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Abstract. We compute the generalized Lefschetz number of orientation-

preserving self-homeomorphisms of a compact punctured disk, using the fact that

homotopy classes of these homeomorphisms can be identified with braids. This

result is applied to study Nielsen-Thurston canonical homeomorphisms on a

punctured disk. We determine, for a certain class of braids, the rotation number

of the corresponding canonical homeomorphisms on the outer boundary circle. As

a consequence of this result on the rotation number, it is shown that the canonical

homeomorphisms corresponding to some braids are pseudo-Anosov with associ-

ated foliations having no interior singularities.

1. Introduction.

The generalized Lefschetz number is one of the central notions in Nielsen

fixed point theory. The classical Lefschetz number LðfÞ is a well-known homotopy

invariant for proving the existence of a fixed point of a continuous self-map f :

X ! X on a connected, finite cell complex X. It coincides with the fixed point

index of the whole set FixðfÞ of fixed points, and hence the non-vanishing of this

number implies that f has a fixed point.

The generalized Lefschetz number L ðfÞ is a refinement of the Lefschetz

number obtained by decomposing the fixed point set FixðfÞ into finitely many

equivalence classes called fixed point classes. On the fundamental group �1ðXÞ, an
equivalence relation, called the Reidemeister equivalence, is defined using the

induced action f� of f . An equivalence class under this relation is called a

Reidemeister class. Then, a Reidemeister class is assigned to each fixed point, and

the set of fixed points to which a given Reidemeister class � is assigned is called

the fixed point class determined by �. The compactness of X implies that there

are only finitely many Reidemeister classes determining non-empty fixed point

classes. This fact enables us to define the generalized Lefschetz number L ðfÞ as
the formal sum of the Reidemeister classes with each class being indexed by fixed
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point index of the corresponding fixed point class. Hence, L ðfÞ is not an integer,

but an element of the free abelian group ZRðf�Þ generated by the set Rðf�Þ of

Reidemeister classes. The non-vanishing of the coefficient of a Reidemeister class

� in L ðfÞ implies the existence of a fixed point with � assigned. Thus, by

computing the generalized Lefschetz number, we can prove the existence of a fixed

point corresponding to each term in L ðfÞ. The generalized Lefschetz number is a

homotopy invariant, and the classical one LðfÞ is obtained from L ðfÞ by

summing up the coefficients. See e.g. [6], [14], [16] for general references of

Nielsen fixed point theory.

Practically, the generalized Lefschetz number is useful in studying fixed

points only in the case where it is computable. Unfortunately, it is very difficult to

compute it from the definition in general. The Reidemeister trace formula [21],

[24], [13] provides a method to compute it. The classical Lefschetz number LðfÞ is
known to satisfy the following trace formula: If f is a cellular map, LðfÞ is equal to
the alternating sum of the traces of the action of f on the chain groups of X.

Analogously, the generalized Lefschetz number L ðfÞ satisfies the Reidemeister

trace formula: L ðfÞ is equal to the alternating sum of the Reidemeister traces,

which are the traces of the action of a lift ~f on the chain groups of the universal

cover of X. Despite the existence of this formula, however, it is still difficult to

make a detailed computation, particularly in the case of fundamental group being

infinite and non-abelian. In this case, the author does not know any example of

concrete computations carried out on large classes of maps.

In this paper, we compute the generalized Lefschetz number for orientation-

preserving self-homeomorphisms f of a compact punctured disk which preserve

the outer boundary circle (Theorem 1). Such homeomorphisms are of great

importance in the topological study of 2-dimensional dynamical systems, for they

include the homeomorphisms which are obtained from orientation-preserving disk

homeomorphisms by the blow-up construction at a finite, interior invariant set

(see e.g. [5, Section 1.6]). We should note that our computation is not complete in

the sense that the problem of distinguishing Reidemeister classes is left unsettled.

This means that we shall obtain an element in the group ring Z�1ðXÞ which is

mapped to the generalized Lefschetz number under the projection from Z�1ðXÞ to
ZRðf�Þ. Thus, our result may be thought of as giving an ‘‘upper bound’’ of the

generalized Lefschetz number. Our computation utilizes the fact that the

homotopy class (or equivalently the isotopy class) of f can be identified with a

braid. We show that a braid is designated by a finite sequence of positive integers,

and we shall compute the generalized Lefschetz number directly from this

sequence. For surfaces with boundary, Fadell and Husseini showed in [7] that the

computation of the Reidemeister trace is reduced to that in the Fox free

differential calculus on free groups. Our result is obtained by carrying out this
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computation. In [19], the author computed the image of the generalized Lefschetz

number L ðfÞ under the projection from ZRðf�Þ to the ring Z ½t; t�1� of integer
polynomials in the variable t and its inverse. The present result improves the

computation there.

It is a natural question whether our method is applicable in the general case

where f may not preserve the outer boundary circle. In this case, f is thought of as

an orientation-preserving homeomorphism on a punctured sphere, and its

homotopy class is identified with a braid on a sphere. Our method is based on

the fact that a braid on a plane is designated by a finite sequence of positive

integers. At this moment, the author does not know a similar fact on a sphere, and

cannot give an answer to the question.

On surfaces with boundary, Wagner [23] exploited an algorithm to compute

the generalized Lefschetz number for a continuous map whose action on the

fundamental group satisfies an algebraic condition. This condition is satisfied by

most of continuous maps, but not by homeomorphisms. Therefore, the Wagner’s

algorithm is not applicable to our case.

We give two applications of our result in Section 4. The Nielsen-Thurston

classification theory of isotopy classes of surface homeomorphisms provides a

representative ’, called a canonical homeomorphism in each isotopy class of

surface homeomorphisms. Canonical homeomorphisms play an essential role in

the study of dynamics of surface homeomorphisms, because it has the ‘‘simplest’’

dynamical complexity among the homeomorphisms in its isotopy class. For

instance, all the periodic points of ’ persist under homotopy. We apply our result

on L ðfÞ to study periodic points of canonical homeomorphisms on a punctured

disk: We determine, for a certain class of braids, the rotation number of the

corresponding canonical homeomorphisms on the outer boundary circle (Prop-

osition 2).

The second application concerns the problem of determining the type of the

canonical homeomorphism in a given isotopy class. There is an algorithm to solve

this problem due to Bestvina and Handel [2]. Similar algorithms for the disk case

were given in [9],[18]. Also, different algorithms were given in [1],[11]. Our

theorem provides an algebraic approach to this problem. We show that our result

on the rotation number on the outer boundary circle implies that the canonical

homeomorphisms corresponding to some families of braids are pseudo-Anosov

with associated foliations having no interior singularities (Proposition 3).

In the last section, as a by-product of an argument in the proof of

Proposition 2, we give a lower and an upper bound for the Nielsen number NðfÞ
for the class of braids treated in Proposition 2.

ACKNOWLEDGEMENTS. The author would like to thank the referee for
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making helpful suggestions that improved exposition of the paper.

2. Generalized Lefschetz number.

We recall the definition of the generalized Lefschetz number. Let X be a

connected finite cell complex, and f : X ! X a continuous map. Let FixðfÞ be the
fixed point set of f. Choose a base point x0 of X, and let � denote the fundamental

group �1ðX; x0Þ of X.

Given a homomorphism  : �! �, two elements �1, �2 of � are said to be

Reidemeister equivalent with respect to  (or  -conjugate) if there is a � 2 � such

that

�2 ¼  ð�Þ�1��1:

An equivalence class under this equivalence relation is called a Reidemeister class.

LetRð Þ denote the set of Reidemeister classes, and ZRð Þ the free abelian group

generated by the elements of Rð Þ.
Choose a path � from x0 to fðx0Þ. This is called a base path. Let f� : �! �

denote the composition of f� : �1ðX; x0Þ ! �1ðX; fðx0ÞÞ with the isomorphism

��1
� : �1ðX; fðx0ÞÞ ! �1ðX; x0Þ induced by ��1. We shall consider Reidemeister

classes with respect to f�. For x 2 FixðfÞ, take a path l from the base point x0 to x.

Then, it is easy to see that the Reidemeister class represented by ½�ðf � lÞl�1� 2 �

is independent of the choice of l. This class is denoted by RðxÞ and is called the

Reidemeister class (or a coordinate) of x. For a Reidemeister class � 2 Rðf�Þ, let
Fix�ðfÞ ¼ fx 2 FixðfÞ j RðxÞ ¼ �g. This set is called the fixed point class of f

determined by �. We then have the decomposition

FixðfÞ ¼
[

�2Rðf�Þ
Fix�ðfÞ:

The compactness of X implies that Fix�ðfÞ is empty except for finitely many �.

For an isolated set S of fixed points of f, let indðSÞ denote the fixed point index of

S with respect to f.

DEFINITION 1. The generalized Lefschetz number L ðfÞ of f is defined by

L ðfÞ ¼
X

�2Rðf�Þ
indðFix�ðfÞÞ� 2 ZRðf�Þ:

The generalized Lefschetz number is a homotopy invariant in the following

1208 T. MATSUOKA



sense: Let g : X ! X be a continuous map homotopic to f through a homotopy

fhtg0�t�1. As a base path for g, take the composite of � with the path htðx0Þ
ð0 � t � 1Þ so that we have f� ¼ g�. Then, the Nielsen fixed point theory asserts

the equality L ðfÞ ¼ L ðgÞ.
Let ~X be the universal covering space of X. For integers q, let Cqð ~XÞ be the

q-chain group of ~X. The action of � on ~X induces an action of the group ring Z� on

Cqð ~XÞ. Then, Cqð ~XÞ becomes a finitely generated free Z�-module. If f is a cellular

map, its lift ~f induces the twisted-module homomorphism ~f]q : Cqð ~XÞ ! Cqð ~XÞ.
Then, a trace tr ~f]q is defined as an element of ZRðf�Þ. The Reidemeister trace

formula [21], [24], [13] asserts that

L ðfÞ ¼
X
q�0

ð�1Þq tr ~f]q:

Note that the classical Lefschetz number is equal to the sum of the

coefficients in L ðfÞ, and the Nielsen number NðfÞ is the number of Reidemeister

classes with non-zero coefficients in L ðfÞ.

3. Computation on punctured disks.

We shall fix an integer n with n � 3. Let Dn be a compact n-punctured disk,

namely, it is a compact surface obtained from a closed disk D by removing the

interiors of n disjoint closed disks Dð1Þ; . . . ; DðnÞ contained in the interior of D.

Dn has nþ 1 boundary circles. One of these is @D called the outer boundary circle

of Dn, and the others @Dð1Þ; . . . ; @DðnÞ are called the inner boundary circles of

Dn. Let HomeoþðDn; @DÞ denote the set of orientation-preserving homeomor-

phisms f : Dn ! Dn which preserve the outer boundary circle @D setwise. In this

paper, we shall compute the generalized Lefschetz number L ðfÞ for any f 2
HomeoþðDn; @DÞ up to distinguishing Reidemeister classes.

An isotopy class of such homeomorphisms can be identified with a braid: Let

IsoþðDn; @DÞ be the group of isotopy classes of homeomorphisms in

HomeoþðDn; @DÞ. Let Bn denote the n-braid group. Then, we have an iso-

morphism of groups

IsoþðDn; @DÞ ! Bn=Zn;

where Zn is the center of Bn. This identification is defined in the following way:

Choose an isotopy fft : D! Dg0�t�1 such that f0 ¼ id and that f1 coincides with

f on Dn. The existence of such an isotopy is guaranteed using the well-known

Alexander’s trick. Then, the subset
S

0�t�1ðftðDð1Þ [ � � � [DðnÞÞ � ftgÞ of D�
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½0; 1� consists of disjoint n tubes. If we regard each tube as a string, we obtain an

n-braid. We denote this braid by �ðfÞ, and call it the braid of f. The element of

the quotient group Bn=Zn represented by �ðfÞ does not depend on the choice of an

isotopy fftg. Thus we obtain a map IsoþðDn; @DÞ ! Bn=Zn. It is known that this

map becomes an isomorphism.

