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§0. Introduction.

Bony and Schapira has proved that the Cauchy problem is well-posed
for hyperbolic operators with variable coefficients in the framework of hyper-
functions. In their paper they took up the defining functions of hyperfunctions,
and by applying their refined version of the Cauchy-Kovalevsky theorem they
proved that the solutions with the initial data which are the defining functions
of hyperfunction data become also the defining functions of sought for hyper-
function solutions. In this paper, their results are extended to the case of
micro-hyperbolic pseudo-differential operators; namely we will prove that in
the framework of microfunctions the Cauchy problem is well-posed for the
pseudo-differential operators of that type. This result implies the result of
Bony and Schapira about the hyperbolic differential operators.

The essential step in our argument is in the construction of the elementary
solution for the Cauchy problem. As a by-product of this method, we obtain
a rather wide class of solvable pseudo-differential operators, whose null solu-
tions propagate in one-sided direction along the “bicharacteristics” (if it exists).

Generalization of the results in this paper to the system of pseudo-differ-
ential equations will be dealt with in the subsequent paper.

A pseudo-differential operator P(x, D,) is said to be partially micro-hyper-
bolic at (x,, v/—1&,) with respect to the direction {¥, dx)+<p, d&) (see §1
for the precise definition) if P,(x++/—Iep, vV—1&-+¢?) never vanishes for
every (x, &) near (x, &) and 0<e< 1. We reduce it, by means of a quantized
contact transformation, to an operator of the form P=D,—A(x, D) where A
is a matrix of pseudo-differential operators of order =1 commuting with x,
and such that all the eigenvalues of the principal symbol A,(x, v/—1&) have
non-negative real part. Then we construct a formal solution G(x, D")=>a.(x)D’*

such that PG=0 and G|;-c=1in §2. In §3 and §4, we will show that GD;*
can be realized as a microfunction, which becomes an elementary solution of
P. In this way, we obtain the following theorems and
5.5).

&> Supported in part by the Sakkokai foundation.
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THEOREM. If P is partially micro-hyperbolic, then P has an elementary
solution, whose support is contained in a half space.

THEOREM. If P(x, D)=D,—A(z, D) is micro-hyperbolic with respect to the
x,-direction, that is, if all the eigenvalues of A(x, ~—1&') are purely imaginary,
then we obtain an elementary solution E(x, y’) for the Cauchy problem:

PE(x,y")=0
E(x, 3] 2=0=0(x'—y").

If P is a pseudo-differential operator with constant coefficients, we can
construct an elementary solution without any difficulty by using plane waves
(See Andersson [1], Kawai [2], Sato-Kashiwara-Kawai Chap. I). If P is not
with constant coefficients, we cannot expect that P has always a good phase
function because we do not assume that P is with simple characteristics.
Therefore, we must abandon the usual method of construction of the elementary
solution by using the phase function of P. We think the employment of the
phase function in constructing elementary solutions is a means for “obtaining
the boundary value” of pseudo-differential operators defined in a complex
domain, which we shall perform in this paper.

The authors should like to express their heartiest thanks to Mr. Tetsuji
Miwa and Mr. Toshio Oshima for having read the manuscript very carefully.

§1. Definition of a micro-hyperbolic pseudo-differential operator
and a partially micro-hyperbolic pseudo-differential operator.

First we will give the notations which are used in this paper. We denote
by M a real analytic manifold of dimension # and by X a complex neighbour-
hood of M. We will denote by L the real analytic manifold S¥X=+/—1S*M,
which is the conormal spherical bundle of M in X. Let A be a complex neigh-
borhood of L. The canonical map from L to the cotangential projective bundle
P*X of X, can be extended to a holomorphic map from /4 to P*X. Since this
map is a local isomorphism, we often identify 4 with P*X. @y (resp. ¥%)
denotes the sheaf of rings of pseudo-differential operators (resp. of finite order)
and often abbreviated to & (resp. ¢7). (See Sato-Kawai-Kashiwara [1], which
will be referred to as S-K-K).

Since @ (resp. ¢/) is a sheaf of rings on P*X, we can consider it as a
sheaf of rings on 4. Note that the sheaf of microfunctions €y, which is a
sheaf on L, is a @- (resp. #7-) Module. We will denote by i the real monoi-
dal transform of A with center L.

DerFINITION 1.1. Let Dt be a system of pseudo-differential equations (that
is, an admissible ?-Module), V be the support of Mt and x+ +/—1v0 be a point
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of ~/—1SL=S;/4. We say that M is partially micro-hyperbolic at x-+ +/—1v0
if x4 +/—1v0 is not contained in the closure of V—L in 4. If v satisfies the
relation (v, w;> =0 (w; is the canonical 1-form on L) and M is partially micro-
hyperbolic at x++/—1v0 and at x— +/—1v0 at once, then M is called micro-
hyperbolic at x++/—1v0. A (square matrix of) pseudo-differential operator P
is said to be (partially) micro-hyperbolic at x+ +/—1v0, if so is the system of
pseudo-differential equations Pu=0. In particular, if we set V the zeros of
the principal symbol of P, and V satisfies the above condition, then P is
(partially) micro-hyperbolic.

In order to describe the situation which we will encounter sometimes in
this paper, we will give the following notation. Let M be a real analytic
manifold and N be its submanifold, N be the real monoidal transform of M
with center N and G be a closed subset in M. (See S-K-K [1] Chap. I §1.2.)
The intersection of SyM and the closure of G—N in N M is called normal set
of G along N and denoted by SyG. The polar of SyG is called the conormal
set of G along N and denoted by S¥G. Therefore we have

SEG={(x, poo) e S¥M; (& 7> <0  for any x+&0 SyG}.

According to this terminology, It is partially micro-hyperbolic at x- v/ =100 if
the normal set of the support of M along L does not contain x-+ +/—1v0.

Let f: M’— M be a real analytic map and N’ and N be submanifolds of M’
and M respectively such that f(N')C N. Then there is a map Sy M'—Sy. /"Y(N)
—SyM, which is denoted by ¢. Let G’ and G be closed subsets of M’ and M
respectively. If G'C f%(G), then we have Sy.G' C ¢ (SyG)\I Sy, fFU(N). If fis
smooth and G'=f"%G), then Sy.G'-—-Sy.f'(N)=q*(SyG). These facts are
easily obtained from the fact that there exists a canonical continuous map

N M —(fYNY—N')—Sy fHN) —> ¥ M,

In order to describe the results of our paper, we will give several explana-
tions of purely imaginary contact manifolds.

L=+/—1S*M has a purely imaginary contact structure. It means that
there are given a principal R*-bundle L of L and a purely imaginary 1-form &
on L satisfying

(1.1) # is homogeneous of degree 1, that is, 8(c)=cf(2) for (¢, )eR* X L;
(1.2) 0 vanishes nowhere;
(1.3) (d6)™ vanishes nowhere, where 27 is the dimension of L.

We call L the associated purely imaginary symplectic manifold. A 1-form
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g on L is said to be a canonical 1-form if the pull back of w; to L is 8 up
to a non-vanishing function as multiple. In fact it suffices to take THX—M

as L, and the canonical 1-form §=+/—1¢¢&, dx) = «/:Té &;dx;. In this nota-
=

tion (xy, -+, x,) is a coordinate system of M and (&,, -, &,) the fiber coordinate
system of T*M.

There is a canonical isomorphism A from T*L to v—1TL defined by
no Ao’ A(dO)" = (H(w), w’>(do)" .

Using the local coordinate system (x, -+, %, &, -+, &,) such that 8=
+/—14¢&, dx), this isomorphism is represented by

Ao 1 @
H. dx]w ‘\/__1 aE] ’

1 0 -
dgj‘r '—'\7:1* axj (]:19 2)"'!“’)'

H induces an isomorphism S*L ~ +/—1SL. We denote by L X L the quo-
tient of LX L by the group R*, where R* operates on L XL under the law

(¢, %y, X,) — (cxy, cx,)  for ce R* and x, x, L.

Since L=+/—1S*M, LR L is isomorphic to ~/—IS*(MxXM)—Mx ~/—1S*M

— +/—1S*Mx M. In this paper, we identify these two manifolds by
zxz‘ > (xh '\/——1<Ely dx1> OO) x(xZ) '\/:-—]-<§21 dx2>oo)
— (xy, X3 \/:I<El, dx,yoo—L&,, dx,y 00)) & NV —=1T*MX ~/—1T*M .

Let p, and p, be the first and the second projections from LX L to L
respectively. We will use the same letter p, to express the projection from
LxL to L. LKL isalso a purely imaginary contact manifold with the canonical

form 0,5, =p¥(0.)—p*(0,). We identify L with a submanifold of LXL by the
diagonal embedding x—(x, x). We identify S*L with IZ>§S;§(L>A<L):S*I:(£><£)

by T*L>w—pfo—piwc Ti(LxL). Analogously we identify L X Si(L K L)
=S;(Lx L) with SL by T(LXL)= v—psv—p,ev < TL. Under the map f,>L<S*L
—>S*f,%'Z>L< S¥(LXL), we consider S*L as a subbundle of S¥(LXL) of codi-

mension 1. Let © be the subbundle in S¥(LX L) defined by {++—10,5.}. ©
is contained in S*L, that is {++/—160.}. Then there is a canonical map

S¥LRXL)—6 — +/—1SL induced by Ti(LxL)= T*Zi ~V=1ITL— ~v=ITL.
We denote it by H. Note that the image of S*L—6 under H is the orthogonal
bundle 6* of O, that is {x+iv0; (v, )=0}. The isomorphism H: T*L~ +—=1TL
induces an isomorphism S¥(LX L)~ S, (LX L), which is also denoted by A
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DEFINITION 1.2. Let x be a point in L and I" be a subset of S¥LXL)
over x. We denote by A, the set of all germs K of C%™, at x such that the
fiber of the conormal set of the support of K over x contains a neighborhood
of the antipodal set of I'. It is evident that Jlr:{QILﬂg. If 4 is a subset of
v/ —1S,L, then Ag-1¢4 is denoted by .% 4. B

The supports of the elements in 4y are so restricted that we can define
the composition of two elements of <Ay under which <4, becomes a ring.
Since the following lemma which assures the composition of two kernel func-
tions is an easy consequence of S-K-K [1] Chap. 1 §2, we state it without
proof.

LEMMA 1.3. Let LRLXL be the quotient of LXLXL by R*, i, baes and
Pis be the canonical projections from LXLXL to LXL defined by (x,, X5, Xs)r
(x5, x5), (X5, X5) and (xy, x;) vespectively. Then there is a canonical bilinear homo-
morphism, which is a “product of operators”:

Plsz(PTz‘C’Eﬁ'Z‘&Xm‘s‘C’%& I 512’;'124.

LEMMA 14. Let K, (v=1,2) be a germ of Ci¢™; at x. Let G, be its sup-
port. If S;G:N\(S.G.)*=0 at x, then

Kz, x7)={ Ki(x x)K(x', x7)

makes sense as a germ of C%y at x, and the normal set of the support of K
along L 1is in {(S;G))z, (SiGo)ry. (Here (A, BY denotes the union of A, B and
arcs joining a point of A and a point in B.)

