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The space of Lelek fans in the Cantor fan is homeomorphic

to Hilbert space

By Jan J. Dijkstra and Lili Zhang

(Received June 16, 2009)

Abstract. We show that the space of all Lelek fans in a Cantor fan,
equipped with the Hausdorff metric, is homeomorphic to the separable Hilbert
space. This result is a special case of a general theorem we prove about spaces
of upper semicontinuous functions on compact metric spaces that are strongly
discontinuous.

1. Introduction.

All topological spaces in this paper are assumed to be separable metric. A real-
valued function f defined on a topological space X is called upper semicontinuous
(USC ) if f≥t = {x ∈ X : f(x) ≥ t} is closed in X for every t ∈ R. For a space X

and a function f : X → [0,∞), let

↓ f = {(x, t) ∈ X ×R : 0 ≤ t ≤ f(x)},
Gf = {(x, f(x)) ∈ X ×R : x ∈ X},

and

G +
f = {(x, f(x)) ∈ X ×R : x ∈ X and f(x) > 0},

as subspaces of the product space X × R. Then G +
f ⊂ Gf ⊂ ↓ f and ↓ f is

closed in X ×R if and only if f is USC. An upper semicontinuous map f : X →
[0,∞) is said to be strongly discontinuous if G +

f is dense in ↓ f . So the strongly
discontinuous maps are USC maps that are in some sense maximally discontinuous.
Well-known examples of strongly discontinuous functions are Lelek functions (arc
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length functions for Lelek fans) and hair length functions for hairy arcs; see [12]
and [1]. For a compact space X let USC(X) denote the set of all USC functions
from X into I = [0, 1]. We topologize USC(X) by letting the hypograph distance
D(f, g) for f, g ∈ USC(X) be equal to the Hausdorff distance between ↓ f and
↓ g as subsets of X × I. A space is called a Hilbert cube if it is homeomorphic to
Q = IN . Yang and Zhou [16] have shown that USC(X) is a Hilbert cube if and
only if X is infinite. We now define the subspace

SDC(X) = {f ∈ USC(X) : f is strongly discontinuous}

of USC(X). A subset A of a Hilbert cube M is called a pseudointerior if the pair
(M, A) is homeomorphic to (Q, s), that is, there is a homeomorphism h : M → Q

such that h(A) = s = (0, 1)N . The Anderson Theorem [2] states that pseudoin-
teriors are homeomorphic to the separable Hilbert space `2. We shall prove the
following result.

Theorem 1. For a compact space X, SDC(X) is a pseudointerior in
USC(X) if and only if X is dense in itself.

If X is a compact space then the cone ∆X over X is the quotient space
(X × I)/(X × {0}). If C is the Cantor set then ∆C is called a Cantor fan. Let
q : C × I → ∆C be the quotient mapping. If f ∈ SDC(C) then q(↓ f) is called a
standard Lelek fan, see Lelek [12]. A Lelek fan is any space that is homeomorphic
to a standard Lelek fan. According to Bula and Oversteegen [3] and Charatonik [4]
Lelek fans are topologically unique and can be characterized as the only smooth
fans with a dense set of endpoints. Let L stand for the space of all Lelek fans that
are contained in the Cantor fan, equipped with the Hausdorff metric. We derive
the following result from Theorem 1.

Theorem 2. The space L is homeomorphic to Hilbert space.

Lelek fans have received a measure of attention in recent years because of the
proof of Kawamura, Oversteegen, and Tymchatyn [11] that their endpoint sets
are homeomorphic to complete Erdős space [10]. The uniqueness of the Lelek fan
makes that the space plays a central role in characterizing complete Erdős space
and similar spaces; see Dijkstra and van Mill [7], [9], [8] and Dijkstra [6].

2. Preliminaries.

For a metric space (X, d), an x ∈ X, a subset A of X, and an ε > 0 we define
the open sets Ud(x, ε) = {y ∈ X : d(x, y) < ε} and U(A, ε) =

⋃{U(a, ε) : a ∈ A}.
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For a compact metric space (X, d), let 2X be the family of all nonempty closed
subsets in X. For A,B ∈ 2X , their Hausdorff distance dH is defined by

dH(A,B) = inf{ε : A ⊂ Ud(B, ε) and B ⊂ Ud(A, ε)}.

