A normal space Z with ind $Z=0, \operatorname{dim} Z=1$, Ind $Z=2$

By Keio Nagamı

(Received Nov. 15, 1965)

This paper gives a normal (Hausdorff) space Z for which three basic dimension functions are different from each other: ind $Z=0, \operatorname{dim} Z=1$ and Ind $Z=2$. As for the definition of three dimension functions see J. Nagata [7, p. 9]. The idea developed by P. Vopenka [9] as well as the one by C. H. Dowker [1] are the main tool in our construction.

Let ω_{1} be the first uncountable ordinal, $J=\left\{\alpha: 0 \leqq \alpha<\omega_{1}\right\}$ and $J^{*}=\{\alpha: 0$ $\left.\leqq \alpha \leqq \omega_{1}\right\}$, where J and J^{*} have the usual interval topology. Let I be the unit interval [0,1]. By Dowker [1] there exist subsets $I_{\alpha}, \alpha<\omega_{1}$, of I such that i) $I_{\alpha} \subset I_{\beta}$ if $\alpha<\beta$, ii) $\operatorname{dim} I_{\alpha}=0$ for each α, iii) $\cup I_{\alpha}=I$ and iv) each I_{α} is dense in I. By Nagami [5] there exist a separable metric space C with $\operatorname{dim} C=0$ and an open continuous mapping f of C onto I. Let M be a discrete space whose power $|M|$ is \mathfrak{f}. Consider the disjoint sum T of I and $C \times M \times I$ and introduce into T the topology due to Vopenka [9] as follows:
i) An open set of $C \times M \times I$ with the usual product topology is open in T.
ii) If U is an open set in I and if K is a finite subset of M, then $U \cup\left(f^{-1}(U) \times(M-K) \times I\right)$ is open in T.

Then T with the above basic open sets is a Hausdorff space. Set

$$
T_{\alpha}=I_{\alpha} \cup\left(f^{-1}\left(I_{\alpha}\right) \times M \times I_{\alpha}\right), \alpha<\omega_{1} .
$$

The point set Z is the sum of all $\{\alpha\} \times T_{\alpha}, \alpha<\omega_{1}$. The topology of Z is the relative topology of the product space $J^{*} \times T$. We identify T with $\left\{\omega_{1}\right\} \times T$. π^{\prime} is the projection of $J^{*} \times T$ onto T. Set $\pi=\pi^{\prime} \mid Z . \quad \rho^{\prime}$ is the projection of $J^{*} \times T$ onto J^{*}. Set $\rho=\rho^{\prime} \mid Z$. If E is a subset of Z and J^{\prime} is a subset of J, then $[E]_{J^{\prime}}$ denotes the intersection of E and $\rho^{-1}\left(J^{\prime}\right)$. If x is a point of I and ε is a positive number, then $S_{\varepsilon}(x)$ denotes an open ε-sphere in I with the center x.

Lemma 1. Let X be a non-empty metric space. Then there exist subsets $X_{\alpha}, \alpha<\omega_{1}$ such that i) $X_{\alpha} \subset X_{\beta}$ if $\alpha<\beta$, ii) $\operatorname{dim} X_{\alpha}=0$ and iii) $\cup X_{\alpha}=X$. If X_{a} satisfy this condition let Y be the subspace of $J \times X$ which is the sum of all $\{\alpha\} \times X_{\alpha}, \alpha<\omega_{1}$. Then Y is a normal space such that
i) ind $Y=0$.
ii) Ind $Y=\operatorname{dim} Y=\operatorname{dim} X$.

The first half of the lemma is Nagami [6, Theorem 2]. The last half is proved by the analogous argument in Dowker [1]. It is to be noticed that the special case of this lemma where X is separable metric was proved by Yu. M. Smirnov [8].

The following lemma was proved by Vopenka [9, Proposition 1.3] for the case when X is compact. Our proof is nothing but an extraction of his. The author is kind enough for English-reading mathematicians.

Lemma 2. Let X be a normal space and Y a non-empty closed set of X which satisfy the following conditions:
i) For any open neighborhood U of Y there exists an open and closed neighborhood V of Y with $V \subset U$.
ii) There exists a retraction φ of X onto Y
iii) Ind $Y \leqq m$.
iv) If F is a closed set of X with $F \cap Y=\phi$, then Ind $F \leqq n$. Then Ind $X \leqq m+n$.

