A normal space Z with ind Z=0, dim Z=1, Ind Z=2

By Keio NAGAMI

(Received Nov. 15, 1965)

This paper gives a normal (Hausdorff) space Z for which three basic dimension functions are different from each other: $\operatorname{ind} Z = 0$, $\operatorname{dim} Z = 1$ and $\operatorname{Ind} Z = 2$. As for the definition of three dimension functions see J. Nagata [7, p. 9]. The idea developed by P. Vopenka [9] as well as the one by C. H. Dowker [1] are the main tool in our construction.

Let ω_1 be the first uncountable ordinal, $J = \{\alpha : 0 \leq \alpha < \omega_1\}$ and $J^* = \{\alpha : 0 \leq \alpha \leq \omega_1\}$, where J and J^* have the usual interval topology. Let I be the unit interval [0,1]. By Dowker [1] there exist subsets I_{α} , $\alpha < \omega_1$, of I such that i) $I_{\alpha} \subset I_{\beta}$ if $\alpha < \beta$, ii) dim $I_{\alpha} = 0$ for each α , iii) $\cup I_{\alpha} = I$ and iv) each I_{α} is dense in I. By Nagami [5] there exist a separable metric space C with dim C = 0 and an open continuous mapping f of C onto I. Let M be a discrete space whose power |M| is \mathfrak{f} . Consider the disjoint sum T of I and $C \times M \times I$ and introduce into T the topology due to Vopenka [9] as follows:

i) An open set of $C \times M \times I$ with the usual product topology is open in T.

ii) If U is an open set in I and if K is a finite subset of M, then $U \cup (f^{-1}(U) \times (M-K) \times I)$ is open in T.

Then T with the above basic open sets is a Hausdorff space. Set

 $T_{\alpha} = I_{\alpha} \cup (f^{-1}(I_{\alpha}) \times M \times I_{\alpha}), \ \alpha < \omega_{1}.$

The point set Z is the sum of all $\{\alpha\} \times T_{\alpha}, \alpha < \omega_1$. The topology of Z is the relative topology of the product space $J^* \times T$. We identify T with $\{\omega_1\} \times T$. π' is the projection of $J^* \times T$ onto T. Set $\pi = \pi' \mid Z$. ρ' is the projection of $J^* \times T$ onto J^* . Set $\rho = \rho' \mid Z$. If E is a subset of Z and J' is a subset of J, then $[E]_{J'}$ denotes the intersection of E and $\rho^{-1}(J')$. If x is a point of I and ε is a positive number, then $S_{\varepsilon}(x)$ denotes an open ε -sphere in I with the center x.

LEMMA 1. Let X be a non-empty metric space. Then there exist subsets $X_{\alpha}, \alpha < \omega_1$ such that i) $X_{\alpha} \subset X_{\beta}$ if $\alpha < \beta$, ii) dim $X_{\alpha} = 0$ and iii) $\bigcup X_{\alpha} = X$. If X_{α} satisfy this condition let Y be the subspace of $J \times X$ which is the sum of all $\{\alpha\} \times X_{\alpha}, \alpha < \omega_1$. Then Y is a normal space such that

i) ind Y = 0.

ii) Ind $Y = \dim Y = \dim X$.

The first half of the lemma is Nagami [6, Theorem 2]. The last half is proved by the analogous argument in Dowker [1]. It is to be noticed that the special case of this lemma where X is separable metric was proved by Yu. M. Smirnov [8].

The following lemma was proved by Vopenka [9, Proposition 1.3] for the case when X is compact. Our proof is nothing but an extraction of his. The author is kind enough for English-reading mathematicians.

LEMMA 2. Let X be a normal space and Y a non-empty closed set of X which satisfy the following conditions:

i) For any open neighborhood U of Y there exists an open and closed neighborhood V of Y with $V \subset U$.

ii) There exists a retraction φ of X onto Y

iii) Ind $Y \leq m$.

iv) If F is a closed set of X with $F \cap Y = \phi$, then $\operatorname{Ind} F \leq n$. Then $\operatorname{Ind} X \leq m+n$.

PROOF. We prove this by induction on Ind Y. Since the proof for the starting case when Ind Y = 0 is completely similar to general case, we merely prove the lemma under the assumption that the lemma is true when Ind Y < m.