PrOOF. It suffices to show that pEl (L) pui(G)Npal(G,) C L and that if
we set G:pls(ple(GJﬂpi;(Gz)) then (S5,G),C<{(S:G1)s (S1G2)ey. Let &, and &,
be tangent vectors. Then we have S, (p3H(G))C{(x, x, x;(&,0,&,)0) e
SLLKLXL); &=0 or £§0&S.,(G)} and Sp(pu'(G))CTH{(x, x, x;(6,0,&)0€
SULRLKL); §=0 or —&0&S5,(Gy)}. Therefore Sp(p5(G)Npu(G.)C
{(x, x, x;(£,0,8)0) SULXLKXL); §&=0 or &=0, or (§,0= S.(G,) and —&,0
e S.(G,)}.  Therefore  S.(pp(G) NP (GNP’ (L) TH{(x, x, x; (&4, 0, £:)0) €
SULRLXL); £,0= S(Gy), —£,0€ S,(G,), and & —&, =0} =0, which implies the
first statement.

Moreover (Si(p:(pE(G)ND5E(G,))) is contained in  {(x, x; (& 0)0) e
SL(L§< L), §=§—&, where (§,=0o0r §,0€ 5,(G,)) and (§,=0 or —£,0€5.(Go)}.
Therefore the second statement follows. Q.E.D.

By,.the preceding lemma, we immediately obtain the following

PROPOSITION 1.5. Ay is a ring by the operation (K,(x, x"), K,(x, x))— K(x, x")

:jl](l(x, NK(x!, x7), if I is not empty.

If the condition on the supports of the kernels and microfunctions is im-
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posed suitably, we can define their operations on microfunctions.

DEFINITION 1.6. Let x be a point in L and I' be a subset in S¥L. The
set of all germs u(x) of Cy at x satisfying the following conditions is denoted
by Mr: The normal set of the support of u(x) along {x} does not intersect
the polar of I'.

Using this terminology we have

PROPOSITION 1.7. My is an Ap-module by the operation

(K(x, x")dx’, u(x)) —— (Ku)(x):fK(x, xNu(x)dx' .

This is an easy consequence of the following lemma :

LEMMA 1.8. Let K(x, x")dx’ and u(x) be germs of CSy%y and Cy at x respec-
tively. Denote by G and Z the supports of K and u respectively. Suppose that
SLGmﬁ(@):ﬂ and that the image E of S;(G) under the canonical projection
SL(LS?L)I—ﬁ(@)x—»SxL, does not intersect the antipodal of S,Z. Then Ku can
be defined and the normal set of the support of Ku along {x} is contained in
{E, S,Z>.

Since this is proved in the same way as we omit the proof.
The (partial) micro-hyperbolicity is expressed by using the purely imaginary
tangential sphere bundle in [Definition 1.1 But it is more natural to use the
cotangential one. Therefore, we use sometimes the following terminology.

DEFINITION 1.9. Let Tt be a system of pseudo-differential equations. Let
x be a point in L and let I be a connected set in S¥L—6 (or more generally
in SYLXL),—O). We say that M is partially micro-hyperbolic at x with
respect to the direction in I’ if MM is partially micro-hyperbolic at any
x+ ~/—1v0 contained in H(IM)%

§2. Formal elementary solution.

In this section, we construct an elementary solution as a formal series of
pseudo-differential operators, and in the next two sections we will show that
the elementary solution thus constructed formally can be realized as micro-
function if the operator is microhyperbolic. (See Treves [1] for related topics.)

Let P(x, D,) be a (matrix of) pseudo-differential operator. We may assume
without loss of generality that the surface {x;=0} is non characteristic with
respect to P(x, D,). Then P(x, D,;) can be represented as

S(x, D){DP+Ay(x, Do)DP~'+ -+ +An(x, D)}

where S(x, D,) is an invertible operator and A,(x, D;) is an operator of order
<Jj which commutes with x; (see S-K-K [1] Chap. II, §2.2). In this way, the
equation Pu=0 is seen to be equivalent to (D7*+A,(x, D,)DpP+ - + A, (x, D})u
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=0. At the point under consideration we may assume some of D; is invertible,
say D,. Then Pu=0 is equivalent to
0 D, U,
0 D, .
D,— e ¢ =0
0 D, :
—A,Dy™ s — A D —A, Uy
by the relation u;=(D,/D,)’'u. Therefore, we may assume P(x, D,) is of the
form
D,—A(x, DY)

where A(x, D)) is a matrix of pseudo-differential operators whose components
are of order equal to or less than 1. In the sequel, we use the local coordinate
system (f, x;, ---, x,) instead of (x,, ---, x,) so that P=D,—A(¢, x, D,). We seek
for a formal solution R(t, x, D) of the following equation

O R(t, %, D)~ AW, x, DIR(, 5, D) =0,
(2.1)

R(ta x: DI)]t=0:1 .
Before discussing this equation, we prepare several notions.
DEFINITION. Let (¢, x,, &)=(0, x,, &) be a point of cotangential vector
bundle of the =x-space, R(t, x, D,) be a formal series > R,(t, x, D,), where
J=—00

R;(t, x, &) is a holomorphic function homogeneous of degree ; with respect to
¢ satisfying the following conditions.

(2.2) There is a positive number 6 such that R;(f, x, §) is holomorphic on
[t <0, |x—x]<9, [§—§&|<0.

{2.3) There is a positive constant v satisfying the following condition :
For any &(0<e < d), there is C, such that

C.
it
holds for j =0, |x—x,]| <9, |§—&,| <0 and [{|=e.

IR, x, )| =1 (vel€])

(2.4) There is a constant A such that
IR;(t, x, )| =(=NTATT for j<O0, |11 <0, [x—x,] <9, [E§—§|<d.

If R(t, x, D,) satisfies the above conditions, then it is called an operator
with finite velocity defined at (0, x,, &). The minimum of v which satisfies
estimate (2.3) by replacing 0 with a suitably small one, is called the velocity
of R(t, x, D,) at (0, x,, &). The equation [(2.1) obtains its substantial meaning
by the following Lemma 2.1l
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LemMA 2.1. Let P(t, x, D, D,)=3P;(t, x, D;, D,) be a pseudo-differential
operator defined on {(t, x, (vdt-+&dx)oo) ; |t <0, | x—x,| <8, |E—&,| <0, |c|<p| €]}
and R(t, x, D)= R;(t, x, D,) be an operator defined at (0, x,, <&, dxyo0) with
velocity <v<pu. Then

S, x, &)= X L (DiDePt, x, 7, &)1 DIDIRE, %, ©)
converges absolutely and uniformly on a neighbourhood of (0, x,, &) independent
of I, and S(t, x, D,)=2Si(t, x, D,) is an operator with velocity =(v'—p )L
We say that S is a product of P and R and denote S= PR.

PrROOF. Since kz R.(t, x, D) is a pseudo-differential operator, SV
=0
1

= k}_] —ym—'DﬁDg‘Pj(t, x, 0, &)D!D2R,(t, x, &) converges normally and
=jtk—v—lal ¥V Q.
k=0

ISt x, D) is also a pseudo-differential operator. Therefore, we can assume
that R,(t, x, £)=0 for k<0.

We may assume that R is with velocity <v. We replace 0 by a sufficiently
small one so that

Rt 5, &)= 55

- (ve] &)
holds for |t]<e, |x—x,], |E—&,] < 20.

Now set p=(v,—v)/v for v;>v. Then, v,e=v(1+p)e. Therefore, we have

C

[Ry(t, x, &) = kE‘ (U151$o|>k

for |ti=e(l+p), [x—x], [§—&]<20.

It follows that

| DIDER(1, %, §)| = gff vlal(ep) A (e &))"

holds for sufficiently large A for [{|=<e, |x—x,|<d, [E—&)| < by Cauchy’s
formula.

Moreover we may assume, without loss of generality, that we have the
following estimate
C’; h?
ji

for 7>0, [t], |x—x|, [§—&|<20, [z|= pl&|

]Pj(ty X, 7, "::)lé

by replacing ¢ by a sufficiently small one and x# by a suitable one. Hence we
have

DIDEP (8, 3,0, 8)| = D b ta ] &) A

for [t], [x—xl, 1¢—5]<0.
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It follows that
sP=_ 3 b DiDEP(t, x,0, ©DIDER (Y, %, £)

l -—|m al
0, k
0,

s
s

J
v

v I\V
Ve

0

is smaller than

(2.5)

lal la!
B et TGl &l ™ A (2 Closlal e ar)
]>0 k>0

=C.Cy hi(vie|§o ) (eppel§ol) A

t=j+k—y—|al ]‘k‘

la !
=CCu B Z5 - (tvie &) eppl &A%

(=p—v—ial

If [=0, S{® is, therefore, smaller than

a!
COZ W“ﬂﬁlfow“* e ppu| &) AP

L C T B

=& D{E(HE S Ahvela))

Hence, if A*h+vel&])<1 and (A+v,el&l)/epp|&o] <1, then S{® converges
uniformly and satisfies condition (2.3) with velocity =wv, because we can take
h as small as we please. Clearly A*(h+4v,e]&,]) <1 by taking % and ¢ sufficiently
small. Moreover (A+v.e|&,l)/epp|&| <1is verified if vie|&ql/eppléol =v,/0p<1
since we can take A as small as we please. The inequality v,/pp¢ <1 is verified
if v;> (@ '—p ). Therefore S{® (I=0) satisfies the condition (2.3) with velo-
city (v '—p 1)
Suppose [ <0. Then S{® is smaller than

Con Lz '%O—E'LWH&!EO!)‘”(EWISO\)'”AQ“"

l=p—y—|al
gl A tna?)’
<C.Cy, Aqu ] (h+vﬁl§o|)p< N -{—nA)
=) )
écachz_ *(h'i—vlslgol)p(?o-m_‘_nfl)

= GO 2 +14)} S{htvele (o +na)} .

Since we can take ¢ and A so that (h+v,e|&,|)(1/eppl&,l+nA%) <1, S (1<0)
satisfies condition (2.3).

In this way we can prove that S{® converges absolutely and uniformly and
satisfies conditions (2.3) and (2.4) for every v, such that vi'+p ' <v~'. Lastly
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we show that

1

8y — v Na v Na

S:‘, ——L=_j+kz—-});a—la v !0[' DTD$ —j(ty X, Oa E)DthRk(ty X, ‘E)
Jz0, k=20
v=0, =0

possesses the same property. We may assume P;(¢, x, 7, §) satisfies
[P_j(t, x, 7, )| j1A7  for [t]<pl&l, |x—x], [6—&1<20, 7>0.
Therefore we have
| DIDEP(t, 2,0, )| <1y la (| &) > AT*

for ]>01 Ix-ﬁxoly 15_501<5'
Therefore S{® is smaller than

ST i & )P AT G L (ep) A (Ve 0"

i

l=j
J
v

k—y
0, k
0, a

lai
0
0

iV
v

1%

iy lal )
=C. B T Aeppl &) (vl & AT

l=k—j—v—tal

S (At ppl Gl el AR

&
l=k—p—leal k!