Proof. We prove this by induction on Ind Y. Since the proof for the starting case when Ind $Y=0$ is completely similar to general case, we merely prove the lemma under the assumption that the lemma is true when Ind $Y<m$.

Let now Ind $Y \leqq m$. Let H be a closed set of X and W be an open set of X with $H \subset W$. Take a relatively open set G of Y with $H \cap Y \subset G \subset \bar{G} \subset W \cap Y$ and with Ind $(\bar{G}-G) \leqq m-1$. Set $X^{\prime}=\varphi^{-1}(\bar{G}-G)$ and $Y^{\prime}=\bar{G}-G$. Then it can easily be seen that the condition of the lemma is satisfied if X, Y and m are replaced by X^{\prime}, Y^{\prime} and $m-1$ respectively. Hence by induction assumption Ind $X^{\prime} \leqq m+n-1$. Let V be an open and closed neighborhood of Y with

$$
V \cap\left(\left(\varphi^{-1}(\bar{G})-W\right) \cup\left(H-\varphi^{-1}(G)\right)\right)=\phi
$$

Let D_{1} be an open set of $X-V$ such that
i) $H-V \subset D_{1} \subset \bar{D}_{1} \subset W-V$
ii) \quad Ind $\left(\bar{D}_{1}-D_{1}\right) \leqq n-1$.

Set $D_{2}=V \cap \varphi^{-1}(G)$. Then $H \cap V \subset D_{2} \subset \bar{D}_{2} \subset W \cap V$. Since $\bar{D}_{2}-D_{2} \subset X^{\prime}$, Ind $\left(\bar{D}_{2}-D_{2}\right) \leqq m+n-1$. Set $D=D_{1} \cup D_{2}$. Then $\bar{D}-D$ is the disjoint union of $\bar{D}_{1}-D$, and $\bar{D}_{2}-D_{2}$. Hence

$$
\operatorname{Ind}(\bar{D}-D) \leqq \max (n-1, m+n-1)=m+n-1
$$

Moreover $H \subset D \subset \bar{D} \subset W$. Therefore Ind $X \leqq m+n$ and the proof is finished.
The following is the special case of Morita [3, Footnote, p. 164] or Nagami [4, Theorem 3], since a regular space with the Lindelöf property has the star-finite property by Morita [2].

Lemma 3. If X is a normal space with the Lindelöf property, then $\operatorname{dim} X$ \leqq ind X.

Now let us prove that Z is the desired one by several steps.
I) To prove the normality of Z let F and H be a pair of disjoint closed sets of Z. Take an arbitrary point x of I. Both F and H cannot be cofinal on $\pi^{-1}(x)$ at the same time. Suppose that H is not cofinal on $\pi^{-1}(x)$. Then there exists $\alpha(x)$ such that $\left[\pi^{-1}(x)\right]_{\alpha(x)} \neq \phi$ and

$$
\left[\pi^{-1}(x)\right]_{\left[\alpha(x), \omega_{1}\right)} \cap H=\phi .
$$

For every β with $\alpha(x)<\beta<\omega_{1}$ let $\varepsilon(\beta)$ be the largest positive number for which there exist γ with $\alpha(x) \leqq \gamma<\beta$ and a finite subset K_{β} of M such that

$$
\left[\pi^{-1}\left(S_{\epsilon(\beta)}(x) \cup\left(f^{-1}\left(S_{\varepsilon(\beta)}(x)\right) \times\left(M-K_{\beta}\right) \times I\right)\right)\right]_{(r, \beta]} \cap H=\phi .
$$

Then it is easy to see that

$$
\varepsilon(x)=\inf \left\{\varepsilon(\beta): \alpha(x)<\beta<\omega_{1}\right\}
$$

is positive. Set

$$
K_{x}=\left\{\lambda: \lambda \in M,\left[\pi^{-1}\left(f^{-1}\left(S_{\varepsilon(x)}(x)\right) \times\{\lambda\} \times I\right)\right]_{\left(\alpha(x), \omega_{1}\right)} \cap H \neq \phi\right\} .
$$