We can assume that the centers of the sub-disksDð1Þ; . . . ; DðnÞ lie on a line in

that order, hence so do the initial points of the braid �ðfÞ. For i ¼ 1; . . . ; n� 1, we

denote by �i the i-th elementary braid, in which the i-th string overcrosses the

ðiþ 1Þ-th string once and all other strings go straight from the top to the bottom.

The braid group Bn admits a presentation with generators �1; . . . ; �n�1 and

defining relations (see e.g. [3]):

�i�j¼ �j�i if ji� jj � 2, 1 � i; j � n� 1;

�i�iþ1�i¼ �iþ1�i�iþ1 1 � i � n� 2:

Define � 2 Bn by � ¼ �n�1 � � ��2�1. Let � be the full-twist n-braid defined by

� ¼ ð�1�2 � � ��n�1Þn. � is a generator of the center Zn. In particular, it commutes

with every braid. Note that �n is equal to �, since � ¼ �ð�1 � � ��n�1Þ��1, where �

is a half-twist braid ð�1�2 � � ��n�1Þ � � � ð�1�2Þ�1.
For a positive integer i, let �ðiÞ ¼ �i1� 2 Bn. Let d be a positive integer. Given

a sequence I ¼ ði1; . . . ; idÞ of positive integers, define an n-braid �ðIÞ by

�ðIÞ ¼ �ði1Þ � � � �ðidÞ ¼ �i11 � � � ��
id
1 �:

The following proposition has been proved in [19]. We give here a slightly

simplified proof.

PROPOSITION 1. Any braid is conjugate to a braid of the form �	�ðIÞ, where
	 is an integer and I is a finite sequence of positive integers.

PROOF. By the defining relations of Bn, it is easy to see that for i ¼ 1; . . . ;

n� 2,

�i� ¼ ��iþ1:

This implies that

�i ¼ �1�i�1�
i�1 ð1Þ

for any i. Also, we have
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ð�1�Þn�1 ¼ �: ð2Þ

For any i, we have by (1), (2)

��1
i ¼ �1�i��1

1 �i�1 ¼ �2�ið�1�Þ�1�i�1 ¼ ��1�2�ið�1�Þn�2�i�1:

This and (1) imply that �i’s and ��1
i ’s can be written as a product of �1, �, �

�1,

and ��1, and hence any braid � is conjugate to a braid of the form �	�k11 �
l1 � � �

�ks1 �
ls , where 	 � 0, k1; . . . ; ks > 0 and l1; . . . ; ls 2 Z. We can rewrite it in the form

where all the exponents of � are equal to 1. In fact, since ��1 ¼ ��1ð�1�Þn�2�1 by

(2), we have �j ¼ �nk��l ¼ �k�lðð�1�Þn�2�1Þl for any integer j, where k is an integer

and 0 � l < n with j ¼ kn� l. �

Note that the arguments in the proof also give a procedure how to find 	, I

and 
 with � ¼ 
�1�	�ðIÞ
 for a given � 2 Bn.

EXAMPLE 1. Let n ¼ 3 and consider �1�
�1
2 . Since ��1

2 ¼ ��1ð�1�Þ�, we have

�1�
�1
2 ¼ ��1�21�

2. �2 is equal to ð�1�Þ�1, since kn� l ¼ 2 for k ¼ l ¼ 1. Therefore,

�1�
�1
2 ¼ ��1�31��1 ¼ ��1

1 ��1�ð4Þ�1. Hence, 	 ¼ �1; I ¼ ð4Þ, and 
 ¼ �1.

REMARK 1. 	 and I in this proposition are not unique. For instance, we

have by (2)

�ði; 1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
n�2

; jÞ ¼ �i�1
1 ð�1�Þn�1�j1� ¼ ��ðiþ j� 1Þ:

Also, in B3, since (2) implies �1��1 ¼ ���1 and hence ð�1��1Þ2 ¼ �2��2 ¼ ��, we

have for i; j � 2

�ði; 2; jÞ ¼ �i�1
1 ð�1��1Þ2�j�1

1 � ¼ ��ði� 1; j� 1Þ:

The purpose of this paper is to compute the generalized Lefschetz number

L ðfÞ in terms of 	, I, and 
 given in Proposition 1. Let d be a positive integer, and

Zd the set f1; . . . ; dg of integers modd. To state our main result, it is necessary to

introduce the notion of a partition of Zd.

DEFINITION 2.

(i) For integers 1 � p; q � d, define a sequence ½p; q� of consecutive integers

mod d by
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½p; q� ¼
ðp; . . . ; qÞ if p � q

ðp; . . . ; d; 1; . . . ; qÞ if p > q.

(

This sequence is called a block in Zd, and the number of integers

contained in it is called its length. For a block B, let B denote its

underlying set, the set of integers contained in B.

(ii) A set fB1; . . . ; Bsg of blocks in Zd is a partition of Zd if

(a) the underlying sets B1; . . . ; Bs are mutually disjoint and B1 [ � � �
[Bs ¼ Zd, and

(b) each of B1; . . . ; Bs has length less than or equal to n� 1.

Note that a partition contains at most one block of type ½p; q� with p > q.

(iii) Let PðdÞ denote the set of partitions of Zd.

EXAMPLE 2. Assume n � 5. Consider the case of d ¼ 4. In this case, any

block has length less than or equal to n� 1. Therefore, Pð4Þ consists of the

following fifteen partitions:

fð1Þ; ð2Þ; ð3Þ; ð4Þg;
fð1; 2Þ; ð3Þ; ð4Þg; fð1Þ; ð2; 3Þ; ð4Þg; fð1Þ; ð2Þ; ð3; 4Þg; fð2Þ; ð3Þ; ð4; 1Þg;

fð1; 2Þ; ð3; 4Þg; fð2; 3Þ; ð4; 1Þg;
fð1; 2; 3Þ; ð4Þg; fð1Þ; ð2; 3; 4Þg; fð2Þ; ð3; 4; 1Þg; fð3Þ; ð4; 1; 2Þg;

fð1; 2; 3; 4Þg; fð2; 3; 4; 1Þg; fð3; 4; 1; 2Þg; fð4; 1; 2; 3Þg:

The fundamental group � ¼ �1ðDn; x0Þ is identified with a free group Fn of

rank n. We shall define an action of Bn on Fn. Let e be the unit element of Fn.

Assume that x0 2 @D. Let �1; . . . ; �n be the standard generators of � ¼ Fn which

are defined in the following way: We can assume that D is the disk in the plane R2

with center ð0; 0Þ and radius 2, x0 ¼ ð0; 2Þ, and for i ¼ 1; . . . ; n, the sub-disk DðiÞ
has radius 1=2ðnþ 1Þ and center ð�1þ ð2=ðnþ 1ÞÞ i; 0Þ. Then, the element �i is

represented by a loop which traces a straight line connecting x0 to a point in

@DðiÞ, encircles @DðiÞ once in the anti-clockwise direction, and retraces the line

back to x0. An action of the braid group Bn on Fn is defined by putting

�ið�jÞ ¼ �i�iþ1�
�1
i , �i, or �j according to whether j ¼ i; j ¼ iþ 1, or j 6¼ i; iþ 1.

Thus, any braid � can be thought of as an automorphism of Fn (see [3, Corollary

1.8.3]).
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In the case of �ðfÞ, the corresponding automorphism of Fn can be described

geometrically by using the isotopy fftg. Let Z ¼
S

0�t�1ðftðDnÞ � ftgÞ. Z is a solid

cylinder with n disjoint open tubes removed. Define a vertical path v in Z by

vðtÞ ¼ ðx0; tÞ. For � ¼ 0; 1, let i� : Dn ! Z be the inclusion map defined by

i�ðxÞ ¼ ðx; �Þ. Given an element w 2 �, choose a loop l based at x0 representing w.

Then, it is easy to see that the loop v�1ði0 � lÞv in Z is homotopic to i1 � l0 in Z for

some loop l0 in Dn. Then the image �ðfÞðwÞ coincides with the element of �

represented by l0.

As a base path � , we shall take � given by �ðtÞ ¼ ftðx0Þ. Then, for any loop l in

Dn based at x0, the loop v�1ði0 � lÞv is homotopic to i1 � ð�ðf � lÞ��1Þ in Z.

Therefore, �ðfÞðwÞ 2 � is represented by the loop �ðf � lÞ��1, and hence it is equal

to f�ðwÞ. Thus, we have shown that

f� ¼ �ðfÞ : Fn ! Fn: ð3Þ

For w 2 Fn, we shall use the symbol w� to denote its image under the

automorphism �.

In our computation, we shall not use the standard generators, but use the

generators a1; . . . ; an for Fn defined by ai ¼ �1 � � � �i. Then, the action of �i on Fn is

written in a slightly simpler way as

a�ij ¼
aiþ1a

�1
i ai�1 if j ¼ i,

aj if j 6¼ i,

(

where we put a0 ¼ e. Note that a�n ¼ an for any braid �, since a�in ¼ an for any i.

Let ZFn be the group ring of Fn over Z. For � 2 Bn, the automorphism � of

Fn induces the ring automorphism of ZFn, which will be denoted by the same

letter �. For  2 ZFn and � 2 Bn, let 
� 2 ZFn denote the image of  under �.

Let I ¼ ði1; . . . ; idÞ be a sequence of positive integers. We shall introduce a

map WI : PðdÞ ! ZFn which is necessary to state the main result. First, for

integers j � 0, define cj 2 Fn and gj 2 ZFn by

cj ¼
a
j=2
2 if j is even,

a1a
ðj�1Þ=2
2 if j is odd,

(

gj ¼ ð�1Þjþ1cj:

For 1 � l � d, let �lðIÞ ¼ �ðil; . . . ; idÞ 2 Bn. Note that �1ðIÞ ¼ �ðIÞ. Suppose a

block B ¼ ½p; q� in Zd is given. Denote its length by jBj. Define the braids
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�ðBÞ; !ðBÞ by

�ðBÞ ¼ �pðIÞ; !ðBÞ ¼
�qðIÞ if p � q,

�qðIÞ�ðIÞ�1 if p > q,

(

and define WIðBÞ 2 ZFn as follows:

WIðBÞ ¼
ðg0 þ � � � þ gip�2Þ�ðBÞa!ðBÞjBjþ1 if jBj < n� 1, ip � 2,

0 if jBj < n� 1, ip ¼ 1,

g
�ðBÞ
ip

a
!ðBÞ
n�1 if jBj ¼ n� 1.