A

C

SC. B wel&D) eppléel /A+Aspplés) A

2

Since this series has the same form as series (2.5), we can conclude that S{

converges uniformly and satisfied the estimations concerning the operator with
velocity v;. Q.E.D.
Since the meaning of the equation is clarified by Lemma 2.1, we can
give the unique existence theorem of the solution of the equation (2.1)
PROPOSITION 2.2. Suppose that P(¢, x, D,, D;)=D,—A(t, x, D,) is defined at
(0, xo, Eq00). Then, there exists a unique solution R(t, x, D,) of the equation (2.1)
which is an operator defined at (0, x,, E,00) with finite velocity.
ProoOF. In order to prove the uniqueness, it is sufficient to show

\ (D:— A, x, D)R(t, x, D;)=0
R0, x, D;)=0
implies R=0. For that purpose if suffices to show that (8_81‘>”R(t’ X, D) =0

=0 for every v. We prove this by induction on v. Since

(2YRt, 5 D)= (2-) (AR

=506 Al )R,
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a v l —u=1 a u
(5 ) R 't=°— (” W) Ale() Rl
=0
by the induction hypothesis. Hence follows the uniqueness.
Now let us prove the existence of R. We define RY(t, x, D) inductively
by
RO(t, x, D,)=1
D(R9(t, x, D))= A(Y, x, D;)RY=V(t, x, D),
RP(, %, Do)l i==0  for j=1.
Then, if R=3 R converges (that is, each homogeneous part converges) then
J
R is evidently a solution of the equation [2.1). Note that each R’ is a pseudo-
differential operator of order =j. Set R‘”:ki R§2(t, x, D,), where R?4(t, x, §)
=0
are functions homogeneous of degree (j—£k) with respect to &.
We use the norm N, introduced in Boutet de Monvel and Krée [1]. This
is a power series in A defined by

2(271)"”2 2k+a+p
NAQ D= 2 T+ (T8I HAT | SER., [PEPEQalh 2 DT

for a pseudo-differential operator Q(¢, x, Dx)zké) Q;-«(t, x, D;) of order j.

Concerning the properties of this norm we refer to Boutet de Monvel-Krée
[1]. Using this norm we have

N;(D.RP) & N{(A)N;_(RY~Y),

It follows that N,(RY)<2N,(A)7|t|7/j!. In fact, it is true for j=0. Ifithis is
true for j—1, then

Ny(D,RP)<2N,(A)|t]77/(G—=1) L.
Since

. b n
R(J)_—_‘f D,RPdt,
0
we have
. 1tl . .
N(RP)< [ "2N,(A)| 817 /(j—1) | dt|
0
=2N(AY |t]7/j1.

We may suppose that Nl(A)<<T£ET' Therefore

#l= oy

| R k! [t]’ bjazk<j+2/?-*l>
; .
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Consequently for j=[{=0

j (J=D12n) "t i acion/2]—21—1
IR | = 7 |¢]b7ai=o( ; )

(zn)] l22] 20-1
- J!

S— P T A l)|l‘[

which implies

S o < S (2n)2 e
LS

D ) e L

:,,(@ZI;“D i( Z),<8na2b|t|)

(b”D 8na2b{t\
201 ’

Now suppose that [>0. Then
|RY) | < (JHD)1@ny*tp2=-t jt]) bhigCith

Il/\

]1 ]‘
Hence,
SYIE (B 5 DY (gupat 1))
P =G
<. (8/’1022)2[717 < —J}*(l(’}ﬂbdzlt')]—
j=0 J:

< _(L@Egiw,emnbazm )

Therefore, the estimate (2.3) is verified, and the proof of [Proposition 2.2 is
established.

REMARK. The above estimate shows that the velocity of R is b/|&,|, and
we can take b sufficiently close to | A,(0, x,, &)]. Moreover, we can choose a
norm | | in order that |A,(0, x,, &)| is sufficiently close to the maximum of
the absolute value of eigenvalues of A,(0, x,, &,). It follows that the velocity
of R is less than the maximum m of the absolute values of the eigenvalues of
A0, xq, E0)/ &0l

In fact, Weierstrass’ preparation theorem for pseudo-differential operators
(S-K-K [1] Chap. II. §2.2) allows us to localize the problem with respect to =
(Cf. S-K-K [1] p. 409) and we easily find that (at least some component of)
R has the velocity m exactly.

§ 3. Operation of pseudo-differential operators.

In the preceding section, we constructed a formal elementary solution. We
want to say that the domain of definition of the formal elementary solution is
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so large that we can obtain its boundary value. In order to facilitate this pro-
gram, we will give an explicit representation of the operation of pseudo-
differential operators on microfunctions by using their defining functions. We
begin by expressing the integration of microfunctions from the point of view
of defining functions.

LEMMA 3.1. Let u(t, x) be a microfunction of variables (t, x)=(t,, -+, t,,
Xy o, X)) EGXDC R"XR™ where G is an open set in t-space and D is an
open set in x-space. Let K be a compact set in G, I' be a non void open con-
vex cone in (t, x)-space and I be an open convex cone containing I' and (9, 0)
for some vector 9 =(4,, -+, 9,). Suppose u(t, x) is the spectrum of the boundary
value of a holomorphic function ¢(z,z) defined on Q=02,\J8,, where 2,=
{(r,2)€C"XC"; Ret<G, RezeD, |Im7|, |Im2|<d and (Imz, Imz)el'} and
2,={(r,2); RetreG—K, |Rez|<aq, |Imz]|, {Imz|<d, (Imr~, Imz)e'}. Then

v(x):ju(t, x)dt is a boundary value of a holomorphic function ¢(z) defined in

{z; |Rez|<a, |Imz|<d/2, (s, Imz)e " for some s with |s|<d/2}, which is
given by

P(z)= Lgo(z', 2)dz

where ¢ is an r-dimensional chain (depending on z) such that (o, z) is contained
in 2 and that its coboundary B=200 is an (r—1)-dimensional cycle independent
of zin U={z;ReteG—K, |Imz|<d, (Imz, 0= I}, whose homology class in
H,_ (U:C)=H,_(G—K; C) is the image of 1= C by the homomorphism C—
HYK;C)=H (G, G—K;C)—H,_(G—K;C). If G and K are polydiscs, t.e.,
G={t; |t;1<b;} and K={t; |t;|<a;}, then we can take another chain y,X -
X7n S0 that

d)=f elr, 2,

Tixeex

where 7; 15 a path in t-space constructed in the following way:

Im z

—c;+1e9;

&

citis Im~<
—~¢;tis, e S
J 7 .. C,.lhj

L“‘ T;-space
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Let ¢; be a fixed number such that b;<c;<ay, and let ¢ be such that |ed| <.
If Imzs)el’, then y; is a path which starts from —c;+ied; and ends at
c;+ied; through —c;+is; and c;+is;; that is, y;={—c;+id;ed,;=1=s,} U
{A+is;; —¢; S A=} I {c;+ik; s; S A= e}, as seen in the above figures.

Note that ¢(z) is independent of the choice of ¢. In fact, if ¢’ is another
chain such that d¢’=p, then d(¢—0o’)=0. Moreover, since {z;(z, z) = 2} is
homotopically equivalent to G, its 7-th homology group is zero. It follows that

there is an (r+1)-chain 7y such that 0y =o0—o¢’, which implies j B oz, 2)dr
=0 by Cauchy’s integral formula. If we replace 8 with another ', then the
obtained integral (/D’(z):f p(r, z)dr with do’=p’ is equal to ¢(z) modulo real

analytic function. In fact, since S—p’ is homologous to zero, there is an 7-
dimensional chain 7 in U such that 0y =3-—f’. Therefore

foW’ 2)dz :Lﬂo,*,‘ﬂf’ ZWHL o(z, z)dz :jr ¢(z, z)de

because d(6—o’—y)=0. Since 7 is in U, j ¢(t, z)dr is a real analytic function
in z. ’
If ¢ and K are polydiscs, the integral j ¢o(z, z)dr is equal to

Tyx-xTp

Lgo(r, z)dr where 8=00={t+~/—1e9; —c;<t=c;} by Cauchy’s integral for-

mula.
Now let us prove the lemma. Note that the support of u(¢, x) is contained

(G—K)XD. By the flabbiness of C, there is a microfunction u’(¢, x) defined
on R"XD such that u=u’ in KX D, its support is contained in +/—1/"°c0 on
R™XD and in v/—1I"*c0 on (G—K)xD, and that u is zero on (R"—G)xD.
Therefore, if G’ is a polydisc containing G, then we obtain a holomorphic
function ¢’(z, z) defined on 2\ (G—'G)x D, such that ©’ is the boundary value
of ¢ by shrinking d, D, I’, I" a little and replacing K with a sufficiently large
one.

Note that ¢(z, z) =¢(r, 2)—¢'(z, z) is defined on {(z, 2): Ret =G, Rez € D,
|IImz|, |Im7|<6,(Imz,Imz)eI'}. It follows that f ¢(t, z)dr is real analytic
in z. Therefore f o(T, z)a’r:j ¢’'(t, z)dr modulo real analytic function. Since
_fu(t, x)dt:ju’(t, x)dt, it is sufficient to prove in the case of ¢’ instead of ¢.
Therefore, we may assume, from the first, that G and K are polydiscs, i.e.,
G={t; [t|<b;}, K={t; |t|<a; and that ' =R" and 9=0. Since v(x)=
jdfl ...fdtru(t, x) and ¢(z):L dr, jr dr,.¢o(t, z), we can assume =1 by the

1 r
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induction on ». Set f(z, 2)= fj ¢(z, z)dr with a <c¢<b. This is analytic on £2.
We have —aat—f(v:, 2)=¢(r,2). If we set w(t, x) the boundary value of the

holomorphic function f(z, z), then *a%-vw(t, x)=u(t, x). It follows that
_fu(t, x)dt:j—aalrw(t, x)dt=w(c, x)—w(—c¢, x)=w(c, x)

w(c, x) is a boundary value of f(c, z) ::jc (7, z)dr. This completes the proof
of Lemma 3.1. B

Now, we will explain the operation of a pseudo-differential operator on
microfunctions. Let M be a real analytic manifold and X be its Stein complexi-
fication. We take a (local) coordinate system z=(z, -+, z,) of X. We do not
assume that z; is real valued on M. Let P(z, D,) be a pseudo-differential
operator on X, with the defining function L(z, w)dw, where w=(w;, -+, w,) are

coordinates of a copy of X corresponding to z. Assume that L(z, w) has the
form L(z, w)= Lz, w)—i_Zn—\}:f L.(z, w)log (z,—w,), and Loz, w) is defined

on 2,={(z,w)e XxX; z,#w, for every v} and L,z w) is defined on £,=
{(zyw)e XX X; |z—w| <9, |z,—w,|>a,|z,—w,| for v=2,---,n}. Therefore
L(z, w) is a (multivalued) analytic function defined on 2={(z, w)e XX X;
lz—w| <0, |z,—w,| >a,|z,—w,| >0 for v=2, -, n}.

