

Lemma 13. If ΓH contains an element which is conjugate in PGL (2,C) to
(a) or (e) in the list of (29), then Γ contains an Abelian subgroup of a finite index
with rank ≤ 2.

Proof. The ΓH -invariant set C∪BH is contained in the set {ϕ = 0}, where
ϕ is a homogeneous polynomial of Lemma 11.

First consider the case (e). In this case, ϕ is given by Lemma 11(5). Note
that ji, ki are positive integers given by

ji =
q

q − p
i− n

q − p
, ki =

−p

q − p
i− n

q − p
.

Therefore ϕ is rewritten as

ϕ(z0, z1, z2) =
(
z
−n
q−p

1 z
n

q−p

2

) m∑

i=0

aiz
m−i
0

(
z

q
q−p

1 z
−p

q−p

2

)i

.

Therefore outside {z1z2 = 0}, curves defined by ϕ = 0 are given locally by b′z0 =
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c′z
q

q−p

1 z
−p

q−p

2 for some b′, c′ ∈ C. Thus the irreducible curves in {ϕ = 0} are
contained in curves of the form

Cb,c : bzq−p
0 zp

2 = czq
1 ,

where b, c are constants in C. Since C ∩ Ω 6= ∅, there is a curve Cb,c ⊂ {ϕ = 0}
such that Cb,c ∩ Ω 6= ∅.

Suppose that bc = 0. Then Cb,c consists of projective lines. There is a line
` in Cb,c such that ` ∩ Ω 6= ∅. The action of Γ on ` ∩ Ω is free and properly
discontinuous. Since Γ fixes points `∩BH 6= ∅, we see that (`∩Ω)/Γ is a compact
curve with a holomorphic affine structure, namely, an elliptic curve. Therefore Γ
is an Abelian with rank ≤ 2.

Suppose that bc 6= 0. Then Cb,c is an irreducible rational curve. Since Cb,c ∩
Ω 6= ∅, the action of Γ on Cb,c ∩ Ω is free and properly discontinuous. Hence Γ is
isomorphic to a subgroup of Aut(Cb,c) ' PGL (2,C). Since Γ leaves invariant the
set BH ∩ Cb,c, which is non-empty. Therefore Γ is an elementary Kleinian group.
Therefore Γ contains an Abelian subgroup with rank ≤ 2 of finite index.

Next consider the case (a). In this case ϕ is of the form Lemma 11(1). Thus
C ∪BH is contained in a finite union of non-singular curves Ca of the form

az2
0 = w, a ∈ C

and the line `0 = {z0 = 0}. Since C∩Ω is non-empty, either `0 ⊂ C and `0∩Ω 6= ∅,
or Ca ⊂ C and Ca ∩ Ω 6= ∅ for some a. The rest of the argument is exactly the
same as in the case (e). ¤

Combining Propositions 2, 3, and Lemmas 12, 13, we have the following.

Proposition 7. The fibre which contains M is irreducible, i.e, M = f−1(0).

Proposition 8. X \ f−1(0) admits a holomorphic affine structure.

Proof. By Proposition 7 and Lemma 10, we have

X \ f−1(0) = X \M = (Ω \H)/Γ.

Since Γ acts on Ω \H ⊂ P 3 \H = C3 as an affine transformation group, we have
the lemma. ¤

Remark 3. If 0 6∈ A , then X is an L-Hopf manifold or a Blanchard mani-
fold. This fact would be proved later in a more general setting.
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5.3. Singularities of singular fibres.
We use the following easy fact.

Lemma 14. Let Z be a compact variety with dimZ ≥ 1, and Ω a non-empty
open (connected non-singular) submanifold of Z. Let Y be a closed analytic subset
in Z with dimY ≤ dimZ − 1. Assume that there is a group Γ of holomorphic
automorphisms of Z which leaves Ω and Y invariant. If the action of Γ on Ω is
fixed point free and properly discontinuous, then Y ∩ Ω has no isolated points.

Proof. Suppose that y ∈ Y ∩Ω be an isolated point of Z. Then any point
of the Γ-orbit of y is isolated Z ∩ Ω, since Γ is properly discontinuous on Ω. This
implies that Y has an infinite number of connected components in Ω, since the
action of Γ on Ω is fixed point free on Ω. Since Y is an analytic set in a compact
space Z, this is absurd. ¤

As an immediate consequence of Lemma 14, we have

Lemma 15. Let Z be a compact 3-dimensional variety and Ω a non-empty
(non-singular, connected) open submanifold of Z. Let Yj, j = 1, . . . , m, be compact
surfaces in Z such that Yj ∩Ω 6= ∅. Assume that there is a group Γ of holomorphic
automorphisms of Z which leaves Ω and each Yj invariant. If the action of Γ on
Ω is fixed point free and properly discontinuous, then the singular locus of Y ∩ Ω
is a disjoint union of non-singular curves, where Y =

⋃m
j=1 Yj.

The following lemma is easily derived from Lemma 15 and the universal prop-
erty of monoidal transformations (see, [Fs, p. 162] for the definition of monoidal
transformations).

Lemma 16. Let Z̄1 be a compact complex 3-dimensional variety and Ω1

a non-empty open (non-singular, connected) submanifold of Z̄1. Let V̄1j, j =
1, . . . , m, be compact surfaces in Z̄1 such that V̄1j ∩ Ω1 6= ∅. Let {C̄1,k}n

k=1 be the
set of compact curves which are contained in the singular locus of V̄1 =

⋃m
j=1 V̄1,j,

and intersect Ω1.

I. Assume that there is a group Γ1 of holomorphic automorphisms of Z̄1 which
has the following properties.
(a) The group Γ1 leaves invariant Ω1, each V̄1j, and each C̄1k.
(b) The action of Γ1 on Ω1 is properly discontinuous and fixed point free.
Then we have the following.

( i ) The analytic set V̄1 has no isolated singular points in Ω1.
( ii ) Each C̄1,j ∩ Ω1 has no singular points.
( iii ) For any j 6= k, C̄1,j ∩ C̄1,k ∩ Ω1 is empty.
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II. Let µ : Z̄2 → Z̄1 be the monoidal transformation of Z̄1 with the center C̄1,1.
Put Ω2 = µ−1(Ω1). Let V̄2,j, j = 1, . . . , m, be the proper transformation of
V̄1,j, j = 1, . . . , m, and set V̄2,m+1 = µ−1(C̄1,1). Let {C̄2,k}r

k=1 be the set of all
compact curves which are contained in the singular locus of V̄2 =

⋃m+1
j=1 V̄2,j,

and intersect Ω2. Then, under the conditions (a) and (b) above, we have the
following.