Let now Ind $Y \leq m$. Let H be a closed set of X and W be an open set of X with $H \subset W$. Take a relatively open set G of Y with $H \cap Y \subset G \subset \overline{G} \subset W \cap Y$ and with $\operatorname{Ind}(\overline{G}-G) \leq m-1$. Set $X' = \varphi^{-1}(\overline{G}-G)$ and $Y' = \overline{G}-G$. Then it can easily be seen that the condition of the lemma is satisfied if X, Y and m are replaced by X', Y' and m-1 respectively. Hence by induction assumption $\operatorname{Ind} X' \leq m+n-1$. Let V be an open and closed neighborhood of Y with

$$V \cap ((\varphi^{-1}(\overline{G}) - W) \cup (H - \varphi^{-1}(G))) = \phi.$$

Let D_1 be an open set of X-V such that

- i) $H V \subset D_1 \subset \overline{D}_1 \subset W V$
- ii) Ind $(\overline{D}_1 D_1) \leq n 1$.

Set $D_2 = V \cap \varphi^{-1}(G)$. Then $H \cap V \subset D_2 \subset \overline{D}_2 \subset W \cap V$. Since $\overline{D}_2 - D_2 \subset X'$, Ind $(\overline{D}_2 - D_2) \leq m + n - 1$. Set $D = D_1 \cup D_2$. Then $\overline{D} - D$ is the disjoint union of $\overline{D}_1 - D_1$ and $\overline{D}_2 - D_2$. Hence

$$\ln d \, (\bar{D} - D) \leq \max \, (n - 1, \, m + n - 1) = m + n - 1.$$

Moreover $H \subset D \subset \overline{D} \subset W$. Therefore $\operatorname{Ind} X \leq m+n$ and the proof is finished.

The following is the special case of Morita [3, Footnote, p. 164] or Nagami [4, Theorem 3], since a regular space with the Lindelöf property has the star-finite property by Morita [2].

LEMMA 3. If X is a normal space with the Lindelöf property, then dim $X \leq ind X$.

Now let us prove that Z is the desired one by several steps.

I) To prove the normality of Z let F and H be a pair of disjoint closed sets of Z. Take an arbitrary point x of I. Both F and H cannot be cofinal on $\pi^{-1}(x)$ at the same time. Suppose that H is not cofinal on $\pi^{-1}(x)$. Then there exists $\alpha(x)$ such that $[\pi^{-1}(x)]_{\alpha(x)} \neq \phi$ and

$$[\pi^{-1}(x)]_{[\alpha(x),\omega_1)} \cap H = \phi.$$

For every β with $\alpha(x) < \beta < \omega_1$ let $\varepsilon(\beta)$ be the largest positive number for which there exist γ with $\alpha(x) \leq \gamma < \beta$ and a finite subset K_{β} of M such that

$$[\pi^{-1}(S_{\varepsilon(\beta)}(x)\cup(f^{-1}(S_{\varepsilon(\beta)}(x))\times(M-K_{\beta})\times I))]_{(r,\beta]}\cap H=\phi.$$

Then it is easy to see that

$$\varepsilon(x) = \inf \{\varepsilon(\beta) : \alpha(x) < \beta < \omega_1\}$$

is positive. Set

$$K_x = \{\lambda : \lambda \in M, [\pi^{-1}(f^{-1}(S_{\varepsilon(x)}(x)) \times \{\lambda\} \times I)]_{(\alpha(x), \omega_1)} \cap H \neq \phi\}$$

To prove K_x is a finite set assume the contrary. Then there exist a countably infinite subset $\{\lambda_1, \lambda_2, \dots\}$ of K_x and a sequence $\alpha(x) < \alpha_1 \leq \alpha_2 \leq \dots$ such that

$$[\pi^{-1}(f^{-1}(S_{\varepsilon(x)}(x)) \times \{\lambda_i\} \times I)]_{\alpha_i} \cap H \neq \phi.$$

Let $\alpha_0 = \lim \alpha_i$. Then for any δ with $\alpha(x) \leq \delta < \alpha_0$ and for any finite subset K of M,

$$[\pi^{-1}(f^{-1}(S_{\varepsilon(x)}(x)) \times (M-K) \times I)]_{(\delta,\alpha_0]} \cap H \neq \phi,$$

which is a contradiction. Thus K_x is finite and

$$[\pi^{-1}(S_{\varepsilon(x)}(x)\cup(f^{-1}(S_{\varepsilon(x)}(x))\times(M-K_x)\times I))]_{(\alpha(x),\omega_1)}$$

does not meet H.