Then (2X , dH) is a compact metric space. The following characterization of the
topology that corresponds to the Hausdorff metric is well-known.

Lemma 3. Let X be a compact metric space. Then a sequence (An)n in 2X

converges to an element A ∈ 2X if and only if the following conditions hold :

(1) if an ∈ An for every n, then every limit point of the sequence (an)n is contained
in A and

(2) for every a ∈ A, there exists a sequence (an)n in X such that an ∈ An for
each n and limn→∞ an = a.

For every pair (x, λ), (y, µ) ∈ X×I, we define d′((x, λ), (y, µ)) = max{d(x, y),
|λ − µ|}. Then d′ is a metric on X × I. The hypograph metric D on USC(X) is
defined by

D(f, g) = d′H(↓ f, ↓ g).

Unless stated otherwise we will assume that USC(X) and its subspaces are
equipped with the hypograph topology that is generated by this metric D. An
upper semicontinuous map f : X → [0,∞) is said to be strongly∗ discontinuous if
Gf is dense in ↓ f . We define

SDC∗(X) = {f ∈ USC(X) : f is strongly∗ discontinuous}.

A map f : X → R is said to be Lipschitz if there exists some k ≥ 0 such
that |f(x)− f(x′)| ≤ kd(x, x′) for all x, x′ ∈ X. The smallest such k is called the
Lipschitz constant of f and denoted by lip f . If lip f ≤ k, then f is said to be
k-Lipschitz. Define

LIP(X) = {f ∈ USC(X) : f is Lipschitz}

and

LIPk(X) = {f ∈ USC(X) : f is k-Lipschitz}.

The following result can be found in [17].
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Lemma 4. For each k the hypograph topology on LIPk(X) coincides with
the topology of uniform convergence.

As mentioned in the introduction a subset A of a Hilbert cube M is called a
pseudointerior if (M, A) ≈ (Q, s). The complement of a pseudointerior in a Hilbert
cube is called a pseudoboundary, B(Q) = Q \ s being the standard example. A
closed subset A of a Hilbert cube (M, d) is called a Z-set if for every ε > 0 there
is a continuous map f : M → M \ A such that d(x, f(x)) < ε for every x ∈ M . A
σZ-set is a countable union of Z-sets. A subset A of a space X is called homotopy
dense if there is a homotopy H : X × I → X such that H0 is the identity and
Ht(X) ⊂ A for each t ∈ (0, 1]. Clearly, a closed set in M whose complement
is homotopy dense is a Z-set. The pseudoboundaries of a Hilbert cube M can
be characterized as capsets or Z-absorbers in M . An immediate consequence of
this characterization is the following useful property; see [13, Theorems 5.4.3 and
5.4.12].

Proposition 5. If A is a σZ-set in a Hilbert cube that contains a pseu-
doboundary and B is a Z-set then A \B is also a pseudoboundary.

We shall use the following result of Zhang and Yang [17].

Theorem 6. LIP(X) is a pseudoboundary in USC(X) provided that X is
an infinite compact metric space.

We conclude this section with a few basic results about strongly discontinuous
functions.

Lemma 7. If f : X → (0,∞) is continuous and g : X → [0,∞) is strongly
discontinuous, then min{f, g} is strongly discontinuous.

Proof. It is evident that h = min{f, g} is USC. Let (x, t) ∈ ↓h and note
that t ≤ f(x) and (x, t) ∈ ↓ g. Since g is strongly discontinuous we can select a
sequence (xn)n that converges to x such that limn→∞ g(xn) = t and g(xn) > 0 for
all n. Note that h(xn) > 0 for all n. Then by the continuity of f we have

lim
n→∞

h(xn) = lim
n→∞

min{f(xn), g(xn)} = min{f(x), t} = t.