( iv ) There is a group Γ2 of holomorphic automorphisms of Z̄2 and a surjective
homomorphism µ∗ : Γ2 → Γ1 which sends σ ∈ Γ2 to τ ∈ Γ1 such that
τ ◦ µ = µ ◦ σ.

( v ) Ω2 is a (non-singular connected) open submanifold in Z̄2.
( vi ) The group Γ2 leaves invariant Ω2, each V̄2,j, and each C̄2,k.
(vii) The action of Γ2 on Ω2 is properly discontinuous and fixed point free.
(viii) The analytic set V̄2 has no isolated singular points in Ω2.
( ix ) Each C̄2,j ∩ Ω2 has no singular points.
( x ) For any j 6= k, C̄2,j ∩ C̄2,k ∩ Ω2 is empty.
( xi ) {C̄2,j}r

j=1 = {µ−1(C̄1,j)}m
j=2∪{C̄ ′1, . . . , C̄ ′s}, where C̄ ′1, . . . , C̄

′
s are the curves

which appear in the intersections of V̄2,m+1 ∩ V̄2,j, j = 1, . . . , m, and inter-
sect Ω2.

(xii) For j = 1, . . . , s, µ maps C̄ ′j onto C̄1,1.
(xiii) The induced map Ω2/Γ2 → Ω1/Γ1 defines the blowing-up with the center

π1(C̄1,1 ∩ Ω1), where π1 is the canonical projection Ω1 → Ω1/Γ1.

Lemma 17. For any t ∈ P 1, St ∩ Ω is connected.

Proof. Fix any t ∈ P 1. We can find an open neighborhood N of f−1(t)
in X such that f−1(t) is a deformation retract of N . Put Ñ = π−1(N). Then
St ∩Ω is a deformation retract of Ñ . Since P 1 \ E is dense in P 1, there is a point
s ∈ P 1 \ E such that f−1(s) ⊂ N . By the choice of s, the Hausdorff dimension
of (Ss \ B) ∩ Λ is of Hausdorff dimension zero. Therefore Ss ∩ Ω = (Ss \ B) \ Λ
is connected. Note that Ss ∩ Ω ⊂ Ñ and that Ss ∩ Ω = π−1(f−1(s)) has common
points with every connected component of Ñ . Therefore the connectedness of
Ss ∩ Ω implies that of Ñ . Hence St ∩ Ω is connected. ¤

Suppose that A contains points other than 0. Let f∗(a), a 6= 0, be a singular
fibre and express it as

f∗(a) =
ma∑

j=1

sjVaj , sj ∈ N ,

where ma is a positive integer, and the Vaj are the irreducible components of
f−1(a).
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For any Vaj , let V̄aj be an irreducible component of the hypersurface Sa ⊂ P 3

such that Vaj = π(Ω ∩ V̄aj). Since Γ fixes every component of F−1(a), V̄aj is
uniquely determined by Vaj . Put Va =

⋃ma

j=1 Vaj , V̄a =
⋃ma

j=1 V̄aj , Cajk = Vaj∩Vak.
C̄ajk = V̄aj∩V̄ak. Then Sa = V̄a, f−1(a) = Va = π(V̄a∩Ω), and Cajk = π(C̄ajk∩Ω)
hold.

Lemma 18. If the reduced analytic set Sa has singular points, then the sin-
gular locus of Va is a finite disjoint union of non-singular curves with genera ≥ 2,
and all the irreducible components of Va are algebraic surfaces.

Proof. For simplicity, we omit the subscript a in the proof. If m ≥ 2,
then, by Lemma 17 and by the fact that every V̄j intersects Ω†, for any integer
j, 1 ≤ j ≤ m, there is an integer k 6= j, 1 ≤ k ≤ m, such that V̄j ∩ V̄k ∩ Ω 6= ∅.
Since Vj contains no rational curves, the curves Cjk = π(V̄j ∩ V̄k ∩ Ω) are non-
singular with genera ≥ 1. If there are elliptic curves among Cjk’s, then X is an
L-Hopf manifold by Corollary 4. Hence all the Cjk’s are with genera ≥ 2. Since
the normalization V ∗

j of Vj is non-singular, free from rational curves, and since
it contains non-singular curves with genus ≥ 2, we infer that V ∗

j is projective
algebraic. If m = 1 and if V1 has singular points, then, since the singular locus is a
finite set of disjoint non-singular curves of genera ≥ 2, we see that V ∗

1 is projective
algebraic by the same reason. ¤

We construct a sequence of blowing-ups

µk : Zk → Zk−1, k = 1, . . . , r, Z0 = X

so that the singular fibres of f ◦ µ : Zr → P 1, µ = µ1 ◦ · · · ◦ µr, define simple
normal crossing divisors without self-intersections. The sequence of blowing-ups
are defined inductively as follows.

Consider the set of surfaces which appear in the singular fibres of f ,

V0 = {V ⊂ Z0 : V = Vaj for some a ∈ A , and some 1 ≤ j ≤ ma}.

Note that singular loci of surfaces in V0 are union of non-singular curves. Consider
also the set of curves which appear as singular loci of the singular fibres of f ,

C0 = {C ⊂ Z0 : C is a singular locus of some f−1(a), a ∈ A }.

If C0 is empty, then every singular fibre is a multiple of a non-singular surface.

†because a line contained in Ω intersects V̄j
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Hence there is nothing to prove. Therefore we assume that C0 6= ∅.
By Lemma 18, V0 consists of algebraic surfaces. We know also that C0 consists

of non-singular curves of genera ≥ 2, and that any distinct two curves in C0 are
disjoint each other. We set Z̄0 = P 3, Ω0 = Ω, Γ0 = Γ, and f0 = f . Recall that
Z0 = X.

As the initial induction step, we have

♣0 : Z0, f0 : Z0 → P 1, Ω0 ⊂ Z̄0, Γ0, V0, C0.

We construct µ1 : Z1 → Z0 as follows. Let C ′
0 be the set of curves C in C0

which satisfy the following three conditions.

1. C is not a singular locus of any single surface in V0,
2. C is contained in exactly two surfaces in V0, say V ′ and V ′′,
3. V ′ and V ′′ are crossing normally and C = V ′ ∩ V ′′.