Remember that if P(z D,)=>a,2)D? then we can take L(z, w)=
Yaf2)Pz—w). Here O (2)=0,(z,) - P4,(2,), where

B S L S
2T (=)
o j(Z D i
2k

T o (=11 (log (—zp)— (=) for j<0.

for j=0

yv—1
(Pv)= kZ‘, % —7 denotes the di-gamma function.)
=1

It is easy to see that P is defined on Z={(z, {{, dz>oo) € P*X: 3 a,|C,] <|C,0).
y=2

Let 7 be the canonical projection S¥*X—P*X, Let U be an open convex cone
in v/—1SM such that 7(0)=M and U be an open set in X such that OU(U—M)
is an open set in the real monoidal transform MY, Let ¢(z) be a holomorphic
function defined on U, then ¢ defines a section of ﬁM on U. Let u be the
spectrum of the hyperfunction obtained as boundary value of ¢(z). u is a
microfunction defined on v/—1 S*M whose support is contained in the polar
0° of U. We assume that U° is contained in 77Y(Z). The example of such

~

U is



374 M. KasHniwarA and T. Kawal

\
(3.1) {z+ Re<r, 887>0 eSyX; Re<r, *a%—/ is not parallel to M at z, b,Re(4Ar,)

>lz,| for v=2, ---, nand Im (Zrl)<c]Re(Zrl)l} where ¢ is a positive

number, 4 is a non zero complex number and b, is a positive number
such that b,> +/14c%a,/c|a],

and
U={zeX; z=z'+1, 22 M, |t|<d, b,(Im At,) > |7,|
for v=2, ---, n and Im (4z,) > ¢|Re (47,)]
for some 0 >0} .
Let 2°=(z}, ---, 25) be a point in M.

LEMMA 3.2. There 1s A< C* such that ﬁ°mn“‘(z°) 1s contained in
{Re({, dzyoo; |2|Im (2‘1C1)>'§) a,1¢u 1}

PrRoOF. The set C={(a, )= CXR; there is Ceﬁ°m7z‘1(z°) such that
a={;, t=>a,|(,|} is a convex closed cone in CXR contained in |a|>t=0.
Therefore, there is A4 such that Im (A 'a)>|A17!|t on C. Q.E.D.

By this lemma, U° is contained in {(z, Re<l, dz)o0)e SEX; |2[“an0 b,1¢,]
<Im (A7) —c|Re (A7¢)|} with suitable b, > v/1+c?a,. It follows that U con-
tains {z+ Re (r, 2-)0€ SyX; Im(Ae)Z ¢ [Re (A7), Im (zq)g—%'—lr,,] (v=
2, ,m)} and therefore {Im(iz,)Zc*|Re(Ar)), ¢,lmil 2]z, (v=2, -, m)}, if

we take a,<c, <b,/V1+c?

THEOREM 3.3. Let «a,, «a, be two points sufficiently near 20 such that
cIm ((a@,—2927") > |Re ((a,—2zDA™ )| (R=1, 2).

Set

& (z) :j . L(z, w)p(w)dw

T1xeex
where y; are paths determined as follows:

71 1S a path starting from a, and ending at a, around z, counterclockwise,
and y; (j=2) is a cycle rounding z; counterclockwise (with radius> a;|z,—w,|).
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Im w, Im w, i
a,
\ z, a
. 71 i
0 Re w, 0 Re w;
w,-space w;-space (j=2)

Then ¢(z) can be defined in an open set U’ in X—M such that U'JU is open
at 77'(2°%, and Pu coincides with the spectrum of the boundary value of ¢(z).
Since the proof of the theorem is rather long and tedious, we decompose
the proposition into several lemmas. First, we will prove
SUBLEMMA 34, Let 4 be a compact set in S*'=(C"—0)/R* such that

z°+ Re <0, -%>0 is contained in U for every & 4. Then there exists a suf-

ficiently small ¢>0 satisfying the following condition: If 2*+Re<z, 20

is contained in U, then U contains z-+tt/+d for any ze M, te R*, = C*—{0}
such that |z—z°| <1, 0<itK1, |6 <s, |t—7’|« 1 and 60 < 4.

ProoF. If this is false, then there are sequences ¢/# < C*"—{0}, t/*<C",
thte R, z/#< M such that U 3 z/#tieche4-69# and 69#0< 4, |69 <1/
thr—0, | z9#—2°, |ch*—7|—0 if pg—oo. If (t9#z9#+407#)0 has a cluster point

p when p—oo, j—oo, then f 3 z°+Re!p, —887>0. Since p is in the convex
hull of = and 4, this is a contradiction.

LEMMA 3.5. ¢(2) is holomorphic in some U’ chosen as in Theorem 3.3 and
independent of a, modulo real analytic function.

ProOOF. We can take A=1 without loss of generality. Let z°+Re<{7’,
—g;)O be in 0. Then z+tr*+o is in U, if |z—z°|<1, ze M, 0<t«]l,

let—7% K1, ol <e, Imo,=c Y| Re oy, ¢, |0, =]0,|,v=2, -+, n for some & inde-
pendent of z'. We choose convex U and a, such that |a,|—2?<e. It suffices
to show that ¢ can be defined at z=Z+itr with Z€ M, t€ R, 7 C" such that
|2—2z|<1, 0<tK], |[t—7! 1. Set W={(z,w);(z,w)e 2, we U}. It suffices
to show that 7, X -+ X, is contained in W. We takeas y; the cycle |w;—z;|
=c;|lw,—2z| (j=2, -+, n). Since U contains a neighbourhood of z, it suffices
to show that {w; |w;—z;|=c;|z;—w;|, w, is in a segment jointing z, and a,}
is contained in U if z=Z+ir. We have Im (w,—z;) =c¢'|Re(w,—z,)| because
|z,—2}|«1. Therefore w=z+(w—z)=Z+tr+(w—2z) is contained in U. If we
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obtain function ¢’(z) by changing «, by other «, (=1, 2) we have

g,/)(,z)_.(/,/<,z-):j.:‘li dwleZXMXT L(z, w)p(w)dw

—jaé dwlf L(z, w)p(w)dw .
o9 TaxxTy

Imw,
a,
o
Zy
L]

o 7 a,

71

0 a, Rew,

It is obvious that |“*dw,[L(z w)p(w)dw is defined in a neighbourhood of
2", “ Q.E.D.

By virtue of the preceding lemma, we can localize in v/—1S*M,
that is, we may assume that U is sufficiently small.

In order to prove [Theorem 3.3, we will construct a micro-local operator
corresponding to P, which is given in S-K-K [1] Chap. III. Prop. 1.2.1. There
we constructed a homomorphism 7 'Py—_L, as the composition of y'Py—
PE— Ly, where PE=CE%y=Ckixx _@ p710% (po: PEHXXX)— XX X— X the

Py Ox

second projection). Therefore, we prove the theorem corresponding to
3.3 by using 2% instead of . Let L(z, w) be a holomorphic function defined
on 2={(zyw)e XxXX; |z,—w,|>a,|z;—w,| (for v=2, ---, n), ¢Im (A(z;,—w,))>
—|Re(A(z,—w,))|}. Then V,={(z, w)e XX X ; ¢ Im(A(z,—w,))> — |Re(A(z;—w))| },
Vo={z,w) e XXX; |lz,—w,|>a,|z,—w,|} (v=2,--,n), constitute a Stein
covering of XX X—Z where Z={(z,w)e XX X; |z,—w,|Za,|z,—w,| (v=2,
<oy m), ¢Im (A(z;,—wy)) = —|Re (A(z;—wy))|}, and 2= é V;.  Therefore, we
have a mapping H%(Q2; 09— HE (XX X; @Q;”&)—*F(é ; P§) (see S-K-K
Chap. I. Prop. 1.2.4.), where

Z={(z, Rel(l, dz)oo)e S*X;
Im 27'¢, > ¢[Re 2G|+ 127 | VIFE® 3,11} CS*X,
v=2
the antipodal of the polar of the normal of Z along the diagonal. The operator

in I'(2, P%) corresponding to L(z, w)dw is denoted by P. Let U be a convex
open set in SyX such that 7(0)=M and the polar U°={(z, Re({, dz)>)e

SEXCS*X; Red{, t)=0 for every 7 such that z+Re{r, aa—z>06 O}V of
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{7 is contained in 2. Therefore we may assume that U° is contained in
{(z, Re{{, dz)o0); Im(A7¢,)—c,|Re (2‘1C1)1>Ill‘1ébulcvl} for suitable ¢,

and b, with ¢<a, v14cia,<b,. Then U contains z+Re <<z-,—aaz—>\)e SuX

if Im (ke Z e[ Re (2], m (3e) = -2, =2, m),

Then the theorem corresponding to is the following
THEOREM 3.6. Let a,, a, be two points sufficiently near z% such that 0 <
cIm (Aa;—2))) < —Re (Aa;—z))) < ¢; Im (A, —2Y)) and that 0<cIm (Aa,—z?))
< Re (Aa,—20)) < ¢, Im (Aa,—2Y)).
Set
o(2)=|

Tixeex

. L(z, w)p(w)dw

where 7; are chains given in Theorem 3.3. Then ¢(z) can be defined in an open
set U’ in X—M such that U’V is open at 7=(2° and Pu coincides with the
spectrum of the boundary value of ¢(z).

We can prove the lemma corresponding to Since the proof,
however, goes on in the same way, we omit its proof. It follows that this
theorem has also a micro-local nature.

¢(2) depends only on the cohomology class of L and is independent of the
choice of L. In fact, it is obvious that ¢ is real analytic, if L is a coboundary
because of Cauchy’s integral formula.

is an obvious consequence of [Theorem 3.6.

We will prove in several steps. Firstly, we will show that
Theorem 36 is independent of the change of coordinates and secondly show
in real coordidate case.

In order to make smooth the discussion of change of coordinates we con-
sider the following statement A,,, s : Let p be a point in SEX, 2=(z,, -+, z,)
be a local coordinate system of X around x==(p) and G be a closed subset in

S.X of the type G={x+ Re (z, 5-0; ¢Im (2r,) < — |Re (7)), |z.l=a,l7,l},
such that the antipodal of the polar of G contains p. (This is equivalent to
say that Im (27') > ¢|Re (27¢) | + é V1+c?a,|C,| if p=Rel{, dz)oo.) For
y=2

any positive numbers ¢/, a;, ¢ such that ¢> ¢/, a,> a), L(z, w) defined on {(z, w)
EXXX; C/ Im(z(zl_wl))> _IRe)‘(Zl_wl>ly lzu—wv[>aﬁlzl—w1‘, 12—2(.7()!,
lw—z(x)] <0} and any ¢(z) whose boundary value has spectrum u with a
support in a sufficiently small neighbourhood of p, the spectrum of the boundary
value of the function ¢(z) defined in coincides with Pu at p. It
is evident that is equivalent to (A)ip,. -

LEMMA 37. V={zeC"; cImz+|Rez|> 3 |2} is Stein.
y=2
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PROOF. Since {z€C"; cImz,+Re z, > Zn)ZI z,|} are convex sets, they are
pseudo-convex. Therefore V is pseudo-convéx in 2={zeC"; Re z, #0}. Since
£ is Stein so is V. Q.E.D.

