A new proof of the Baker-Campbell-Hausdorff formula

Dedicated to Professor Shôkichi Iyanaga on his 60th birthday

(Received Jan. 11, 1967)

This formula states

(1)
$$e^{\mathbf{A}} \cdot e^{\mathbf{B}} = e^{\mathbf{Z}}, \qquad Z = \sum_{n=1}^{\infty} F_n(A, B)$$

for noncommuting indeterminates A, B with homogeneous polynomials $F_n(A, B)$ of degree n which have the essential property that they are formed from A, B by Lie multiplication, except for $F_1(A, B) = A + B$. We shall briefly speak of Lie polynomials. The usual proofs (e. g. [1], [2]) employ preliminary theorems by Finkelstein or Friedrichs characterizing Lie polynomials by formal properties (see also [3]). In the following lines I give a short proof which needs no preparations.

It is evident that polynomials $F_n(A, B)$ exist satisfying (1). We only have to prove that they are Lie polynomials. The first two are

$$F_1(A, B) = A + B, \quad F_2(A, B) = \frac{1}{2} (AB - BA).$$

Now let n > 2 and assume that all $F_{\nu}(A, B)$ with $\nu < n$ are Lie polynomials. With 3 indeterminates we express

$$(e^{A}e^{B})e^{C} = e^{A}(e^{B}e^{C})$$
:

$$W = \sum_{i=1}^{\infty} F_i \Big(\sum_{j=1}^{\infty} F_j(A, B), C \Big) = \sum_{i=1}^{\infty} F_i \Big(A, \sum_{j=1}^{\infty} F_j(B, C) \Big)$$

and compare the homogeneous terms of degree n on both sides, using the following 2 facts: 1) If $F(A, B, \cdots)$, $X(A, B, \cdots)$, $Y(A, B, \cdots)$, \cdots are Lie polynomials then also $G(A, B, \cdots) = F(X(A, B, \cdots), Y(A, B, \cdots), \cdots)$ is one. 2) If $F(A, B, \cdots)$ is a Lie polynomial then the homogeneous summands into which F splits up are Lie polynomials. The induction assumption implies that all homogeneous terms of degree n in both expressions for W are Lie polynomials with the possible exceptions of $F_n(A, B) + F_n(A + B, C)$ on the left side and $F_n(A, B + C) + F_n(B, C)$ on the right. In other words, the difference is a Lie polynomial. We can abbreviate this as

(2)
$$F(A, B)+F(A+B, C)\sim F(A, B+C)+F(B, C)$$

24 M. Eichler

with $F = F_n$ (for sake of simplicity we drop the subscript n from now on). A second property is evident:

(3)
$$F(\lambda A, \mu A) = 0$$

where λ , μ are commuting variables. The properties (2) and (3) suffice to show $F(A, B) \sim 0$, and the proof yields a recursive scheme for their computation.

First we insert C = -B in (2) and observe (3):

$$(4) F(A, B) \sim -F(A+B, -B).$$

Similarly we insert A = -B, but write A, B instead of B, C:

(5)
$$F(A, B) \sim -F(-A, A+B)$$
.

Applying in order (5), (4), (5) we get

(6)
$$F(A, B) \sim -(-1)^n F(B, A)$$
,

because F(A, B) is homogeneous of degree n.

Secondly we insert $C = -\frac{1}{2}B$ in (2):

(7)
$$F(A, B) \sim F(A, -\frac{1}{2} - B) - F(A + B, -\frac{1}{2} - B)$$

and similarly with $A = -\frac{1}{2}B$ and A, B instead of B, C:

(8)
$$F(A, B) \sim F\left(-\frac{1}{2} - A, B\right) - F\left(-\frac{1}{2} - A, A + B\right).$$

Application of (7) to both terms on the right of (8) yields

$$F(A, B) \sim F\left(\frac{1}{2}A, \frac{1}{2}B\right) - F\left(-\frac{1}{2}A, \frac{1}{2}A + \frac{1}{2}B\right)$$

 $-F\left(\frac{1}{2}A + B, -\frac{1}{2}B\right) + F\left(\frac{1}{2}A + B, -\frac{1}{2}A - \frac{1}{2}B\right).$

Here we employ (5) in the 2nd term on the right and (4) in the 3rd and 4th, remembering the homogeneity:

$$F(A, B) \sim 2^{1-n} F(A, B) + 2^{-n} F(A+B, B) - 2^{-n} F(B, A+B)$$
.

and by (6)

$$(1-2^{1-n})F(A, B)\sim 2^{-n}(1+(-1)^n)F(A+B, B)$$
.

For odd n this is already the contention. For even n we insert A-B for A and apply (4) for a last time:

$$-F(A, -B) \sim F(A-B, B) \sim 2^{-n} (1 + (-1)^n) (1 - 2^{1-n})^{-1} F(A, B)$$
.

Iteration of this formula gives

$$F(A, B) \sim 2^{-2n} (1 + (-1)^n)^2 (1 - 2^{1-n})^{-2} F(A, B)$$
,

and the factor on the right is $\neq 1$ because n > 2. This finishes the proof.

The University, Basel

References

- [1] N. Jacobson, Lie algebras, New York, 1962, p. 170.
- [2] W. Magnus, On the exponential solutions of differential equations for a linear operator, Comm. Pure Appl. Math., 7 (1954), 649-673.
- [3] W. v. Waldenfels, Zur Charakterisierung Liescher Elemente in freien Algebren, Arch. Math., 12 (1966), 44-48.