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Tagged particle processes and their non-explosion criteria

By Hirofumi Osada

(Received May 21, 2009)

Abstract. We give a derivation of tagged particle processes from unla-
beled interacting Brownian motions. We give a criteria of the non-explosion
property of tagged particle processes. We prove the quasi-regularity of Dirich-
let forms describing the environment seen from the tagged particle, which were
used in previous papers to prove the invariance principle of tagged particles of
interacting Brownian motions.

1. Introduction.

Interacting Brownian motions (IBMs) in infinite dimensions are diffusions
Xt = (Xi

t)i∈Z consisting of infinitely many particles moving in Rd with the effect
of the external force coming from a self potential Φ:Rd → R∪{∞} and that of the
mutual interaction coming from an interacting potential Ψ:Rd ×Rd → R ∪ {∞}
such that Ψ(x, y) = Ψ(y, x).

Intuitively, IBMs are described by the infinitely dimensional stochastic differ-
ential equation (SDE) of the form

dXi
t = dBi

t −
1
2
∇Φ

(
Xi

t

)
dt− 1

2

∑

j∈Z,j 6=i

∇Ψ
(
Xi

t , X
j
t

)
dt (i ∈ Z). (1.1)

The state space of the process Xt = (Xi
t)i∈Z is (Rd)Z by construction. Let X be

the configuration valued process given by

Xt =
∑

i∈Z

δXi
t
. (1.2)

Here δa denotes the delta measure at a and a configuration is a Radon measure
consisting of a sum of delta measures. We call X the labeled dynamics and X the
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unlabeled dynamics.
The SDE (1.1) was initiated by Lang [10], [11]. He studied the case Φ = 0,

and Ψ(x, y) = Ψ(x − y), Ψ is of C3
0 (Rd), superstable and regular in the sense of

Ruelle [21]. With the last two assumptions, the corresponding unlabeled dynamics
X has Gibbsian equilibrium states. See [22], [5] and [24] for other works concerning
on the SDE (1.1).

In [14] the unlabeled diffusion was constructed by the Dirichlet form approach.
This method gives a general and simple proof of construction, and allows us to
apply singular interaction potentials such as Lennard-Jones 6-12 potential, hard
core potential and so on. See [27], [1] [25], and [26] for other works concerning
on the Dirichlet form approach to IBMs.

In this paper we are interested in the property of each labeled particle of the
unlabeled particle system given by the Dirichlet form. Such labeled particles are
called tagged particles. By construction the unlabeled IBMs X are conservative
since they have invariant probability measures and their state spaces are equipped
with the vague topology. However, each labeled particle may explode under the
Euclidean metric on Rd in general. The first purpose of the paper is to give a
criteria for the non-explosion of the labeled particles (Theorem 2.5).

Let us next assume the total system is translation invariant in space. More
precisely, we assume the stationary measure µ and the energy form E µ of the
Dirichlet space are translation invariant. Then the process X starting from µ is
translation invariant in space. The above assumption means, for Ruelle’s class
potentials [21], Φ = 0 and Ψ(x, y) = Ψ(x− y).

This type of infinite-dimensional diffusions has been studied by the motiva-
tion from the statistical physics. One of the archetypical problem in this field is to
investigate the large time property (the diffusive scaling limit, say) of tagged par-
ticles in the stationary system. This problem was solved for the simple exclusion
process, which is a lattice analog of the hard core Brownian balls, by Kipnis-
Varadhan [9]. For this they establish the celebrated Kipnis-Varadhan invariance
principle.

As for the tagged particle problem of IBMs, Guo [6], Guo-Papanicolau [7]
initiate the problem. Later De Masi et al. [2] study the problem for IBMs by
using the Kipnis-Varadhan invariance principle. In [15], we convert the Kipnis-
Varadhan invariance principle to the Dirichlet form theory. As a result, we weaken
the assumption on the L2-integrability of the mean forward velocity. This enables
us to apply the invariance principle to hard core Brownian balls [15] and [16].

In [15] we consider Dirichlet forms describing the tagged particle process and
the environment process. These two Dirichlet forms are necessary to apply the
Kipnis-Varadhan theory to IBMs. Although we gave the out line of the proof of
the quasi-regularity of these Dirichlet forms and the relation between these two
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processes and the original unlabeled diffusion, the details were postponed. The
second purpose of the paper is to give these details (Theorems 2.4, 2.6 and 2.7).

We establish the quasi-regularity of the Dirichlet forms of k-labeled dynamics
(Lemma 2.3) and prove the identity between k-labeled dynamics and additive
functionals of unlabeled dynamics (Theorem 2.4). The 0-labeled dynamics are
simply the unlabeled dynamics; the k-labeled dynamics are the processes of the
form (X1

t , . . . , Xk
t ,

∑
j 6=1,...,k δXj

t
). The quasi-regularity of the Dirichlet form of

the 0-labeled dynamics has been already proved in [14]. Although Lemma 2.3 is a
straightforward generalization of it, we give a proof here for reader’s convenience.
On the other hand, the proof of Theorem 2.4 is complicated because there is no
simple transformation between Dirichlet spaces of the 0-labeled dynamics and the
k-labeled dynamics. Theorem 2.4 plays an important role not only in the present
paper but also in [19]. In [19], Theorem 2.4 is used to solve the infinite-dimensional
SDE (1.1) describing IBMs.

The organization of the paper is as follows: In Section 2, we give a set up
and main results. In Section 3, we introduce a transformation of Dirichlet spaces.
In Section 4, we prove the identity between unlabeled dynamics and the labeled
dynamics (Theorem 2.4). In Section 5, we prove the quasi-regularity of tagged
particle processes and environment processes (Theorems 2.6 and 2.7). In Section
6, we study a non-explosion criteria and prove Theorem 2.5. In Section 7, we
prove the quasi-regularity of Dirichlet forms describing the k-labeled and other
unlabeled particles.

2. Set up and main results.

Let S be a connected closed set in Rd such that S = (Sint); that is, S coincides
with the closure of the open kernel of S. Let S be the set of the configurations on
S, that is,

S =
{

s =
∑

i

δsi
; s(K) < ∞ for all compact sets K ⊂ S

}
. (2.1)

We endow S with the vague topology. Then S becomes a Polish space because S

is a Polish space (see [20]). Let µ be a probability measure on (S,B(S)).
We say a non-negative permutation invariant function ρn on Sk is the n-

correlation function of µ if

∫

A
k1
1 ×···×Akm

m

ρn(x1, . . . , xn)dx1 · · · dxn =
∫

S

m∏

i=1

s(Ai)!
(s(Ai)− ki)!

dµ (2.2)
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for any sequence of disjoint bounded measurable subsets A1, . . . , Am ⊂ S and a
sequence of natural numbers k1, . . . , km satisfying k1 + · · ·+ km = n.

For a subset A ⊂ S we define the map πA : S → S by πA(s) = s(A ∩ ·).
We say a function f : S → R is local if f is σ[πA]-measurable for some compact
set A ⊂ S. We say f is smooth if f̃ is smooth, where f̃((si)) is the permutation
invariant function in (si) such that f(s) = f̃((si)) for s =

∑
i δsi .

Let D◦ be the set of all local, smooth functions on S. For f, g ∈ D◦ we set
D[f, g] :S → R by

D[f, g](s) =
1
2

∑

i

(∇si
f̃ ,∇si

g̃
)
Rd . (2.3)

Here ∇si = ( ∂
∂si1

, . . . , ∂
∂sid

) and si = (si1, . . . , sid) ∈ S and s =
∑

i δsi . Moreover,
( , )Rd is the standard inner product of Rd. For given f and g in D◦, it is easy to
see that the right hand side depends only on s. So D[f, g] is well defined.

Let L2(µ) = L2(S, µ). We consider the bilinear form (E µ,Dµ
◦ ) defined by

E µ(f, g) =
∫

S

D[f, g]dµ, (2.4)

Dµ
◦ = {f ∈ D◦ ∩ L2(µ); E µ(f, f) < ∞}. (2.5)

We now assume
(M.1.0) (E µ,Dµ

◦ ) is closable on L2(µ).
(M.2) The n-correlation function ρn of µ is locally bounded for all n.

We collect some known results.

Lemma 2.1 ([14]). Assume (M.1.0) and (M.2). Let (E µ,Dµ) be the closure
of (E µ,Dµ

◦ ) on L2(µ). Then we have the following.