Thus G +
h is dense in ↓h. ¤

If f : X → [0,∞) and t ≥ 0, then f>t = {x ∈ X : f(x) > t} and supp f is the
closure of f>0 in X.



The space of Lelek fans 939

Lemma 8. A map f : X → [0,∞) has the following properties:

(a) f is strongly* discontinuous if and only if f ¹ supp f is strongly discontinuous.
(b) f is strongly discontinuous if and only if f is strongly* discontinuous and

supp f = X.
(c) If f is strongly∗ discontinuous then supp f is dense in itself.

Proof.

(a). Let f be strongly∗ discontinuous and put S = supp f . Then we have
that Gf is dense in ↓ f and hence G +

f = G +
f�S is dense in (↓ f)∩ (X × (0,∞)). Let

y ∈ f>0 and note that then {y}× (0, f(y)] is a nonempty interval that is contained
in the closure of G +

f and hence (y, 0) ∈ G +
f . Since f>0 is dense in S we have that

S×{0} is contained in G +
f and that f ¹ S is strongly discontinuous. The converse

implication is a triviality.
(b). Let f be strongly discontinuous and let p : X×R → X be the projection

map. Then G+
f is dense in ↓ f and hence f>0 = p(G+

f ) is dense in X = p(↓ f) and
supp f = X. Now (b) follows if we combine this result with part (a).

(c). Let f be strongly∗ discontinuous. It suffices to show that f>0 is dense in
itself. Let x ∈ f>0 and let O be a neighbourhood of x in X. Since Gf is dense in
↓ f there is a y ∈ O such that 0 < f(y) < f(x). Note that y 6= x and y ∈ f>0. ¤

If ε > 0 then a subset A of (X, d) is called an ε-net if B(A, ε) = X. The
metric d is called totally bounded if there is a finite ε-net for every ε > 0.

Lemma 9. If X is dense in itself and d is a totally bounded metric on X,
then there exists a strongly discontinuous function g : X → I such that g≥t is a
t2-net in X for each t ∈ (0, 1].

Proof. Strongly discontinuous functions on the Cantor set C exist and are
called Lelek functions; see [12]. A simple construction of such a ϕ ∈ SDC(C)
can be found in Dijkstra [5]: represent C by the product space {0, 1}N and put
ϕ(x1, x2, . . . ) =

(
1+

∑∞
n=1 xn/n

)−1. Choose a countable subset A1 of C such that
ϕ(x) > 0 for each x ∈ A1 and the set {(x, ϕ(x)) ∈ C× I : x ∈ A1} is dense in ↓ϕ.
Observe that ϕ ¹ A1 ∈ SDC(A1) and that A1 is dense in itself by Lemma 8(c). Let
A2 be a countable dense subset of X. Then both A1 and A2 are homeomorphic to
the space of rational numbers Q. Let h : A2 → A1 be a homeomorphism and put
ψ = ϕ ◦ h. Then ψ ∈ SDC(A2). We define the USC-extension f : X → I of ψ by

f(x) = lim
ε↘0

(sup{ψ(y) : y ∈ A2 ∩ Ud(x, ε)}),

for x ∈ X. By the same argument as used in the proof of [9, Lemma 4.8], we can
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show that f ∈ SDC(X).
For n ∈ N use the fact that d is totally bounded to select a finite 1/n2-net

Bn for X in the dense set A2. Since f(x) = ψ(x) > 0 for each x ∈ A2 we can
choose a tn > 0 such that tn < f(x) for each x ∈ Bn. We can clearly arrange
that tn > tn+1 for each n. Select a homeomorphism α : [0,∞) → [0,∞) such that
α(tn+1) = 1/n for each n ∈ N . Then α◦f is obviously also strongly discontinuous.
Define g = min{1, α ◦ f} and note that g ∈ SDC(X) by Lemma 7. Let t ∈ (0, 1].
Then there is an n ∈ N such that 1/(n + 1) < t ≤ (1/n). Observe that

Bn+1 ⊂ f≥tn+1 = g≥ 1
n
⊂ g≥t.