To prove K_{x} is a finite set assume the contrary. Then there exist a countably infinite subset $\left\{\lambda_{1}, \lambda_{2}, \cdots\right\}$ of K_{x} and a sequence $\alpha(x)<\alpha_{1} \leqq \alpha_{2} \leqq \cdots$ such that

$$
\left[\pi^{-1}\left(f^{-1}\left(S_{\varepsilon(x)}(x)\right) \times\left\{\lambda_{i}\right\} \times I\right)\right]_{\alpha_{i}} \cap H \neq \phi .
$$

Let $\alpha_{0}=\lim \alpha_{i}$. Then for any δ with $\alpha(x) \leqq \delta<\alpha_{0}$ and for any finite subset K of M,

$$
\left[\pi^{-1}\left(f^{-1}\left(S_{\varepsilon(x)}(x)\right) \times(M-K) \times I\right)\right]_{\left(\delta, \alpha_{0}\right]} \cap H \neq \phi,
$$

which is a contradiction. Thus K_{x} is finite and

$$
\left[\pi^{-1}\left(S_{\varepsilon(x)}(x) \cup\left(f^{-1}\left(S_{z(x)}(x)\right) \times\left(M-K_{x}\right) \times I\right)\right)\right]_{\left(\alpha(x), \omega_{1}\right)}
$$

does not meet H.
II) By I) for every $x \in I$ we have a positive number $\varepsilon(x)$, an ordinal $\alpha(x)<\omega_{1}$ and a finite subset K_{x} of M such that $\left[\pi^{-1}(x)\right]_{\alpha(x)} \neq \phi$ and

$$
\left\{\left[\pi^{-1}\left(S_{\varepsilon(x)}(x) \cup\left(f^{-1}\left(S_{\varepsilon(x)}(x)\right) \times\left(M-K_{x}\right) \times I\right)\right)\right]_{\left(\alpha(x), \omega_{1}\right)}: x \in I\right\}
$$

refines $\{Z-F, Z-H\}$. Take a finite subset $\left\{x_{1}, \cdots, x_{n}\right\}$ of I such that

$$
\mathfrak{u}=\left\{S_{\varepsilon\left(x_{i}\right)}\left(x_{i}\right): i=1, \cdots, n\right\}
$$

covers I. Set

$$
K=\cup\left\{K_{x_{i}}: i=1, \cdots, n\right\} .
$$

Then K is a finite subset of M. Set

$$
\beta_{0}=\sup \left\{\alpha\left(x_{i}\right): i=1, \cdots, n\right\} .
$$

Let

$$
\mathfrak{F}=\left\{V_{1}, \cdots, V_{m}\right\}
$$

be a finite open (in I) covering of I which is a Δ-refinement of \mathfrak{u}. We divide
Z into disjoint three parts Z_{1}, Z_{2}, Z_{3} each of which is open in Z as follows:

$$
\begin{gathered}
Z_{1}=\left[\pi^{-1}(I \cup(C \times(M-K) \times I))\right]_{\left(\beta_{0}, \omega_{1}\right)}, \\
Z_{2}=\left[\pi^{-1}(C \times K \times I)\right]_{\left(\beta_{0}, \omega_{1}\right)}, \\
Z_{3}=[Z]_{\left[0, \beta_{0}\right]}, \\
Z=Z_{1} \cup Z_{2} \cup Z_{3} .
\end{gathered}
$$

By construction

$$
\overline{\mathfrak{B}}=\left\{\left[\pi^{-1}\left(V_{i} \cup\left(f^{-1}\left(V_{i}\right) \times(M-K) \times I\right)\right)\right]_{\left(\beta_{0}, \omega_{1}\right)}: i=1, \cdots, m\right\}
$$

Δ-refines $\{Z-F, Z-H\}$. Let D_{1} and G_{1} be respectively stars of F and H with respect to $\overline{\mathfrak{B}}$. Then $D_{1} \cap G_{1}=\phi, D_{1} \supset F \cap Z_{1}$ and $G_{1} \supset H \cap Z_{1}$. Since

$$
\left[\pi^{-1}(C \times K \times I)\right]_{\left(\beta, \omega_{1}\right)}
$$

is normal by Lemma 1, there exist open sets D_{2} and G_{2} of Z_{2} such that $D_{2} \cap G_{2}=\phi, D_{2} \supset F \cap Z_{2}$ and $G_{2} \supset H \cap Z_{2}$.
III) Let us prove the normality of Z_{3}. Let \mathfrak{F} be an arbitrary open covering of Z_{3}. Consider an arbitrary ordinal α with $0 \leqq \alpha \leqq \beta_{0}$. By perfect separability of I there exist a sequence of open sets A_{1}, A_{2}, \cdots of I, a sequence of ordinals $\beta_{1}, \beta_{2}, \cdots$ with $\beta_{i}<\alpha, i=1,2, \cdots$, and a sequence of finite subsets K_{1}, K_{2}, \cdots of M such that $\cup A_{i}=I$ and