II) By I) for every $x \in I$ we have a positive number $\varepsilon(x)$, an ordinal $\alpha(x) < \omega_1$ and a finite subset K_x of M such that $[\pi^{-1}(x)]_{\alpha(x)} \neq \phi$ and

$$\{[\pi^{-1}(S_{\varepsilon(x)}(x)\cup(f^{-1}(S_{\varepsilon(x)}(x))\times(M-K_x)\times I))]_{(\alpha(x),\omega_1)}:x\in I\}$$

refines $\{Z-F, Z-H\}$. Take a finite subset $\{x_1, \dots, x_n\}$ of I such that

$$\mathfrak{l} = \{S_{\varepsilon(x_i)}(x_i) : i = 1, \cdots, n\}$$

covers I. Set

$$K = \bigcup \{K_{x_i} : i = 1, \cdots, n\}$$

Then K is a finite subset of M. Set

$$\beta_0 = \sup \{\alpha(x_i) : i = 1, \cdots, n\}.$$

Let

$$\mathfrak{V} = \{V_1, \cdots, V_m\}$$

be a finite open (in I) covering of I which is a Δ -refinement of \mathfrak{U} . We divide

Z into disjoint three parts Z_1 , Z_2 , Z_3 each of which is open in Z as follows:

$$Z_{1} = [\pi^{-1}(I \cup (C \times (M - K) \times I))]_{(\beta_{0}, \omega_{1})}$$

$$Z_{2} = [\pi^{-1}(C \times K \times I)]_{(\beta_{0}, \omega_{1})},$$

$$Z_{3} = [Z]_{[0, \beta_{0}]},$$

$$Z = Z_{1} \cup Z_{2} \cup Z_{3}.$$

By construction

$$\overline{\mathfrak{V}} = \{ [\pi^{-1}(V_i \cup (f^{-1}(V_i) \times (M-K) \times I))]_{(\beta_0, \omega_1)} : i = 1, \cdots, m \}$$

 Δ -refines $\{Z-F, Z-H\}$. Let D_1 and G_1 be respectively stars of F and H with respect to $\overline{\mathfrak{B}}$. Then $D_1 \cap G_1 = \phi$, $D_1 \supset F \cap Z_1$ and $G_1 \supset H \cap Z_1$. Since

 $[\pi^{-1}(C \times K \times I)]_{(\beta_0,\omega_1)}$

is normal by Lemma 1, there exist open sets D_2 and G_2 of Z_2 such that $D_2 \cap G_2 = \phi$, $D_2 \supset F \cap Z_2$ and $G_2 \supset H \cap Z_2$.

III) Let us prove the normality of Z_3 . Let \mathfrak{W} be an arbitrary open covering of Z_3 . Consider an arbitrary ordinal α with $0 \leq \alpha \leq \beta_0$. By perfect separability of *I* there exist a sequence of open sets A_1, A_2, \cdots of *I*, a sequence of ordinals β_1, β_2, \cdots with $\beta_i < \alpha, i = 1, 2, \cdots$, and a sequence of finite subsets K_1, K_2, \cdots of *M* such that $\bigcup A_i = I$ and

$$\mathfrak{W}_1 = \{ [\pi^{-1}(A_i \cup (f^{-1}(A_i) \times (M - K_i) \times I))]_{(\beta_i, \alpha]} : i = 1, 2, \cdots \}$$

refines **W**. Set

$$M_1 = \bigcup_{i=1}^{\infty} K_i \, .$$

Then M_1 is countable. Since $C \times M_1 \times I$ is perfectly separable, we can find a countable open collection \mathfrak{W}_2 of Z_3 such that i) \mathfrak{W}_2 refines \mathfrak{W} and ii) \mathfrak{W}_2 covers $[\pi^{-1}(C \times M_1 \times I)]_{\alpha}$. Thus we have a countable open collection $\mathfrak{W}_1 \vee \mathfrak{W}_2$ of Z_3 which covers $[Z]_{\alpha}$ and refines \mathfrak{W} . Since $[0, \beta_0]$ contains only a countable number of ordinals, \mathfrak{W} can be refined by a countable open covering of Z_3 , which shows that Z_3 has the Lindelöf property. Since Z_3 is evidently regular, Z_3 is normal by Morita [2]. There exist open sets D_3 and G_3 of Z_3 such that $D_3 \cap G_3 = \phi$, $D_3 \supset F \cap Z_3$ and $G_3 \supset H \cap Z_3$. Set

$$D = D_1 \cup D_2 \cup D_3,$$

$$G = G_1 \cup G_2 \cup G_3.$$

Then D and G are open sets of Z such that $D \cap G = \phi$, $D \supset F$ and $G \supset H$. Thus the normality of Z is established.