Since Bn+1 is a 1/(n + 1)2-net it is a t2-net and hence g≥t is also a t2-net. ¤

3. Proofs of the main theorems.

Throughout this section we assume that the space (X, d) is a compact metric
space. We define the maps G,G′ : USC(X)× I → USC(X) as follows:

G(f, t)(x) = Gt(f)(x) =

{
max

{
f(z)− 1

t d(x, z) : z ∈ X
}
, if t > 0;

f(x), if t = 0;

and

G′(f, t)(x) = G′t(f)(x) = min{1, G(f, t)(x) + t},

for every pair (f, t) ∈ USC(X) × I and x ∈ X. For the definition we used the
fact that a USC function assumes a maximum on a compact domain. Observe
that always G′(f, t)(x) ≥ G(f, t)(x) ≥ f(x) so ↓ f ⊂ ↓G(f, t) ⊂ ↓G′(f, t). Note
that for f ∈ USC(X) and t ∈ (0, 1] the map G′(f, t) is strictly positive, and that
also G′0(f) = f . The following result shows that LIP(X) is homotopy dense in
USC(X).

Claim 10. The maps G and G′ are homotopies on USC(X) such that for
each t ∈ (0, 1] we have Gt(USC(X)) ∪G′t(USC(X)) ⊂ LIP1/t(X).

Proof. It suffices to verify that the map G satisfies the requirements of
Claim 10 as the result for G′ follows then immediately.

Let f ∈ USC(X), t ∈ (0, 1], and x, y ∈ X. Select a z ∈ X such that
G(f, t)(x) = f(z) − d(x, z)/t. Then G(f, t)(x) ≤ f(z) − d(y, z)/t + d(x, y)/t ≤
G(f, t)(y) + d(x, y)/t and hence Gt(f) is 1/t-Lipschitz.
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We proceed to show that G is continuous. Suppose that limn→∞(fn, tn) =
(f, t) in USC(X)×I. With the help of Lemma 3 we show that limn→∞G(fn, tn) =
G(f, t).

For condition (1) of Lemma 3 we consider an arbitrary sequence (xn, rn)n such
that (xn, rn) ∈ ↓G(fn, tn) and (x, r) is a limit point of the sequence. We need to
show that (x, r) ∈ ↓G(f, t), or equivalently, that r ≤ G(f, t)(x). We consider the
following two cases:

Case a: t > 0. We may assume without loss of generality that tn > 0 for
every n ∈ N . Then rn ≤ G(fn, tn)(xn) = fn(zn) − (1/tn)d(xn, zn) for some
zn ∈ X. Since X × I is compact we can arrange by passing to a subsequence that
limi→∞(zn(i), fn(i)(zn(i))) = (z, a) while moreover limi→∞(xn(i), rn(i)) = (x, r).
Then by Lemma 3 we have that a ≤ f(z). Thus

r = lim
i→∞

rn(i) ≤ lim
i→∞

fn(i)(zn(i))−
d(xn(i), zn(i))

tn(i)

= a− d(x, z)
t

≤ f(z)− d(x, z)
t

≤ G(f, t)(x).

Case b: t = 0. Since G(fn, 0) = fn and G(f, t) = f we may assume that
every tn is positive. Again we have rn ≤ fn(zn)− (1/tn)d(xn, zn) for some zn ∈ X

with limi→∞(zn(i), fn(i)(zn(i))) = (z, a) ∈ ↓ f and limi→∞(xn(i), rn(i)) = (x, r).
Note that

0 ≤ lim
i→∞

d(xn(i), zn(i)) ≤ lim
i→∞

tn(i)(fn(i)(zn(i))− rn(i)) = t(a− r) = 0

and hence x = z. Thus we have r = limi→∞ rn(i) ≤ limi→∞ fn(i)(zn(i)) = a ≤
f(z) = f(x) = G(f, t)(x).