(1) (E µ,Dµ, L2(µ)) is a quasi-regular Dirichlet space.
(2) There exists a diffusion Pµ = ({Pµ

s }s∈S,X) associated with (E µ,Dµ, L2(µ)).
(3) The diffusion Pµ is reversible with respect to µ.

Proof. (1) follows from [14, Theorem 1]. In [14, Theorem 1] we assume
S = Rd; the generalization to the present case is easy. (2) follows from (1) and
the general theory of Dirichlet forms [12]. (3) is clear because Pµ has an invariant
probability measure µ and the Dirichlet form (E µ,Dµ) is µ-symmetric. ¤

Let Capµ denote the capacity associated with the Dirichlet space
(E µ,Dµ, L2(µ)). We refer to [4, p. 64] for the definition of the capacity. We remark
that the diffusion Pµ in Lemma 2.1 (2) is unique up to quasi everywhere (q.e.).
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Namely, if P̂µ = ({P̂µ
s }s∈S,X) is another diffusion associated with (E µ,Dµ, L2(µ)),

then there exists a set Ŝ such that Capµ(Ŝc) = 0 and that Pµ
s = P̂µ

s for all s ∈ Ŝ.
We assume:

(M.3) Capµ(Sc
single) = 0.

Here Ssingle = {s ∈ S; s(x) ≤ 1 for all x ∈ S, s(x) 6= 0 for some x ∈ S}.

Lemma 2.2. Assume (M.1.0), (M.2), and (M.3). Then there exists a subset
Ŝsingle such that

Ŝsingle ⊂ Ssingle, (2.6)

Capµ
(
Ŝc

single

)
= 0, (2.7)

Pµ
s (Xt ∈ Ŝsingle for all t) = 1 for all s ∈ Ŝsingle. (2.8)

Proof. By (M.3) and the general theory of Dirichlet forms we have

Pµ
s (Xt ∈ Ssingle for all t) = 1 for q.e. s ∈ Ssingle.

Hence by taking a suitable version of Pµ we get a subset Ŝsingle satisfying (2.6),
(2.7), and (2.8). ¤

We now introduce Dirichlet forms describing k-labeled dynamics. For this we
recall the definition of Palm measures. Let x = (x1, . . . , xk) ∈ Sk. We set

µx = µ

(
· −

k∑

i=1

δxi
| s(xi) ≥ 1 for i = 1, . . . , k

)
. (2.9)

Let νk be the measure defined by

νk = µxρk(x)dx. (2.10)

Here ρk :Sk → R+ is the k-correlation function of µ as before, and dx = dx1 · · · dxk

is the Lebesgue measure on Sk. We set ν = ν1 when k = 1.
Let Dk

◦ = C∞0 (Sk)⊗D◦. For f, g ∈ Dk
◦ let ∇k[f, g] be such that

∇k[f, g](x, s) =
1
2

k∑

i=1

(∇xi
f(x, s),∇xi

g(x, s))Rd , (2.11)
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where ∇xi
= ( ∂

∂xi1
, . . . , ∂

∂xid
) and x = (x1, . . . , xk) ∈ Sk. We set Dk by

Dk[f, g](x, s) = ∇k[f, g](x, s) + D[f(x, ·), g(x, ·)](s). (2.12)

Let L2(νk) = L2(Sk ×S, νk). We set (E νk

,Dνk

◦ ) by replacing D, µ and D◦
in (2.4) and (2.5) with Dk, νk and Dk

◦ , respectively. For k ∈ N we consider the
assumption analogous to (M.1.0).

(M.1.k) (E νk

,Dνk

◦ ) is closable on L2(νk).

Lemma 2.3. Assume (M.1.0), (M.1.k), and (M.2). Let (E νk

,Dνk

) be the
closure of (E νk

,Dνk

◦ ) on L2(νk). Then (E νk

,Dνk

) is a quasi-regular Dirichlet
form on L2(νk).

By Lemma 2.3 there exists a diffusion Pνk

= ({Pνk

(x,s)}(x,s)∈Sk×S,X1) asso-

ciated with the Dirichlet space (E νk

,Dνk

, L2(νk)). Here we set X1 = (X, X) ∈
C([0,∞);Sk ×S). By construction (x, s) = X1

0 = (X0,X0) Pνk

(x,s)-a.s.

Let κ : Sk × S → S be such that κ(x, s) =
∑k

j=1 δxj
+ s, where x =

(x1, . . . , xk). By the correspondence κ((X, X)) = {∑k
j=1 δXj

t
+ Xt} we regard

κ as the map from C([0,∞);Sk × S) to C([0,∞);S). We also denote by κ the
map κ :S∞ ∪∑∞

k=1 Sk → S such that κ((xi)) =
∑

i δxi , and regard κ as the map
from C([0,∞);S∞ ∪ ∑∞

k=1 Sk) to C([0,∞);S). For simplicity we denote these
maps by the same symbol κ.

Let  : Ssingle → S∞ ∪∑∞
k=1 Sk be a measurable map such that κ ◦  is the

identity map. We call this map a label map. Indeed, this map means labeling all
the particles. We remark that plural maps satisfy the condition as above. So we
choose any  of such maps in the sequel.

Once we fix a label map , we can naturally extend the label map  to the
map from C([0,∞);Ssingle) to C([0,∞);S∞ ∪∑∞

k=1 Sk). Indeed, for a path X =
{Xt} ∈ C([0,∞);Ssingle), there exists a unique {(Xi

t)} ∈ C([0,∞);S∞∪∑∞
k=1 Sk)

such that (Xi
0) = (X0) and that

∑
i δXi

t
= Xt for all t ∈ [0,∞). We write this

map by the same symbol .

Theorem 2.4. Assume (M.1.0), (M.1.k), (M.2), and (M.3). Assume

Pµ
s

(
sup

0≤t≤u
|Xi

t | < ∞ for all u, i ∈ N
)

= 1 for q.e. s. (2.13)

Here we initially label the process X as X0 =
∑∞

i=0 δXi
0
. Let κ and  be maps given

before Theorem 2.4. Let Ŝsingle be as in Theorem 2.2. Then there exists a set S̃



Tagged particle processes and their non-explosion criteria 873

satisfying

S̃ ⊂ Ŝsingle, (2.14)

Capµ(S̃c) = 0, (2.15)

Pµ
s (Xt ∈ S̃ for all t) = 1 for all s ∈ S̃, (2.16)

and for all k ∈ N

Pνk

sk = Pµ
κ(sk)

◦ −1 for all sk ∈ (S̃), (2.17)

Pµ
s = Pνk

(s) ◦ κ−1 for all s ∈ S̃. (2.18)

Remark 2.1.

(1) Since  is any measurable map satisfying κ ◦  = id., we see by (2.18) that
Pµ

s = Pνk

sk ◦ κ−1 for all sk ∈ κ−1(s).

(2) Let Capνk

denote the capacity associated with (E νk

,Dνk

, L2(νk)). Then by
(2.15) and Lemma 4.1, we deduce

Capνk

(κ−1(S̃)c) = 0. (2.19)

We recall that Pµ is conservative as a diffusion on S equipped with the vague
topology. However, each of the tagged particles may explode under the usual
metric on Rd. So (2.13) does not hold in general. Next we prepare a sufficient
condition for (2.13).

Theorem 2.5. Assume (M.1.0), (M.1.1), (M.2), and (M.3). Assume there
exists T > 0 such that for each R > 0

lim inf
r→∞

{ ∫

Sr+R

ρ1(x)dx

}
· `

(
r√

(r + R)T

)
= 0, (2.20)

where `(x) = (2π)−1/2
∫∞

x
e−x2/2dx. Then we obtain (2.13).

Remark 2.2. (2.20) is satisfied if there exists a positive constant c2.1 such
that

sup
x∈S

ρ1(x)e−c2.1|x| < ∞. (2.21)
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We next proceed to the environment process. So we assume S = Rd. Let
ϑa :S → S denote the translation defined by ϑa(

∑
i δxi

) =
∑

i δxi−a. We assume:

(M.4) µ is translation invariant, that is, µ ◦ ϑ−1
a = µ for all a ∈ Rd.