IV) It is evident that $\operatorname{ind} Z = 0$.

V) Let us show dim Z=1. dim $Z \ge 1$, because $\pi^{-1}(I)$ is a closed subset of Z and by Lemma 1 we already know that dim $\pi^{-1}(I)=1$. Since T-I is

the sum of disjoint open metric subsets and hence $Z - \pi^{-1}(I)$ is a normal space with dim $(Z - \pi^{-1}(I)) = 1$ by Lemma 1, dim $Z \leq \max(\dim \pi^{-1}(I))$, dim $(Z - \pi^{-1}(I)) = 1$. Thus we have dim Z = 1.

VI) Next task is to show $\operatorname{Ind} Z \leq 2$. For any $\lambda \in M$,

Ind $\pi^{-1}(C \times \{\lambda\} \times I) = 1$

by Lemma 1. Here is a closed subset $\pi^{-1}(I)$ of Z with $\operatorname{Ind} \pi^{-1}(I) = 1$. If A is any closed subset of Z with $A \cap \pi^{-1}(I) = \phi$, then $\operatorname{Ind} A \leq 1$. If we can show the condition of Lemma 2 is satisfied, then we have $\operatorname{Ind} Z \leq 2$. Let U be an arbitrary open set of Z with $U \supset \pi^{-1}(I)$. Set H = Z - U. By the same argument for H as in I) there exist a finite subset K of M and an ordinal $\xi < \omega_1$ such that

$$V_1 = [\pi^{-1}(I \cup (C \times (M - K) \times I))]_{(\varepsilon, \omega_1)} \subset U.$$

 V_1 is open and closed in Z. Since we already knew in III) that $[Z]_{[0,\xi]}$ is a normal space with the Lindelöf property,

dim
$$[Z]_{[0,\xi]} \leq \text{ind} [Z]_{[0,\xi]} = 0$$
,

which implies

 $\dim [Z]_{[0,\xi]} = 0.$

Hence there exists an open and closed subset V_2 of $[Z]_{[0,\xi]}$ such that

 $[\pi^{-1}(I)]_{[0,\xi]} \subset V_2 \subset [U]_{[0,\xi]}.$

If we set $V = V_1 \cup V_2$, then V is an open and closed set of Z with $\pi^{-1}(I) \subset V \subset U$.

We define $\psi: T \rightarrow I$ as follows:

$$\psi(x) = x, \quad \text{if} \quad x \in I,$$

$$\psi((c, \lambda, x)) = f(c), \quad \text{if} \quad (c, \lambda, x) \in C \times M \times I.$$

Then ϕ is a retraction of T onto I. Define $\phi: Z \to \pi^{-1}(I)$ as follows:

$$\varphi((\alpha, t)) = (\alpha, \psi(t)), \text{ where } \alpha \in J \text{ and } t \in T_{\alpha}$$

Then φ is a retraction of Z onto $\pi^{-1}(I)$. By Lemma 2

Ind
$$Z \leq 2$$
.

VII) Let us show $\operatorname{Ind} Z \ge 2$. Let 0 and 1 be the terminal points of *I*. It is to be noticed that there are 0 and 1 which are the first and the second ordinals of *J*. But there might not be serious confusion. $\pi^{-1}(0)$ and $\pi^{-1}(1)$ are disjoint closed sets of *Z*. We prove that any closed set separating these two sets has to have $\operatorname{Ind} \ge 1$, which in turn will imply $\operatorname{Ind} Z \ge 2$. Let *P* be an open set of *Z* with $\pi^{-1}(0) \subset P \subset \overline{P} \subset Z - \pi^{-1}(1)$. Set $B = \overline{P} - P$ and $Z - \overline{P} = Q$. We want to show $\operatorname{Ind} B \ge 1$. Set

$$C_P = \{x : x \in I, P \text{ is cofinal on } \pi^{-1}(x)\},\$$

$$C_Q = \{x : x \in I, Q \text{ is cofinal on } \pi^{-1}(x)\},\$$

$$E_B = \{x : x \in I, B \text{ is equifinal on } \pi^{-1}(x)\}.$$

VIII) Suppose that $C_P \cap C_Q \neq \phi$. Take $h \in C_P \cap C_Q$. Since $0 \notin C_Q$ and $1 \notin C_P$, 0 < h < 1. For any point $p \in \pi^{-1}(h) \cap P$ there exists a positive integer i(p) such that