We now consider two cases for condition (2) of Lemma 3.
Case a: t > 0. For any (x, r) ∈ ↓G0(f, t) we show that for every n ∈ N

there exists an rn ∈ I such that (x, rn) ∈ ↓G(fn, tn) and limn→∞(x, rn) =
(x, r). Select a z ∈ X such that r ≤ f(z) − (1/t)d(x, z). This means that
(z, r+(1/t)d(x, z)) ∈ ↓ f . Since limn→∞ fn = f there exists a sequence (zn, sn)n in
X × I such that (zn, sn) ∈ ↓ fn and limn→∞(zn, sn) = (z, r + (1/t)d(x, z)). More-
over, since G(fn, tn)(x) ≥ f(zn) − (1/tn)d(x, zn) ≥ sn − (1/tn)d(x, zn), we have
that (x, sn − (1/tn)d(x, zn)) ∈ ↓G(fn, tn). Put rn = sn − (1/tn)d(x, zn). Then we
have (x, rn) ∈ ↓G(fn, tn) and limn→∞ rn = r + (1/t)d(x, z)− (1/t)d(x, z) = r.

Case b: t = 0. Let (x, r) ∈ ↓G(f, t) = ↓ f . Since limn→∞ fn = f , there exists a
sequence (xn, rn)n in X×I such that (xn, rn) ∈ ↓ fn and limn→∞(xn, rn) = (x, r).
Since ↓ fn ⊂ ↓(G(fn, tn)), we have (xn, ln) ∈ ↓G(fn, tn). ¤
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Lemma 11. If X is dense in itself, then SDC(X) is homotopy dense in
USC(X).

Proof. Let g ∈ SDC(X) be a map as in Lemma 9. We define the map
H : USC(X)× I → USC(X) as follows:

H(f, t) =

{
min

{
G′(f, t), 1

t g
}

if t > 0,

f if t = 0,

where G′ : USC(X) × I → USC(X) is the homotopy of Claim 10. By Claim 10
and Lemma 7, H(USC(X)× (0, 1]) ⊂ SDC(X). It remains to verify that the map
H is continuous. To this end we first prove the following inequality:

D(H(f, t), G′(f, t)) ≤ t for f ∈ USC(X) and t ∈ I.

For t = 0, H(f, t) = G′(f, t) = f so we may assume that t > 0. One direction
is trivial because ↓H(f, t) ⊂ ↓G′(f, t). Consider now an (x, r) ∈ ↓G′(f, t). Since
g≥t is a t2-net there is a y ∈ X such that d(x, y) < t2 and g(y) ≥ t. This means
that H(f, t)(y) = G′(f, t)(y). Since G′(f, t) is 1/t-Lipschitz we have that

H(f, t)(y) = G′(f, t)(y) ≥ G′(f, t)(x)− d(x, y)
t

≥ G′(f, t)(x)− t ≥ r − t.

If s = max{r− t, 0} then (y, s) ∈ ↓H(f, t). Since d′((x, r), (y, s)) < max{t2, t} = t

the inequality is proved. It is now obvious that H is continuous in all points of
the form (f, 0).

It remains to show that H is continuous on the open set USC(X)× (0, 1]. Let
ε > 0 and note that H(USC(X)× (ε, 1]) ⊂ LIP1/ε(X). The operation min{f1, f2}
is not continuous with respect to the hypograph topology but it is continuous with
respect to the topology of uniform convergence. Using Lemma 4 and the obvious
fact that the function t 7→ (1/t)g is continuous with respect to the topology of
uniform convergence we find that H ¹ (USC(X)× (ε, 1]) is continuous. Thus H is
continuous. ¤

Let B = {B1, B2, . . . } be a countable (open) basis for X. Take i, n ∈ N

and r ∈ (0, 1] ∩ Q. Let Bj ∈ B be such that Bj ⊂ Ud(Bi, 1/n). For any f ∈
USC(X) and Bk ∈ B, define Mk(f) = sup{f(x) : x ∈ Bk}. Note that Mk is not
necessarily continuous with respect to the hypograph topology but it is continuous
with respect to the topology of uniform convergence on USC(X). Put
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Ainrj =
{

f ∈ USC(X) :
∣∣rMi(G 1

n
(f))−Mj(f)

∣∣ <
1
n

}
,

where G is the homotopy of Claim 10. We now define

Oinr =
⋃ {

Ainrj : Bj ⊂ Ud

(
Bi,

1
n

)}
.