By (M.4) we can and do choose the version µx in such a way that µx = µ0 ◦ ϑ−1
x

for all x ∈ Rd. Here µx is the conditional probability given by (2.9) with x ∈ Rd.
Let ∇i = ( ∂

∂si1
, . . . , ∂

∂sid
). Let D :D◦ → (D◦)d such that

Df(s) =
{ ∑

i

∇if̃

}
for s ∈ S (f̃ is same as (2.3)). (2.22)

Note that D is the generator of the group of the unitary operators on L2(µ)
generated by the translation {ϑa}. Let ∇ = ( ∂

∂x1
, . . . , ∂

∂xd
) be the nabla on Rd.

Let (D −∇) :D1
◦ → (D1

◦ )
d be such that

(D −∇)f(x, s) = {Df(x, ·)}(s)− {∇f(·, s)}(x) for (x, s) ∈ S1. (2.23)

We set

DY [f, g] =
1
2
(Df, Dg)Rd + 2D[f, g] for f, g ∈ D◦,

DXY [f, g] =
1
2
((D −∇)f, (D −∇)g)Rd + 2D[f, g] for f, g ∈ D1

◦ .
(2.24)

Here for f, g ∈ D1
◦ we set D[f, g](x, s) = D[f(x, ·), g(x, ·)](s). Let

E Y (f, g) =
∫

S

DY [f, g]dµ0, (2.25)

E XY (f, g) =
∫

Rd×S

DXY [f, g]dxdµ0. (2.26)

Let L2(µ0) = L2(S, µ0) and L2(dx× µ0) = L2(Rd ×S, dx× µ0). Let

DY
◦ =

{
g ∈ D◦ ∩ L2(µ0);E Y (g, g) < ∞}

, (2.27)

DXY
◦ =

{
h ∈ D1

◦ ∩ L2(dx× µ0);E XY (h, h) < ∞}
. (2.28)

Theorem 2.6. Assume (M.1.0), (M.1.1), (M.2), (M.3), and (M.4). Then
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(1) The form (E Y ,DY
◦ ) is closable on L2(µ0). There exists a diffusion PY asso-

ciated with its closure (E Y ,DY ) on L2(µ0). Moreover, (E Y ,DY ) is a quasi-
regular Dirichlet form on L2(µ0).

(2) The form (E XY ,DXY
◦ ) is closable on L2(dx × µ0). There exists a diffusion

PXY associated with its closure (E XY ,DXY ) on L2(dx × µ0). Moreover,
(E XY ,DXY ) is a quasi-regular Dirichlet form on L2(dx× µ0).

Remark 2.3. Fattler and Grothaus [3] prove the quasi-regularity of
(E Y ,DY , L2(µ0)) and (E XY ,DXY , L2(dx × µ0)) for grand canonical Gibbs mea-
sures µ with translation invariant interaction potentials which are differentiable
outside the origin. Their method is different from ours.

By (2.8) we can write X ∈ C([0,∞);S) as

Xt =
∑

i

δXi
t

Pµ
s -a.s. for all s ∈ Ŝsingle, (2.29)

where Xi ∈ C(Ii;Rd) and Ii is the maximal interval in [0,∞) of the form [0, b) or
(a, b) satisfying the representation (2.29). Write s(x) = s({x}) and let

Sx =
{
s ∈ S̃; s(x) = 1

}
. (2.30)

If X0 = s ∈ Sx, then there exists an i(x, s) such that X
i(x,s)
0 = x and such Rd-

valued path Xi(x,s) = {Xi(x,s)
t } is unique. For each s ∈ Sx we regard (Xi(x,s),Pµ

s )
as the tagged particle starting at x. Let Yx be the process defined by

Yx
t :=

∑

i 6=i(x,s)

δ
Xi

t−X
i(x,s)
t

under Pµ
s for s ∈ Sx. (2.31)

The process Yx describes the environment seen from the tagged particle Xi(x,s).
Let PXY be the diffusion associated with (E XY ,DXY , L2(dx × µ0)). The

following clarifies the relations among the diffusions Pµ, PXY and PY .

Theorem 2.7. Assume (M.1.0), (M.1.1), (M.2), (M.3), and (M.4). Let
Xi(x,s) and Yx be as above. Let X1 = (X, X) ∈ C([0,∞);Rd ×S). Then (a
version of ) PXY satisfies for each x ∈ Rd

Pµ
s (Xi(x,s) ∈ ·) = PXY

(x,ϑx(s−δx))(X ∈ ·) for all s ∈ Sx, (2.32)

Pµ
s (Yx ∈ ·) = PXY

(x,ϑx(s−δx))(X ∈ ·) = PY
ϑx(s−δx) for all s ∈ Sx. (2.33)
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Remark 2.4. The total system of interacting Brownian motions is a priori
given by the diffusion Pµ. The diffusion PY associated with (E Y ,DY , L2(µ0))
describes the motion of the environment seen from the tagged particle, and the
diffusion PXY associated with (E XY ,DXY , L2(dx×µ0)) corresponds to the motion
of the coupling of the tagged particle and the environment seen from the tagged
particle. Theorems 2.6 and 2.7 were used for the proof of the diffusive scaling limit
of tagged particles of such translation invariant interacting Brownian motions in
[15].

Example 2.1.

(1) Let µ be a canonical Gibbs measure with upper semicontinuous potentials.
Assume the interaction potentials are super stable and regular in the sense of
Ruelle. We refer to the reader [21]. Then µ satisfies (M.1.k) for all k and
(M.2). (M.3) is satisfies if d ≥ 2 or the interaction potential has repulsive
enough. See [8] for the necessary and sufficient condition for this when the
number of particles are finite. Since the Dirichlet forms of the infinite particle
systems are decreasing limits of the finite particle systems [14], Inukai’s result
gives a sharp sufficient condition of (M.3).

(2) Let µ be the Dyson’s model in infinite dimension. This is a translation in-
variant probability measure on the one dimensional configuration space. Its
correlation functions are given by the determinant of the sine kernel and re-
lated to the random matrices called GUE (see [23], [13]). This measure sat-
isfies (M.1)–(M.4). Here (M.1) is the assumption that means (M.1.k) hold for
all k = 0, 1, . . .. We refer to [18] and [17] for the proof of (M.1) and (M.2),
respectively.

(3) Let µ be the Ginibre random point field. This is a translation invariant prob-
ability measure on the two dimensional configuration space. Its correlation
functions are given by the determinant of the exponential kernel and related
to the random matrices called Ginibre Ensemble (see [23]). This measure
satisfies (M.1)–(M.4). (see [18], [17]).

(4) In [18] we introduce the notion of quasi Gibbs measures. This class contains
all above examples. Measures in this class satisfies (M.1).

3. Transfer of Dirichlet spaces.

This section is devoted to the preparation of the proof of Theorem 2.4. We
begin by considering the relation µ and νk under the map κ :Sk ×S → S defined
before Theorem 2.4. Since these measures µ and νk are not directly related by
the map κ :Sk ×S → S, we consider the finite volume cut off of these measures
instead.

Let Sr = {x ∈ S; |x| < r} and Sr,m = {s ∈ S; s(Sr) = m}. We define the
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measures νk
r , νk,N

r , µk
r , and µk,N

r by

νk
r =

∫

·
1Sr (x)dνk, νk,N

r =
∫

·
1Sk

r
(x)

N−1∑
m=1

1Sr,m(s)dνk, (3.1)

µk
r = νk

r ◦ κ−1, µk,N
r = νk,N

r ◦ κ−1. (3.2)

Let m[k] = m(m− 1) · · · (m− k + 1). Then it is not difficult to see that

µk
r =

∞∑

m=k

m[k] µ(· ∩Sr,m), µk,N
r =

N∑

m=k

m[k] µ(· ∩Sr,m). (3.3)

Let ∂Sr = {|x| = r} and ∂Sr = {s ∈ S; s(∂Sr) ≥ 1}. We remark Sr,m are

open sets and their boundaries ∂Sr,m are contained in ∂Sr. We define D
µk

r◦ in a
similar fashion to Dνk

◦ by replacing νk by µk
r . Let

Dµ
◦,r,D =

{
f ∈ Dµ

◦ ; f(s) = 0 if s ∈ ∂Sr},

Dµ,N
◦,r,D =

{
f ∈ Dµ

◦,r,D; f(s) = 0 if s 6∈
N∑

m=1

Sr,m

}
,

D
µk

r ,N
◦,r,D =

{
f ∈ D

µk
r◦ ; f(s) = 0 if s ∈ ∂Sr or s 6∈

N∑
m=1

Sr,m

}
. (3.4)

Dνk

◦,r,D =
{
h ∈ Dνk

◦ ;h(x, s) = 0 if x 6∈ Sk
r or s ∈ ∂Sr

}
,

Dνk,N
◦,r,D =

{
h ∈ Dνk

◦,r,D;h(x, s) = 0 if s 6∈
N−1∑
m=0

Sr,m

}
. (3.5)

Let (E µ,Dµ
r,D) denote the closure of (E µ,Dµ

◦,r,D) on L2(µ). We define the closures

(E µ,Dµ,N
r,D ), (E µk

r ,D
µk

r ,N
r,D ), (E νk

,Dνk

r,D), and (E νk

,Dνk,N
r,D ) similarly.