$$
\mathfrak{M}_{1}=\left\{\left[\pi^{-1}\left(A_{i} \cup\left(f^{-1}\left(A_{i}\right) \times\left(M-K_{i}\right) \times I\right)\right)\right]_{\left.\beta_{i}, \alpha\right]}: i=1,2, \cdots\right\}
$$

refines \mathfrak{W}. Set

$$
M_{1}=\bigcup_{i=1}^{\infty} K_{i}
$$

Then M_{1} is countable. Since $C \times M_{1} \times I$ is perfectly separable, we can find a countable open collection \mathfrak{W}_{2} of Z_{3} such that i) \mathfrak{W}_{2} refines \mathfrak{B} and ii) \mathfrak{B}_{2} covers $\left[\pi^{-1}\left(C \times M_{1} \times I\right)\right]_{\alpha}$. Thus we have a countable open collection $\mathfrak{B}_{1} \vee \mathfrak{B}_{2}$ of Z_{3} which covers $[Z]_{\alpha}$ and refines \mathfrak{B}. Since $\left[0, \beta_{0}\right]$ contains only a countable number of ordinals, \mathfrak{B} can be refined by a countable open covering of Z_{3}, which shows that Z_{3} has the Lindelöf property. Since Z_{3} is evidently regular, Z_{3} is normal by Morita [2]. There exist open sets D_{3} and G_{3} of Z_{3} such that $D_{3} \cap G_{3}=\phi, D_{3} \supset F \cap Z_{3}$ and $G_{3} \supset H \cap Z_{3}$. Set

$$
\begin{aligned}
& D=D_{1} \cup D_{2} \cup D_{3}, \\
& G=G_{1} \cup G_{2} \cup G_{3} .
\end{aligned}
$$

Then D and G are open sets of Z such that $D \cap G=\phi, D \supset F$ and $G \supset H$. Thus the normality of Z is established.
IV) It is evident that ind $Z=0$.
V) Let us show $\operatorname{dim} Z=1$. $\operatorname{dim} Z \geqq 1$, because $\pi^{-1}(I)$ is a closed subset of Z and by Lemma 1 we already know that $\operatorname{dim} \pi^{-1}(I)=1$. Since $T-I$ is
the sum of disjoint open metric subsets and hence $Z-\pi^{-1}(I)$ is a normal space with $\operatorname{dim}\left(Z-\pi^{-1}(I)\right)=1$ by Lemma 1, $\operatorname{dim} Z \leqq \max \left(\operatorname{dim} \pi^{-1}(I), \operatorname{dim}(Z\right.$ $\left.\left.-\pi^{-1}(I)\right)\right)=1$. Thus we have $\operatorname{dim} Z=1$.
VI) Next task is to show Ind $Z \leqq 2$. For any $\lambda \in M$.

$$
\text { Ind } \pi^{-1}(C \times\{\lambda\} \times I)=1
$$

by Lemma 1. Here is a closed subset $\pi^{-1}(I)$ of Z with Ind $\pi^{-1}(I)=1$. If A is any closed subset of Z with $A \cap \pi^{-1}(I)=\phi$, then Ind $A \leqq 1$. If we can show the condition of Lemma 2 is satisfied, then we have Ind $Z \leqq 2$. Let U be an arbitrary open set of Z with $U \supset \pi^{-1}(I)$. Set $H=Z-U$. By the same argument for H as in I) there exist a finite subset K of M and an ordinal $\xi<\omega_{1}$ such that

$$
V_{1}=\left[\pi^{-1}(I \cup(C \times(M-K) \times I))\right]_{\left(\varsigma, \omega_{1}\right)} \subset U .
$$

V_{1} is open and closed in Z. Since we already knew in III) that $[Z]_{[0, \hat{c}]}$ is a normal space with the Lindelöf property,

$$
\operatorname{dim}[Z]_{[0, \xi \mathrm{\xi}]} \leqq \operatorname{ind}[Z]_{[0, \xi]}=0,
$$

which implies

$$
\operatorname{dim}[Z]_{[0, \xi \mathrm{~J}}=0 .
$$

Hence there exists an open and closed subset V_{2} of $[Z]_{[0, \hat{\xi}]}$ such that

$$
\left[\pi^{-1}(I)\right]_{\left[0, \xi_{3}\right.} \subset V_{2} \subset[U]_{[0, \xi]} .
$$

If we set $V=V_{1} \cup V_{2}$, then V is an open and closed set of Z with $\pi^{-1}(I)$ $\subset V \subset U$.