8>><
>>:

Then, the map WI : PðdÞ ! ZFn is defined as follows: Let B 2 PðdÞ. Let B1 ¼
½p1; q1�; . . . ; Bs ¼ ½ps; qs� be the blocks in B. We can assume that 1 � p1 < p2 <

� � � < ps � d by rearranging the blocks if necessary. Then, define WIðBÞ by

WIðBÞ ¼WIðB1Þ � � �WIðBsÞ:

Let �� : ZFn ! ZRð�Þ denote the surjective homomorphism induced by the

projection Fn ¼ �! Rð�Þ. By the definition of the Reidemeister equivalence, we

have

��ðwÞ ¼ ��ðw�Þ for any w 2 Fn: ð4Þ

More generally, we have

��ðw0wÞ ¼ ��ðw�w0Þ for any w;w0 2 Fn: ð5Þ

Recall that �ðfÞ can be written as 
�1�	�ðIÞ
 for some 	 2 Z ; 
 2 Bn, and

some sequence I of positive integers. Our main result is the following:

THEOREM 1. Suppose f : Dn ! Dn is an orientation-preserving homeo-

morphism which preserves the outer boundary circle setwise. We choose an isotopy

fftg : D! D such that f0 ¼ id and f1 coincides with f on Dn. As a base path for f,

take the path � defined by �ðtÞ ¼ ftðx0Þ. Suppose �ðfÞ ¼ 
�1�	�ðIÞ
, where 	 is an

integer, 
 2 Bn, and I is a sequence of positive integers with length d. Then

L ðfÞ ¼ ���ðfÞ

�
a	n

X
B2PðdÞ

WIðBÞ

�

2 ZRð�ðfÞÞ:
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EXAMPLE 3. (a) Let �ðfÞ ¼ �ðiÞ, where i � 2. In this case, 	 ¼ 0, 
 ¼ e,

I ¼ ðiÞ, and d ¼ 1. The partition fð1Þg is the only element of PðdÞ ¼ Pð1Þ, and
�ðð1ÞÞ ¼ !ðð1ÞÞ ¼ �ðiÞ. Therefore, by the above theorem and (4), we have

L ðfÞ ¼ ���ðfÞðWðiÞðfð1ÞgÞÞ ¼ ���ðiÞððg0 þ � � � þ gi�2Þ�ðiÞa�ðiÞ2 Þ
¼ ���ðiÞðg2 þ � � � þ giÞ
¼ ��ðiÞðc2Þ � ��ðiÞðc3Þ þ � � � þ ð�1Þi��ðiÞðciÞ:

(b) Let �ðfÞ ¼ �ði1; i2Þ, where i1; i2 � 2. In this case, 	 ¼ 0, 
 ¼ e, I ¼ ði1; i2Þ,
and d ¼ 2. PðdÞ ¼ Pð2Þ consists of the three partitions B1 ¼ fð1Þ; ð2Þg;
B2 ¼ fð1; 2Þg, and B3 ¼ fð2; 1Þg. Therefore, we have L ðfÞ ¼ ���ðfÞðWIðB1Þ þ
WIðB2Þ þWIðB3ÞÞ, where

WIðB1Þ ¼
Xi1
j¼2

Xi2
k¼2

g
�ðIÞ
j g

�ði2Þ
k ;

WIðB2Þ ¼

Xi1�2

j¼0

g
�ðIÞ
j

 !
a
�ði2Þ
3 if n � 4,

g
�ðIÞ
i1

a
�ði2Þ
2 if n ¼ 3,

8>><
>>:

WIðB3Þ ¼

Xi2�2

k¼0

g
�ði2Þ
k

 !
a3 if n � 4,

g
�ði2Þ
i2

a2 if n ¼ 3.

8>><
>>:

As a consequence of our theorem, we can give an upper bound for the Nielsen

number NðfÞ. For  2 ZFn, let �ðÞ denote the number of elements of Fn with

non-zero coefficient in . Then, for a block B ¼ ½p; q�, we have

�ðWIðBÞÞ ¼
ip � 1 if jBj < n� 1,

1 if jBj ¼ n� 1.

�

For a partition B ¼ fB1; . . . ; Bsg, let �IðBÞ ¼ �ðWIðB1ÞÞ � � � �ðWIðBsÞÞ. Then, we
have

COROLLARY 1. Under the same hypothesis of Theorem 1, we have

NðfÞ �
P

B2PðdÞ �IðBÞ.

PROOF. It follows from Theorem 1 that
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NðfÞ ¼ �ðL ðfÞÞ � �
X

B2PðdÞ
WIðBÞ

0
@

1
A �

X
B2PðdÞ

�ðWIðBÞÞ:

Since �ðWIðBÞÞ �
Qs

r¼1 �ðWIðBrÞÞ ¼ �IðBÞ, this gives the proof. �

EXAMPLE 4. Consider the braids treated in Example 3.

(a) Let �ðfÞ ¼ �ðiÞ, i � 2. Then, the partition fð1Þg is the only element of

Pð1Þ, and hence
P

B2PðdÞ �IðBÞ ¼ �ðiÞðfð1ÞgÞ ¼ i� 1. Therefore, by Corollary 1,

we have NðfÞ � i� 1. In fact, the equality NðfÞ ¼ i� 1 holds for this braid. This

is proved by using the ring homomorphism T : ZFn ! Z ½t; t�1� defined by

T ð�jÞ ¼ t for j ¼ 1; . . . ; n. Then, T induces the homomorphism T : ZRð�ðfÞÞ !
Z ½t; t�1�, and the Reidemeister classes ��ðiÞðc2Þ; . . . ;��ðiÞðciÞ in L ðfÞ are sent to

mutually different elements t2; . . . ; ti by T . Hence they are different elements in

Rð�ðiÞÞ and we obtain NðfÞ ¼ i� 1.

(b) Let �ðfÞ ¼ �ði1; i2Þ, where i1; i2 � 2. Consider first the case of n � 4. Let

B1;B2;B3 be the partitions as in Example 3(b). Then, �IðBjÞ ¼ ði1 � 1Þði2 �
1Þ; i1 � 1; i2 � 1 for j ¼ 1; 2; 3 respectively, and so we have

P
B2PðdÞ �IðBÞ ¼

ði1 � 1Þði2 � 1Þ þ ði1 � 1Þ þ ði2 � 1Þ ¼ i1i2 � 1. Hence, it follows from Corollary 1

that NðfÞ � i1i2 � 1. Consider next the case of n ¼ 3. Then, Corollary 1 implies

NðfÞ � ði1 � 1Þði2 � 1Þ þ 2. If i1; i2 � 3, the sharper estimate NðfÞ � ði1 � 1Þði2 �
1Þ � 2 holds, because the images of WIðB2Þ ¼ �g�ðIÞi1

g
�ði2Þ
2 and WIðB3Þ ¼ �g�ði2Þi2

g2
under ��ðfÞ cancel by the images of two terms in WIðB1Þ. For a class of braids

including this example, we shall give a sharper estimation than Corollary 1 in

Section 8.

REMARK 2. The image of �L ðfÞ under T coincides with the trace of the

reduced Burau matrix Burð�ðfÞÞ of the braid �ðfÞ (cf. [12]). This trace was

computed in [19] using the same expression of braids as in Proposition 1. Given a

square matrix A of size � with entries in a commutative ring R, let PMðA; kÞ be
the sum of principal minors of A of order k if 1 � k � � and zero otherwise. Then,

we have the equality

trAd ¼
X

B2PðdÞ
ð�1Þdþ]BPMðA; jB1jÞ � � �PMðA; jBsjÞ

for any positive integer d, where B ¼ fB1; . . . ; Bsg. Applying this to the case of

A ¼ Burð�ðiÞÞ, we have for I ¼ ði; . . . ; iÞ 2 N d that

tr Burð�ðIÞÞ ¼ tr Burð�ðiÞÞd ¼
X

B2PðdÞ
ð�1Þdþ]BP ði; jB1jÞ � � �P ði; jBsjÞ;
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where P ði; kÞ denotes PMðBurð�ðiÞÞ; kÞ for any k. Theorem 1 in [19] generalizes

this equality to an arbitrary sequence I 2 N d as follows:

tr Burð�ðIÞÞ ¼
X

B2PðdÞ
ð�1Þdþ]BP ðip1 ; jB1jÞ � � �P ðips ; jBsjÞ;

where pr is the initial element of Br for 1 � r � s. Our main result, Theorem 1

above, gives a refinement of this equality.

REMARK 3. In our setting, Reidemeister classes can be visualized by the

method of Jiang [15] using the mapping torus. For t 2 ½0; 1�, let ½t� denote the

corresponding point in the circle S1 ¼ R=Z . Define a subspace T of D� S1 by

T ¼
S

0�t�1ðftðDnÞ � f½t�gÞ, which is homeomorphic to the mapping torus of f .

Then the set of Reidemeister classes is in one-to-one correspondence with the set

of free homotopy classes of loops in T . The Reidemeister class RðxÞ of x 2 FixðfÞ
corresponds to the free homotopy class of the loop ðftðxÞ; ½t�Þ ð0 � t � 1Þ under this
identification.

4. Nielsen-Thurston classification of surface homeomorphisms.

We shall apply the theorem in the previous section to study periodic points of

Nielsen-Thurston canonical homeomorphisms on a punctured disk, and also to the

classification problem of homeomorphisms into isotopy classes. We recall briefly

the Nielsen-Thurston classification theory of surface homeomorphisms ([8],[22]).

Let M be a compact surface. A homeomorphism ’ :M !M is said to be of finite

order if some of its iterates is equal to the identity map. The map ’ is said to be

pseudo-Anosov, if the following conditions are satisfied:

(i) There exists a pair of transverse foliations on M, carrying measures

which are uniformly expanded and contracted by ’ respectively.

(ii) These foliations have finitely many singularities which coincide in the

interior IntM and alternate on the boundary @M. Any singularity is

p-pronged for some integer p � 3 if it is in the interior of M, and it is 3-

pronged if it is in @M. (We consider segments of the boundary to be

prongs.)

’ is said to be reducible if there exists a finite collection of disjoint annuli in M

such that ’ maps their union A to itself, and that each connected component N of

M � A, called a component of ’, has negative Euler characteristic and for any

iterate ’m mapping N to itself, its restriction to N is either of finite order or

pseudo-Anosov. The Nielsen-Thurston classification theory states that every
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homeomorphism f :M !M is isotopic to a homeomorphism ’ :M !M which is

of finite order, pseudo-Anosov, or reducible. The homeomorphism ’ is called a

canonical homeomorphism in the isotopy class of f . In the case where ’ is

irreducible, i.e., of finite order or pseudo-Anosov, the surface M is called the

component of ’.

One of the common features of canonical homeomorphisms ’ is that they

have periodic points on every boundary circle C. In fact, in the case where C is

contained in a pseudo-Anosov component, the singularities of associated

foliations on it are periodic points. Also, in the case where C is contained in a

finite-order component N, all the points in N are periodic. Since the restriction of

’ to C is an orientation-preserving homeomorphism of a circle, the periodic points

in C have the same least period. We shall consider the problem of determining the

period of periodic points and the rotation number on C in the case whereM ¼ Dn

and C ¼ @D. The reason why we choose the outer boundary circle as the subject is

that this is the easiest case to deal with by using the generalized Lefschetz

number. The result we shall obtain will be applied to classify homeomorphisms up

to isotopy.

Let ’ be an orientation-preserving canonical homeomorphism on Dn

preserving @D setwise. We denote by mð’Þ the least period of periodic points

on @D. Let N’ be the component of ’ containing @D. Choose an isotopy ’t :

D! D such that ’0 ¼ id and that ’1 coincides with ’ on Dn. Assume the base

point x0 is in @D. Define a base path � for ’ by �ðtÞ ¼ ’tðx0Þ. Note that � is

contained in @D. For every positive integer m, define a base path �m for ’m by

�m ¼ �ð’ � �Þ � � � ð’m�1 � �Þ. Choose a periodic point x on @D. Since x0 and x are

contained in @D, we can choose a path l connecting these points contained in @D.

Then, the loop �mð’Þð’mð’Þ � lÞl�1 is contained in @D and hence it represents an

element a
�ð’Þ
n 2 Fn for some integer �ð’Þ. Note that �ð’Þ does not depend on the

choice of the periodic point x and the path l. It depends, however, on the choice of

an isotopy ’t, but is uniquely determined modulo mð’Þ. The number �ð’Þ=mð’Þ
modulo Z is equal to the rotation number of ’ on @D.

The following lemma shows that, in the case where mð’Þ and �ð’Þ are

relatively prime, the problem of determining these numbers is reduced to the

computation of the generalized Lefschetz number.

LEMMA 1. Let m and � be integers with m > 0. Assume that they are

relatively prime, and that the coefficient of ��ð’mÞða�nÞ 2 Rð�ð’mÞÞ in L ð’mÞ is

non-zero. Then, m ¼ mð’Þ and � ¼ �ð’Þ.