If C0 = C ′
0, then we are done. Otherwise choose any C0 ∈ C0\C ′

0 and consider
the blowing-up µ1 : Z1 → Z0 with the center C0.

Let π0 : Ω0 → Z0 be the canonical projection. We can find a compact curve
C̄0 in Z̄0 = P 3 such that C0 = π0(C̄0∩Ω0). Consider the monoidal transformation
µ̄1 : Z̄1 → Z̄0 with the center C̄0. Put Ω1 = µ̄−1

1 (Ω0). Then, by Lemma 16, II, Γ0

induces a group Γ1 of holomorphic automorphisms of Z̄1 which acts on Ω1, and
the action is properly discontinuous and fixed point free. Further, the induced
map Ω1/Γ1 → Ω0/Γ0 from µ̄1 coincides with the blowing-up µ1 : Z1 → Z0 with
the center C0.

Define

V1 = {V1 ⊂ Z1 : V1 is a proper transform of some V ∈ V0} ∪ {µ−1
1 (C0)}

and

C1 =
{
C1 ⊂ Z1 : C1 is a proper transform of some C ∈ C \ {C0}

}

∪ {
C1 ⊂ Z1 : C1 is a component of µ−1

1 (C0) ∩ V for some V ∈ V0

}
.

Note that µ−1
1 (C0) is a non-singular surface, since C0 is non-singular. Here and

from now on, we write by the same symbol the variety and its proper transform of
a blowing-up. By Lemma 16, II, V1 consists of algebraic surfaces whose singular
loci are disjoint union of non-singular curves. We have also that C1 consists of
non-singular curves of genera ≥ 2, and that any distinct two curves in C1 are
disjoint each other. Put f1 = f ◦ µ1. Thus we get to the next stage,
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♣1 : µ1 : Z1 → Z0, f1 : Z1 → P 1, Ω1 ⊂ Z̄1, Γ1, V1, C1.

Continuing this process, we obtain a sequence of blowing-ups {µk}r
k=1,

♣k : µk : Zk → Zk−1, fk : Zk → P 1, Ωk ⊂ Z̄k, Γk, Vk, Ck.

By a theorem of Hironaka, Cr = C ′
r for some integer r. Namely, all the singular

fibres of fr define simple normal crossing divisors without self-intersections. At the
same time, we see by the construction above that the singular loci of the singular
fibres of fr are disjoint union of non-singular curves with genera ≥ 2.

For a divisor D, we indicate by [D] the associated class in H2(X,Q). For
simplicity, a divisor and its proper transform by blowing-up are indicated by the
same symbol D.

Lemma 19. If the analytic set f−1(a), a 6= 0, has a singular point, then
every irreducible component of f−1(a) is a rational surface.

Proof. Let V be a surface contained in f−1(a). We shall show that the
canonical bundle of the proper transform of V in Zr is numerically equivalent to
the negative of a non-trivial effective divisor. Since V is algebraic, this implies
that V is rational. In f−1

r (a), there are some surfaces Va1, . . . , Vap other than V ,
and some exceptional divisors Eak of the blowing-ups {µk} such that

s[V ] ≡ −
p∑

j=1

sj [Vaj ]−
r∑

k=1

mk[Eak],

s, s1, . . . , sp,m1, . . . , mr : positive integers. (30)

By Proposition 8, X \ f−1(0) has a holomorphic affine structure. Therefore the
canonical bundle of KZ0 is numerically trivial on X \ f−1(0). Hence on a tubular
neighborhood of f−1

r (a), we have

KZr
≡

r∑

k=1

[Eak]. (31)

Hence we have

KZr
+ [V ] ≡

r∑

k=1

[Eak]− 1
s

( p∑

j=1

sj [Vaj ] +
r∑

k=1

mk[Eak]
)
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≡ −1
s

p∑

j=1

sj [Vaj ]−
r∑

k=1

(
mk

s
− 1

)
[Eak].

Note that, if Eak ∩ V 6= ∅, then mk > s holds, since the center of the blowing-up
at each step is a singular locus of the fibre which is lying on V . Hence we have

KV = (KZr
+ [V ]) | V ≡ −1

s

p∑

j=1

sj [Vaj ] · [V ]−
r∑

k=1

(
mk

s
− 1

)
[Eak] · [V ].

Thus KV is numerically equivalent to the negative of a non-trivial effective divisor.
¤

Proposition 9. Every singular fibre of the algebraic reduction f : X → P 1

is a multiple fibre of a non-singular surface.

Proof. The fibre f−1(0) is non-singular, since f−1(0) = M = (Ω ∩H)/Γ
by Proposition 7, and since Ω ∩ H is non-singular. If the fibre f−1(a), a 6= 0,
has a singular point, then by Lemma 19, f−1(a) contains a rational surface. This
contradicts Proposition 6. ¤

5.4. Multiple fibres.
By a general result on regular fibres of algebraic reductions of codimension

two due to Kawai [Kw], Ueno [U, Remark 12.5], and Fujiki [Fj1], [Fj2], together
with Proposition 6, we have the following.

Proposition 10. A regular fibre of the algebraic reduction f : X → P 1 is
biholomorphic to either a complex torus, a hyperelliptic surface, a Kodaira surface
(i.e., a non-Kähler surface with a trivial canonical bundle), or a surface of Class
VII0.

On the other hand, we recall that M has a holomorphic projective structure. By
Proposition 9, we obtain a complex family of small deformations of M , by a base
change at a singular fibre of the algebraic reduction. Therefore, by [KoOc1],
[KoOc2], and Proposition 10, we have the following.

Proposition 11. A regular fibre of the algebraic reduction f : X → P 1 is
biholomorphic to one of the following.

(a) A complex torus,
(b) a hyperelliptic surface,
(c) a Kodaira surface,
(d) a Hopf surface, or
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(e) an Inoue surface with b2 = 0.

In Proposition 11, all surfaces other than case (d) have Stein surfaces as their
universal coverings. First we settle case (d).

Proposition 12. A regular fibre of the algebraic reduction f : X → P 1 is
not a Hopf surface.

Proof. If a regular fibre is a Hopf surface, the fundamental group of X

admits an infinite cyclic subgroup of a finite index. Hence X is an L-Hopf manifold
by Proposition 2. This contradicts Assumption (25). ¤

Now we consider the remaining cases (a), (b), (c) and (e), where the regular
fibres admit Stein surfaces as their universal coverings. For a subset W ⊂ P 1, we
put

XW = f−1(W ), SW =
⋃

t∈W

St, ΩW = SW \ Λ.