Claim 12. The set Oinr is open in USC(X).

Proof. Let f ∈ Oinr. Then there exists a j ∈ N such that f ∈ Ainrj . Put

ε =
1
n
− ∣∣rMi(G 1

n
(f))−Mj(f)

∣∣ > 0.

By Claim 10 the map G1/n : USC(X) → LIPn(X) is continuous for every n ∈
N . By Lemma 4 the composition Mi ◦ G1/n is continuous thus there exists a
neighbourhood V of f in USC(X) such that

∣∣Mi(G 1
n
(f))−Mi(G 1

n
(g))

∣∣ <
ε

2

for every g ∈ V . By the definition of Mj(f), there exists a z ∈ Bj such that
Mj(f)− f(z) < ε/4. Select a k ∈ N and a δ > 0 such that

U(z, δ) ⊂ Bk ⊂ U(Bk, δ) ⊂ Bj ⊂ U

(
Bi,

1
n

)
.

Put µ = min{δ, ε/4} and let g ∈ UD(f, µ). There exists an (x, t) ∈ ↓ g such that
max{d(z, x), |f(z)− t|} < µ and hence x ∈ Bk and

g(x) ≥ t > f(z)− µ > f(z)− ε

4
> Mj(f)− ε

2
.

So we have Mk(g) > Mj(f) − ε/2. On the other hand, if y ∈ Bk then there is a
(p, s) ∈ ↓ f such that max{d(y, p), |g(y) − s|} < µ and hence x ∈ Ud(Bk, δ) ⊂ Bj

and g(y) < s + µ ≤ f(p) + µ < Mj(f) + µ < Mj(f) + ε/2. In conclusion, we have

|Mj(f)−Mk(g)| < ε

2
.
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If g ∈ V ∩ UD(f, µ) then

∣∣rMi(G 1
n
(g))−Mk(g)

∣∣ ≤ ∣∣rMi(G 1
n
(g))− rMi(G 1

n
(f))

∣∣

+
∣∣rMi(G 1

n
(f))−Mj(f)

∣∣ + |Mj(f)−Mk(g)|

<
rε

2
+

(
1
n
− ε

)
+

ε

2

≤ 1
n

.

Hence g ∈ Ainrk ⊂ Oinr and we may conclude that Oinr is open. ¤

Lemma 13. The space SDC∗(X) is a Gδ-set in USC(X).

Proof. Define

A =
∞⋂

i=1

∞⋂
n=1

⋂

r∈(0,1]∩Q

Oinr

By Lemma 12 it suffices to prove that A = SDC∗(X).
Let f ∈ SDC∗(X). Fix Bi ∈ B, r ∈ (0, 1]∩Q, and n ∈ N . Then there exists

an x ∈ Bi such that |Mi(G1/n(f))−G1/n(f)(x)| < 1/n. From the definition of G

it follows that there exists a z ∈ X such that G1/n(f)(x) = f(z) − nd(x, z). We
may assume that d(x, z) < 1/n: if G1/n(f)(x) = 0 then we can choose z = x and
if G1/n(f)(x) > 0 then nd(x, z) = f(z) − G1/n(f)(x) < 1. In any case we have
z ∈ U(Bi, 1/n) and rG1/n(f)(x) ≤ G1/n(f)(x) ≤ f(z) thus (z,G1/n(f)(x)) ∈ ↓ f .
Let δ = 1/n−|Mi(G1/n(f))−G1/n(f)(x)|. Since Gf is dense in ↓ f , there exists a ∈
Ud(Bi, 1/n) such that |f(a)−rG1/n(f)(x)| < δ/2. Since f is upper semicontinuous,
there exists an ε > 0 such that Ud(a, ε) ⊂ Ud(Bi, 1/n) and f(y) < f(a) + δ/2 for
every y ∈ Ud(a, ε). Choose a Bj ∈ B satisfying a ∈ Bj ⊂ Ud(a, ε). Then we have

rG 1
n
(f)(x) < f(a) +

δ

2
≤ Mj(f) +

δ

2

and

Mj(f) ≤ f(a) +
δ

2
< rG 1

n
(f)(x) +

δ

2
+

δ

2
.