We define $\psi: T \rightarrow I$ as follows:

$$
\begin{gathered}
\psi(x)=x, \quad \text { if } \quad x \in I, \\
\psi((c, \lambda, x))=f(c), \quad \text { if } \quad(c, \lambda, x) \in C \times M \times I .
\end{gathered}
$$

Then ψ is a retraction of T onto I. Define $\varphi: Z \rightarrow \pi^{-1}(I)$ as follows:

$$
\varphi((\alpha, t))=(\alpha, \psi(t)), \quad \text { where } \quad \alpha \in J \quad \text { and } \quad t \in T_{\alpha} .
$$

Then φ is a retraction of Z onto $\pi^{-1}(I)$. By Lemma 2

$$
\text { Ind } Z \leqq 2
$$

VII) Let us show Ind $Z \geqq 2$. Let 0 and 1 be the terminal points of I. It is to be noticed that there are 0 and 1 which are the first and the second ordinals of J. But there might not be serious confusion. $\pi^{-1}(0)$ and $\pi^{-1}(1)$ are disjoint closed sets of Z. We prove that any closed set separating these two sets has to have Ind $\geqq 1$, which in turn will imply Ind $Z \geqq 2$. Let P be an open set of Z with $\pi^{-1}(0) \subset P \subset \bar{P} \subset Z-\pi^{-1}(1)$. Set $B=\bar{P}-P$ and $Z-\bar{P}=Q$. We want to show Ind $B \geqq 1$. Set

$$
\begin{aligned}
& C_{P}=\left\{x: x \in I, P \text { is cofinal on } \pi^{-1}(x)\right\}, \\
& C_{Q}=\left\{x: x \in I, Q \text { is cofinal on } \pi^{-1}(x)\right\}, \\
& E_{B}=\left\{x: x \in I, B \text { is equifinal on } \pi^{-1}(x)\right\} .
\end{aligned}
$$

VIII) Suppose that $C_{P} \cap C_{Q} \neq \phi$. Take $h \in C_{P} \cap C_{Q}$. Since $0 \oplus C_{Q}$ and $1 \in C_{P}, 0<h<1$. For any point $p \in \pi^{-1}(h) \cap P$ there exists a positive integer $i(p)$ such that
i) $1 / i(p)<\min \{h, 1-h\}$,
ii) $\left[\pi^{-1}\left(S_{1 / i(p)}(h)\right)\right]_{\rho(p)} \subset P$.

Then there exists i such that

$$
P_{1}=\{p: i(p)=i\}
$$

is cofinal. For every point $q \in \pi^{-1}(h) \cap Q$ there exists a positive integer $i(q)$ such that
i) $1 / i(q)<\min \{h, 1-h\}$,
ii) $\left[\pi^{-1}\left(S_{1 / i(q)}(h)\right)\right]_{\rho(q)} \subset Q$.

Then there exists j such that

$$
Q_{1}=\{q: i(q)=j\}
$$

is cofinal. Let

$$
k=\max \{i, j\} .
$$

Then

$$
B_{1}=\left\{z: z \in \pi^{-1}(h),\left[\pi^{-1}\left(S_{1 / k}(h)\right)\right]_{\rho(z)} \subset B\right\}
$$

is cofinal. Moreover by the closedness of $B, \rho\left(B_{1}\right)$ is closed in J. Hence

$$
B_{2}=\cup\left\{\left[\pi^{-1}([h-1 /(2 k), h+1 /(2 k)])\right]_{\rho(z)}: z \in B_{1}\right\}
$$