PROOF. Since the coefficient of ��ð’mÞða�nÞ in L ð’mÞ is non-zero, ’m has a

fixed point x with Reidemeister class ��ð’mÞða�nÞ. Then, we can take a path l from
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the base point x0 to x so that �mð’m � lÞl�1 represents a�n. We shall show that x is

’m-related to @D, namely there exists a path connecting a point in @D with x

which is homotopic to its image under ’m via a homotopy of paths such that each

path in the homotopy connects a point in @D with x. Choose a loop � contained in

@D based at x0 which represents a�n. Let  ¼ ��1
m � and for 0 � u � 1, let

uðtÞ ¼ ðutþ 1� uÞ and lu ¼ ul. Then, flug gives a homotopy of paths such that

luð0Þ 2 @D; luð1Þ ¼ x, and l0 and l1 ¼ ��1
m �l are homotopic to l and ’m � l fixing end

points respectively. Thus, we have shown that l is a desired path to prove x being

’m-related to @D. (This is proved in a different way by Guaschi [10, Proposition

14(b)].) Then, it follows from Jiang and Guo [17, Lemma 3.4] that x 2 @D if ’jN’

is pseudo-Anosov, and there exists a path in Fixð’mÞ \N’ connecting x to @D if

’jN’
is of finite order. Hence, m ¼ qmð’Þ for some positive integer q. Moreover,

since an is fixed under ’� ¼ �ð’Þ, we have � ¼ q�ð’Þ. Since m and � are relatively

prime, q must be one. Thus the proof is completed. �

Let LCM denote the least common multiple for positive integers. Using this

lemma, Theorem 1 can be applied to obtain

PROPOSITION 2. Suppose the braid �ð’Þ is conjugate to �	�ðIÞ, where

I ¼ ði1; . . . ; idÞ is a sequence of positive integers. Assume either that n � 4 and

i1; . . . ; id � 2, or that n ¼ 3 and i1; . . . ; id � 3. Then

mð’Þ ¼
LCMfd; n� 2g

d
; �ð’Þ ¼ mð’Þ	þ

LCMfd; n� 2g
n� 2

:

This proposition will be proved in Section 7 using some lemmas on the

computation of the generalized Lefschetz number given in Section 6. When

n ¼ 3, this result cannot be extended to the case of i1; . . . ; id � 2. For instance,

�ð2Þ 2 B3 is conjugate to �2, and so ’ is of finite-order and mð’Þ ¼ 3. This is not

equal to LCMfd; n� 2g=d ¼ 1.

This proposition has a consequence on the classification problem of canonical

homeomorphisms on a punctured disk. Boyland [4] proved that if n is prime and

�ð’Þ is cyclic, that is, the permutation on the punctures induced by �ð’Þ is cyclic,
then ’ is irreducible. He also proved that if ’ is irreducible, �ð’Þ is cyclic, and the

exponent sum of �ð’Þ is not divisible by n� 1, then ’ is pseudo-Anosov. In

particular, if n is prime, �ðIÞ is cyclic, and i1 þ � � � þ id is not divisible by n� 1,

then ’ is pseudo-Anosov. Matsuoka [19] has proved that, under the assumption of

Proposition 2, the canonical homeomorphism ’ with braid �ðIÞ contains a pseudo-

Anosov component, except only for the case where n � 4; I ¼ ð2; . . . ; 2Þ and

n ¼ 3; I ¼ ð3; . . . ; 3Þ. This result was proved by using the computation of the

Generalized Lefschetz number of homeomorphisms 1219



reduction T ðL ðfÞÞ mentioned in Remark 2. Our main theorem on the compu-

tation of the unreduced number L ðfÞ can be applied to improve this result. In

fact, as a consequence of Proposition 2, we have the following proposition.

PROPOSITION 3. Assume n � 5. Let I be a sequence of integers i1; . . . ; id � 2

which are all odd or all even. Assume that n� 2 and d are relatively prime. Then,

the canonical homeomorphism ’ with braid �ðIÞ is pseudo-Anosov. Moreover, the

foliations associated to ’ have no interior singularities.

PROOF. Since n� 2 and d are assumed to be relatively prime, we have

mð’Þ ¼ n� 2 and �ð’Þ ¼ d by Proposition 2. This implies that the periodic points

on @D have period n� 2 and rotation number d=ðn� 2Þ. Let 	 be the permutation

on the inner boundary circles of Dn induced by ’. Assume ’jN’
were of finite-

order. Then, ’jN’
is topologically conjugate to the rigid rotation on the unit disk

by angle 2�d=ðn� 2Þ restricted to the exterior of an appropriate set of punctures.

Hence, there exist n� 2 boundary circles C1; . . . ; Cn�2 of N’ cyclically permuted

by ’. If none of C1; . . . ; Cn�2 is a boundary circle of Dn, each of them surrounds at

least two boundary circles of Dn. Therefore, there must exist at least 2ðn� 2Þ
boundary circles of Dn. Since n � 5, this number exceeds n, which is impossible.

Therefore, some of C1; . . . ; Cn�2 is a boundary circle of Dn, and so are all of

C1; . . . ; Cn�2, since they are cyclically permuted by ’. Therefore, 	 has a cycle

with length n� 2. We shall show that this contradicts to an assumption of the

proposition. In the case where i1; . . . ; id are all even, 	 is equal to the permutation

induced by �d, and hence it is the d-th power of a cyclic permutation on n circles.

Hence, n� 2 must divide n, which is a contradiction since n � 5. Also, in the case

where i1; . . . ; id are all odd, 	 fixes one of the inner boundary circles and on the

other n� 1 inner boundary circles, 	 is the permutation induced by ð�1�Þd, which
is the d-th power of a cyclic permutation. Thus, n� 2 must divide n� 1, which is

a contradiction. Therefore, ’jN’
is not of finite order, and hence it must be pseudo-

Anosov.

Let c be the number of inner boundary circles of N’. Choose one of the

foliations on N’ and let S denote the set of its singularities. Denote by pðxÞ the
number of prongs at a singularity x. Then we have the following Euler-Poincaré

formula (see e.g. [8], p.75):

X
x2S

ð2� pðxÞÞ ¼ 2�ðN’Þ ¼ 2ð1� cÞ: ð6Þ

Since the singularities on @D are periodic points with least period n� 2, there

exist at least n� 2 singularities on @D. Also, each inner boundary circle of N’
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contains at least one singularity. Hence ]ðS \ @N’Þ � n� 2þ c. Therefore, since

2� pðxÞ ¼ �1 for every singularity on @N’ and n � c, we have by (6)

X
x2S\IntN’

ð2� pðxÞÞ ¼
X
x2S

ð2� pðxÞÞ �
X

x2S\@N’

ð2� pðxÞÞ

¼ 2ð1� cÞ � ð�]ðS \ @N’ÞÞ � n� c � 0:

This implies that there are no interior singularities on N’, since 2� pðxÞ < 0 for

any x 2 S \ IntN’, and also that 0 � n� c. Hence c ¼ n, and so N’ ¼ Dn and ’

is pseudo-Anosov. �

The above proposition cannot be extended to the case of n ¼ 3; 4. For

instance, �ð2Þ 2 B3 is conjugate to �2, which corresponds to a finite-order

homeomorphism. Also, �ð2Þ 2 B4 is conjugate to ��3�2, which corresponds to a

reducible homeomorphism having only finite-order components.

5. Proof of Theorem 1.

For surfaces with boundary, Fadell and Husseini showed in [7] that the

computation of the generalized Lefschetz number is reduced to that in the Fox

free differential calculus on free groups. The Fox partial derivative operator

@=@aj : ZFn ! ZFn, j ¼ 1; . . . ; n, is defined by the following rules (see [3],[20]):

(i)
@

@aj
ð1 þ 2Þ ¼

@1
@aj

þ @2
@aj

; 1; 2 2 ZFn,

(ii)
@

@aj
ðw1w2Þ ¼

@w1

@aj
þ w1

@w2

@aj
; w1; w2 2 Fn,

(iii)
@ai
@aj

¼ �i;j; 1 � i; j � n,

where �i;j ¼ 1 or 0 according to whether i ¼ j or i 6¼ j.

(iv)
@e

@aj
¼ 0.

These rules imply that for v; w 2 Fn,

@

@aj
ðvwv�1Þ ¼ ð1� vwv�1Þ

@v

@aj
þ v

@w

@aj
: ð7Þ
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Given a braid � 2 Bn, let Jð�Þ be the Jacobian matrix ð@a�i =@ajÞ. As an

application of the Reidemeister trace formula, Fadell and Husseini proved that

L ðfÞ ¼ ��ðfÞð1� tr Jð�ðfÞÞÞ ([7, Theorem 2.3]). For a matrix A with entries in

ZFn, let A
� denote the matrix obtained from A by replacing each entry with its

image under �. Then, we have by (5)

��ðtrA0AÞ ¼ ��ðtrA�A0Þ ð8Þ

for any matrices A;A0. Using the chain rule for the Fox calculus, we have Jð��0Þ ¼
Jð�Þ�

0
Jð�0Þ for any braids �; �0. Let � 2 Bn. Since a

�
n ¼ an, the last row of Jð�Þ is

ð0 � � � 01Þ. Let �Jð�Þ denote the reduced matrix obtained from Jð�Þ by deleting the

last column and the last row. Then, tr �Jð�Þ ¼ tr Jð�Þ � 1 and hence we have

L ðfÞ ¼ ���ðfÞðtr �Jð�ðfÞÞÞ: ð9Þ

We shall show that L ðfÞ is determined essentially by �ðIÞ. Note that

�Jð��0Þ ¼ �Jð�Þ�
0 �Jð�0Þ: ð10Þ

Note also that since a�i ¼ anaia
�1
n for any i, we have �Jð�Þ ¼ anIn�1, where In�1 is

the identity matrix. Therefore, we have that

�Jð�	�Þ ¼ �Jð�	Þ� �Jð�Þ ¼ a	n
�Jð�Þ: ð11Þ

We have by (10) that

�Jð
�ðfÞÞ ¼ �Jð�	�ðIÞ
Þ ¼ �Jð�	�ðIÞÞ
 �Jð
Þ:

Also, we have �Jð
Þ �Jð
�1Þ
 ¼ �Jð

�1Þ
 ¼ In�1. Therefore, using (8), we have

��ðfÞðtr �Jð�ðfÞÞÞ ¼ ��ðfÞðtr �Jð
�1Þ
�ðfÞ �Jð
�ðfÞÞÞ
¼ ��ðfÞðtr �Jð
�ðfÞÞ �Jð
�1Þ
Þ
¼ ��ðfÞðtr �Jð�	�ðIÞÞ
 �Jð
Þ �Jð
�1Þ
Þ
¼ ��ðfÞðtr �Jð�	�ðIÞÞ
Þ:

Therefore, we have by (9) and (11) that

L ðfÞ ¼ ���ðfÞða	n tr �Jð�ðIÞÞ
Þ: ð12Þ
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LEMMA 2.

(i) Two elements w1; w2 of Fn are Reidemeister equivalent with respect to

�ðIÞ if and only if a	nw


1 ; a

	
nw



2 2 Fn are Reidemeister equivalent with

respect to �ðfÞ.
(ii) Suppose 1; 2 2 ZFn. Then, ��ðIÞð1Þ ¼ ��ðIÞð2Þ if and only if

��ðfÞða	n


1Þ ¼ ��ðfÞða	n



2Þ.

PROOF.