i)
$$1/i(p) < \min\{h, 1-h\}$$

ii) $[\pi^{-1}(S_{1/i(p)}(h))]_{\rho(p)} \subset P.$

Then there exists i such that

$$P_1 = \{p : i(p) = i\}$$

is cofinal. For every point $q \in \pi^{-1}(h) \cap Q$ there exists a positive integer i(q) such that

i)
$$1/i(q) < \min\{h, 1-h\},\$$

ii) $[\pi^{-1}(S_{1/i(q)}(h))]_{\rho(q)} \subset Q.$

Then there exists j such that

$$Q_1 = \{q: i(q) = j\}$$

is cofinal. Let

$$k = \max\{i, j\}.$$

Then

$$B_1 = \{ z : z \in \pi^{-1}(h), \ [\pi^{-1}(S_{1/k}(h))]_{\rho(z)} \subset B \}$$

is cofinal. Moreover by the closedness of B, $\rho(B_1)$ is closed in J. Hence

$$B_2 = \bigcup \{ [\pi^{-1}([h-1/(2k), h+1/(2k)])]_{\rho(z)} : z \in B_1 \}$$

is a closed subset of B. By Lemma 1 Ind $B_2 = 1$. Hence

Ind
$$B \ge$$
 Ind $B_2 = 1$.

IX) It is to be noticed that the above observation contains the assertion: Both C_P and C_Q are open in I. Since $E_B = I - (C_P \cup C_Q)$, E_B is closed in I.

X) Suppose that E_B is not nowhere dense in *I*. Then by the closedness of E_B , E_B contains a closed interval $I' \subset I$. To prove $\rho(\pi^{-1}(I') \cap P)$ is not cofinal assume the contrary. Then there exists a positive number ε such that

$$\rho(\{p: p \in \pi^{-1}(I') \cap P, [\pi^{-1}(S_{\varepsilon}(\pi(p)))]_{\rho(p)} \subset P\})$$

is cofinal. Then next there exists a closed sub-interval I'' of I' whose length is $\varepsilon/4$ such that

$$\{\alpha: [\pi^{-1}(I'')]_{\alpha} \subset P\}$$

is cofinal. We have now $I'' \subset C_P$ and hence $I'' \cap E_B = \phi$, a contradiction. Thus $\rho(\pi^{-1}(I') \cap P)$ is not cofinal. By the same reason $\rho(\pi^{-1}(I') \cap Q)$ is not cofinal.

K. Nagami

Hence there exists $\eta \in J$ such that

$$B_{\mathfrak{g}} = [\pi^{-1}(I')]_{(\eta, \omega_1)} \subset B.$$

Since B_3 is closed and $\operatorname{Ind} B_3 = 1$ by Lemma 1, $\operatorname{Ind} B \ge 1$.

XI) Let us consider the last case when $C_P \cap C_Q = \phi$ and E_B is nowhere dense in *I*. Set

$$a = \sup C_P$$
,
 $b = \inf C_Q$.

Since C_P and C_Q are disjoint open sets, 0 < a < 1 and 0 < b < 1. If a < b, then E_B contains the interval [a, b], a contradiction. Hence $b \leq a$ and $a \in E_B$.

Let a_1, a_2, \cdots be a monotonically increasing sequence of I such that i) sup $a_i = a$ and ii) every $a_i \in C_P$. Let b_1, b_2, \cdots be a monotonically decreasing sequence of I such that i) inf $b_i = a$ and ii) every $b_i \in C_Q$. Such a sequence exists because we are now considering the case when E_B is nowhere dense. Let c be a point of $f^{-1}(a)$. Let η_1 be an ordinal $< \omega_1$ such that $[\pi^{-1}(a)]_{\eta_1} \neq \phi$. Set

$$J_1 = \{ \alpha : \eta_1 < \alpha < \omega_1, \ [\pi^{-1}(a)]_\alpha \in \overline{\pi^{-1}(I) \cap P} \cap \overline{\pi^{-1}(I) \cap Q} \} .$$

To see that J_1 is cofinal in J let α_0 be an arbitrary ordinal with $\eta_1 < \alpha_0$. Then there exist a monotonically increasing sequence $\alpha_0 < \alpha_1 < \beta_1 < \alpha_2 < \beta_2 < \cdots$, a sequence of points $p_i \in \pi^{-1}(a_i) \cap P$ and a sequence of points $q_i \in \pi^{-1}(b_i) \cap Q$ such that i) $\rho(p_i) = \alpha_i$ for every i and ii) $\rho(q_i) = \beta_i$ for every i. Then $\sup \alpha_i \in J_1$. It is almost evident that J_1 is closed in J.