In order to prove we reduce, firstly, to the case where z; is
real valued on M. The following lemma is a preparation for this step.

LEMMA 3.8. Let peSEX, 2(t)=(2,(¢), -+, z,(1)) (0=Zt<1) be a continuous
family of coordinates of X, a(t)={(ay(t), .-+, a,(t)) be a continuous family of
positive sequences and c(t)>0, A(t) e C* depends continuously on t. Determine

C(H) by p=Rell(t), dz(t))oco. Suppose that Gz:{ﬂ(j?)—I—Re <T(t)’6—za(ﬁ>o

E SepX; () ImA()z,(H) = —[Re A(H)z(B)], leu(D) = ale(B)] for v=2, -, n}
contains G, in SypX, and that Im (A7 (8) > c(t)|Re A#) () [+ A7
VIFCD® S aDIGD]. Then Aoy implies Aupac,on

PrROOF. We assume that z,(t)=0 at n(p). Z,={(x,y)e XXX ; |z,(t)(x)—
2, = alza()()—zE))] =2, -, n), ) Im (2(£)(z () (x)—zBO() <
—|Re (A(#)(z(t)(x) — z2,(H)(»))) |}, and assume that Z,DZ, Let P belong to
HE (XX X;09%). Set V. ()={(x,y)e XXX; |2,()(x)—2.)(»)] > a,| 2:,()(x)—
21} v=2, -, n) and V() ={(x, y) € XX X; c(t) Im (A())(z,()(x)—2,(D)(¥)))
>—|Re A(W)(z,(t)(x)—z,(£)(¥))|}. This constitutes a Stein covering of XX X—
Z(t). Therefore, the image of P under the homomorphism H3 (XX X ; O%™
—H3, (XX X;0%%) is represented by L,(x, ¥)dz,(¢)(¥)A -+ Adz,(t)(y) where
L,(x, y) is a holomorphic function defined on szﬁx V.(t). It suffices to show

the following statement: If ¢(4) is a holomorphic function whose singular
support is contained in a sufficiently small neighbourhood of p, and ¢,(x) is a
holomorphic function defined in [Theorem 3.6 using L,(x, ¥) with the coordinate
system z(f), then ¢,(x)—¢,.(x) is holomorphic in a neighbourhood of 7(p) when
t and t’ are sufficiently close to each other. We may assume A(f)=1 without
loss of generality. For the sake of simplicity, we set V,;=V (1), V ;= V1),
Z=2, Z=Z,, L=L, L'=L,, z;=z,)(x), w;=2z;(H)(»), 2;=2,(t')(x), wj=
Z(1)(), a,=a,d), di=at), c=c(t), ¢/=c(t') and {;=C;(1). We put V,=
{(Z,UJ)EXXX, [Z,—wpl>dp’21—wll+522|2j"Wj’} (l):2,"',7’l) and V.l:
]:
{(z, w)e XX X; ¢Im(z,—w,) > —|Re (z2,—w,)| +¢ Zzlzj—wjl b Z=XxX-U ¥,
J= j=1
9=NV, and 2={(z,w) e XxX; |z,~w,|>d,|z—wi], ¢lm(z—w)>—
Jj=1
|Re (z;—w,)|} for some d&,>d,>a, ¢>c and 1>¢>0 such that we have
V,cv,;, V,cV) 8DQand Im{, > ¢|Re |+ v1+¢* 3 4,¢,| by shrinking X.
v=2

This is possible if ¢ and t’ are sufficiently close to each other. Let <V, &/,
617, be coverings given by {V,}, {Vj} and {Vj}. We have &V D, ! Dy,
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Since L dwe H* (v, 097 and L'dw’ € H*'(<V’, 0%7) are the images of the
same P, these coincide in H* <V, 0%%). It means that L dw—L’dw’ is in the
coboundary with respect to the covering V. Therefore there is F; defined on

17;' - ,Q V. such that L dw—L'dw’ = i Fdw.
j =1

Let 6 =yp,X -+ X7, (resp. ¢’ =7{X --- X77) be a chain given in
with respect to the coordinate system z (resp. z’). Then we have

§ L neydw—[ L(x y)¢(de' =3 | Fix ne()dy.

We will show that j Fi(x, y)p(y)dy and j 'L’(x, Me(y)dw’ are real analytic,
which implies the desired result. The first fact is obvious. We will prove the
second fact. Set d be an (n-+1)-chain defined by

{og; t=s=t'},

where o, is an n-chain defined in with the boundary {w.(s)=a,,
[z,(s)—w,(s)| =d,|a,—2z,(s)|} —{wi(s)=ay, |2,(5)—w,(s)|=a,|a;—z(s)|}. There-
fore
00=0"—0-+p,—p,
with
or={x€ X; wi(s)=ay, |2,(5)—w,(s)|=a,|a,—2z(s)]

at x and 1<s<t}.
Therefore, we have

§, Ve =] L e~ Lz e

The right hand side is clearly real analytic. This proves Q.E.D.
LEMMA 39. A,.a s true if all z; are real valued on M, 2=1 and p
=+/—1(dz,+¢ é dz,)oo for 0<e< 1.
PRrROOF. V\v/;, may assume that #(p)=0, X={zeC"; |z| <1} and L(z, w) is
defined on £ = é V,;. We will construct a micro-local operator corresponding

J

to L(z, w)dw according to S-K-K [17] Chap. III. Prop. 1.24. We may assume
Sa,4/1+c*<1. Then Z is contained in

Z'={(z,w)e XX X;
Im (wl_—zl) g Im (wv*2y>+R62(Z‘u—wy)2 (1) :2: Tty n)y
u
Im (w,—2,)> — ﬁ)zlm (w,—z,)+Re Dz, —w,)?, |2, lw|<d}.
= #

Set
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W={(z,w); |z, lw|<d},
U,={(z, w)e W; Im (w,—2z,) < — 3 Im (wp—2zu)+Re X (z,—w,)*},
r=2 #

U,={(z,w)e W; Im (w,—2z) <Im(w,—z,)+Re 3 (z,—w,)?}, v=2, -, n,
o
=AU,.
v=1

Then U={U,, ---, U,} is a Stein covering of W—2’. Therefore, HZ(W ; Ow)
=0(£2’) modulo coboundary. Let T(z, w)e O(£’) be a representative of the
image of L(z, w) by the homomorphism HZaw(W ; Op)—H%aw(W ; Ow). Then
T(z, w)dw defines a micro-local operator corresponding to L(z, w)dw. L(z, w)
is represented as an (n—1)-cocycle with respect to Leray covering <V ={V;}.
Therefore L(z, w) and T(z, w) are zero in H™ UV ; Oy), this is, L(z, w)
—T(z, w) is a coboundary in a complex of Leray covering U N\ <V. Especially,
there are holomorphic functions S;(z, w) defined on ’Q] (Uy\V,) such that

L-T=3S, in 212"
i=1

We may assume that u is a boundary value of holomorphic function ¢(z)
defined on

U={ze X; |z|<e, |Imz,/<nlmz (v=2, -, n)}.

We choose a, (v=1, 2) according to so that Ima,=Im «a,>0.
7, be a path starting from «,, ending at a, and encircling z; and 7 be a path
in w,-space consisting of three segments starting from —dJ; and ending at J,
through —d8,+ v—1(Im z,+a,|Im (z,—w,)|) and 6;++—1Im z,+ v —1 d}|Im(z,
—w,)}, where a,>1 and >la,<n. (See the figure in the below.) Then a chain
7AXTEX o+ XyE=0.,.,. 18 contained in {(z, w)eL2N2"; |z| <1} if 0<d,< 1.

. Imuw,
7

ay,{Im (z,—-wy)]

""51 O 51 Rﬁ u,

wy-space (v=2, .-+, 1)
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We have
P(z2)=(—=)"""12D 4, in.j' L(z, w)p(w)dw .
i Tlegx"»xTn

Set Pupyoye, =z i"jnxrzx-..xr L(z, w)p(w)dw. Suppose that one of =, is of
a positive sign. If Im z; <0, thtan we may take a chain 7} instead of 7}, where
7 is a path starting from —d, and ending at 8, through —é,+ v/ —1 @ Im(w, —z,)
and 6,++v—1a;Im (w,—z). Therefore Piiyy, is defined on {z; |2] < 1; [Im 2, |
<nlmz (v+#1,j) and Im z; <nIm 2z}, which implies that the singular support
of ¢.,,.,+, does not contain p if any of the sign is positive. Therefore

¢(2)=| ) _ L(z, w)e(w)dw

lx')’é Xk Ty

modulo holomorphic function whose boundary value is real analytic at p.
Moreover, we have

[ Lz wewdw= _ Tz wip(w)du

T1XTg XX n

+3
J

j=1 ¥ T1x7Tg x+-xT.

_Si(z, w)p(w)dw .

Consider the integral jSl(z, w)p(w)dw. Since Si(z, w) is defined on {(z, w)
EX; Izv—‘wvl >a»|21_w1]; Im (wl-‘zl)<<lm (w»—_zu)_i_ReZ(z,u_wﬂ)z ()J:Z, ) n)}y
Y]

71X 77 X -+ X7 can be deformed to yiX7yyX -+ Xy, where 7{ is a segment from
@, to a, and 7, is a path from —é, to d, through —d,+ +/—1(Im z,+k|z,—w,))

and 51+ \ —-1<Im zv_l—klzl'—wlI) such that nlIm a,> k]a’y|>1m a,. Then
j B} _Si(z, wyp(w)dw is real analytic.
T1xTg xxTp

Suppose j#1. Then S;(z, w) is defined on
W;={(z, w)e X; Im (w,—2z,) <c|Re (w,—2z))|,
lw,— 2,1 > a,]z,—w,|,
Im (w,—2,) > Im (w,—z,;)—Re (X (z,—w,)") for v+#1,7J
and ’

Im(w,—z,) < ——:gz Im (w,l—zﬁ)ﬂLRe;é1 (We—2z,)"} .