For a complex manifold Y étale over a Stein manifold, we denote by Yenv the
envelope of holomorphy of Y . Recall that we are working in the cases where
B ⊂ Λ holds, see (26).

Lemma 20. Let h : Y → D be a complex family of deformations over a unit
disk D such that h−1(0) is one of the cases (a), (b), (c), and (e). Then, there is a
neighborhood ∆ of 0 such that the universal covering of h−1(∆) is of Stein.

Proof. For the cases (a) and (b) are well-known. For the case (e), see
Inoue [In]. The case (c) is proved in Appendix, see Proposition 16. ¤

Lemma 21. Assume that a regular fibre of f is one of the cases (a), (b), (c),
and (e). Let W be a complex manifold of dimension 3 étale over a Stein manifold.
Then, any t ∈ A has a neighborhood ∆ ⊂ P 1 such that every étale holomorphic
map W → X∆ extends to Wenv → X∆.

Proof. Let ∆ ⊂ P 1 be a small disk such that ∆ ∩ A = {t}. Since f∗(t)
is a multiple of a non-singular surface by Proposition 9, we can get a family of
small deformations of f−1(t) by a base change. Since regular fibres are one of
(a), (b), (c), and (e), we see that so is the central fibre f−1(t) by topological
conditions. Let $ : X ′

∆′ → ∆′ be the fibre space obtained by the base change.
Then by Lemma 20, X ′

∆′ is 3-probable and Hex3(X ′
∆′) = +∞. Put ∆∗ = ∆ \ {t}.

Since, any s ∈ ∆∗ has a neighborhood ∆s ⊂ ∆∗ such that Hex3(X∆s
) = +∞, we
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have Hex3(X∆ \Xt) = +∞ by [KaOk, Theorem 3]. Therefore by Corollary 5 in
Appendix, we have the lemma. ¤

Lemma 22. Assume that a regular fibre of f is one of the cases (a), (b),
(c), and (e). Then, any point t ∈ P 1 has a neighborhood ∆ ⊂ P 1 such that
(S∆ \ Λ)env = S∆ \B.

Proof. By Theorem 5.1, we see that the Hausdorff dimension of (SP 1\A \
B) ∩ Λ is not more than 2. Hence, we have

(S∆ \ Λ)env = S∆ \B

for any open subset ∆ ⊂ P 1 \ A . Thus the lemma holds if t /∈ A . Suppose
that t ∈ A . Let W be a small disk centered at t and W ∩ A = {t}. Note that
SW \ B and SW \ f−1(t) are of Stein. Therefore every holomorphic function on
((SW \B)\f−1(t))∪(Ω∩f−1(t)) extends holomorphically on SW \B by a theorem
of Thullen. Thus we have the lemma also for t ∈ A . ¤

Lemma 23. Assume that a regular fibre of f is one of the cases (a), (b), (c),
and (e). Then B = Λ. In particular, Λ is a finite union of lines which are on a
Γ-invariant plane in P 3.

Proof. Since B ⊂ Λ, it is enough to show that, any t ∈ P 1 has a neigh-
borhood ∆ such that

S∆ \B ⊂ S∆ \ Λ. (32)

Take any t ∈ P 1. If t /∈ A , let ∆ be the one in Lemma 20. If t ∈ A , let ∆ be the
one in Lemma 21. In any case, the canonical map

π : S∆ \ Λ → X∆,

which is étale, extends holomorphically to

π : (S∆ \ Λ)env → X∆,

by Lemmas 20 and 21. We know that (S∆\Λ)env = S∆\B by Lemma 22. But, since
π does not extend even continuously across any boundary point of Ω∆ = S∆ \ Λ
in S∆ \B, we see that S∆ \Λ ⊃ S∆ \B. This proves (32). Recall that Λ is a union
of lines by Proposition 4. Hence, since B ⊂ H, Λ is a finite union of lines which
are a Γ-invariant plane in P 3. ¤
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5.5. Proof of the main Theorem.
Recall that we are working under Assumption (25). To prove the main The-

orem 1.1, it suffices to show by Propositions 11 and 12 that the regular fibre of
the algebraic reduction f : X → P 1 is neither a torus (case (a)), a hyperelliptic
surface (case (b)), a Kodaira surface (case (c)), nor an Inoue surfaces with b2 = 0
(case (e)).

By Lemma 23, we know that, in the cases (a), (b), (c) and (e), Λ consists
of finite number of lines on a Γ-invariant plane, say H, in P 3. Let ΓH denote
the restriction of Γ to H. Since Ω ∩ H 6= ∅ and Γ is fixed point free on Ω, the
restriction Γ → ΓH is an isomorphism.

Suppose that Λ contains at least three lines. If Λ contains three lines in a
general position, then ΓH consists of diagonal matrices. Hence ΓH is abelian. Then
rankΓ = rank ΓH ≤ 4 holds by Lemma 5. If rankΓH = 4, then we are in case IV
of Lemma 5, and we see that B consists of a single line. This is a contradiction. If
rankΓH = 3, then we are in case III of Lemma 5. In this case, however, two lines
are outside Ω ∩H. This is a contradiction. The cases rank ΓH = 2 do not occur
by Proposition 3. If rank ΓH = 1, then X is an L-Hopf manifold, which is also
excluded by Assumption (25).

If every triple of lines in Λ is not in a general position, there is a point v ∈ H

through which there are three lines. Then the affine transformations which leave
these lines are of the form

{
x′ = x

y′ = ax + by + c
,

where one of the three lines is the line at infinity. Therefore x defines a holomor-
phic function on the compact manifold (Ω ∩H)/Γ, which reduces to be constant
function. This is absurd.

Thus we infer that Λ contains less than three lines. If Λ consists of a single
line, when X is a Blanchard manifold, which is excluded by Assumption. Suppose
that Λ consists of two lines, say Λ = `1 ∪ `2. Since B ⊂ H, Ω ∩ H = H \ B is
naturally identified with C∗×C. Since the universal covering of (Ω∩H)/Γ is C2,
it is not an Inoue surface with b2 = 0. If (Ω ∩H)/Γ is covered by a torus, then Γ
contains an abelian subgroup of finite index. Therefore this case is also excluded
by the same argument as above. If (Ω ∩ H)/Γ is not covered by a torus, it is a
Kodaira surface. By Proposition 14 in Appendix, however, Kodaira surfaces are
not covered by C∗ ×C. Thus Theorem 1.1 is proved completely. ¤
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6. Appendix.