is a closed subset of B. By Lemma 1 Ind $B_{2}=1$. Hence

$$
\text { Ind } B \geqq \operatorname{Ind} B_{2}=1
$$

IX) It is to be noticed that the above observation contains the assertion: Both C_{P} and C_{Q} are open in I. Since $E_{B}=I-\left(C_{P} \cup C_{Q}\right), E_{B}$ is closed in I.
X) Suppose that E_{B} is not nowhere dense in I. Then by the closedness of E_{B}, E_{B} contains a closed interval $I^{\prime} \subset I$. To prove $\rho\left(\pi^{-1}\left(I^{\prime}\right) \cap P\right)$ is not cofinal assume the contrary. Then there exists a positive number ε such that

$$
\rho\left(\left\{p: p \in \pi^{-1}\left(I^{\prime}\right) \cap P,\left[\pi^{-1}\left(S_{\varepsilon}(\pi(p))\right)\right]_{\rho(p)} \subset P\right\}\right)
$$

is cofinal. Then next there exists a closed sub-interval $I^{\prime \prime}$ of I^{\prime} whose length is $\varepsilon / 4$ such that

$$
\left\{\alpha:\left[\pi^{-1}\left(I^{\prime \prime}\right)\right]_{\alpha} \subset P\right\}
$$

is cofinal. We have now $I^{\prime \prime} \subset C_{P}$ and hence $I^{\prime \prime} \cap E_{B}=\phi$, a contradiction. Thus $\rho\left(\pi^{-1}\left(I^{\prime}\right) \cap P\right)$ is not cofinal. By the same reason $\rho\left(\pi^{-1}\left(I^{\prime}\right) \cap Q\right)$ is not cofinal.

Hence there exists $\eta \in J$ such that

$$
B_{8}=\left[\pi^{-1}\left(I^{\prime}\right)\right]_{\left(r, \omega_{1}\right)} \subset B .
$$

Since B_{3} is closed and Ind $B_{3}=1$ by Lemma 1, Ind $B \geqq 1$.
XI) Let us consider the last case when $C_{P} \cap C_{Q}=\phi$ and E_{B} is nowhere dense in I. Set

$$
\begin{aligned}
a & =\sup C_{P}, \\
b & =\inf C_{Q} .
\end{aligned}
$$

Since C_{P} and C_{Q} are disjoint open sets, $0<a<1$ and $0<b<1$. If $a<b$, then E_{B} contains the interval $[a, b]$, a contradiction. Hence $b \leqq a$ and $a \in E_{B}$.

Let a_{1}, a_{2}, \cdots be a monotonically increasing sequence of I such that i) $\sup a_{i}=a$ and ii) every $a_{i} \in C_{P}$. Let b_{1}, b_{2}, \cdots be a monotonically decreasing sequence of I such that i) inf $b_{i}=a$ and ii) every $b_{i} \in C_{Q}$. Such a sequence exists because we are now considering the case when E_{B} is nowhere dense. Let c be a point of $f^{-1}(a)$. Let η_{1} be an ordinal $<\omega_{1}$ such that $\left[\pi^{-1}(a)\right]_{\eta_{1}} \neq \phi$. Set

$$
J_{1}=\left\{\alpha: \eta_{1}<\alpha<\omega_{1},\left[\pi^{-1}(a)\right]_{\alpha} \in \overline{\pi^{-1}(I) \cap P} \cap \overline{\left.\pi^{-1}(I) \cap Q\right\}} .\right.
$$

To see that J_{1} is cofinal in J let α_{0} be an arbitrary ordinal with $\eta_{1}<\alpha_{0}$. Then there exist a monotonically increasing sequence $\alpha_{0}<\alpha_{1}<\beta_{1}<\alpha_{2}<\beta_{2}<\cdots$, a sequence of points $p_{i} \in \pi^{-1}\left(a_{i}\right) \cap P$ and a sequence of points $q_{i} \in \pi^{-1}\left(b_{i}\right) \cap Q$ such that i) $\rho\left(p_{i}\right)=\alpha_{i}$ for every i and ii) $\rho\left(q_{i}\right)=\beta_{i}$ for every i. Then $\sup \alpha_{i}$ $\in J_{1}$. It is almost evident that J_{1} is closed in J.
XII) For every point $p \in \pi^{-1}(I) \cap P$ there exists a finite subset K_{p} of M such that

$$
\left[\pi^{-1}\left(f^{-1}(\pi(p)) \times\left(M-K_{p}\right) \times I\right)\right]_{\rho(p)} \subset P .
$$