For an h ∈ Dνk

◦,r,D we set hsym ∈ Dνk

◦,r,D by

hsym(x, s) =
1
m!

∑

σ∈Sm

h

(
xσ(1), . . . , xσ(k),

m∑

i=k+1

δxσ(i)

)
if s ∈ Sm−k

r . (3.6)

Here x = (x1, . . . , xk) ∈ Sk
r , s =

∑m
j=k+1 δxj ∈ Sm−k

r , and Sm is the set consisting
of the permutations of (1, . . . , m).
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If h = hsym ∈ Dνk

◦,r,D, then one can regard h as h ∈ Dµ
◦,r,D, and we denote it

by h0. Indeed, h0 is defined by h0(
∑k

j=1 δxj + s) := h(x, s) on
∑∞

m=k Sm
r and by

h0 = 0 if s 6∈ ∑∞
m=k Sm

r . We remark h0
sym ◦ κ = hsym by construction.

Let h1 and h2 ∈ Dνk

◦,r,D. Assume h2,sym = h2. Then we have

∫

Sk×S

h1h2dνk =
∫

Sk×S

h1,symh2dνk =
∫

S

h0
1,symh0

2dµk
r , (3.7)

E νk

(h1, h2) = E νk

(h1,sym, h2) = E µk
r (h0

1,sym, h0
2). (3.8)

Let us take h1 = h and h2 = hsym in (3.8). Then we have

E νk

(h, hsym) = E νk

(hsym, hsym) = E µk
r
(
h0

sym, h0
sym

)
. (3.9)

Applying Schwarz’s inequality to the first equality of (3.9) yields

E νk

(h, h) ≥ E νk

(hsym, hsym).

Hence we can define hsym not only for h ∈ Dνk

◦,r,D but also for h ∈ Dνk

r,D as the limit
of the {E νk

1 }1/2-norm. Moreover, by (3.7) and (3.9) we have

{
h0

sym;h ∈ Dνk

r,D

}
= D

µk
r

r,D. (3.10)

Similarly as (3.10) we have

{
h0

sym;h ∈ Dνk,N
r,D

}
= D

µk
r ,N

r,D . (3.11)

Since µ(·) ≤ µk
r (·) ≤ Nµ(·) on

∑N
m=1 Sr,m by (3.3), we obtain

Dµ,N
r,D = D

µk
r ,N

r,D . (3.12)

4. Identities among k-labeled diffusions.

In this section we assume (M.1.0), (M.1.k), (M.2) and (M.3). The purpose
of this section is to prove the identity between the diffusions associated with the
Dirichlet spaces (E µ,Dµ, L2(µ)) and (E νk

,Dνk

, L2(νk)) introduced in Section 2.
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This identity is a key to the proof of Theorem 2.6.

Lemma 4.1. Let A ⊂ Sk × S be such that κ−1(κ(A)) = A. Then
Capµ(κ(A)) = 0 implies Capνk

(A) = 0. Here we regard κ as κ :Sk ×S → S.

Proof. Without loss of the generality we can and do assume A ⊂ Sk
r−1×S

and A∩ (Sk × ∂Sr) = ∅ for some r ∈ N . Since the capacity of a set B is given by
the infimum of the capacity of the open sets including B, we can assume without
loss of generality that κ(A) is an open set. Then A becomes an open set. So by
definition we have

Capµ(κ(A)) = inf
{
E µ

1 (f, f); f ∈ Dµ, f ≥ 1 µ-a.e. on κ(A)
}
, (4.1)

Capνk

(A) = inf
{
E νk

1 (g, g); g ∈ Dνk

, g ≥ 1 νk-a.e. on A
}
. (4.2)

Here E µ
1 (f, f) = E µ(f, f) + (f, f)L2(µ) as usual and we set E νk

1 similarly.
Since A ⊂ Sk

r−1 ×S and A ∩ (Sk × ∂Sr) = ∅, we deduce that

Capµ(κ(A)) = inf
{
E µ

1 (f, f); f ∈ Dµ
◦,r,D, f ≥ 1 µ-a.e. on κ(A)

}
. (4.3)

If f ∈ Dµ
◦,r,D, then f ◦ κ ∈ Dνk

. Combining this with (4.1)–(4.3) and the assump-
tion Capµ(κ(A)) = 0 completes the proof. ¤

We consider parts of Pµ and Pνk

. We refer to [4] for the definition of a part
of Dirichlet space and related results.

Let ∂Sr = {|x| = r} and ∂Sr = {s ∈ S; s(∂Sr) ≥ 1} as before. Let

σ0
r(X) = inf{t > 0;Xt ∈ ∂Sr}, (4.4)

σ0
r,N (X) = inf

{
t > 0;Xt ∈ ∂Sr or Xt 6∈

N∑
m=1

Sr,m

}
, (4.5)

σ1
r(X1) = inf

{
t > 0;Xt 6∈ Sk

r or Xt ∈ ∂Sr

}
, (4.6)

σ1
r,N (X1) = inf

{
t > 0;Xt 6∈ Sk

r or Xt ∈ ∂Sr or Xt 6∈
N−k∑
m=0

Sr,m

}
, (4.7)

where X ∈ C([0,∞);S) and X1 = (X, X) ∈ C([0,∞);Sk ×S).
Let Xσ0

r = {Xt∧σ0
r
} and define Xσ0

r,N , X1,σ1
r , and X1,σ1

r,N in a similar fash-

ion. Let Pµ,σ0
r = ({Pµ

s }s∈S,Xσ0
r ). Set Pµ,σ0

r,N , Pνk,σ1
r , and Pνk,σ1

r,N simi-
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larly. Then Pµ,σ0
r , Pµ,σ0

r,N , Pνk,σ1
r , and Pνk,σ1

r,N are diffusions associated with
the Dirichlet spaces (E µ,Dµ

r,D, L2(µ)), (E µ,Dµ,N
r,D , L2(µ)), (E νk

,Dνk

r,D, L2(νk)), and

(E νk

,Dνk,N
r,D , L2(νk)), respectively. Let Pµ,σ0

r
s = Pµ

s (Xσ0
r ∈ ·). We set P

µ,σ0
r,N

s ,

Pνk,σ1
r

(x,s) , and P
νk,σ1

r,N

(x,s) similarly. We note that these are the distributions of Pµ,σ0
r ,

Pµ,σ0
r,N , Pνk,σ1

r , and Pνk,σ1
r,N , respectively. Let Capµ,σ0

r and Capµ,σ0
r,N be the

capacities of Pµ,σ0
r and Pµ,σ0

r,N , respectively.

Lemma 4.2. Assume (M.1.0), (M.1.k), (M.2), and (M.3). Then there exists
Ak

r ⊂ Sk
r ×S such that

κ−1
(
κ(Ak

r )
)

= Ak
r , κ

(
Ak

r

) ⊂ Ssingle, (4.8)

Capµ,σ0
r
(
κ(Sk

r ×S)\κ(Ak
r )

)
= 0, (4.9)

Pµ,σ0
r

κ(x,s)

(
Xt ∈ κ(Ak

r ) for all t
)

= 1 for all (x, s) ∈ Ak
r , (4.10)

Pµ,σ0
r

κ(x,s) = Pνk,σ1
r

(x,s) ◦ κ−1 for all (x, s) ∈ Ak
r . (4.11)

Proof. If for each N ∈ N there exists a set Ak
r,N ⊂ Sk

r ×
∑N−k

m=0 Sr,m such
that

κ−1
(
κ(Ak

r,N )
)

= Ak
r,N , κ

(
Ak

r,N

) ⊂ Ssingle, (4.12)

Capµ,σ0
r,N

(
κ

(
Sk

r ×
N−k∑
m=0

Sr,m

)∖
κ
(
Ak

r,N

))
= 0, (4.13)

P
µ,σ0

r,N

κ(x,s)

(
Xt ∈ κ(Ak

r,N ) for all t
)

= 1 for all (x, s) ∈ Ak
r,N , (4.14)

P
µ,σ0

r,N

κ(x,s) = P
νk,σ1

r,N

(x,s) ◦ κ−1 for all (x, s) ∈ Ak
r,N , (4.15)

then Ak
r := lim infN→∞ Ak

r,N satisfies (4.8)–(4.11). Hence it only remains to prove
such an Ak

r,N exists for each N .