6.1. Holomorphic extension index.
Let π : X → ∆ be a proper surjective holomorphic map of an m-dimensional

complex manifold X to a disk ∆ = {t ∈ C : |t| < ε} with π−1(t) connected for
all t. We assume that π is of maximal rank at every point on π−1(∆∗), where
∆∗ = ∆ \ {0}. We assume in the following that X0 = π−1(0) is non-singular and
the divisor π∗(0) is a multiple fibre with multiplicity µ ≥ 2.

Consider a disk ∆′ = {s ∈ C : |s| < ε1/µ}. The set of points X ′ =
{(x, s)|π(x) = sµ} ⊂ X × ∆′ forms a branched covering of X under the pro-
jection ξ : X ′ → X to the first factor. The projection π′ : X ′ → ∆′ to the second
factor is a family of (m−1)-manifold every fibre of which is regular. Then we have
the following. See [KaOk], for the terms n-probable and Hex.

Proposition 13. Assume that X ′ is n-probable, Hexn(X ′) = ∞, and that
Hexn(X \X0) = ∞. Let W be an étale domain over a Stein manifold of dimension
n, and Wenv the envelope of holomorphy of W . Then, for any holomorphic map
σ : W → X, there is an analytic subset A of codimension at least 2 in Wenv such
that σ extends holomorphically to Wenv \ A → X. In particular, Hexn(X) ≥ 4
holds.

Proof. Since X ′ is n-probable and since X ′ is a finite branched covering
of X, we see that X is n-probable by [KaOk, Theorem 4]. Hence X \ X0 is
also n-probable by [K5, Lemma 1.2]. Let H be a Hartogs domain in Cn, i.e.,
H = G1 ∪G2 and

G1 = {(z1, . . . , zn) : |zj | < rj , j = 1, . . . , n− 1, |zn| < 1},
G2 = {(z1, . . . , zn) : |zj | < 1, j = 1, . . . , n− 1, rn < |zn| < 1},

where 0 < rj < 1, j = 1, . . . , n. Consider any holomorphic map σ : H → X. By
[KaOk, Theorem 2], it is enough to show that σ extends to a holomorphic map
σ̂ : Ĥ → X, where Ĥ = Henv is the unit polydisk associated with H. Consider
the holomorphic function τ = (π ◦ σ)∗t on H. Then τ extends to a holomorphic
function τ̂ on Ĥ. Let Ŝ be a hypersurface in Ĥ defined by τ̂ = 0. Put S = Ŝ ∩H.
By a theorem of Dloussky [D], the envelope of holomorphy of H \S coincides with
Ĥ \ Ŝ. Therefore, σ|H\S extends to a holomorphic map Ĥ \ Ŝ → X \ X0, since
X \ X0 is n-probable with Hexn(X \ X0) = ∞ by the assumption. Therefore σ

extends to a holomorphic map

σo : (Ĥ \ Ŝ) ∪H → X.
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Shrinking H a little bit, we can assume that Ŝ is the restriction of a larger analytic
subset S̃ in a larger polydisk H̃ to Ĥ, Ŝ = S̃ ∩ Ĥ. Here we change coordinates
(z1, . . . , zn) slightly so that zj , j = 1, . . . , zn−1, are not constant on any component
of S̃.

Let S̃sing be the set of singular points of S̃. Let Ñ(δ) be a tubular neighbor-
hood of S̃sing in H̃ with small radius δ > 0. Denote by ∂Ñ(δ) the boundary of
Ñ(δ) in H̃. Put N̂(δ) = Ñ(δ) ∩ Ĥ and ∂N̂(δ) = ∂Ñ(δ) ∩ Ĥ. Put

Wn−1(r) = {(z1, . . . , zn−1) ∈ Cn−1 : |z1| < r, . . . , |zn−1| < r},
Dn−1 = {(z1, . . . , zn−1) ∈ Cn−1 : |z1| < 1, . . . , |zn| < 1},

Dn = {zn ∈ C : |zn| < 1},
W (r, δ) =

(
(Ĥ \ Ŝ) ∪ (Wn−1(r)×Dn)

) \ N̂(δ).

Fix a small δ > 0. Note that σo is holomorphic on W (r, δ) for 0 < r ≤
min{r1, . . . , rn−1}. Let ρ be the supremum of r such that σo extends to a holo-
morphic map σr : W (r, δ) → X.

Suppose that ρ < 1. Then the boundary of W (ρ, δ) in Ĥ contains points of
Ŝ \∂N̂(δ). Take any point a on the boundary point of W (ρ, δ) on Ŝ \∂N̂(δ). Take
a small open ball B ⊂ Ĥ centered at a such that B ∩ S̃sing = ∅. Using the local
defining equation s = 0 of B ∩ Ŝ on B, we define the cyclic branched covering
B′ = {(z, s) | z = sµ} ⊂ B ×C of B under the projection η : B′ → B to the first
factor. The map σr|B∩W (r,δ) lifts to a holomorphic map

σ̂B′ : (B′ \ {s = 0}) ∪ η−1(B ∩W (r, δ)) → X ′

by σ̂B′(z, s) = (σr(z), s) ∈ X ′ ⊂ X × ∆′. Since Hexn(X ′) = +∞, σ̂B′ extends
holomorphically to B′\η−1(N̂(δ)) → X ′. Since σ◦η = π′◦(σ̂B′) on B′\η−1(N̂(δ)),
we see that σr extends holomorphically to B ∪ W (r, δ). Since a is an arbitrary
point on the boundary point of W (ρ, δ) on Ŝ \∂N̂(δ), we see that there is an r > ρ

such that σo extends to a holomorphic map σr : W (r, δ) → X. This contradicts the
definition of ρ. Hence σo extends to a holomorphic map σ1 : W (1, δ) = Ĥ \N̂(δ) →
X.

Since δ > 0 is arbitrary small, we see that σ1 extend holomorphically to
Ĥ \ Ŝsing → X. At the beginning of the proof, we have shrunk H slightly. Since
the shrink can be chosen arbitrary small, we have proved that, for the original H,
σ : H → X can be extended to a holomorphic map Ĥ \ Ŝsing → X. Thus we have
Hexn(X) ≥ 4 and the proposition follows by [KaOk, Theorem 2]. ¤
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Using the notation above, we have the following corollary.