(i) Suppose w1; w2 2 Fn are Reidemeister equivalent with respect to �ðIÞ.
Then, there exists an element w 2 Fn such that w2 ¼ w�ðIÞw1w

�1. Then, since

w
�ðfÞa	n ¼ ðw�	Þ�ðIÞ
a	n ¼ ða	nwa�	n Þ�ðIÞ
a	n ¼ a	nw
�ðIÞ
;

we have

a	nw


2 ¼ a	nw

�ðIÞ
w
1ðw�1Þ
 ¼ ðw
Þ�ðfÞða	nw


1Þðw
Þ

�1;

which shows that a	nw


1 and a

	
nw



2 are Reidemeister equivalent with respect to �ðfÞ.

Conversely, suppose a	nw


1 and a

	
nw



2 are Reidemeister equivalent with respect

to �ðfÞ. Then, there exists an element u 2 Fn such that a	nw


2 ¼ u�ðfÞa	nw



1u

�1. Let

v ¼ u

�1
.Then,since u�ðfÞa	n ¼ v
�ðfÞa	n ¼ a	nv

�ðIÞ
,we have a	nw


2 ¼ a	nv

�ðIÞ
w
1ðv�1Þ
.
Therefore, w2 ¼ v�ðIÞw1v

�1, which shows that w1 and w2 are Reidemeister

equivalent with respect to �ðIÞ.
(ii) This follows easily from (i). �

By (12) and Lemma 2(ii), it is enough for the proof of Theorem 1 to show that

��ðIÞðtr �Jð�ðIÞÞÞ ¼ ��ðIÞ
X

B2PðdÞ
WIðBÞ

0
@

1
A:

To prove this equality, we shall compute the matrix �Jð�ðIÞÞ. First consider the

case where I has length one. For positive integers m, let

�m ¼ g2 þ � � � þ gm if m � 2,

0 if m ¼ 1.

�

Then, we have
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LEMMA 3. For positive integers m, let

Am ¼

�m �gm �ð�ma�1
2 þ gm�1Þ 0 . . . 0

�a2 0 1 0 ..
.

�a3 0 0 1 . .
. ..

.

..

. ..
. ..

.
0 . .

.
0

..

. ..
. ..

. . .
.

1

�an�1 0 0 0 . . . 0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA
:

Then, �Jð�ðmÞÞ ¼ A
�ðmÞ
m .

PROOF. For all 1 � i � n� 1, we have

a
�m1
i ¼

a
m�1
2

2 a2a
�1
1 a

�m�1
2

2 if i ¼ 1, m is odd,

a
m
2
2 a1a

�m
2

2 if i ¼ 1, m is even,

ai if 2 � i � n� 1.

8>><
>>:

Also, a�i ¼ aiþ1a
�1
1 . These imply that

a
�ðmÞ
i ¼

ða3a�1
1 Þ

m�1
2 a3a

�1
2 ða3a�1

1 Þ�
m�1
2 if i ¼ 1, m is odd,

ða3a�1
1 Þ

m
2 a2a

�1
1 ða3a�1

1 Þ�
m
2 if i ¼ 1, m is even,

aiþ1a
�1
1 if 2 � i � n� 1.

8>><
>>: ð13Þ

We first compute @a
�ðmÞ
1 =@aj for j ¼ 1; . . . ; n� 1. Let v ¼ ða3a�1

1 Þ½m=2�, where ½m=2�
denotes the largest integer which does not exceedm=2. Since ða3a�1

1 Þr ¼ ða�ðmÞ
2 Þr ¼

�g�ðmÞ
2r for any positive r, we have

@v

@aj
¼

�
X½m=2�
r¼1

ða3a�1
1 Þr ¼

X½m=2�
r¼1

g
�ðmÞ
2r if j ¼ 1,

X½m=2��1

r¼0

ða3a�1
1 Þr ¼ �

@v

@a1
ða�1

2 Þ�ðmÞ if j ¼ 3,

0 otherwise.

8>>>>>>><
>>>>>>>:

ð14Þ
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It follows from the definition of g2r that

ð1� a1Þ
X½m=2�
r¼1

g2r ¼
�m if m is odd,

�mþ1 if m is even.

�
ð15Þ

Suppose m is odd. Let w ¼ a3a
�1
2 . Then vwv�1 ¼ a

�ðmÞ
1 by (13). We shall

compute the right-hand side of the equality (7). We have by (14), (15)

ð1� vwv�1Þ
@v

@aj
¼

��ðmÞ
m if j ¼ 1,

�ð�ma�1
2 Þ�ðmÞ if j ¼ 3,

0 otherwise,

8><
>:

and, since v ¼ ða½m=2�2 Þ�ðmÞ, we have

v
@w

@aj
¼

�vw ¼ �a�ðmÞ
1 v ¼ �g�ðmÞ

m if j ¼ 2,

v ¼ �g�ðmÞ
m�1 if j ¼ 3,

0 otherwise.

8><
>:

Suppose m is even. Let w0 ¼ a2a
�1
1 . Then vw0v�1 ¼ a

�ðmÞ
1 by (13). By (14),

(15), we have

ð1� vw0v�1Þ
@v

@aj
¼

�
�ðmÞ
mþ1 if j ¼ 1,

�ð�mþ1a
�1
2 Þ�ðmÞ ¼ �ð�ma�1

2 þ gm�1Þ�ðmÞ if j ¼ 3,

0 otherwise.

8>><
>>:

v
@w0

@aj
¼

�vw0 ¼ �a�ðmÞ
1 v ¼ �g�ðmÞ

mþ1 if j ¼ 1,

v ¼ �g�ðmÞ
m if j ¼ 2,

0 otherwise.

8>><
>>:

These computations and the equality (7) imply that @a
�ðmÞ
1 =@aj is equal to the

ð1; jÞ entry of the matrix A
�ðmÞ
m in either case of m odd or even.

The i-th row for i � 2 is obtained from the following:

@a
�ðmÞ
i

@aj
¼
@aiþ1a

�1
1

@aj
¼

�a�ðmÞ
i if j ¼ 1,

1 if j ¼ iþ 1,

0 otherwise.

8><
>:
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This completes the proof. �

Now consider the general case of I having an arbitrary length. Fix a sequence

I ¼ ði1; . . . ; idÞ of positive integers. We shall give formulas for entries of the matrix
�Jð�ðIÞÞ in Lemma 5 below. To state these formulas, we need four families of

elements of ZFn. The first one is �
l
q defined for integers q; l. For integers 1 � l � d,

denote �lðIÞ simply by �l, and let �dþ1 ¼ e. Then, �lq 2 ZFn is defined for integers

q; l by

�lq ¼
a�lq if 1 � q � n� 1; 1 � l � d,

0 otherwise.

�

The second family is Wl
k 2 ZFn defined for positive integers k; l. To define

these elements, we need to generalize the notion of a partition given in Definition 2

to the non-cyclic setting.

DEFINITION 3. Suppose k; l are positive integers with k � l.

(i) For integers p; q with k � p � q � l, define a sequence ½p; q� of positive
integers by ½p; q� ¼ ðp; . . . ; qÞ. This sequence is called a block in fk; . . . ; lg,
and the number of integers contained in it is called its length. For a block

B, let B denote its underlying set.

(ii) A set fB1; . . . ; Bsg of blocks in fk; . . . ; lg is a partition of fk; . . . ; lg if

B1; . . . ; Bs are mutually disjoint, B1 [ � � � [ Bs ¼ fk; . . . ; lg, and

B1; . . . ; Bs have length less than or equal to n� 1.

(iii) Let Pðk; lÞ denote the set of partitions of fk; . . . ; lg.

For a subset A of PðdÞ or of Pðk; lÞ, where 1 � k � l � d, let WIðA Þ ¼P
B2A WIðBÞ. Then, Wl

k 2 ZFn is defined for positive integers k; l by

Wl
k ¼

WIðPðk; lÞÞ if k � l � d,

1 if k ¼ lþ 1 and l � d

0 otherwise.

8><
>:

We prepare the next lemma, which will be used to prove Lemma 5. For 1 � l � d,

1 � � � n� 1, let P1;�ðlÞ be the set of partitions of f1; . . . ; lg such that the block

with initial element 1 has length �, and let Pl;�ðdÞ be the set of partitions of Zd

which contain a block with initial element l and length �.

LEMMA 4.

(i) g
�ðmÞ
m ¼ �g�ðmÞ

m�1a3a
�1
2 for any positive integer m.
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(ii) For 1 � l � d, we have

X
u�0

g�1i1 �
2þu
2þu þ g�1i1�1�

2þu
3þu

� �
Wl

3þu ¼ WIðP1;n�1ðlÞÞ:

(iii) For positive integers l with dþ 3� n � l � d, the elements

X
u�0

�1þu
dþ2�lþuW

l�1
2þug

�l
il
þ �1þu

dþ3�lþuW
l�1
2þug

�l
il�1

� �

and WIðPl;n�1ðdÞÞ have the same ��ðIÞ-image.

PROOF. (i) Consider the case of m odd. Since a3a
�1
1 ¼ a

�ðmÞ
2 , we have

ða3a�1
1 Þðm�1Þ=2 ¼ ða�ðmÞ

2 Þðm�1Þ=2 ¼ ðaðm�1Þ=2
2 Þ�ðmÞ ¼ c

�ðmÞ
m�1 ¼ �g�ðmÞ

m�1 :

Therefore, we have by (13), a
�ðmÞ
1 ¼ �g�ðmÞ

m�1a3a
�1
2 ðc�ðmÞ

m�1 Þ
�1 and hence

g�ðmÞ
m ¼ ða1aðm�1Þ=2

2 Þ�ðmÞ ¼ a
�ðmÞ
1 c

�ðmÞ
m�1 ¼ �g�ðmÞ

m�1a3a
�1
2 :

In the case of m even, we have by (13) the desired equality from the following:

g
�ðmÞ
m�1 ¼ ða1am=22 a�1

2 Þ�ðmÞ

¼ c�ðmÞ
m a2a

�1
1 ðc�ðmÞ

m Þ�1
h i

c�ðmÞ
m ða�1

2 Þ�ðmÞ

¼ c�ðmÞ
m a2a

�1
1 ða3a�1

1 Þ�1

¼ c�ðmÞ
m a2a

�1
3 ¼ �g�ðmÞ

m a2a
�1
3 :

(ii) Let �1 be the left-hand side of the equality (ii). Let

V ðuÞ ¼ g�1i1 �
2þu
2þuW

l
3þu; V 0ðuÞ ¼ g�1i1�1�

2þu
3þuW

l
3þu:

Then, we have

�1 ¼
X
u�0

ðV ðuÞ þ V 0ðuÞÞ:

There are three cases:

(a) 2þ u > l or 2þ u > n� 1,

(b) 2þ u � l and 2þ u < n� 1,
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(c) 2þ u � l and 2þ u ¼ n� 1.

Consider Case (a). If 2þ u > l, then 3þ u > lþ 1 and so Wl
3þu ¼ 0. Also, if

2þ u > n� 1, then �2þu
2þu ¼ �2þu

3þu ¼ 0. Therefore, we have V ðuÞ ¼ V 0ðuÞ ¼ 0.

Consider Case (b). For any i � 2, 1 � l � d, and any positive integer u with

lþ u � dþ 1 and iþ 1þ u � n� 1, we have by the equality a
�ðmÞ
i ¼ aiþ1a

�1
1 for

any m that

ðaiþ1a
�1
i Þ�l ¼ ðaiþ1a

�1
i Þ�ðil;...;ilþu�1Þ�lþu ¼ ðaiþ1þua

�1
iþuÞ

�lþu : ð16Þ

We have by (i) of this lemma and (16) that

g�1i1 ¼ ðg�ði1Þi1
Þ�2 ¼ �ðg�ði1Þi1�1a3a

�1
2 Þ�2

¼ �g�1i1�1a
�2þu
3þu ða

�2þu
2þu Þ

�1:

This implies that V ðuÞ þ V 0ðuÞ ¼ 0. Consider Case (c). Since 3þ u ¼ n, we have

�2þu
3þu ¼ 0 and hence V 0ðuÞ ¼ 0. Also, since n� 1 ¼ 2þ u � l � d and hence �2þu

2þu ¼
a�n�1

n�1 , we have

V ðuÞ ¼ g�1i1 a
�n�1

n�1W
l
n ¼WIð½1; n� 1�ÞWl

n ¼WIðP1;n�1ðlÞÞ:

If l � n� 1, putting these computations together, we have �1 ¼ WIðP1;n�1ðlÞÞ,
and so (ii) holds. Suppose l < n� 1. Then, �1 ¼ 0 since Case (c) does not occur,

and we have WIðP1;n�1ðlÞÞ ¼ 0 since P1;n�1ðlÞ is empty. Therefore, the equality

(ii) is proved.