Therefore the integration ij(z, w)e(w)dw can be performed over the cycle
7IXyT X oo X735 X - Xyn, where 7} is a segment from —0; to 0,. Then
jS,-(z, w)p(w)dw is defined on {z<= X; |2/ <1, |Imz,|<nlmz for v#j}. There-

fore jS,-(z, w)e(w)dw is real analytic at p for every j. It follows that ¢(z) is
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equal to L - T(z, w)p(w)dw modulo holomorphic function which is real an-
1xTg X-xTp

alytic at p. By [Lemma 3.1, ‘fT(z, w)p(w)dw is nothing but Pu, which completes

the proof of the lemma. Q.E.D.
Now return to the original situation. Set T=C. We consider T as a two

dimensional real analytic manifold. We denote by T the complexification of

T. We can take T¢ as CxC where C is a complex conjugate of 7. Let (t,1{)
be a coordinate system on T¢ such that f=f on 7. u(x) can be considered
as a microfunction on M’ =MXT. wu(x) is also a boundary value of a holo-
morphic function ¢(z) defined on X' =XXT¢. Set p=(0, Rel{, dz)co) and
assume that the support of # is contained in a sufficiently small neighbourhood
of p. In order to prove A, ., we may assume that 4=1. We introduce a
new coordinate system (2,1, {) on X' given by Z,=z -+t 2>/l Z,=z,
(v=2,---,n). We may assume that L(z, w) is defined on

Q={(z,w)e X; ¢c(Re z,—w,)<|Im (z;,—w,)|,
‘ZD—U)”I < au[ Zl—LUll()JZZ, ) TL)} .
Let L(#, ¢t {;®,s, 3 be a holomorphic function L(Z, %)@y(t—s)@,(f—%), which

is defined on 2'={(2,t,1;%,s,3) e X' XX ;cRe(Z,—0)<|Im(z—w,)]|, t+z,
f#3, |2,—w,|<a,|Z,—w,|}. Let P be a corresponding section of ®%. P is de-

fined on Z={(%, t,1 ; Re ((Z, d5>+kdt+kdi)oo ;ReZ,>c|Im Z,| + /1 +c? ézaylivl}.
Then the support of u(x) is contained in a sufficiently small neighborhood of
((2,,7; Re (Gud2,+(1—1) 31 (,d2,—<C, 2dt)oo)}, which is contained in Z if ¢
belongs to a neighbourhoyc;ci of [0, 1], since Z is convex. Consider the integral

~

$(2,t,1)=

—

L(z,t, T, @, s, §)p(w)dwdsds .

Note that ¢(Z,t,{) satisfies aat J=0. It means that the spectrum ¢ of the

(=5

boundary value of ¢ satisfies —5‘{‘_’1}:0 ; that is, 7 depends holomorphically on

t. It is evident that ¢(Z, t, )| ,mimo=¢(2). It is also obvious that Pu depends
holomorphically on ¢, and that ﬁu\t=;=0:Pu. Therefore, in order to prove that
Pu=1|,.i—, it suffices to show that Pu=7 in a neighbourhood of t=0. Since
both sides depend holomorphically on ¢, it suffices to show that Pu=4%1in a
neighbourhood of =1 because of the unique continuation property of micro-
functions with holomorphic parameter. (See S-K-K [1] Chap. III. Theorem 2.2.9.)
Therefore, by replacing P and X by P and X’, we can assume from the begin-
ning that p is sufficiently near Re({,;dz;)cc. By using we may
assume that p=Re(adz,)o for some a = C*, By a coordinate transformation,



Micro-hyperbolic pseudo-differential operators 383

we may set @« =+/—1. Because of the connectivity of GL(n—1; C), there is a
continuous family (p, z(t), G,) such that z(0)=2z and 2(1) is real valued on M
and that p =Re (+/—1dz(t))co, and that G, is sufficiently large (¢:>0). By
virtue of we can reduce the problem to the case where p=
Re (v/—1dz;)cc and that z, are all real valued on M. By a small perturbation
of a coordinate system, A, ,,s is reduced to This is the end of
the long proof of and [Theorem 3.3

We end this section by giving a generalization of [Theorem 3.3 to the case
with parameters. Let X, M and z be the same as before, and T be a real
analytic manifold and T¢ be its complexification with a coordinate system ¢.
Let L(t, z, w, D,) be a (multivalued) differential operator defined on 2={(t, s, w)
€ TeXXXX; |z—w| <0, |z,—w,| >a,|z;—w,| >0 for v=2, ---, n} of the type

L(t’ Z, W, Dt):LO(ty z, W, l)t)—{_ﬁ[/l(tr Z, W, DL) ’

where L.(t, w, D,) is (single-valued and) defined on £,={(t, z, w) € T¢X XX X ;
z,#w, (v=1, -+, n)} and L,(t, z, w, D,) is defined on

‘QIZ{(ty Z, z’U)E TCXXXX: iz—_wl<5a !Zv"‘u',|>a,)|21"‘_w1[
for v=2, -, n}.

Then L(t, z, w, D,) determines a pseudo-differental operator P({, z, D, D,) de-
fined on Z={(t, z: (kdt1<C, dz>)oo) € PN Tex X); S a,lt <181}, Let U be
y=2

an open convex cone in TX v/ —1SM such that «({J)=TxXxM and U be an open
set in X such that U Tx(U—M) is an open set in TX¥X, Let o(t, z) be a
hyperfunction on U depending holomorphically on z. Then the boundary value
of ¢(t,z) is a hyperfunction on TXM with singular support contained in
{(t, z; Re (V—1Rdt+<L, dz))o) & /—1S¥(TXM); (t, z, Re v/ —1{, dz)oo) is in
the polar U° or =0} (see S-K-K [1] Chap. I. §3.2). Let u be a restric-
tion of the spectrum of ¢ to v—1S*TXM)—+/—1S*TX M. Then the sup-
port of u is contained in y~*(Z), where 7 is the projection v—1S*(T X M)—
P¥(Tex X).

THEOREM 3.10. Let (t° z°) e TXM, and let 1, ay, a, and ¢ be the same as
in Theorem 3.3. Set

ot 2)={ Lt 2w, D)g(t, w)dw,

Tixex¥p

where y; are paths determined in Theorem 3.3. Then ¢(t, z) is defined on an
open set U’ in T'x X such that U\U(U'—M) is open in TXM/}/(, and Pu coincides
with the spectrum of ¢(t, z) on ~—1S¥TXM)—/—1S*TX M.
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PROOF. The lemma corresponding to is verified in the same
way and we omit its proof. We may express ¢(?, z) as the boundary value
of a holomorphic function ¢,(¢, z). All ¢;(f, z) can be considered also as sec-
tions of §{er (see S-K-K [1] Chap. I. Theorem 3.1.1). Let u; be a boundary

value of ¢,(t,z), and set ¢;({, z):JL(t, z, w, D)e,(t, z)dz. Then Pu; is the

spectrum of ¢; by virtue of Theorem 3.3. Therefore Pu=23 Pu; is the spec-
trum of ¢=231¢,. Q.E.D.

§4. The analytic continuation of the formal elementary solution.

In §2 we constructed a formal elementary solution R(¢, x, D), which is an
operator with finite velocity. If there is no assumption on P, the singularity
of R(t, x, D;) spreads into the complex domain. Therefore, R cannot be en-
dowed with the meaning of a microfunction. However, if P is micro-hyperbolic,
the singularity of R propagates only along the real domain so that R can be
considered as a microfunction. In order to analyze this situation, we assume
that P(t, x, D,, D,)=D,—A(t, x, D,) is partially micro-hyperbolic at (¢, x, i(z, £)oo)
=(0, x,, i(z, &,)o0) for every real ¢ with respect to the direction f£. This means,
if we set A,(t, x,1§) the matrix which is obtained by taking the first order
part of each component, and g(¢, x, 7, &)=det (ir— A,(t, x, 1£)), then g(¢, x, t-+1k, §)
#0 for every real t, x, 7, & k such that |{|<1, |x—x,| <1, 0< kK], |E—6,]
& 1. In this case, we say that P is partially hyperbolic at (0, x,, 1£,00) with
respect to the direction f.

In this section we will show that the function

(41) B Ryt %, O0,(x, 1)

converges in a conical domain so that it can be considered as a microfunction.
For the sake of simplicity, we assume x,=0, §,=(1,0, ---, 0), and we set x' =
(%4, -+, x,). We define the multivalued analytic function G(f, x) by

Gt x)= 3 R(t, % £)0,(x,)

= Gyt x)+—2—;f/—jT Gyt x)log 1, .
Recall that

1 1 .
O, (x)= =T (_Jx)j+1 for 7=0

- 27:«/%1—(]:;'_]_)1 (log (—x)—¢(—7))  for j<O0,
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where ¢(v)= :Zi%e— —7 is the di-gamma function. By estimates (2.3) and (2.4),
G(t, x) converges on 2={(t, x)eCXC"; |t| <4, |x]|<d, |x|>v|t|}. More
precisely, G, converges on £ and G, converges on Vs={(f, x) € CxXC"; |t| <4,
|x] <d}. Under the assumption of partial micro-hyperbolicity of P, we can
extend the domain of definition of G.

In order to perform this program, we reformulate the meaning of PR=0
by using the defining functions.

Developing A(t, x, D) into a series of D?, i.e.,

A(t, x, D)= 2 A, x)Dg,
aczxz?™!
we set
L(t, x, ) =2 Adll, x)@.(x—Y)

= L(t, x, y)+Ly(t, x, ) log (x,—1) ,

where Ly(¢, x, y) is the kernel of a differential operator, that is, L,(¢, x, ) is
holomorphic on the domain

Vo=A{(t, x,»); [t1<d, [x]<d, |y] <9,
x;#y; J=1, -, m},
and L,(t, x, ¥) is holomorphic on the domain
Va={(t, x,»); [t1 <9, |x]<8, [¥]<5,
|2, =y, <0lx;—y;] for j=2,-,n}

for a sufficiently small 0.

It follows that A(f, x, D,) is defined on {(t, x, iK€, dx)o0); |t] <4, |x| <9,
|&,1< 81, 7=2, -+, n}. Then, we have the following interpretation of the
relation PR =0.

LEMMA 4.1. The function

%G(t, x)_§L(t, x, »G(L, y)dy

1s holomorphic at the origin (¢, x)=(0, 0).

In this notation, the integral is taken along the path y,X -+ Xy, where y,
(2=j=n) is a path around x; and y, 1S a path around x, which starts from
some sufficiently small fixed c e ~—1R* and ends at the same point ¢ as shown
in the following figures.
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Imyl 7‘] Imyj ?'J -
c 07 x;—cl
N . /
v|t!
0 Rez 0 Rey;
¥,-space y;-space (j=2)

Proor. We have
§ L, 5,60, dy
=3 § At DOL—DRSL 3, E)O,(3)dy
because L and G converge uniformly. Moreover we have

FOLR,(t, 3, 530, (v
= [ Pal5=200, (00 § D=3 IR, 3, £y

={_ @u(m—30)0,(3IDER(t, 35, ¥, £)dy;
1

=% ), (=) Pu(r—3)0,()DEDERE, 5, S

k
and

j?'x @al(xz’—y1>@j<3’1>(3’1_x1>kdy1

0 k>a; =0
Tty Prvena () wEt
- (— )k((k ;‘1 )>,~<Dj+al-k(x1>

It follows that
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§OL=2R(t, 3, E)D,(32)dy

a
kEO ?é—)DﬁlD“R (2, x, €o>@y+a1 #(x1) for a; =0

=1 5P ETL DR, 5, £00srm)

k+1 ‘
( P l)k l((k afl.il):ll) Dk D3R (t x, &o >@]+a1 k+J(C)
=k
’ X (x;—c)” for «;<0.