Recall that Pνk,σ1
r,N is the diffusion associated with (E νk

,Dνk,N
r,D , L2(νk)). Let

T νk,N
r,D,t be the semigroup associated with Pνk,σ1

r,N . Then for f and g ∈ Dνk,N
r,D

∫

Sk×S

T νk,N
r,D,t f · gdνk −

∫

Sk×S

f · gdνk +
∫ t

0

E νk
(
T νk,N

r,D,uf, g
)
du = 0. (4.16)
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Now suppose gsym = g. Then by (3.7) and (3.8) we have

∫

S

(
T νk,N

r,D,t f
)0

sym
· g0dµk

r −
∫

S

f0
sym · g0dµk

r

+
∫ t

0

E µk
r

((
T νk,N

r,D,uf
)0

sym
, g0

)
du = 0. (4.17)

Let T
µk

r ,N
r,D,t be the semigroup associated with

(
E µk

r ,D
µk

r ,N
r,D

)
on L2(µk

r ). Then by
(3.11) and (4.17) we have

T
µk

r ,N
r,D,t (f0

sym) =
(
T νk,N

r,D,t f
)0

sym
. (4.18)

Let Capµk
r ,σ0

r,N and Pµk
r ,σ0

r,N be the capacity and the diffusion associated with the
Dirichlet space (E µk

r ,D
µk

r ,N
r,D , L2(µk

r )), respectively. Then by (4.18) together with
(M.3), we deduce that there exists Ak

r,N ⊂ Sk
r ×

∑N−k
m=0 Sr,m satisfying (4.12) and

Capµk
r ,σ0

r,N

(
κ

(
Sk

r ×
N−k∑
m=0

Sr,m

)∖
κ
(
Ak

r,N

))
= 0, (4.19)

P
µk

r ,σ0
r,N

κ(x,s)

(
Xt ∈ κ(Ak

r,N ) for all t
)

= 1 for all (x, s) ∈ Ak
r,N , (4.20)

P
µk

r ,σ0
r,N

κ(x,s) = P
νk,σ1

r,N

(x,s) ◦ κ−1 for all (x, s) ∈ Ak
r,N . (4.21)

Recall that the diffusions Pµ,σ0
r,N and Pµk

r ,σ0
r,N in (4.15) and (4.21) are as-

sociated with the Dirichlet spaces (E µ,Dµ,N
r,D , L2(µ)) and (E µk

r ,D
µk

r ,N
r,D , L2(µk

r )),

respectively. Note that Dµ,N
r,D = D

µk
r ,N

r,D by (3.12). Moreover, these two Dirichlet
spaces have the common state space

∑N
m=1 Sr,m. On each connected component

{Sr,m} of the state space, the measures µ and µk
r are constant multiplication

of each other. Hence the associated diffusions are the same until they hit the
boundary. Since these Dirichlet forms enjoy the Dirichlet boundary conditions,
we see that eventually these two Dirichlet spaces define the same diffusion. This
combined with (4.19)–(4.21) we obtain (4.13)–(4.15), respectively.

We therefore deduce that Ak
r,N (N ∈ N) satisfy (4.12)–(4.15), which com-

pletes the proof of Lemma 4.2. ¤

Let r(i) = r if i is odd, and r(i) = r + 1 if i is even. Let for i ≥ 2
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σ̄0
i (X) = inf

{
t > σ̄0

i−1;Xt ∈ ∂Sr(i)

}
, (4.22)

σ̄1
i (X1) = inf

{
t > σ̄1

i−1;Xt ∈ ∂Sk
r(i) or Xt ∈ ∂Sr(i)

}
, (4.23)

where we set σ̄a
1 = σa

r (a = 0, 1). For X = {∑i δXi
t
} ∈ C([0,∞);S) satisfying

Xt ∈ Ssingle for all t and X0 =
∑

i δxi , we choose the first k-particles

{
X̄t

}
=

{(
X1

t , . . . , Xk
t

)} ∈ C([0,∞);Sk)

such that X̄0 = x = (x1, . . . , xk) and that Xt =
∑k

j=1 δXj
t

+
∑

j>k δXj
t
.

Let Ω0
i = {ω; X̄σ̄0

i
(ω) ∈ Sk

r } and Ω1
i = {ω;Xσ̄1

i
(ω) ∈ Sk

r }. Let

Ωa
∞ =

∞⋂

i=1

Ωa
i , σ̄a

∞ = lim
i→∞

σ̄a
i (a = 0, 1). (4.24)

Since Xσ̄1
i
∈ Sk

r on Ω1
i , Sk

r ⊂ Sk
r+1, and Sk

r+1 ∩ ∂Sk
r+1 = ∅, we deduce that

Xt(ω) ∈ Sk
r+1 for all 0 ≤ t < σ̄1

∞(ω), for all ω ∈ Ω1
∞. (4.25)

Lemma 4.3. Assume (M.1.0), (M.1.k), (M.2), and (M.3). Let Ak
r be as in

Lemma 4.2. Then for all (x, s) ∈ Ak
r the following holds.

(1) σ̄0
∞ = ∞ for Pµ

κ(x,s)(· ; Ω0
∞)-a.e. ω,

(2) σ̄1
∞ = ∞ for Pνk

(x,s)(· ; Ω1
∞)-a.e. ω.

Proof. Let ∂Sr = {s; s(∂Sr) ≥ 1} as before. Then by the continuity of
the sample paths, (4.22) and (4.24), we deduce

Xσ̄0∞ = lim
i→∞

Xσ̄0
i
∈ ∂Sr ∩ ∂Sr+1 on

{
σ̄0
∞ < ∞}

. (4.26)

Suppose Pµ
κ(x,s)(σ̄

0
∞ < ∞; Ω0

∞) > 0. Then by (4.26) we have

Pµ
κ(x,s)

(
Xσ̄0∞ ∈ ∂Sr ∩ ∂Sr+1; Ω0

∞
)

> 0. (4.27)

Hence
∫

S
Pµ

s (σ∂Sr∩∂Sr+1 < ∞)µ(ds) > 0, where σ∂Sr∩∂Sr+1 is the first hitting
time to the set ∂Sr ∩ ∂Sr+1. By the general theory of Dirichlet forms (see [4,
Theorem 4.2.1. (ii)]) it follows from this that

Capµ(∂Sr ∩ ∂Sr+1) > 0. (4.28)
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On the other hand, since the n-correlation functions ρn of µ are locally
bounded by (M.2), it is not difficult to see that Capµ(∂Sr ∩ ∂Sr+1) = 0. This
contradicts (4.28). Hence we obtain Pµ

κ(x,s)(σ̄
0
∞ < ∞; Ω0

∞) = 0, which implies (1).
The proof of (2) is similar to that of (1). ¤

Let

τ0
r,x(X) = inf

{
t > 0; X̄t ∈ ∂Sk

r

}
, (4.29)

τ1
r (X1) = inf

{
t > 0;Xt ∈ ∂Sk

r

}
. (4.30)

Remark 4.1. The stopping times σ̄0
i , σ̄1

i and τ1
r are the hitting times to

the subsets of the state spaces. So one can relate the stopped processes to the
parts of Dirichlet forms. However, τ0

r,x is not a hitting time to any subset in the
state space S. So one can not relate the associated stopped process to a part of
the Dirichlet form, which is the reason we prepare Lemma 4.2 before Lemma 4.4.