Hence |Mj(f)− rG1/n(f)(x)| < δ. Therefore, we have
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∣∣rMi(G 1
n
(f))−Mj(f)

∣∣

≤ r
∣∣Mi(G 1

n
(f))−G 1

n
(f)(x)

∣∣ +
∣∣rG 1

n
(f)(x)−Mj(f)

∣∣ <
1
n

.

This means that f ∈ Ainrj ⊂ Oinr. Since Bi, r and n were chosen arbitrarily, we
have f ∈ A.

On the other hand, let f ∈ A. For any (x, t) ∈ ↓ f , let O be an open set
of X × I such that (x, t) ∈ O. Then there are Bi ∈ B and n ∈ N such that
(x, t) ∈ Ud(Bi, 1/n)× (t− 2/n, t + 2/n) ⊂ O. Since G1/n(f)(x) ≥ f(x) ≥ t we can
choose an r ∈ (0, 1] ∩Q such that |rMi(G1/n(f))− t| < 1/n. It follows from f ∈
Oinr that there exists a Bj ⊂ Ud(Bi, 1/n) such that |rMi(G1/n(f))−Mj(f)| < 1/n.
Now, choose a y ∈ Bj satisfying Mj(f) − f(y) < 1/n − |rMi(G1/n(f)) −Mj(f)|.
Then

|t− f(y)| ≤ ∣∣t− rMi(G 1
n
(f))

∣∣ +
∣∣rMi(G 1

n
(f))−Mj(f)

∣∣ + Mj(f)− f(y) <
2
n

.

Hence we have

(y, f(y)) ∈ Ud

(
Bi,

1
n

)
×

(
t− 2

n
, t +

2
n

)
⊂ O.

Therefore, Gf is dense in ↓ f , that is, f ∈ SDC∗(X). ¤

Lemma 14. The space SDC(X) is a Gδ-set in USC(X).

Proof. Let B be a countable open basis for X consisting of nonempty sets.
Observe that Lemma 8(b) shows that

SDC(X) = SDC∗(X) \
⋃

B∈B

{f ∈ USC(X) : f ¹ B = 0}.

To complete the proof of the lemma, we need to show that the set {f ∈ USC(X) :
f ¹ B = 0} is closed in USC(X) for each B ∈ B. Let g ∈ USC(X) be such
that there is an x ∈ B with g(x) > 0. Then for any f with f ¹ B = 0 we have
D(f, g) ≥ min{g(x), d(x,X \ B)} > 0. Thus we have that the complement of
{f ∈ USC(X) : f ¹ B = 0} is open. ¤

The following theorem includes Theorem 1.

Theorem 15. If X is a compact metric space then the following statements
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are equivalent.

(1) X is dense in itself.
(2) SDC(X) is not empty.
(3) SDC(X) is a pseudointerior in USC(X).
(4) SDC∗(X) is a pseudointerior in USC(X).
(5) SDC∗(X) \ {0} is a pseudointerior in USC(X).

Proof. The equivalence of (1) and (2) follows immediately from Lemmas 8
and 9. The implication (3) ⇒ (2) is trivial.

(4)∨ (5) ⇒ (1). Note that pseudointeriors are dense. Assuming (4) or (5) we
find for every ε > 0 an fε ∈ SDC(X) with D(1, fε) < ε. Note that supp fε is an
ε-net in X that is dense in itself by Lemma 8. So

⋃
ε>0 supp fε is dense in itself

and dense in X. We have that X is dense in itself.
(1) ⇒ (3)&(4)&(5). Assume that X is dense in itself. By Lemmas 13 and 14

the complements of SDC(X), SDC∗(X) and SDC∗(X)\{0} are Fσ-sets in USC(X)
that are σZ-sets because of Lemma 11. Note that SDC∗(X) ∩ LIP(X) = {0} and
hence it follows from Proposition 5 and Theorem 6 that SDC(X), SDC∗(X) and
SDC(X)∗ \ {0} are all pseudointeriors in USC(X). ¤

A space is called scattered if every nonempty subspace has isolated points.