Corollary 5. Assume that X ′ is n-probable, Hexn(X ′) = ∞, and that
Hexn(X \X0) = ∞. Let W be an étale domain over a Stein manifold of dimension
n, and Wenv the envelope of holomorphy of W . Then, any étale holomorphic map
ϕ : W → X extends to an étale holomorphic map ϕ̃ : Wenv → X.

Proof. To prove this, we can assume that the map σ : H → X is étale. In
this case the singular set S̃sing is an empty set. Therefore σ extends holomorphi-
cally to σ̂ : Ĥ → X and σ̂ is étale. This implies the corollary. ¤

6.2. Kodaira surfaces.
A compact non-Kähler surface with a trivial canonical bundle is called a Ko-

daira surface. By Kodaira ([K, pp. 785–788]), a Kodaira surface S is biholomorphic
to the quotient manifold C2/G, where G be a properly discontinuous group of the
affine transformations without fixed points of C2 generated by

gj(w1, w2) = (w1 + αj , w2 + ᾱjw1 + βj), j = 1, 2, 3, 4. (33)

Here m is a fixed positive integer, and β1, β2 are linearly independent over R.
Further αj and βj satisfy

α1 = α2 = 0, ᾱ3α4 − ᾱ4α3 = mβ2 6= 0.

The surface S is an elliptic bundle over an elliptic curve and has numerical in-
variants q(S) = dim H1(S, O) = 2, h1,0(S) = dim H0(S, Ω1) = 1, b1(S) =
dimH1(S, C) = 3. We put

Z = C∗ ×C = {(z1, z2) ∈ C2 : z1 6= 0} ⊂ C2.

Proposition 14. A Kodaira surface S is not biholomorphic to a compact
quotient manifold of the form Z/H, where H is a group of the affine transforma-
tions of C2 which acts on Z as a fixed point free properly discontinuous group.

Proof. We shall prove the proposition by contradiction. Put M = Z/H.
Suppose that there is a biholomorphic map

ϕ : S → M.

Then ϕ lifts to an unramified covering
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ϕ̃ : C2 → Z.

Let G0 be the covering transformation group of ϕ̃. Then G0 is a normal subgroup
of G isomorphic to π1(Z) ' Z. Let g0 ∈ G be a generator of G0.

Lemma 24. There are integers m1,m2 such that g0 = gm1
1 gm2

2 .

Proof. Since G0 is a normal subgroup of G, we have g−1
j g0gj = g±1

0 holds
for each j = 1, 2, 3, 4. Then, by a direct calculation, we can check that g0 is of the
form




1 0 0
0 1 β
0 0 1


 ,

where β ∈ C is a constant. Then the lemma follows easily. ¤

Since H leaves the line z1 = 0 invariant, any element h ∈ H is written as

h(z1, z2) = (az1, bz2 + cz1 + e), (34)

where a, b, c, e are constants in C depending on h, and ab 6= 0. For each gj ∈ G,
there is an element hj ∈ H such that

ϕ̃ ◦ gj = hj ◦ ϕ̃. (35)

Put ϕ̃(w1, w2) = (u(w1, w2), v(w1, w2)). Then u, v are holomorphic functions on
C2. Note that u 6= 0 everywhere on C2. By (35), we have

u(gj(w1, w2)) = aju(w1, w2) (36)

v(gj(w1, w2)) = bjv(w1, w2) + cju(w1, w2) + ej , (37)

where we put

hj =




aj 0 0
cj bj ej

0 0 1


 .

By (36), we have a d-closed holomorphic 1-form du/u on C2, which satisfies
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du(g(w))
u(g(w))

=
du(w)
u(w)

, w = (w1, w2),

for any g ∈ G. This relation implies that there is a d-closed holomorphic 1-form φ

on S such that $∗φ = du/u, where $ : C2 → S is the canonical projection. On
the other hand, we see easily that dw1 is also a d-closed holomorphic 1-form on S.
Hence, by h1,0(S) = 1, we have

φ = λdw1

for some constant λ ∈ C∗. This shows that u is a holomorphic function on C2 of
the form

u(w1, w2) = C1e
λw1 (38)

for some constant C1 ∈ C∗. Substituting (38) in (37), and applying ∂/∂w2 to
(37), we have

∂v

∂w2
(g(w)) = bj

∂v

∂w2
(w).

Since ϕ̃ is locally bijective, ∂v/∂w2 never vanishes on C2. Hence

1
∂v

∂w2
(w)

d

(
∂v

∂w2
(w)

)

is a G-invariant d-closed holomorphic 1-form on C2. Hence, by h1,0(S) = 1, we
have

1
∂v

∂w2
(w)

d

(
∂v

∂w2
(w)

)
= µdw1

for some constant µ ∈ C. Integrating this equality, we have

v(w1, w2) = C2w2e
µw1 + ψ(w1) (39)

for a constant C2 ∈ C∗ and a holomorphic function ψ on C. Since ϕ̃(g0(w)) =
ϕ̃(w), we have by Lemma 24,

u(w1, w2 + β) = u(w1, w2), v(w1, w2 + β) = v(w1, w2), β = m1β1 + m2β2.



1364 M. Kato

Hence, it follows from (39) that

C2βeµw1 = 0.

This implies β = 0 and hence m1 = m2 = 0. Consequently, we have g0 = 1. This
is absurd. ¤

Now we shall construct a complete family of small deformations of a Kodaira
surface. Proposition 16 below is used in proving Lemma 20. The construction of
the complete family may be well-known, but we describe it here for the readers
convenience.

For ε > 0, we put ∆ε = {t ∈ C : |t| < ε}. Let ε be a small positive number.
Put W = C2 × B, where B = {(s, t) ∈ C2 : |s − α4| < ε, |t − β4| < ε}. Let
G = 〈σj〉4j=1 be the group of holomorphic automorphisms of W generated by the
following four elements,

σ1(w1, w2, s, t) = (w1, w2 + β1, s, t), (40)

σ2(w1, w2, s, t) = (w1, w2 + β2(s), s, t), (41)

σ3(w1, w2, s, t) = (w1 + α3, w2 + ᾱ3w1 + β3, s, t), (42)

σ4(w1, w2, s, t) = (w1 + s, w2 + ᾱ4w1 + t, s, t), (43)

which satisfy the condition

ᾱ3s− ᾱ4α3 = mβ2(s).