(iii) Let l be a positive integer with dþ 3� n � l � d. Note that dþ 2� l �
n� 1. Let

VlðuÞ ¼ �1þu
dþ2�lþuW

l�1
2þug

�l
il
; V 0

l ðuÞ ¼ �1þu
dþ3�lþuW

l�1
2þug

�l
il�1
;

and let

�l ¼
X
u�0

ðVlðuÞ þ V 0
l ðuÞÞ:

There are three cases:

(a) 2þ u > l or dþ 2� lþ u > n� 1,

(b) 2þ u � l and dþ 2� lþ u < n� 1,
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(c) 2þ u � l and dþ 2� lþ u ¼ n� 1.

Consider Case (a). If 2þ u > l, then Wl�1
2þu ¼ 0. Also, if dþ 2� lþ u > n� 1,

then �1þu
dþ2�lþu ¼ �1þu

dþ3�lþu ¼ 0. Therefore, we have VlðuÞ ¼ V 0
l ðuÞ ¼ 0. In Case (b),

we have by (i) of this lemma and (16) that

g�lil ¼ ðg�ðilÞil
Þ�lþ1 ¼ �g�lil�1ða3a�1

2 Þ�lþ1�1�
�1
1

¼ �g�lil�1ða3þd�la�1
2þd�lÞ

�1�
�1
1 ¼ �g�lil�1ða

�1þu
dþ3�lþuða

�1þu
dþ2�lþuÞ

�1Þ�
�1
1 :

Therefore, noting that �1 ¼ �ðIÞ, we have by (5),

��ðIÞðVlðuÞÞ ¼ ��ðIÞðWl�1
2þug

�l
il
ða�1þudþ2�lþuÞ

��1
1 Þ

¼ ���ðIÞðWl�1
2þug

�l
il�1ða

�1þu
dþ3�lþuÞ

��1
1 Þ ¼ ���ðIÞðV 0

l ðuÞÞ:

Therefore, ��ðIÞðVlðuÞ þ V 0
l ðuÞÞ ¼ 0. In Case (c), clearly V 0

l ðuÞ ¼ 0. Since

�1þu
dþ2�lþu ¼ a�1þun�1 and the length of the block ½l; 1þ u� is ðd� lþ 1Þ þ 1þ u ¼
n� 1, we have

��ðIÞðVlðuÞÞ ¼ ��ðIÞða�1þun�1W
l�1
2þug

�l
il
Þ ¼ ��ðIÞðWl�1

2þug
�l
il
a
�1þu��1

1

n�1 Þ
¼ ��ðIÞðWl�1

2þuWIð½l; 1þ u�ÞÞ
¼ ��ðIÞðWIðPl;n�1ðdÞÞÞ:

If d < n� 1, Case (c) does not occur since dþ 2� lþ u ¼ n� 1 implies 2þ
u ¼ ðn� 1Þ � dþ l > l. Therefore, (iii) is proved by summing up these computa-

tions. �

The last two families of elements of ZFn necessary to state Lemma 5 are

Sl; Gl defined for integers l as follows:

Sl ¼
ð�ila�1

2 þ gil�1Þ�l if 1 � l � d,

0 otherwise,

(

Gl ¼
g�lil if 1 � l � d,

�1 if l ¼ dþ 1,

0 otherwise.

8><
>:
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Let ri;jðIÞ be the ði; jÞ-entry of the matrix �Jð�ðIÞÞ.

LEMMA 5.

ri;jðIÞ ¼
�Wdþ2�j

1 Sdþ3�j �Wdþ1�j
1 Gdþ2�j if i ¼ 1,X

u�0

�1þu
iþu Wdþ2�j

2þu Sdþ3�j þWdþ1�j
2þu Gdþ2�j

� �
þ �i;j�d if i � 2.

8><
>:

PROOF. We prove this lemma by induction on d. The case of d ¼ 1 follows

easily from Lemma 3. Assume that the lemma holds for d� 1, and we shall prove

it for d. Let I ¼ ði1; . . . ; idÞ be a sequence of positive integers. Let I 0 ¼ ði2; . . . ; idÞ.
Then, ri;jðI 0Þ is obtained from the right-hand side of this lemma by replacing �1þu

iþu
and �i;j�d with �

2þu
iþu and �i;j�ðd�1Þ respectively, and by adding one to the subscript

of each of W ’s. Note that by (10) and Lemma 3

�Jð�ðIÞÞ ¼ �Jð�ði1ÞÞ�ðI
0Þ �Jð�ðI 0ÞÞ ¼ A�1

i1
�Jð�ðI 0ÞÞ: ð17Þ

Consider the case of i ¼ 1. Let

MðlÞ ¼ ��1i1 W
l
2 þ ð�i1a�1

2 Þ�1
X
u�0

�2þu
3þuW

l
3þu þWIðP1;n�1ðlÞÞ

for l � 1 and MðlÞ ¼ 0 for l � 0. Then, we have by (17), Lemma 3, and

Lemma 4(ii) that r1;jðIÞ is equal to

��1i1 r1;jðI
0Þ � g�1i1 r2;jðI

0Þ � ð�i1a�1
2 þ gi1�1Þ�1r3;jðI 0Þ

¼ ���1i1 Wdþ2�j
2 Sdþ3�j þWdþ1�j

2 Gdþ2�j

� �
� g�1i1

X
u�0

�2þu
2þuW

dþ2�j
3þu Sdþ3�j þ �2þu

2þuW
dþ1�j
3þu Gdþ2�j

� �
þ �2;j�ðd�1Þ

" #

� ð�i1a�1
2 þ gi1�1Þ�1

X
u�0

�2þu
3þuW

dþ2�j
3þu Sdþ3�j þ �2þu

3þuW
dþ1�j
3þu Gdþ2�j

� �
þ �3;j�ðd�1Þ

" #

¼ �ðMðdþ 2� jÞSdþ3�j þ �j;dþ2S1Þ � ðMðdþ 1� jÞGdþ2�j þ �j;dþ1G1Þ:

Therefore, since �j;dþ2S1 ¼ �j;dþ2Sdþ3�j and �j;dþ1G1 ¼ �j;dþ1Gdþ2�j, we have

r1;jðIÞ ¼ �ðMðdþ 2� jÞ þ �j;dþ2ÞSdþ3�j � ðMðdþ 1� jÞ þ �j;dþ1ÞGdþ2�j:
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Since MðlÞ ¼
Pn�1

�¼1WIðP1;�ðlÞÞ ¼Wl
1 if l � 1 and W 0

1 ¼ 1, this is equal to

�Wdþ2�j
1 Sdþ3�j �Wdþ1�j

1 Gdþ2�j, which is the right-hand side of the equality of

the lemma in the case of i ¼ 1.

Consider the case of i � 2. We have

ri;jðIÞ ¼ �a�1i r1;jðI 0Þ þ riþ1;jðI 0Þ

¼ a�1i ðWdþ2�j
2 Sdþ3�j þWdþ1�j

2 Gdþ2�jÞ

þ
X
u�0

�2þu
iþ1þuðW

dþ2�j
3þu Sdþ3�j þWdþ1�j

3þu Gdþ2�jÞ þ �iþ1;j�ðd�1Þ:

It is easy to show that this is equal to the right-hand side of the equality in the

lemma in the case of i � 2. �

We shall complete the proof of Theorem 1. Note that Sdþ1 ¼ Sdþ2 ¼ 0. Let

L1 ¼
X�1
j¼3

X
u�0

�1þu
jþuW

dþ2�j
2þu ð�idþ3�ja

�1
2 Þ�dþ3�j ;

L2 ¼
X�2
j¼3

X
u�0

�1þu
jþuW

dþ2�j
2þu g

�dþ3�j
idþ3�j�1;

L3 ¼
X�3
j¼2

X
u�0

�1þu
jþuW

dþ1�j
2þu g

�dþ2�j
idþ2�j

;

where �1 ¼ �2 ¼ minfn� 1; dþ 1g; �3 ¼ minfn� 1; dg. Then, by Lemma 5,

trð �Jð�ðIÞÞÞ ¼ Wd
1 þ L1 þ L2 þ L3:

Let d1 ¼ dþ 3� �1 ¼ maxfdþ 4� n; 2g; d2 ¼ dþ 2� �3 ¼ maxfdþ 3� n; 2g. In

L2, we can change �2 to ��2 ¼ minfn; dþ 1g, since �1þu
nþu ¼ 0. Then, dþ 3� ��2 ¼ d2.

Putting l ¼ dþ 3� j in L1 and L2, and putting l ¼ dþ 2� j in L3, we have

L1 ¼
Xd
l¼d1

X
u�0

�1þu
dþ3�lþuW

l�1
2þuð�ila�1

2 Þ�l ;

L2 þ L3 ¼
Xd
l¼d2

X
u�0

�1þu
dþ3�lþuW

l�1
2þug

�l
il�1 þ �1þu

dþ2�lþuW
l�1
2þug

�l
il

� �
:

Let
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Q1 ¼
[d
l¼d1

[n�2

�¼dþ2�l
Pl;�ðdÞ; Q2 ¼

[d
l¼d2

Pl;n�1ðdÞ:

Since ��ðIÞð�1þu
dþ3�lþuW

l�1
2þuð�ila�1

2 Þ�lÞ is equal to

��ðIÞðWl�1
2þuWIð½l; 1þ u�ÞÞ ¼ ��ðIÞðWIðPl;dþ2�lþuðdÞÞÞ

if dþ 2� lþ u � n� 2, and equal to zero otherwise since �1þu
m ¼ 0 for m � n, we

have

��ðIÞðL1Þ ¼
Xd
l¼d1

Xn�2

�¼dþ2�l
��ðIÞðWIðPl;�ðdÞÞÞ ¼ ��ðIÞðWIðQ1ÞÞ:

Lemma 4(iii) implies that

��ðIÞðL2 þ L3Þ ¼
Xd
l¼d2

��ðIÞðWIðPl;n�1ðdÞÞÞ ¼ ��ðIÞðWIðQ2ÞÞ:

Since Wd
1 ¼ WIðPð1; dÞÞ and PðdÞ ¼ Pð1; dÞ [Q1 [Q2, these equalities prove

that ��ðIÞðtrð �Jð�ðIÞÞÞ is equal to ��ðIÞðWIðPðdÞÞÞ. Thus the proof of the theorem

is completed by (12) and Lemma 2(ii).

6. Reduction of the formula.

This section makes preparations for the proof of Proposition 2. We shall show

that, under the assumption of Proposition 2, the element
P

B2PðdÞWIðBÞ of ZFn
in the formula of Theorem 1 can be reduced so that Reidemeister equivalent

elements of Fn have the same coefficient. Hence, no cancellation occurs when the

reduced one is projected on ZRð�ðfÞÞ, which enables us to apply Lemma 1 to the

problem.