Lemma 4.4. Assume (M.1.0), (M.1.k), (M.2), and (M.3). Let Ak
r be as in

Lemma 4.2. Then

P
µ,τ0

r,x

κ(x,s) = P
νk,τ1

r,x

(x,s) ◦ κ−1 for all (x, s) ∈ Ak
r ∩ Ak

r+1. (4.31)

Let τ0
∞,x = limr→∞ τ0

r,x and τ1
∞ = limr→∞ τ1

r . Then

P
µ,τ0

∞,x

κ(x,s) = Pνk,τ1
∞

(x,s) ◦ κ−1 for all (x, s) ∈ lim inf
r→∞

Ak
r . (4.32)

Proof. Suppose ω ∈ Ω1
∞. Then by (4.25) and Lemma 4.3 we have X1

t ∈
Sk

r+1 ×S for all 0 ≤ t < ∞. In particular, Xt ∈ Sk
r+1 for all 0 ≤ t < ∞. Hence

by using Lemma 4.2 with r and r + 1 combined with the strong Markov property
repeatedly, we obtain for all (x, s) ∈ Ak

r ∩ Ak
r+1

Pµ,σ̄0
i

κ(x,s)

( · ; Ω0
∞

)
= Pνk,σ̄1

i

(x,s)

( · ; Ω1
∞

) ◦ κ−1 for all i. (4.33)

Hence by Lemma 4.3 we have

Pµ
κ(x,s)

( · ; Ω0
∞

)
= Pνk

(x,s)

( · ; Ω1
∞

) ◦ κ−1 for all (x, s) ∈ Ak
r ∩ Ak

r+1. (4.34)

Next suppose ω 6∈ Ω1
∞. Then there exists an i such that Xσ̄1

i
6∈ Sk

r and
Xσ̄1

j
∈ Sk

r for all j < i. Let Ω1
i∗ denote the collection of such ω:
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Ω1
i∗ =

{
ω;Xσ̄1

i
(ω) 6∈ Sk

r , Xσ̄1
j
(ω) ∈ Sk

r (∀j < i)
}
.

By Lemma 4.2 and the strong Markov property we have

Pµ,σ̄0
i

κ(x,s)

( · ; Ω0
i∗

)
= Pνk,σ̄1

i

(x,s)

( · ; Ω1
i∗

) ◦ κ−1 for all (x, s) ∈ Ak
r ∩ Ak

r+1. (4.35)

By construction τa
r,x ≤ σ̄a

i (a = 0, 1). Hence (4.35) implies

P
µ,τ0

r,x

κ(x,s)

( · ; Ω0
i∗

)
= P

νk,τ1
r,x

(x,s)

( · ; Ω1
i∗

) ◦ κ−1 for all (x, s) ∈ Ak
r ∩ Ak

r+1. (4.36)

We now see that Ωa = Ωa
∞ +

∑∞
i=1 Ωa

i∗ (a = 0, 1). Hence (4.31) follows from
(4.34) and (4.36). (4.32) follows from (4.31) immediately. ¤

Proof of Theorem 2.4. Let S̃ =
⋂

k∈N{lim infr→∞ Ak
r}. Then by (4.9)

we have (2.15). Moreover, by (2.13) we deduce that τ0
∞,x = ∞ for Pµ

s -a.s. for all
s ∈ S̃ such that s(x) = 1. Hence by (4.32) of Lemma 4.4 we obtain (2.17) and
(2.18). ¤

5. Tagged particle processes.

In this section, we prove Theorems 2.6 and 2.7. So we take S = Rd and k = 1.
We set ν = ν1. Let ι be the transformation on Rd ×S defined by

ι(x, s) = (x, ϑx(s)). (5.1)

Then by (M.4) we deduce that

ν ◦ ι−1 = dx× µ0. (5.2)

We regard ι as the transformation on C([0,∞);Rd ×S), denoted by the same
symbol ι, by ι(X1) = {ι(X1

t )}.

Lemma 5.1. Assume (M.1.0), (M.1.1), (M.2)–(M.4). Then we have the
following.

(1) The bilinear form (E XY ,DXY
◦ ) is closable on L2(dx× µ0).

(2) Let (E XY ,DXY ) be the closure of (E XY ,DXY
◦ ) on L2(dx× µ0). Let

PXY
(x,s) = Pν

ι−1(x,s) ◦ ι−1. (5.3)
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Then PXY = ({PXY
(x,s)}(x,s)∈Rd×S,X1) is a diffusion associated with the

Dirichlet space (E XY ,DXY , L2(dx× µ0)).
(3) The Dirichlet space (E XY ,DXY , L2(dx× µ0)) is quasi-regular.

Proof. By (5.2) we have

(f ◦ ι, g ◦ ι)L2(ν) = (f, g)L2(dx×µ0). (5.4)

We next calculate the transformation of D1 under the change of coordinate induced
by ι. By a straightforward calculation we see that

D1[f ◦ ι, g ◦ ι] =
(
DXY [f, g]

) ◦ ι for f, g ∈ D1
◦ . (5.5)

By (5.2) and (5.5) we obtain the isometry of the bilinear forms (E ν ,Dν
◦ ) and

(E XY ,DXY
◦ ) under the transformation induced by ι. Indeed, the map ι∗ :DXY

◦ →
Dν
◦ defined by ι∗(f) = f ◦ ι is bijective and

E ν(f ◦ ι, g ◦ ι) = E XY (f, g). (5.6)

By (5.4) and (5.6) the closability of (E XY ,DXY
◦ ) on L2(dx×µ0) follows from that

of (E ν ,Dν
◦ ) on L2(ν), which is given by (M.1.1). We have thus proved (1).

Since ι is the transformation on Rd × S, it is clear that PXY is a diffusion
with state space Rd ×S. Recall that PXY

(x,s) = Pν
ι−1(x,s) ◦ ι−1 and that Pν is the

diffusion associated with (E ν ,Dν , L2(ν)). By (5.4) and (5.6) the Dirichlet spaces
(E ν ,Dν , L2(ν)) and (E XY ,DXY , L2(dx × µ0)) are isometric. Hence we conclude
{PXY

(x,s)} is associated with the Dirichlet space (E XY ,DXY , L2(dx× µ0)).
By the theorem due to Albeverio-Ma-Röckner (see [12, Theorem 5.1]), the

quasi-regularity of the Dirichlet space follows from the existence of the associated
diffusion. Hence (3) follows from (2) immediately. ¤

Lemma 5.2. Let CapXY be the capacity associated with the Dirichlet space
(E XY ,DXY , L2(dx× µ0)). Let PXY be the associated diffusion as in Lemma 5.1.
Then there exists a subset Ξ ⊂ Rd ×S such that

PXY
(x,s)(X ∈ ·) = PXY

(y,s)(X ∈ ·) for all (x, s), (y, s) ∈ Ξ, (5.7)

CapXY (Ξc) = 0. (5.8)

Here we set X1 = (X, X) ∈ C([0,∞);S ×S) as before.
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Proof. It is clear that for each a ∈ Rd

(f(· − a, ∗), g(· − a, ∗))L2(dx×µ0) = (f, g)L2(dx×µ0),

E XY (f(· − a, ∗), g(· − a, ∗)) = E XY (f, g).

Hence we see that the equality in (5.7) holds for a.e. (x, s), (y, s) ∈ Rd ×S.
We next strength the equality in (5.7) from a.e. to all on Ξ for some Ξ satis-

fying CapXY (Ξc) = 0.
For each Borel set A of the form A = {Xt1 ∈ A1, . . . ,Xti

∈ Ai}, where
Aj ∈ B(S) (j = 1, . . . , i), we see that PXY

(x,s)(X ∈ A) is quasi-continuous in (x, s).
Hence there exists a subset Ξ ⊂ Rd ×S such that CapXY (Ξc) = 0 and that Ξ =⋃∞

n=1 Kn for some increasing sequence of closed set and, moreover, the restriction
of PXY

(x,s)(X ∈ A) on Kn is continuous in (x, s) for all n. This means, with a help
of the monotone class theorem, (5.7) holds for Ξ as above. ¤

Lemma 5.3. Assume (M.1.0), (M.1.1), (M.2)–(M.4). Then we have the
following.

(1) The bilinear form (E Y ,DY
◦ ) is closable on L2(µ0).

(2) Let Ξ be as in Lemma 5.2. Let {PY
s }s∈S be the family of probability measures

on C([0,∞);S) defined by

PY
s = PXY

(x,s)(X ∈ ·) if (x, s) ∈ Ξ for some x ∈ Rd,

PY
s (Xt = s for all t) = 1 otherwise.

Then PY = ({PY
s }s∈S,X) is a diffusion.