Since ε > 0 is sufficiently small, and since β1 and β2(s) are linearly independent
over R for s = α4, so are β1 and β2(s) for all (s, t) ∈ B. Note that σj = gj × idB

for j = 1, 2, 3. We have the relations σjσk = σkσj unless {j, k} = {3, 4}, and
σ3σ4 = σm

2 σ4σ3.

Lemma 25. The group G is free and properly discontinuous on W .

Proof. Any element σ ∈ W can be written as σ = σm1
1 σm2

2 σm3
3 σm4

4 for
some integers m1, . . . , m4. Then σ is given by




1 0 m3α3 + m4s

m3ᾱ3 + m4ᾱ4 1
m3(m3−1)

2 |α3|2 + m4(m4−1)
2 ᾱ4s

+m3m4ᾱ3s + m1β1 + m2β2(s) + m3β3 + m4t

0 0 1




. (44)
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Fix any ε1 with 0 < ε1 < ε and put K1 = {(s, t) ∈ B : |s−α4| ≤ ε1, |t−β4| ≤ ε1}.
Take any positive number M and set K2 = {(w1, w2) ∈ C2 : |w1| ≤ M, |w2| ≤ M}.
Put K = K1×K2. To show that G is properly discontinuous, it is enough to show
that the set

{σ ∈ G : σ(K) ∩K 6= ∅} (45)

is finite. Fix any (s, t) ∈ K1. Suppose that σ(K ∩ p−1
2 (s, t)) ∩ K 6= ∅, where

p2 : W → B is the projection to the second component. Then there is a point
w = (w1, w2, s, t) ∈ K such that σ(w) ∈ K. Put σ(w) = (w′1, w

′
2, s, t). Then we

have

w′1 = w1 + m3α3 + m4s (46)

w′2 = (m3ᾱ3 + m4ᾱ4)w1 + w2 +
m3(m3 − 1)

2
|α3|2 +

m4(m4 − 1)
2

ᾱ4s

+ m3m4ᾱ3s + m1β1 + m2β2(s) + m3β3 + m4t. (47)

By (46), we have

|m3α3 + m4s| ≤ 2M. (48)

Since α3, s are linearly independent over R, the set of the pairs (m3,m4) satisfying
(49) is finite. Put

L = max{|m3|, |m4| : |m3α3 + m4s| ≤ 2M}.

Then, from (47), it follows that there is a constant C which depend only on
M, L, ε1, α3, α4, β3 and β4 such that

|m1β1 + m2β2(s)| ≤ C (49)

holds. Since β1 and β2(s) are linearly independent over R, the set of integers
satisfying (49) is finite. Put

N(s, t) = #{σ ∈ G : σ(K ∩ p−1(s, t)) ∩K 6= ∅}.

Suppose that sup(s,t)∈K1
N(s, t) = ∞. Then there is a sequence (sn, tn) ∈

K1 such that limn N(sn, tn) = ∞. Taking a subsequence, we can assume
that limn(sn, tn) = (s0, t0) ∈ K1. For each n, we take σn ∈ G such that
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σn(K ∩ p−1(sn, tn)) ∩ K 6= ∅. Taking a subsequence of (sn, tn) again if neces-
sary, we can assume that the members of the sequence {σn} are distinct each
other by the fact that limn N(sn, tn) = ∞. Put σn = σ

m(n)1
1 σ

m(n)2
2 σ

m(n)3
3 σ

m(n)4
4 .

Since σn(K ∩ p−1(sn, tn)) ∩ K 6= ∅, we have |m(n)3α3 + m(n)4sn| ≤ 2M . If
limn |m(n)3| = ∞, then by

∣∣∣∣α3 +
m(n)4
m(n)3

sn

∣∣∣∣ ≤
2M

|m(n)3| ,

we have

α3 +
(

lim
n

m(n)4
m(n)3

)
s0 = 0.

This contradicts the fact that α3 and s0 is linearly independent over R. The case
limn |m(n)4| = ∞ is settled by the same manner. If both {|m(n)3|} and {|m(n)4|}
are bounded, then either {|m(n)1|} or {|m(n)2|} is unbounded. Note that in this
case we see by (47) that {|m(n)1β1 + m(n)2β2(sn)|} is bounded. This contradicts
the fact that β1 and β2(s0) are linearly independent over R by the same argument
as above. Hence N(s, t) is bounded on K1. Hence the set (45) is finite. Thus G is
properly discontinuous on W . It is easy to check that G is fixed point free on W .

¤

Consider the following 4-dimensional complex manifolds

X = W /G .

Then X is a space of small deformations of S over B with the projection

p : X → B, p(w1, w2, s, t) = (s, t), (50)

where S = p−1(α4, β4). Put S(s,t) = p−1(s, t).

Lemma 26. dimH0(S(s,t),Θ) = 1, dimH1(S(s,t),Θ) = 2.

Proof. Since the canonical bundle of S(s,t) is trivial, dimH2(S(s,t),Θ) =
dimH0(S(s,t),Ω1) = 1 by Serre duality. To calculate dimH0(S(s,t),Θ), let θ be
any vector field on S(s,t). Then θ defines a G(s,t)-invariant vector field on C2,
which is indicated by the same symbol θ. Here G(s,t) indicates the automorphism
of C2 with fixed (s, t). Put
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θ(w1, w2) = a(w1, w2)
∂

∂w1
+ b(w1, w2)

∂

∂w2
,

where a(w1, w2), b(w1, w2) are holomorphic functions on C2. By G(s,t)-invariance,
we have

a(w1, w2) = a(w1, w2 + β1)

a(w1, w2) = a(w1, w2 + β2(s))

a(w1, w2) = a(w1 + α3, ᾱ3w1 + w2 + β3)

a(w1, w2) = a(w1 + s, ᾱ4w1 + w2 + t)

b(w1, w2) = b(w1, w2 + β1)

b(w1, w2) = b(w1, w2 + β2(s))

b(w1, w2) = b(w1 + α3, ᾱ3w1 + w2 + β3)− ᾱ3a(w1 + α3, ᾱ3w1 + w2 + β3)

b(w1, w2) = b(w1 + s, ᾱ4w1 + w2 + t)− ᾱ4a(w1 + s, ᾱ4w1 + w2 + t).