Consider first the case where n � 4 and i1; . . . ; id � 2. Let P0ðdÞ be the set of

partitions B ¼ fB1; . . . ; Bsg of Zd such that ðjBjj; jBjþ1jÞ 6¼ ð1; n� 2Þ for any

1 � j � s, where Bsþ1 ¼ B1. For partitions B 2 P0ðdÞ, we shall define elements

W 0
IðBÞ of ZFn which satisfy that the sums

P
B2PðdÞWIðBÞ and

P
B2P0ðdÞW

0
IðBÞ

have the same image under the projection ��ðIÞ. Suppose B ¼ ½p; q� is a block. If

jBj < n� 1, let SBðIÞ denote the set of integers J with 0 � J � ip � 2, and let

�BðJÞ ¼ c
�ðBÞ
J a

!ðBÞ
jBjþ1 2 Fn for any J 2 SBðIÞ. If jBj ¼ n� 1, let SBðIÞ denote the set
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of ðj; j0Þ 2 Z2 such that 2 � j � ip, 0 � j0 � ip0 � 2, ðj; j0Þ 6¼ ðip; 0Þ, and let �BðJÞ ¼
c
�ðBÞ
j c

�0ðBÞ
j0 a

!ðBÞ
n�1 2 Fn for J ¼ ðj; j0Þ 2 SBðIÞ, where �0ðBÞ 2 Bn is defined by

�0ðBÞ ¼
�pþ1 if p � d� 1,

e if p ¼ d.

�

For a partition B ¼ fB1; . . . ; Bsg, let

SBðIÞ ¼ SB1
ðIÞ � � � � � SBs

ðIÞ:

For an element J ¼ ðJ1; . . . ; JsÞ of SBðIÞ, define �BðJÞ 2 Fn by �BðJÞ ¼
�B1

ðJ1Þ � � ��Bs
ðJsÞ. For a block B ¼ ½p; q�, define W 0

IðBÞ 2 ZFn by

W 0
IðBÞ ¼

WIðBÞ ¼
X

J2SBðIÞ
g
�ðBÞ
J a

!ðBÞ
jBjþ1 if jBj < n� 1,

X
ðj;j0Þ2SBðIÞ

g
�ðBÞ
j g

�0ðBÞ
j0 a

!ðBÞ
n�1 if jBj ¼ n� 1.

8>>><
>>>:

Then, W 0
IðBÞ 2 ZFn is defined for B 2 P0ðdÞ by W 0

IðBÞ ¼W 0
IðB1Þ � � �W 0

IðBsÞ,
where B ¼ fB1; . . . ; Bsg with 1 � p1 < � � � < ps � d.

For w 2 Fn, define an integer eðwÞ as the exponent sum of w with respect to

the standard generators �1; . . . ; �n. Note that eðwÞ can be defined also by

T ðwÞ ¼ teðwÞ, where T is the ring homomorphism introduced in Example 4.

LEMMA 6. Let n � 4. Assume �ðfÞ ¼ 
�1�	�ðIÞ
, where 	 2 Z ; 
 2 Bn,

I ¼ ði1; . . . ; idÞ with i1; . . . ; id � 2. Then, we have

(i)

L ðfÞ ¼ ���ðfÞ a	n
X

B2P0ðdÞ
W 0

IðBÞ

0
@

1
A:

(ii) For B 2 P0ðdÞ, we have

W 0
IðBÞ ¼

X
J2SBðIÞ

ð�1Þdþeð�BðJÞÞ�BðJÞ:
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(iii) For any B 2 P0ðdÞ and any J 2 SBðIÞ, the coefficient of

��ðfÞða	n�BðJÞ
Þ in L ðfÞ is non-zero.

PROOF.

(i) For a partition B, let KðBÞ be the set of integers k 2 Zd such that either

½k; kþ n� 2� is a block in B, or both ðkÞ and ½kþ 1; kþ n� 2� are blocks in B,

where integers are taken modulo d. Let K ðdÞ be the set of subsets K of Zd such

that, if K is written as K ¼ fk1; . . . ; ktg, where 1 � k1 < � � � < kt � d, then krþ1 �
kr � n� 1 for any 1 � r � t, where we put ktþ1 ¼ k1 þ d. We assume that the

empty set is contained inK ðdÞ. Note that a subsetK of Zd is contained inK ðdÞ if
and only if there is a partition B with KðBÞ ¼ K. For K 2 K ðdÞ, let PK be the

set of partitions B with KðBÞ ¼ K.

Assume d � n� 1. Let K ¼ fk1; . . . ; ktg 2 K ðdÞ, where k1 < � � � < kt. For

1 � r � t, let BðrÞ ¼ ½kr; kr þ n� 2� and let Xr ¼ WIðBðrÞÞ 2 ZFn. Also, define

Yr 2 ZFn by

Yr ¼
WIððdÞÞWIð½1; n� 2�Þ�

�1
1 if r ¼ t; kt ¼ d,

WIððkrÞÞWIð½kr þ 1; kr þ n� 2�Þ otherwise.

(

For 1 � k; l � d with k � lþ 1, define Zðk; lÞ 2 ZFn by Zðk; lÞ ¼ WIðPðk; lÞÞ if

k � l and Zðk; lÞ ¼ e if k ¼ lþ 1. For r with 1 � r < t, let Zr ¼ Zðkr þ n� 1;

krþ1 � 1Þ. If kt þ n� 2 < d, let Z0 ¼ Zð1; k1 � 1Þ and Zt ¼ Zðkt þ n� 1; dÞ. If

kt þ n� 2 � d, let Z0 ¼ Zðkt þ n� 1� d; k1 � 1Þ and Zt ¼ e. Let

�0
K ¼

Yt�1

r¼1

ðXr þ YrÞZr; �K ¼ Z0�
0
KðXt þ YtÞZt:

In the case of kt < d, it is easy to see that
P

B2PK
WIðBÞ ¼ �K. In the case of

kt ¼ d, we have
P

B2PK
WIðBÞ ¼ Z0�

0
KXt þWIð½1; n� 2�ÞZ0�

0
KWIððdÞÞ. By (5),

this has the same image as �K under the projection ��ðIÞ. Therefore, in either

case, we have

��ðIÞð
P

B2PK
WIðBÞÞ ¼ ��ðIÞð�KÞ: ð18Þ

Note that WIðBÞ ¼ W 0
IðBÞ for any block B in B 2 PK with B disjoint from

Bð1Þ [ � � � [ BðtÞ. Also, letting �r ¼ �ðBðrÞÞ; �0
r ¼ �0ðBðrÞÞ and !r ¼ !ðBðrÞÞ, we

have

1234 T. MATSUOKA



Xr þ Yr ¼ g�rikr a
!r
n�1 þ ��rikr ð�ikrþ1

a�1
2 Þ�

0
ra!rn�1

¼
X

ðj;j0Þ2SBðrÞðIÞ
g�rj g

�0
r

j0 a
!r
n�1

¼ W 0
IðBðrÞÞ:

Hence, we have the equality

�K ¼
X

B2PK\P0ðdÞ
W 0

IðBÞ:

This and (18) imply that
P

B2PK
WIðBÞ and

P
B2PK\P0ðdÞW

0
IðBÞ have the same

image under ��ðIÞ. Furthermore, since the disjoint unions [K2K ðdÞPK and

[K2K ðdÞðPK \P0ðdÞÞ coincide with PðdÞ and P0ðdÞ respectively, we have

X
B2PðdÞ

WIðBÞ ¼
X

K2K ðdÞ

X
B2PK

WIðBÞ;
X

K2K ðdÞ

X
B2PK\P0ðdÞ

W 0
IðBÞ ¼

X
B2P0ðdÞ

W 0
IðBÞ:

Therefore,
P

B2PðdÞWIðBÞ and
P

B2P0ðdÞW
0
IðBÞ have the same image under

��ðIÞ, and (i) follows from Theorem 1.

In the case of d < n� 1, it is trivial that P0ðdÞ ¼ PðdÞ and W 0
IðBÞ ¼WIðBÞ

for any partition B. Hence, the formula (i) is identical with that in Theorem 1.

(ii) Let B be a block. Then, by the definition of �BðJÞ, we see that W 0
IðBÞ is

written in the formW 0
IðBÞ ¼

P
J2SBðIÞ �ðJÞ�BðJÞ, where �ðJÞ are integers. We have

�ðJÞ ¼ ð�1ÞjBjþeð�BðJÞÞ: ð19Þ

In fact, if jBj < n� 1, we have �ðJÞ ¼ ð�1ÞJþ1 and this is equal to ð�1ÞjBjþeð�BðJÞÞ
since eð�BðJÞÞ ¼ J þ jBj þ 1. Also, if jBj ¼ n� 1, �ðJÞ ¼ ð�1Þjþj

0
and this is equal

to ð�1ÞjBjþeð�BðJÞÞ since eð�BðJÞÞ ¼ jþ j0 þ n� 1 ¼ jþ j0 þ jBj. Let B ¼ fB1; . . . ;

Bsg 2 P0ðdÞ and J ¼ fJ1; . . . ; Jsg 2 SBðIÞ. Then, since jB1j þ � � � þ jBsj ¼ d and

eð�B1
ðJ1ÞÞ þ � � � þ eð�Bs

ðJsÞÞ ¼ eð�BðJÞÞ, the coefficient of �BðJÞ in W 0
IðBÞ is

equal to �ðJ1Þ � � � �ðJsÞ, which is equal to ð�1Þdþeð�BðJÞÞ by (19). Thus, (ii) is

proved.

(iii) Let �ðIÞ be the set of pairs ðB;JÞ with B 2 P0ðdÞ, J 2 SBðIÞ. We say

two elements ðB;JÞ, ðB0;J 0Þ 2 �ðIÞ are equivalent if �BðJÞ is Reidemeister

equivalent to �B0 ðJ 0Þ with respect to �ðIÞ. This defines an equivalence relation on

�ðIÞ. Denote by ½ðB;JÞ� the equivalence class represented by ðB;JÞ. Let

nðB;JÞ be the coefficient of ��ðfÞða	n�BðJÞ
Þ in �L ðfÞ. Then, by (i), (ii) of this
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lemma and Lemma 2(i), nðB;JÞ is equal to the sum of the coefficient of �B0 ðJ 0Þ
in W 0

IðB0Þ taken over the elements ðB0;J 0Þ of ½ðB;JÞ�. Since this coefficient is

equal to ð�1Þdþeð�B0 ðJ 0ÞÞ by (ii), we have

nðB;JÞ ¼
X

ðB0;J 0Þ2½ðB;JÞ�
ð�1Þdþeð�B0 ðJ 0ÞÞ: ð20Þ

For any ðB0;J 0Þ 2 ½ðB;JÞ�, we have eð�B0 ðJ 0ÞÞ ¼ eð�BðJÞÞ, since �B0 ðJ 0Þ is

Reidemeister equivalent to �BðJÞ and the exponent sum of an element of Fn is

preserved under the action of Bn on Fn. Therefore, (20) implies that nðB;JÞ is
equal to ð�1Þdþeð�BðJÞÞ]½ðB;JÞ�, which is clearly non-zero. �

Consider next the case where n ¼ 3 and i1; . . . ; id � 3. Let ZdðIÞ denote the

set of J ¼ ðj1; . . . ; jdÞ 2 Zd which satisfy 2 � jl � il for any 1 � l � d, and let SðIÞ
be the set of J ¼ ðj1; . . . ; jdÞ 2 ZdðIÞ with ðjl; jlþ1Þ 6¼ ðil; 2Þ for any 1 � l � d, where

jdþ1 ¼ j1. For J ¼ ðj1; . . . ; jdÞ 2 Zd, let jJ j ¼ j1 þ � � � þ jd, cðJÞ ¼ c�1j1 � � � c
�d
jd

and


ðJÞ ¼ g�1j1 � � � g
�d
jd
, where �l ¼ �lðIÞ.

LEMMA 7. Let n ¼ 3. Assume �ðfÞ ¼ 
�1�	�ðIÞ
, where 	 2 Z ; 
 2 B3,

I ¼ ði1; . . . ; idÞ with i1; . . . ; id � 3. Then, we have

ðiÞ L ðfÞ ¼ ð�1Þdþ1
X
J2SðIÞ

ð�1ÞjJ j��ðfÞða	ncðJÞ

Þ.