Therefore
§Let, 2,96, y)dy

r ! ~
= 22 07{?(%1:73>T Adlt, ;c)Ding‘ij(t, X, §o)@j+a1—k(x1)
a1zkz . .

k
(Z)(k—ai =Ll )y (4 D8 DER (1, %, E)® vy a(x)

T Ra-Dl
(=) (k—a,—1)! D p (;
+0§0V%k2fa1-1 k !(*al“—ll) Tyl Adlt, x)D’”D”'Rj([’ x, €)X
=k, 0>ay
X@j+a1—k+y(c>(xlwc)y
= 3 7IDKALL DY et DERS(E %, E00501a-151(2)
azpz0
+ 3, 41 LDHALL D5 -0 DER(E %, £00su1a15(3)
D)
(— )k+1<k a;—1)! E a’
+0%y%%a1—1 Y (—a,—1)! Adt, 0)Dey D3R (1, %, Eo) X
=k, 0>a1
X@j+n1—k+»(c)<x1—c)y

<

= 3 7 LDALL DENDER,(t, 2 9]l e-2® - (x0)

>k+1<k a/l l) o
b3 LRUEan Dl A yDLDER G, 5, 8%

§k- l
ék

=3 II/\

X@j+a1—k+u(c>(xl—_c)u .
The first term of the above sum is equal to

S5y LDRALE, 5, ODIR(t, 2 O e-eDsenmia(x)

By the assumption, this is equal to —aTG(t, x). Therefore, we obtain

(42) 9GO~ § Lt x )G, vy

387
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k 1 ar v
=z L as DL DDLDER,(, 5, 00 reem—0
a1

=k,0

SIA

It is sufficient to show that the series in the right hand side converges ab-
solutely in a neighbourhood of {=x=0. Remember that A.(t, x) satisfies the

following estimate
| ALt )| =CeB™ ™,

where B is a sufficiently large constant and C, is a sequence satisfying

(4.3) limjV/C, =0, [im —‘/C-

J—oo jroo

J < OO
and that DER,(¢, x, &,) satisfies the estimate

BIC—Ewey it |tI<e, 20
ID.}TQ‘RJ(ty X, EO)lé J:

5N —j) 1B if j<0.
Therefore, the right hand side of formula is estimated by
k—a,—1)! AL 4 y
o< S?_) 2 5(_;1_11))“) 1 CIaIB ]a| s<v5>';]¢j+a1—k+v(c)’ lxl_‘cl
CETA A ! o ’
Jjz0
k —1)! - / ; -J v
+M<k11k& T CB 1 (=) 1 B @O 12
?)V—_ a

Since we can easily see that

)l /
> Cj+}a’1a !
a'’

satisfies the same estimate as [4.3), it suffices to show that the following series
converge uniformly at t=x=0:

k ' A ; ’
(44) 5, R B0, ()]
Oozakfzi;g ,U /.
720
and
(k+ﬂ) '] ! g . P
(4.5) Oo'gg”ké,f,?;" nly! -C..B l@’l“k—#+v—1<c)(xl ol

Since C_,= pu!B”, the first one [(4.4) is estimated by

=-EARL Brwe |0, s (0P|

1
S—pv =

v=k V']'

=J

B*(ve)?|D; - pan-s(c)(x1— )|

=3 Il/\
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<(—Bt 3 CEOL prowonaie, (000
osv, i ViJ:

12v+ .
=(1-B%" % T (e |0, (05—

<(1-B3(1-2B | x,—c[)"! & ,—;F,‘ Bo#(ve)?|®;_1(0)] .
0=p,j :
It is easy to see that
) | .
5 FLa0 0 (nez)

0=k,j J -

converges if e(A+|c|™) <1, A(lc|+e)<1. Therefore converges at t=x=0
if |c|l«1.
Finally, the second term is estimated by

171 ]
> EEDUL prsjg_ s (e)t—c)]

0Sy=ktp

171 .
=(-B7 3 L B0 (O(n—c) |

<q-py 3 LEBUL pewoso,, (on—cp]

0=y, pt, 7

< (1—B )3 p 171204 BX+0+ 1| _;_, ()(x,—c)?)
<(1=B"{(1=2B* | x;—c|)™ 1128 +B) | 0-1,(0)] .

This converges if |c| <1, 2|x;—c|B?*<1. Therefore, if |¢| <1, then the series
(4.5) converges uniformly at t=x=0. Q.E.D.

In the sequel, we consider ¢ as a real parameter and z as complex para-
meters. We denote by x and vy the real parts and complex parts of z respec-
tively. We use the notation z'=(z, -, z,), ¥ =¥, -, ¥n), etc. We will
assume that

(4.6) G(t, 2z) is analytic on

{(t, 7 RXC™; |t| <9, |2]<d, |z]|>vt},
(4.7) L(t, z, w) is analytic on

{(t, z, w) e RXC"XC™; |t| <9, |z|, lw|<d,

0<|zy—w,| < d|z;—w;|, j=2,-,n},

4.8) P(t, z, D, D,) is therefore, defined on
{(t, 23 (edt4-Ld2)oo); 1] <3, |21 <3, B 18] <1L])

and that
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(4.9) H(t, 2)= —af’t—(;(t, 2)— § L 5 )G, wdw

is holomorphic on
Q,={(t, 2); [t]|<6,<9, |z|<d, <}

for a sufficiently small d,. Here 7; is a chain given in [Lemma 4.1l
We assume 0,4+ (n—1)0"(|c|+d,) < 0.

Moreover we assume that
<4'10) g(ty 2y T, C):det (T—Al<t7 Z, C))
never vanishes on

{(t, 2,7, D ERXC"XCXC"; 0=1<0, |2]<0,
121 <31 %], —Tm (/6> M(Iyl+ 3 [Tm (G821}

Our next step is to prove the following theorem under the above assumptions.
THEOREM 4.2. There is 0, <0, and M,>1 such that G(t, z) is analytic on

{(t, 7 RXC™; §,>1t>0, |2| <4, Irnzl>M1t(ﬁ) [Im z;[)} .
Jj=2

The essential part of the proof of this theorem is concentrated to the
following lemma. Once this lemma is established, the rest of the proof is a
routine.

LEMMA 4.3. Suppose that ¢(t, x’,y’) (or we will sometimes denote it by
o(t, 2/, 2")) is a positive valued real analytic function defined on U=/{(t, z');
0<t<0,< 0y, |x'|<0y |V']1<0,}(03+02<33) satisfying the following:

0p / z | _0p
D -S> MY et B 5)
n | de 0 .

Moreover, we assume that the domain of definition of G(t, z) can be extended to
V:{(t’ Z); O<t<517 ‘Z] <527 y1>@(t; x,:y/)} .

Then G(t, z) can be extended to a holomorphic function defined on an open set
V'’ which contains
{(t,2); 0<t<dy, 2] <y, yi=o(t, 2/, ¥)}.

PROOF. Set N={({,2); 0<t<d,, |2| <0, y;=0(t, x/,y)}. We regard N
as a real analytic manifold of dimension 2n. Let Y be a complex neighbor-
hood of N and Y'CY be a subset of ¥ such that ¢ is real. We take the
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coordinates (f, z,, 2/, ) of Y’ with t|y=1t, z)\lv=2, z)|y=2), ZV|y=2, (v=2,
-+, n). Therefore N is defined by 2, =2,. Consider an analytic function G(¢, 2)
defined on the intersection of a neighbourhood of N and {(¢, z, )Y’ ; 0<¢<0,,

lz| <0, Im 2, > (8, z’, zZN. Therefore G(t, z) defines a section of Ay on
.ad . dp 0 z 0

{9+ (iegg—ticgz- az (R o2 gt )~ (& 55— az' >>0

~/—1SN; c>0} In fact, Im (zl—e(zc+21<c 3507>— (¢, 2/ +¢g, 2’+6C)))=

Im z,—¢(t, 2/, 2/)+e(c+2Re(C, f——>——<c, '37> \i £ ))+0(H)=2c+0(<)

>0 if 0<e<1 and S>O' Let G be the boundary value of G. Then the
singular support of G is contained in the polar set Z of the domain of defini-
tion of G, where Z= {((t 2); ( i +1a>dt+zdzl+2< 250,—, z’>)oo>ex/———15*N;

aER}. G satisfies the tangential Cauchy-Riemann equation: Tg———G:O

(v=2,--,n). P is defined on Z and invertible there, because we have

—Im (=) =58> M(11m 2| Hm (-z-))

:M(JEW’?H]—S%\) :

Therefore, in order to prove this lemma, it suffices to show that PG = 0.

We will express PG by making use of defining functions. —%‘?— is a

boundary value of aa? and AG is a boundary value of the following K(t,z)
in a neighbourhood of (#°, z°) N by;

K(t, )= L(t, z, w)G(t, w)dw
G1xxg
where o; is a chain defined by the following: o, is a path starting from a
fixed point ¢ and ends at the same point ¢ around z; counterclockwise in w,-
space, where ¢ is a point sufficiently near to z9=x9+1¢p(t°, 2’°, 2’°), and Imc>
Imz). o; (j=2) is a cycle around z; counterclockwise with radius greater
than |z,—w,|/d. (See the following figures.)
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Im w, Im w,
e

2y

o(t, 2,2}

0 Rew;

0 Re

w,-space w;-space (j=2)

Then, clearly, K(t, z) is defined in the intersection of V and a neighbourhood
of (%, 2%). PG is the boundary value of —3-G(t, 2)—K(t, 2)=H(t, 2). By vir-

tue of [4.9), this is holomorphic in £,, which implies PG =0. Q.E.D.
Now we will prove by using Lemma 4.3 Let ¢,(t, x/) be a

positive valued real analytic function defined on {(¢, x"); 0<t<90,, |x'|=0,}
satisfying

|0 NP
a) Ez ox, 901(t’ x )‘<“"2",

b Aot 20> M B0 10|20,

c) o,(t, x) > vt if |x'|=0d, or t=0,,

d) o,(t, x)>p for some p>0.
Set @,(t, y’)=at~/|y'|*+¢* with ¢>0. Then —aa%—>M|y’|, io% <% if
t<6/2na with a > M. Define ¢(t, x’, ¥') by e, (t, x")+@,(t, ')). This satisfies
the condition in Lemma 4.3 if §, <d/2nMa. Moreover Z.={(t, 2); y,=¢(t, x’, y"),
0<t<0y, |2 <0y |V 1<0s |2, =0t} is compact if v<ad,. If e>wa™!, then
Z. is an empty set. By using the preceding lemma, we can say that G is
holomorphic on Z. for every ¢>0 by the well-known method of Holmgren.
Therefore G is holomorphic on {(t, z); y,—ae™|y’| > Mg (t, x7), 0<t<d,,
|x/] <8, |¥'|<ds}. In order to prove [Theorem 4.2, it suffices to show that
for every e>0, there is ¢,(f, x') satisfying a), b), ¢) and d) and ¢,(t, x") <e
for 0<t<d, and |x’|<d, for some d, independent of ¢. This is possible by
taking ¢,(t, x)=f(at+|x’|*) with a» 0 for a suitable choice of f. This com-

pletes the proof of [Theorem 4.2




Micro-hyperbolic pseudo-dijferential operators 393

§5. Construction of elementary solutions.