This implies that a(w1, w2) reduces to constant, which we denote by a. Thus, for
b(w1, w2), we have

b(w1, w2) = b(w1, w2 + β1) (51)

b(w1, w2) = b(w1, w2 + β2(s)) (52)

b(w1, w2) = b(w1 + α3, ᾱ3w1 + w2 + β3)− ᾱ3a (53)

b(w1, w2) = b(w1 + s, ᾱ4w1 + w2 + t)− ᾱ4a. (54)

By (51) and (52), b(w1, w2) is constant with respect to w2. Put b(w1) = b(w1, w2).
Then, by (53) and (54), we have

b(w1) = b(w1 + α3)− ᾱ3a (55)

b(w1) = b(w1 + s)− ᾱ4a. (56)

Hence the first order differential function b′(w1) is constant, and we have

b(w1, w2) = b(w1) = aw1 + b

for some constants a, b ∈ C. Since ᾱ3s− ᾱ4α3 6= 0, we have a = 0. Therefore we
obtain
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θ(w1, w2) = b
∂

∂w2
.

Hence dim H0(S(s,t),Θ) = 1. By the Riemann-Roch theorem and by c2
1(S(s,t)) =

c2(S(s,t)) = 0, we have the lemma. ¤

Proposition 15. The family (50) is complete and effectively parametrized
at every point of B.

Proof. The projection C2 → C, (w1, w2) 7→ w1, defines an elliptic bundle
over an elliptic curve on each fibre of p. Thus we have a projection

q : X → C ×B, C = C/〈τα3 , τs〉,

where τc indicates the translation on C defined by z 7→ z + c. Let F denote the
subsheaf of germs of vector fields which are tangential to the fibres of q and Q the
quotient sheaf Θ/F . Thus we have the following exact sequence of sheaves on X ,

0 → F → Θ → Q → 0.

By the form of transition functions of the tangent bundle of S, we see that F is
generated by the global vector field ∂/∂w2, and hence F ' O. At the same time,
we see also that all the transition functions of Q are 1, and the global section is
given by the class [∂/∂w1]. In particular, we have Q ' O. Thus we have the exact
sequence

0 → H0(X ,Q) → H1(X ,F ) → H1(X ,Θ) → H1(X ,Q) → · · · . (57)

Let π : W → X be the canonical projection. We choose an open covering U =
{Uλ} of X such that each Uλ is evenly covered by π. Define a system of local
coordinates (w1λ, w2λ) by wjλ = wj◦(π|Ũλ)−1, where Ũλ is a connected component
of π−1(Uλ). The transition functions

wλ = fλµ(wµ), wν = (w1ν , w2ν)

are given by

fλµ = σ
m1λµ

1 σ
m2λµ

2 σ
m3λµ

3 σ
m4λµ

4

for some integers mjλµ. By (44), in terms of local coordinates we have
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w1λ = w1µ + m3λµα3 + m4λνs (58)

w2λ = w2µ +
(
m3λµᾱ3 + m4λµα4

)
w1µ + aλµ + bλµs + m4λµt (59)

for some constant numbers aλµ, bλµ ∈ C.
Let ρ : TB → H1(X ,Θ) be the Kodaira-Spencer map. Then, we have

ρ

(
∂

∂s

)
=

{
∂w1λµ

∂s

∂

∂w1λ
+

∂w2λµ

∂s

∂

∂w2λ

}
=

{
m4λµ

∂

∂w1λ
+ bλµ

∂

∂w2λ

}
(60)

ρ

(
∂

∂t

)
=

{
∂w2λµ

∂t

∂

∂w2λ

}
=

{
m4λµ

∂

∂w2λ

}
. (61)

The set {m4λµ} defines a 1-cocycle m4 ∈ H1(X ,Z). By (58) and (59), we
have that ∂/∂w2λ = ∂/∂w2µ = · · · defines the global vector field ∂/∂w2 ∈
H0(X ,F ), and that [∂/∂w1λ] = [∂/∂w1µ] = · · · defines the global section
[∂/∂w1] ∈ H0(X ,Q). Therefore, the set of integers {m4λµ} defines a 1-cocycle in
H1(X ,Z). Thus to prove that ρ(∂/∂s) and ρ(∂/∂t) are cohomologically indepen-
dent in H1(X ,Θ), it is enough to show that {m4λµ} is not trivial in H1(X ,O).
Suppose that there is a 0-cochain {aλ} ∈ C0(U ,O) such that m4λµ = aµ − aλ.
Then e2πiaλ = e2πiaµ = · · · defines a nowhere vanishing global holomorphic func-
tion on X , hence a holomorphic function of (s, t), which we denote by A(s, t).
Let a = a(s, t) be a holomorphic function on B such that A(s, t) = e2πia(s,t). Put
mλ = aλ−a. Then we see that {mλ} is a set of integers satisfying m4λµ = mµ−mλ.
We introduce a new system of local coordinates (u1λ, u2λ, s, t) on Uλ by

(u1λ, u2λ, s, t) = σmλ
4 (w1λ, w2λ, s, t).

Then in terms of the new system of local coordinates, the transition functions are
given by

gλµ = σ
m1λµ

1 σ
m2λµ

2 σ
m3λµ

3 .

This implies that there is a holomorphic étale map φ : X → W /〈σ1, σ2, σ3〉 with
p2 ◦ φ = p, where p2 : W /〈σ1, σ2, σ3〉 → B is induced map from the natural
projection to the second component. This is absurd, since every compact fibre
of p is mapped locally biholomorphically to a fibre of p2 which is non-compact.
Thus we have shown that ρ(∂/∂s) and ρ(∂/∂t) are cohomologically independent
in H1(S(s,t),Θ) for any (s, t) ∈ B. Hence they form a basis in H1(S(s,t),Θ) for
any (s, t) ∈ B, since dim H1(S(s,t),Θ) = 2 by Lemma 26. ¤
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By the above construction of the complete family of small deformations of
Kodaira surfaces, we see the following.

Proposition 16. Let f : X → ∆1 be a family of deformations of a Kodaira
surface S = f−1(0) over a unit disk ∆1. Then there are a positive number ε > 0, a
free and properly discontinuous group G of holomorphic automorphisms of C2×∆ε,
and a biholomorphic map ψ : (C2×∆ε)/G → f−1(∆ε), which satisfy the following.

1. G acts as a group of affine transformations on C2 × {t} for any t ∈ ∆ε,
2. G acts trivially on the second component ∆ε,
3. f ◦ ψ = p holds, where p : (C2 ×∆ε)/G → ∆ε is the projection to the second

component.
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