ðiiÞ For any J 2 SðIÞ, the coefficient of ��ðfÞða	ncðJÞ

Þ in L ðfÞ is non-zero.

PROOF. (i) For a partition B, let KðBÞ be the set of l 2 Zd with

ðl; lþ 1Þ 2 B. For J 2 ZdðIÞ, let LðJÞ be the set of l 2 Zd with ðjl; jlþ1Þ ¼ ðil; 2Þ.
Also, let PJ be the set of B 2 PðdÞ with KðBÞ 	 LðJÞ. For l 2 Zd, we have

WIððlÞÞ ¼
Pil

j¼2 g
�l
j andWIððl; lþ 1ÞÞ ¼ g�lil a

�lþ1

2 ¼ �g�lil g
�lþ1

2 , where we put �lþ1 ¼ e if

l ¼ d. Therefore, for any partition B, we have WIðBÞ ¼ ð�1Þ]KðBÞ X
J :B2PJ


ðJÞ,

and hence

X
B2PðdÞ

WIðBÞ ¼
X

B2PðdÞ

X
J :B2PJ

ð�1Þ]KðBÞ
ðJÞ ¼
X

J2ZdðIÞ
�ðJÞ
ðJÞ;

where �ðJÞ ¼
P

B2PJ
ð�1Þ]KðBÞ. If J 2 ZdðIÞ � SðIÞ, then �ðJÞ is equal to some

mutiple of the sum of ð�1Þ]A over the subsets A of LðJÞ. Since LðJÞ is not empty,

this sum is equal to zero. If J 2 SðIÞ, PJ consists of a single partition

fð1Þ; . . . ; ðdÞg, and hence �ðJÞ ¼ 1. Therefore, Theorem 1 and the equality
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ðJÞ ¼ ð�1ÞdþjJ jcðJÞ imply the equality (i).

(ii) can be proved similarly as Lemma 6(iii). �

7. Proof of Proposition 2.

We first show that it is enough for the proof to consider the case of 	 ¼ 0,

namely the case where �ð’Þ is conjugate to �ðIÞ. The reason is given as follows:

Note that the period mð’Þ does not depend on the choice of an isotopy f’tg, but
the braid �ð’Þ and the integer �ð’Þ depend on it. To clarify the dependence on an

isotopy, denote them by �ð’; f’tgÞ and �ð’; f’tgÞ respectively. Let Rt : D! D be

the rotation of the disk with angle 2�t. Then, if we denote by f’0
tg the composition

of the isotopies f’tg and fR�	tg, then �ð’; f’0
tgÞ is equal to ��	�ð’; f’tgÞ, and

hence it is conjugate to �ðIÞ. Therefore, if the proposition is proved in the case of

	 ¼ 0, then �ð’; f’0
tgÞ ¼ LCMfd; n� 2g=ðn� 2Þ, and hence �ð’; f’tgÞ ¼ mð’Þ	þ

�ð’; f’0
tgÞ ¼ mð’Þ	þ LCMfd; n� 2g=ðn� 2Þ. Thus, we can assume �ð’Þ ¼


�1�ðIÞ
 for some 
 2 Bn.

Let �d ¼ LCMfd; n� 2g, m ¼ �d=d, and � ¼ �d=ðn� 2Þ. We shall prove that the

coefficient of ��ð’mÞða�nÞ in L ð’mÞ is non-zero. Then, since m and � are relatively

prime, the assertion of the proposition follows from Lemma 1. Let p be an integer

with 1 � p � d� nþ 3 and let q ¼ pþ n� 3. Then, we have

a
�p
1 a

�q
n�1 ¼ a

�p
1 ða�ðiqÞn�1 Þ

�qþ1 ¼ a
�p
1 ðana�1

1 Þ�qþ1 ¼ a
�p
1 anða

�qþ1

1 Þ�1; ð21Þ

where we put �dþ1 ¼ �1.

Assume that n � 4 and i1; . . . ; id � 2. Define integers �i1; . . . ; �i�d by �il ¼ i½l�,

where ½l� is the integer with 1 � ½l� � d and ½l� 
 lmodulo d. Let �I ¼ ð�i1; . . . ; �i�dÞ. By
Lemma 6(iii), it is enough for the proof to show that ��ð’mÞða�nÞ ¼ ��ð’mÞð�BðJÞ
Þ
for some B 2 Pð�dÞ and some J 2 SBð�IÞ. We see by Lemma 2 that this equality is

equivalent to

��ð�IÞða�nÞ ¼ ��ð�IÞð�BðJÞÞ: ð22Þ

For 1 � r � �, let pr ¼ ðr� 1Þðn� 2Þ þ 1; qr ¼ rðn� 2Þ and Br ¼ ½pr; qr�. Note that

all of these blocks have length n� 2, and fB1; . . . ; B�g is a partition of Z �d. Let

Br ¼
fBrg if �ipr � 3,

fðprÞ; ½prþ1; qr�g if �ipr ¼ 2.

(

Then Br is a partition of fpr; . . . ; qrg, and if we put B ¼ B1 [ � � � [B�, we have
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B 2 P0ð�dÞ. Let SBr
ð�IÞ be SBr

ð�IÞ if �ipr � 3, and be SðprÞð�IÞ � S½prþ1;qr�ð�IÞ if �ipr ¼ 2.

For r ¼ 1; . . . ; �, let �r ¼ a
�pr
1 a

�qr
n�1. We shall show that there exists an element

Jr of SBr
ð�IÞ with �Br

ðJrÞ ¼ �r. In the case of �ipr � 3, let Jr ¼ 1. Then,

�Br
ðJrÞ ¼ �Br

ð1Þ ¼ c
�pr
1 a

�qr
n�1 ¼ �r. In the case of �ipr ¼ 2, let Jr ¼ ð0; 0Þ. Then,

�Br
ðJrÞ ¼ �ðpÞð0Þ�½prþ1;qr�ð0Þ ¼ a

�pr
2 a

�qr
n�2. Since

ða�1
1 a2Þ�ð2Þ ¼ ða3a�1

1 Þða2a�1
1 Þ�1ða3a�1

1 Þ�1
h i

a3a
�1
1 ¼ a3a

�1
2 ;

and hence

ða�1
1 a2Þ�pr ¼ ðða�1

1 a2Þ�ð2ÞÞ�prþ1 ¼ ða3a�1
2 Þ�prþ1 ¼ ðan�1a

�1
n�2Þ

�qr ;

we have

a
�pr
2 a

�qr
n�2 ¼ ða1a�1

1 a2Þ�pr a�qrn�2 ¼ a
�pr
1 ða�1

1 a2Þ�pr a�qrn�2 ¼ �r:

Therefore, �Br
ðJrÞ ¼ �r.

Let J ¼ ðJ1; . . . ; J�Þ. Then, J 2 SBð�IÞ and, since �Br
ðJrÞ ¼ �r, we have

�BðJÞ ¼ �1 � � � ��. Applying (21) to each pair pr; qr, we have

�BðJÞ ¼
Y�
r¼1

a
�pr
1 anða�qrþ1

1 Þ�1:

Since p1 ¼ 1; qr þ 1 ¼ prþ1; q� þ 1 ¼ �dþ 1, this is equal to a�11 a
�
na

�1
1 . Therefore, by

(5), �BðJÞ is Reidemeister equivalent to ða�1
1 Þ�1ða�11 a�nÞ ¼ a�n with respect to �ð�IÞ.

Therefore, (22) is proved.

Assume that n ¼ 3 and i1; . . . ; id � 3. In this case, �d ¼ d ¼ � andm ¼ 1. Using

Lemma 7(ii) and Lemma 2, we see that it is enough for the proof to show that

��ðIÞða�nÞ ¼ ��ðIÞðcðJÞÞ for some J 2 SðIÞ. Let J ¼ ð3; . . . ; 3Þ 2 SðIÞ. Then, by

(21),

cðJÞ ¼ c�13 � � � c�d3 ¼
Yd
l¼1

a�l1 a3ða
�lþ1

1 Þ�1 ¼ a�11 a
d
3a

�1
1 :

Therefore, ��ðIÞðcðJÞÞ ¼ ��ðIÞða�11 ad3a�1
1 Þ ¼ ��ðIÞðad3Þ. Since d ¼ �, the proof is

completed.
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8. Bounds for the Nielsen number.

As a byproduct of Lemma 6 and Lemma 7, we can obtain the following upper

and lower bounds for the Nielsen number NðfÞ.

THEOREM 2. Assume that �ðfÞ is conjugate to �	�ðIÞ.

(i) If n � 4 and i1; . . . ; id � 2, thenX
B2P0ðdÞ

]SBðIÞ � ð2n� 2Þ � NðfÞ �
X

B2P0ðdÞ
]SBðIÞ:

(ii) If n ¼ 3 and i1; . . . ; id � 3, then ]SðIÞ � 4 � NðfÞ � ]SðIÞ.

PROOF. We prove (i). Let � : �ðIÞ ! Rð�ðfÞÞ be the map defined by

�ððB;JÞÞ ¼ ��ðfÞða	n�BðJÞ
Þ. Let �0ðIÞ be the set of ðB;JÞ 2 �ðIÞ with

]½ðB;JÞ� > 1. Let R0ð�ðfÞÞ be the set of Reidemeister classes � with Fix�ðfÞ
having index less than �1. We shall show that R0ð�ðfÞÞ coincides with the image

of �0ðIÞ under �. As we have shown in the proof of Lemma 6 (iii), the coefficient

nðB;JÞ of �ððB;JÞÞ in L ðfÞ is equal to ð�1Þdþ1þeð�BðJÞÞ]½ðB;JÞ�. On the

other hand, nðB;JÞ is equal to indðFix�ððB;JÞÞðfÞÞ by its definition. Hence, we

have

indðFix�ððB;JÞÞðfÞÞ ¼ ð�1Þdþ1þeð�BðJÞÞ]½ðB;JÞ�: ð23Þ

This implies that �ððB;JÞÞ 2 R0ð�ðfÞÞ if and only if ð�1Þdþ1þeð�BðJÞÞ ¼ �1 and

]½ðB;JÞ� > 1. The former condition ð�1Þdþ1þeð�BðJÞÞ ¼ �1 is redundant, since the

index of any fixed point class of f is less than two (Jiang and Guo [17]). Thus we

have proved the equality R0ð�ðfÞÞ ¼ �ð�0ðIÞÞ.
�0ðIÞ is a disjoint union of equivalence classes ½ðB1;J1Þ�; . . . ; ½ðBm;JmÞ�,

where m ¼ ]�ð�0ðIÞÞ. We have the following inequality due to [17] (see the proof

of Theorem 4.1 there):

X
�2R0ð�ðfÞÞ

ðindðFix�ðfÞÞ þ 1Þ � 2�ðDnÞ ¼ 2� 2n:

This inequality and (23) imply that 2� 2n �
Pm

i¼1ð�]½ðBi;J iÞ� þ 1Þ ¼ �]�0ðIÞ þ
m, and hence we have ]�ð�0ðIÞÞ ¼ m � ]�0ðIÞ þ 2� 2n. Therefore, since � is

injective on �ðIÞ � �0ðIÞ, we have by Lemma 6(iii) that

NðfÞ ¼ ]�ð�ðIÞÞ ¼ ]ð�ðIÞ � �0ðIÞÞ þ ]�ð�0ðIÞÞ � ]�ðIÞ þ 2� 2n:
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Also, it is obvious that NðfÞ � ]�ðIÞ. Since ]�ðIÞ ¼
P

B2P0ðdÞ ]SBðIÞ, we have the
bounds in (i).

(ii) can be proved similarly. �
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