For every point $q \in \pi^{-1}(I) \cap Q$ there exists a finite subset K_{q} of M such that

$$
\left[\pi^{-1}\left(f^{-1}(\pi(q)) \times\left(M-K_{q}\right) \times I\right)\right]_{\rho(q)} \subset Q .
$$

Set

$$
\begin{aligned}
& M_{1}=\cup\left\{K_{p}: p \in \pi^{-1}(I) \cap P\right\}, \\
& M_{2}=\cup\left\{K_{q}: q \in \pi^{-1}(I) \cap Q\right\} .
\end{aligned}
$$

Since $\left|\pi^{-1}(I)\right|=\mathfrak{c},\left|M_{1}\right| \leqq \mathfrak{c}$ and $\left|M_{2}\right| \leqq c$. Hence

$$
M-\left(M_{1} \cup M_{2}\right) \neq \phi .
$$

Take an arbitrary element μ from $M-\left(M_{1} \cup M_{2}\right)$, an arbitrary ordinal ${ }^{*}$ from J_{1} and an arbitrary point x from I_{r}. Then $t=(c, \mu, x)$ is a point of $T-I$.

We want to show that

$$
\left[\pi^{-1}(t)\right]_{r} \in \bar{P} \cap \bar{Q} .
$$

Let U be an arbitrary open neighborhood of c in C, ε an arbitrary positive
number and ξ an arbitrary ordinal with $\eta_{1} \leqq \xi<\gamma$. Consider a basic neighborhood

$$
V=\left[\pi^{-1}\left(U \times\{\mu\} \times S_{\varepsilon}(x)\right)\right]_{\varsigma \varsigma, r]}
$$

of the point $\left[\pi^{-1}(t)\right]_{r}$ in Z and let us prove that V meets both P and Q. Since $f(U)$ is an open neighborhood of a,

$$
W=\left[\pi^{-1}(f(U))\right]_{(\xi, r]}
$$

is a relatively open neighborhood of $\left[\pi^{-1}(a)\right]_{r}$ in $\pi^{-1}(I)$. Hence W meets both P and Q. Take p_{0} from $W \cap P$ and q_{0} from $W \cap Q$. Then $f^{-1}\left(\pi\left(p_{0}\right)\right) \cap U \neq \phi$ and $f^{-1}\left(\pi\left(q_{0}\right)\right) \cap U \neq \phi$. Since $I_{\rho\left(p_{0}\right)}$ and $I_{\rho\left(q_{0}\right)}$ are dense in I, V meets both P and Q. Hence $\left[\pi^{-1}(t)\right]_{r} \subset \bar{P} \cap \bar{Q}=B$. Since x was an arbitrary point of I_{γ},

$$
\left[\pi^{-1}(\{c\} \times\{\mu\} \times I)\right]_{r} \subset B .
$$

Therefore

$$
B_{4}=\left[\pi^{-1}(\{c\} \times\{\mu\} \times I)\right]_{J_{1}} \subset B .
$$

Since B_{4} is closed in Z,

$$
\text { Ind } B \geqq \operatorname{Ind} B_{4}=1
$$

Thus the proof is completely finished.
Finally the author thanks very much Prof. Yoshio Sasaki for his kindness to translate Russian literatures cited in this paper.

Ehime University

References

[1] C.H. Dowker, Local dimension of normal spaces, Quart. J. Math. Oxford Ser. (2), 6 (1955), 101-120.
[2] K. Morita, Star finite coverings and the star finite property, Math. Japon., 1 (1948), 60-68.
[3] K. Morita, On closed mappings and dimension, Proc. Japan Acad., 32 (1956), 161-165.
[4] K. Nagami, Some theorems in dimension theory for non-separable spaces, J. Math. Soc. Japan, 9 (1957), 80-92.
[5] K. Nagami, A note on Hausdorff spaces with the star-finite property III, Proc. Japan Acad., 37 (1961), 356-357.
[6] K. Nagami, Monotone sequence of 0 -dimensional subsets of metric spaces, forthcoming.
[7] J. Nagata, Modern dimension theory, Groningen-Amsterdam, 1965.
[8] Yu. M. Smirnov, An exampls of 0-dimensional normal space having infinite covering dimension, Dokl. Acad. Nauk SSSR, 123 (1958), 40-42.
[9] Pětr Vopenka, On the dimension of compact spaces, Czechoslovak Math. J., 8 (1958), 319-327.