Proof. Let ϕ ∈ C∞0 (Rd) and f ∈ DY
◦ . Then

‖ϕ⊗ f‖L2(dx×µ0) = ‖ϕ‖L2(dx)‖f‖L2(µ0), (5.9)

E XY (ϕ⊗ f, ϕ⊗ f) = ‖ϕ‖2L2(dx)E
Y (f, f) +

1
2
‖∇ϕ‖2L2(dx)‖f‖2L2(µ0)

. (5.10)

Indeed, (5.9) is a straightforward calculation. As for (5.10) we see

DXY [ϕ⊗ f, ϕ⊗ f ] = ϕ2 ⊗DY [f, f ] +
|∇ϕ|2 ⊗ f2

2
− (ϕ∇ϕ, fDf)Rd . (5.11)

Then integrating over Rd ×S by dx× µ0 and noticing
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∫

Rd×S

(ϕ∇ϕ, fDf)Rddx× µ0 =
( ∫

Rd

ϕ∇ϕdx,

∫

Θ

fDfdµ0

)

Rd

= 0,

we obtain (5.10).
By (5.9) and (5.10) the closability of (E Y ,DY

◦ ) on L2(µ0) follows from the
one of (E XY ,DXY

◦ ) on L2(dx × µ0), which has been already obtained in Lemma
5.1 (1). We thus prove (1).

We next prove (2). By (5.7) we see that for any A ∈ B(C([0,∞);S))

PY
s (X ∈ A) = PXY

(x,s)((X, X) ∈ C([0,∞);Rd)×A) for all (x, s) ∈ Ξ. (5.12)

We remark PXY is a diffusion on Rd × S and Ξc is an exceptional set, that is,
PXY

(x,s)(σΞc < ∞) = 0 for q.e. (x, s) because of CapXY (Ξc) = 0. Hence we deduce
from (5.12) that PY is a diffusion with state space S. ¤

Lemma 5.4. Let (E Y ,DY ) be the closure of (E Y ,DY
◦ ) on L2(µ0).

(1) The diffusion PY in Lemma 5.3 is associated with (E Y ,DY ) on L2(µ0).
(2) The Dirichlet form (E Y ,DY ) on L2(µ0) is quasi-regular.

Proof. Let EY
s denote the expectation with respect to PY

s . Let {TY
t }

be the semigroup defined by TY
t f = EY

s [f(Xt)]. Let {TXY
t } be the semigroup

associated with the Dirichlet space (E XY ,DXY , L2(dx × µ0)). Then we deduce
that

1⊗ (
TY

t f
)

= TXY
t (1⊗ f). (5.13)

Let ρ(x) = c5.1(1 + |x|2(d+4))−1/2 such that
∫

ρ2dx = 1, where c5.1 is the
normalizing constant. Let L2(ρ) = L2(Rd ×S, ρ2dx× µ0) and

E XY
ρ,λ (f, g) = E XY (f, ρ2g) + λ(f, g)L2(ρ). (5.14)

Then there exists λ0 such that (E XY
ρ,λ ,D1

◦ ) is positive and closable on L2(ρ) for all
λ > λ0 (see [15, Lemma 2.1] for proof). We fix such a λ and denote by {Tλ

t } the
semigroup associated with the closure (E XY

ρ,λ ,DXY
ρ ) of (E XY

ρ,λ ,D1
◦ ) on L2(ρ). It is

known that (see [15, p. 234])

TXY
t (1⊗ f) = eλtTλ

t (1⊗ f). (5.15)

By a direct calculation we see that
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E XY
ρ,λ (1⊗ f, 1⊗ f) = E Y (f, f) + λ(f, f)L2(µ0). (5.16)

Let D̃Y be the domain of the Dirichlet space associated with {TY
t } on L2(µ0).

By (5.13) and (5.15) we obtain f ∈ D̃Y if and only if 1 ⊗ f ∈ DXY
ρ . By (5.16)

we see that 1 ⊗ f ∈ DXY
ρ if and only if f ∈ DY . Collecting these we obtain that

D̃Y = DY .
Let ψ ∈ C∞0 (Rd) be such that

∫
ψρ2dx 6= 0. Then we have for any f, g ∈ DY

lim
α→∞

α2

( ∫ ∞

0

e−αt
{
1⊗ f − TXY

t (1⊗ f)
}
dt, ψ ⊗ g

)

L2(ρ)

=
∫

Rd

ψρ2dx · E Y (f, g). (5.17)

By using (5.13) and (5.17) and then by dividing the both sides by
∫

Rd ψρ2dx, we
obtain

lim
α→∞

α2

( ∫ ∞

0

e−αt
{
f − TY

t f
}
dt, g

)

L2(µ0)

= E Y (f, g). (5.18)

This implies {TY
t } is the semigroup associated with the Dirichlet form (E Y ,DY ) on

L2(µ0) (see Lemma 1.3.4 in [4]). So we conclude PY is associated with (E Y ,DY )
on L2(µ0).

(2) is immediate from (1) similarly as Lemma 5.1. ¤

Proof of Theorem 2.6. (1) follows from Lemmas 5.3 and 5.4. (2) follows
from Lemma 5.1. ¤

Proof of Theorem 2.7. (2.32) follows from Theorem 2.4 and Lemma 5.1
(2). (2.33) follows from Theorem 2.4, Lemmas 5.1 and 5.3 immediately. ¤

6. Non-explosion of tagged particles.

Throughout this section we set νr = ν1
r and µr = µ1

r. In this section we
prove Theorem 2.5. By (4.32) in Lemma 4.4 the non-explosion property of tagged
particles follows from the conservativeness of the diffusion Pν . Then we apply a
result in [4] to prove this as follows.

Lemma 6.1. Assume (M.1.0), (M.1.1), (M.2), and (M.3). Assume (2.20).
Then Pν is conservative.
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Proof. Applying Theorem 5.7.2 in [4] to the diffusion Pν yields Lemma
6.1. ¤

We next prepare several notations used in the rest of this section.
Let X ∈ C([0,∞);Ssingle). We write X = {∑i δXi

t
} and set Xi ∈ C(Ii;Rd).

We take Ii to be the maximal interval. By construction we deduce that Ii is of
the form [0, bi) or (ai, bi). Let I = {i; Ii = [0, bi)} and J = {i; Ii = (ai, bi)}. Then
X =

∑
i∈I δXi

t
+

∑
i∈J δXi

t
=: XI + XJ .

We relabel XI as XI = {∑x δXx
t
}, where x ∈ S is such that Xx

0 = x. Let

ξx(X) = inf
{

t > 0; sup
0≤s<t

|Xx
s | = ∞

}
, (6.1)

ξr(X) = inf
{

t > 0; min
|x|<r

ξx(X) < t
}

(r ∈ N ∪ {∞}), (6.2)

Ar =
{
s ∈ S; Pµ

s (ξr < ∞) > 0
}
. (6.3)

For a path X1 = (X, X) we define the stopping time η by

η(X1) = inf
{

t > 0; sup
0≤s<t

|Xs| = ∞
}

. (6.4)

Lemma 6.2. Suppose
∫

S×S
Pν

(x,s)(η < ∞)dνr = 0. Then µ(Ar) = 0.

Proof. Let µr be as in (3.2). For m ≥ 1 let c6.1 be a constant such that

µ(· ∩Sr,m) ≤ c6.1µr(· ∩Sr,m).

Then we see that

∫

Sr,m

Pµ
s (ξr < ∞)µ(ds) ≤

∫

Sr,m

∑

s(x)≥1, |x|<r

Pµ
s (ξx < ∞)µ(ds)

≤ c6.1

∫

Sr,m

∑

s(x)≥1, |x|<r

Pµ
s (ξx < ∞)µr(ds)

= c6.1

∫

S×Sm−1
r

Pµ
κ(x,s)(ξ

x < ∞)νr(dxds)

= c6.1

∫

S×Sm−1
r

Pν
(x,s)(η < ∞)νr(dxds) by (4.32). (6.5)
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Hence we have
∫

Sr,m
Pµ

s (ξr < ∞)µ(ds) = 0 for all m ≥ 1 by assumption. This
equality also holds for m = 0 because Pµ

s (ξr < ∞) = 0 for s ∈ S0
r. Hence by

S =
∑∞

m=0 Sr,m we deduce

∫

S

Pµ
s (ξr < ∞)µ(ds) = 0. (6.6)

By (6.3) and (6.6) obtain µ(Ar) = 0. ¤

Lemma 6.3. Suppose µ(Ar) = 0. Then Capµ(Ar) = 0.