XII) For every point $p \in \pi^{-1}(I) \cap P$ there exists a finite subset K_p of M such that

$$[\pi^{-1}(f^{-1}(\pi(p))\times(M-K_p)\times I)]_{\rho(p)}\subset P.$$

For every point $q \in \pi^{-1}(I) \cap Q$ there exists a finite subset K_q of M such that

$$[\pi^{-1}(f^{-1}(\pi(q))\times(M-K_q)\times I)]_{\rho(q)}\subset Q$$

Set

$$M_1 = \bigcup \{K_p : p \in \pi^{-1}(I) \cap P\}$$
, $M_2 = \bigcup \{K_q : q \in \pi^{-1}(I) \cap Q\}$.

Since $|\pi^{-1}(I)| = \mathfrak{c}$, $|M_1| \leq \mathfrak{c}$ and $|M_2| \leq \mathfrak{c}$. Hence

$$M - (M_1 \cup M_2) \neq \phi$$
.

Take an arbitrary element μ from $M-(M_1 \cup M_2)$, an arbitrary ordinal \star from J_1 and an arbitrary point x from I_r . Then $t=(c, \mu, x)$ is a point of T-I.

We want to show that

$$[\pi^{-1}(t)]_r \in \overline{P} \cap \overline{Q}$$
.

Let U be an arbitrary open neighborhood of c in C, ε an arbitrary positive

164

number and ξ an arbitrary ordinal with $\eta_1 \leq \xi < \gamma$. Consider a basic neighborhood

$$V = [\pi^{-1}(U \times \{\mu\} \times S_{\varepsilon}(x))]_{(\xi,r)}$$

of the point $[\pi^{-1}(t)]_{\tau}$ in Z and let us prove that V meets both P and Q. Since f(U) is an open neighborhood of a,

$$W = [\pi^{-1}(f(U))]_{(\xi,\tau]}$$

is a relatively open neighborhood of $[\pi^{-1}(a)]_r$ in $\pi^{-1}(I)$. Hence W meets both P and Q. Take p_0 from $W \cap P$ and q_0 from $W \cap Q$. Then $f^{-1}(\pi(p_0)) \cap U \neq \phi$ and $f^{-1}(\pi(q_0)) \cap U \neq \phi$. Since $I_{\rho(p_0)}$ and $I_{\rho(q_0)}$ are dense in I, V meets both Pand Q. Hence $[\pi^{-1}(t)]_r \subset \overline{P} \cap \overline{Q} = B$. Since x was an arbitrary point of I_r ,

$$[\pi^{-1}({c} \times {\mu} \times I)]_r \subset B$$

Therefore

$$B_4 = [\pi^{-1}(\{c\} \times \{\mu\} \times I)]_{J_1} \subset B.$$

Since B_4 is closed in Z,

Ind $B \ge \text{Ind } B_4 = 1$.

Thus the proof is completely finished.

Finally the author thanks very much Prof. Yoshio Sasaki for his kindness to translate Russian literatures cited in this paper.

Ehime University

References

- [1] C.H. Dowker, Local dimension of normal spaces, Quart. J. Math. Oxford Ser.
 (2), 6 (1955), 101-120.
- [2] K. Morita, Star finite coverings and the star finite property, Math. Japon., 1 (1948), 60-68.
- [3] K. Morita, On closed mappings and dimension, Proc. Japan Acad., 32 (1956), 161-165.
- [4] K. Nagami, Some theorems in dimension theory for non-separable spaces, J. Math. Soc. Japan, 9 (1957), 80-92.
- [5] K. Nagami, A note on Hausdorff spaces with the star-finite property III, Proc. Japan Acad., 37 (1961), 356-357.
- [6] K. Nagami, Monotone sequence of 0-dimensional subsets of metric spaces, forthcoming.
- [7] J. Nagata, Modern dimension theory, Groningen-Amsterdam, 1965.
- [8] Yu. M. Smirnov, An example of 0-dimensional normal space having infinite covering dimension, Dokl. Acad. Nauk SSSR, 123 (1958), 40-42.
- [9] Pětr Vopenka, On the dimension of compact spaces, Czechoslovak Math. J., 8 (1958), 319-327.