Theorem 16. If X is a compact metric space then the following statements
are equivalent.

(1) X is not scattered.
(2) SDC∗(X) \ {0} is not empty.
(3) SDC∗(X) ≈ SDC∗(X) \ {0} ≈ `2.

Proof. (3) ⇒ (2) is trivial and for (2) ⇒ (1) note that if f ∈ SDC∗(X)\{0}
then supp f is not empty and dense in itself by Lemma 8(c).

(1) ⇒ (3). If X is not scattered then B =
⋃{A ⊂ X : A dense in itself}

is a nonempty compactum that is dense in itself. By Theorem 15 we have that
SDC∗(B) and SDC∗(B) \ {0} are homeomorphic to `2. Note that by Lemma 8(c)
we have supp f ⊂ B for every f ∈ SDC∗(X). Define the map ψ : SDC∗(X) →
SDC∗(B) by ψ(f) = f ¹ D and note that it is an isometric bijection. Thus we
have statement (3). ¤

We finish by proving the result about Lelek fans. An endpoint of a space is a
point that is not an internal point of some arc in the space. As in the introduction
we let q : C × I → ∆C be the quotient map. Consider a standard Lelek fan q(f)
where f ∈ SDC(C). Then clearly q(G +

f ) is the (dense) set of endpoints of the Lelek
fan.
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Let C(∆X, b) consist of all subcontinua of ∆X that contain the base point
b = X×{0} of the cone, equipped with the Hausdorff metric. The following result
implies Theorem 2.

Theorem 17. The space of Lelek fans L is a pseudointerior of C(∆C, b).

Proof. We will prove this theorem by showing that the pair (C(∆C, b),L)
is homeomorphic to (USC(C),SDC∗(C) \ {0}).

We define the map χ : USC(C) → C(∆C, b) by χ(f) = q(↓ f) for f ∈ USC(C).
It is clear that χ is well-defined, one-to-one, and continuous. If K ∈ C(∆C, b) then
by the Boundary Bumping Theorem [14, Theorem 5.6] every component of K \{b}
is an interval of the form {x}× (0, t]. Thus there exists a function f : X → I such
that q(↓ f) = K. Since K is compact we have that f ∈ USC(C) and thus χ is
surjective and a homeomorphism by the compactness of USC(C).

Next we show that χ(SDC∗(C) \ {0}) = L. Let f ∈ SDC∗(C) \ {0}. Consider
A = supp f and note that χ(f) = q(↓(f ¹ A)). By Lemma 8(c) A is a nonempty,
zero-dimensional compactum that is dense in itself thus A ≈ C. By Lemma 8(a)
we have f ¹ A ∈ SDC(A) and χ(f) is a (standard) Lelek fan.

Let L ∈ L. If b /∈ L then L ⊂ C× (0, 1] and hence the Lelek fan is contained
in an arc, which is impossible. So we have b ∈ L and hence L = χ(f) for some
f ∈ USC(C). Note that f 6= 0 and that we need to show that Gf is dense in ↓ f .
Let (x, t) be an arbitrary element of ↓ f . If f(x) = 0 then (x, t) = (x, 0) ∈ Gf .
Let f(x) > 0 and assume that t > 0. If F is a closed subset of ↓ f such that
(x, t) /∈ F then q(F ) is a closed set in L that does not contain q(x, t) so there
exists an endpoint q(a, f(a)) ∈ L \ F . Then (a, f(a)) ∈ Gf \ F and we have that
{x}× (0, f(x)] is contained in the closure of Gf . Consequently, also {x}× [0, f(x)]
is contained in Gf and we may conclude that f ∈ SDC∗(C). ¤
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Electron. Res. Announc. Amer. Math. Soc., 10 (2004), 29–38.

[ 8 ] J. J. Dijkstra and J. van Mill, Characterizing complete Erdős space, Canad. J. Math., 61
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