Proof. It is known that Capµ(Ar) = sup{Capµ(K);K ⊂ Ar, K is
compact} (see [4, (2.1.6) in p. 66]). So let K be a compact set such that K ⊂ Ar.

Let σK = inf{t > 0;Xt ∈ K} be the first hitting time to K. Since K is
compact, we deduce XσK

∈ K if σK < ∞.
Suppose s 6∈ Ar. Then Pµ

s (ξr < ∞) = 0 by (6.3). Hence for s 6∈ Ar

0 = Pµ
s (ξr < ∞;σK < ξr < ∞) =

∫

K

Pµ
s

(
XσK

∈ ds′;σK < ∞)
Pµ

s′(ξr < ∞).

This combined with (6.3) and K ⊂ Ar yields

Pµ
s (XσK

∈ K;σK < ∞) = 0 for s 6∈ Ar. (6.7)

Since Pµ
s (XσK

∈ K;σK < ∞) = Pµ
s (σK < ∞), we deduce from (6.7) that

Pµ
s (σK < ∞) = 0 for s 6∈ Ar. (6.8)

By (6.8) and µ(Ar) = 0 we have
∫

S
Pµ

s (σK < ∞)dµ = 0. From this we deduce
Capµ(K) = 0. We therefore obtain Capµ(Ar) = 0. ¤

Proof of Theorem 2.5. By Lemma 6.1 we see that Pν is conservative.
Hence

∫
S×S

Pν
(x,s)(η < ∞)dνr = 0. Then by Lemmas 6.2 and 6.3 we obtain

Capµ(Ar) = 0 for all r ∈ N , which yields Capµ(A∞) = 0. Here

A∞ =
{
s; Pµ

s (ξ∞ < ∞) > 0
}
.

By Capµ(A∞) = 0 together with (6.1) and (6.2) we deduce (2.13). ¤
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7. Quasi-regularity: Proof of Lemma 2.3.

In this section we prove the quasi-regularity of k-labeled Dirichlet forms. So
we begin by recalling the definition of quasi-regular by following [12].

Let E be a Polish space. A Dirichlet form (E ,D) on L2(E, m) is called quasi-
regular if it satisfies the following:

(Q.1) There exists an increasing sequence of compact sets {Kn} such that⋃
n D(Kn) is dense in D w.r.t. E

1/2
1 -norm. Here D(Kn) is the set of

the elements f of D such that f(x) = 0 a.e. x ∈ Kc
n, and E

1/2
1 (f) =

E (f, f)1/2 + ‖f‖L2(E,m).
(Q.2) There exists a E

1/2
1 -dense subset of D whose elements have E -quasi contin-

uous m-version.
(Q.3) There exist a countable set {un}n∈N having E -quasi continuous m-version

ũn, and an exceptional set N such that {ũn}n∈N separates the points of
E\N .

Let (E µ,Dµ) be the closure of (E µ,Dµ
◦ ) as before. By (M.2), (E µ,Dµ) satisfies

the quasi-regularity as seen in Lemma 2.1. We remark that (E µ,Dµ) enjoys more
strict conditions than the quasi-regularity. Indeed, we quote:

Lemma 7.1 ([14]). Assume (M.2). Then we have the following.

(1) There exists a compact subset {Kn}n∈N such that
⋃

n D◦(Kn) is {E µ
1 }1/2-

dense in Dµ
◦ . Here D◦(Kn) = {f ∈ D◦; f(s) = 0 for all s ∈ Kc

n}.
(2) There exists countable elements {un}n∈N of Dµ

◦ that separate the points of S.
(3) If (E µ,Dµ

◦ ) is closable L2(µ), then the closure (E µ,Dµ) is quasi-regular.

Remark 7.1.

(1) We remark D◦(Kn) ⊂ Dµ
◦ . Indeed, D[f, g] with f, g ∈ D◦(Kn) is bounded

because D[f, g] is continuous and Kn is compact.
(2) Suppose (E µ,Dµ

◦ ) is closable L2(µ). Then we see that (1) implies (Q.1). Since
D◦(Kn) ⊂ C(S), (1) is more strict than (Q.1). Moreover, (Q.2) is trivially
satisfied in the above case because Dµ is the closure of Dµ

◦ and Dµ
◦ ⊂ C(S).

We see that (2) implies (Q.3) because Dµ
◦ ⊂ Dµ. The condition (2) is also

more strict than (Q.3) in the sense that all {un} are continuous and {un}
separate all the points of S.

Lemma 7.2. There exists an increasing sequence of compact sets {Kr,n}
such that

⋃∞
n=1 D◦(Kr,n) is dense in D

µk
r◦ with respect to the {E µk

r
1 }1/2-norm.

Proof. By (M.2) µk
r becomes a finite measure. So the associated Dirichlet
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space is same as the Dirichlet space with the probability measure (µk
r (S))−1µk

r . We
note here the measures in the energy form E µk

r and in the L2-space are common.
Applying Lemma 7.1 to the measure (µk

r (S))−1µk
r yields Lemma 7.2. ¤

Recall that Dk
◦ = C∞0 (Sk)⊗D◦ and Dνk

◦ = {f ∈ Dk
◦ ;E νk

1 (f, f) < ∞}.

Lemma 7.3.
⋃∞

r,n=1 C∞0 (Sk)⊗D◦(Kr,n) is dense in Dνk

◦ with respect to the

{E νk

1 }1/2-norm.

Proof. Let ϕ ∈ C∞0 (Sk) and f ∈ D◦ such that ϕ⊗f ∈ Dνk

◦ . It is sufficient
for Lemma 7.3 to show that for such an f and all ε > 0 there exists fr,n such that
fr,n ∈ D◦(Kr,n) and that

E νk

1

(
ϕ⊗ (f − fr,n), ϕ⊗ (f − fr,n)

) ≤ ε. (7.1)

Since ϕ ∈ C∞0 (Sk), there exists an r such that ϕ = 0 on (Sk
r )c. Hence there

exists a constant c7.1 = c7.1(ϕ) such that

∇[ϕ,ϕ](x) ≤ c7.11Sk
r
(x), ϕ2(x) ≤ c7.11Sk

r
(x) for all x ∈ Sk. (7.2)

We write ∇[ϕ] = ∇[ϕ,ϕ] and D[f ] = D[f, f ]. By a direct calculation we have

E νk

1

(
ϕ⊗ (f − fr,n), ϕ⊗ (f − fr,n)

)

=
∫

Sk×S

{∇[ϕ]⊗ |f − fr,n|2 + ϕ2 ⊗D[f − fr,n] + ϕ2 ⊗ |f − fr,n|2
}

dνk

≤ 2c7.1

∫

Sk×S

1⊗ {|f − fr,n|2 + D[f − fr,n]
}

dνk
r

= 2c7.1

∫

S

{|f − fr,n|2 + D[f − fr,n]
}

dµk
r by (3.2)

= 2c7.1E
µk

r
1 (f − fr,n, f − fr,n). (7.3)

By Lemma 7.2 we can take n and fr,n ∈ D◦(Kr,n) in such a way that

E
µk

r
1 (f − fr,n, f − fr,n) ≤ ε

2c7.1
.

This combined with (7.3) yields (7.1). ¤
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Proof of Lemma 2.3. (Q.1) follows from Lemma 7.3. (Q.2) is clear since
Dνk

is the closure of Dνk

◦ and Dνk

◦ ⊂ C(Sk ×S).

For r ∈ N let {ur,n} be a countable subset of D
µk

r◦ that separates the points
of S. We can obtain this by applying Lemma 7.1 (2) to µk

r . We used here that
(M.2) for µk

r follows from that for µ.
Let {ϕm} be a countable subset of C∞0 (Sk) that separates the points Sk.

Then by the same calculation as (7.3) we have

E νk

1 (ϕm ⊗ ur,n, ϕm ⊗ ur,n) ≤ 2c7.1E
µk

r
1 (ur,n, ur,n).

Here c7.1 is a constant satisfying (7.2) for ϕm. Hence ϕm ⊗ ur,n ∈ Dνk

◦ . Since
{ϕm ⊗ ur,n} separates the points of Sk ×S, we obtain (Q.3). ¤
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