In the preceding section, we proved that the formal solution is analytic
in an imaginary rconical neighbourhood under the assumption of partial micro-
hyperbolicity. By using this fact, we will construct an elementary solution of
partially micro-hyperbolic operators.

LEMMA 5.1. Suppose that P(¢, x, D,, D,)=D,—A(t, x, D,) is partially
micro-hyperbolic with respect to the direction t at any point in the set F=
{(0, 0, v/—1(kdt+dx,)o0); —oo < k< oo}, that is, all the eigenvalues of
AL, x, V—1&) have non positive real part for any (t, x, €) sufficiently close to
0,0,(1,0,--,0). Then, we have a microfunction u(t, x) defined in a neigh-
bourhood of F satisfying

i) Pu=4d(t)d(x,),

il) there are positive numbers v and M such that

supp 4 C {(t, x ; v/ —1(kdt-+<§, dx))o0) ; t=0, | x| Svt, |E| S MtE}.

PrROOF. We have obtained the analytic function G(t, z) defined on {(Z, 2)
ERXC";0<t<0, |z] <0, Im 2z, > Mi( i‘ IIm z,| )}V {(t, 2) = RXC™; |t], |z| <o,
yi=2

|z,|>vl|t|}, which satisfies the statement of Lemma 41. Then G*(¢, 2)=
Y(HG(t, z) is a hyperfunction in (¢, z) with complex parameters z defined on

((t,2);5 121, 111<0, Imz>MIt[(3 [Imz,)} .

Let v(t, x) be the boundary value of G*(f, z) and u(t, x) be the restriction of
the spectrum of v(¢, x) to {(¢, x; v/ —1(kdt+<&, dx))oo); |t], |x]| < d, £+ 0}. Since
the singular support of v is contained in {(f, x; v —1(kdt+<§, dx)oo); t=0,
&, < Mt|&,|, |x.| = vt}, the support of u is contained in the same set. There-
fore, it suffices to show that Pu=d(t)d(x,). A(t, x, D )u(t, x) is the boundary
value of

K*(t, 2)= j Lty 2, w)G(t, w)dw,

T1>e

where 7; are paths given in by virtue of [Theorem 3.3
Hence we have K*(f, 2)=K(t, z2)Y(t), where K(t, z):j (t, z, w)G(t, w)dw.

T1Xe Xy

Thus, we see that Pu is the boundary value of faa-l;—G*(t, z2)—K(t, 2)Y(t) =
Fat—(G(t, )Y ()—K(t, 2)Y(t)= <~aaTG(t, z)—K(t, z)) Y()+G(0, 2)6(t). As noted

in [Lemma 4.1, faat—G(t, 2)—K(t, z) is real analytic and G(0, z) =@,(z,), hence
Pu=0(t)d(x,). Q.E.D.
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This lemma yields the following main theorem.
THEOREM 5.2. Let P be a pseudo-differential operator defined at x*= L=

V=1 S*M which is partially micro-hyperbolic with respect to the direction 6 =
S¥LKXL). Then P is invertible in Aj.

ProOF. Firstly, we will prove this theorem in the case where § = S*L.
By using the quantized contact transformation, we may assume without loss
of generality that there is a coordinate system (¢, x;, -+, x,) on M so that

x*=(0, vV/—1dx,00) and that §=dif. We may assume that P,(x*)=0 where
P,, denote the principal symbol of P. By Weierstrass’ preparation theorem
for pseudo-differential operators (S-K-K [1] Chapter II Theorem 2.2.1), we can
reduce the problem to the case when P=D,—A(t, x, D,), where A is a matrix
of pseudo-differential operators of order =1 and that P is invertible at
(0, v/—1(kdt+dx,)) if k#0. By the preceding lemma, we have a microfunc-
tion u(t, s, x, y, &) defined in a neighbourhood of t=s=x=y=0, £§=(1,0, ---, 0)
such that

) Poult,s, x,9,§=0—3)0, ,(Kx—y, £+10).

ii) suppu(t, s, x,¥, &) is contained in

Z={({,s, x, 5, &; V—1(zdt+ads+<¢, dx>+<{y, dy>+<{p, d&)));
tzs, [Kx—y, |2 v(t—s), lo+7|=M{E—9)|L ],
lo—E&rG(x—) = M(@—39)|Cl, 10 —CE7E" | = M(1—9)|{,| and
|p+&7'0E I = M(t—5)[ &0}

because dt+ods+<g, dx)+<y, dy)+<p, d&) =rd(l—s)+(r+o)ds+{,&d{x—y, &
L —CENE, dx Y+ +HEME, dyy+{p—E&C(x—Y), d§)>. Therefore the inter-
section of the support of v and the set defined by p=0 is contained in

Z'={(t, s, 2,9, &; V=1(zdt+aods+<{{, dx>+<{n, dy))o;

tzs, |[x—y| S M(t—s), lo+z|= M(t—9)|L4],

1 +7/ | = ME=9)ICl, 1 +81 = ME—9)1E|

[ —CErE I = Mt—s)A+ [T /16D}Y .
It follows that

B(t, %, 5, 3)= gy [ult, 5, 5,3, O (§)

can be defined and its support is contained in {(¢, x, s, ¥ ; vV —1(cdt+<{, dx)> +
ods+{y, dy>)o); t=s, |x—y| < M(t—s), |{+9I= M(t—35)|il, loto|=M(E—s9)C4l}
Therefore Edsdy belongs in Ay, P, E(t x,s y):—(é;ti—)n—l—fPt,xu(t s, x, 9, &)w(§)

Wja(t D (x—, E)w(E)=8(t—s)6(x—y). This implies that Edsdy
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is a right inverse of P. By starting from the adjoint operator of P, we can
construct the left inverse of P in A_g4 in the same way as above. This com-
pletes the proof in the case when 6= SkL.

Now, we consider the general case. Set M =MXR and L" =~/ —1S*M"
— V=1S*MXR—Mx ~/—1S*R=LXL’, where L'’ =+/—1S*R. Let p (resp. p)
be the projection L” —L (resp. L” —L) and let ¢ (resp. §) be the projection
L”— L’ (resp. L” —L’). Let (x, & t, ) be a coordinate system of L” such that

Or=p*0,+q%0,, = vV—1 (<&, dx)-+zdi).

Then P can be considered as a section of @}.. Set 6 =<a, dx)>+<b, d&). Then
P is partially micro-hyperbolic at p~'(x*) with respect to the direction 6”7 =
0-+ldr for every [. 6" =S*L” is equivalent to the relation [=—7"%b, &.
Therefore, for every point a<p '(x*) we have the unique section K, of
C{riP.. such that PK,=K,P=1 and K} € A, 4. By the uniqueness of K7,
we can patch K, and obtain a section K” defined in a neighbourhood of p7*(x*)
such that the germ of K” coincides K/ at any a. (See the following lemma).
Moreover, since we have [t, P]1=[d/ot, P]1=0, [t, K”]=[0/ot, K”]=0. There-
fore, there is a K C§yr), such that K” is a pull back of K. Therefore K must
be contained in Ay and PK=KP=1. Q.E.D.

The following lemma is obvious by the preceding theorem and we omit
its proof.

LEMMA 5.3. Let F be a subset in L=~/—1S*M, and §: F—S¥ (LXL) be
a section of SF(LXL) over F and P be a pseudo-differential operator defined in
a neighbourhood of F and partially micro-hyperbolic at any x* € F with respect
to the direction @,. Then there is a section K of C$™, defined in a neighbour-
hood of F such that K belongs to A, at any point x* in F.

Now, consider the pseudo-differential operator P defined near x*. Then,
the maximal subset of S¥(LXL),. where P is partially micro-hyperbolic is an
open set. Moreover, its connected component is convex. This is an easy con-
sequence of S-K-K [1] Chapter I Proposition 1.5.4. The following proposition
is, therefore, useful in application.

PROPOSITION 5.4. Let I' be a nonvoid open convex cone in SF(LX L), for
x*< L, and P be a pseudo-differential operator which is partially micro-hyperbolic
at x* with respect to the divection I'. Then P is invertible in .

PrROOF. Let 6,, 6, be two points in I'. There are E, € Ay, such that
PE,=E,P=1 (v=1, 2). It suffices to show that E,=FE, because Ap :09 Ag.

We employ the argument used in[Theorem 5.20 Set L' =+/—1S*R, L"=LX L’
and p:L”"—L. P is partially micro-hyperbolic at any point in p~(x*) with
respect to direction 07 =(1—t)p*0,+1p*6, with —e<t<1l4e for sufficiently
small ¢>0. Therefore there is a section K” of C{»3P such that PK”=K"P
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and K” belongs to Ac,e for every a. Moreover, since K” commutes with ¢
and 9/0t, K” is a pull back of the unique K<CP®, such that PK=KP=1.
Therefore K must belong to <Ap for every ¢ such that —e <t<1-+4e. There-
fore K& Ay, (v=1,2). It follows that K=K, (v=1, 2). Q.E.D.

When P is a micro-hyperbolic operator, we can obtain an elementary solu-
tion for the Cauchy problem.

THEOREM 5.5. Let P=D,—A(t, x, D,) be a pseudo-differential operator de-
fined in a neighbourhood of (ty, xo, v/ —1<&,, dx,yo0), where A(t, x, D,) is a matrix
of pseudo-differential operators of order <1. Suppose that all roots ¢ of the
equation g(t, x, ¢, &)=det (t —A,(1, x, &) are pure imaginary for any (t, x, &) in
a sufficiently small neighbourhood of (t,, xo,~—1&,). Then there is a microfunction
E(t, x,y) defined in a neighbourhood of {(t, x, v ; ~/—1(zdt+<&, dx>+{n, dyy)oe);
t=t, x=y=1x, E=—n=4§,} satisfyving the following conditions.

1) PE=0(;

2) E(tr xvy)[t—_—to:a(x“.)o;

3) The support of E is contained in

{(t, x, y; V=1(zdt+<{&, dx)>+<y, dyy)oo; |x—y|= M|t—1,],
[+l =Mlt—t] €], lcl=MIEl}.

Proor. If &,=(1,0, ---,0) and {,=0, then G(f, 2) constructed in the pre-
ceding section is holomorphic in {(f, z)€ RXC"; Im z1>M|t|(§2 m 2,0, ¢,
|z| € 1}. Then, the spectrum u(t, x) of the boundary value of G(¢, z) satisfies

a) Pu=0,

b) U= =0(x,),

c)  supp uC {(t, x, V—1(zdt+<§, dx>)); x, <vlt],

lzl= MIEl, &= MtE (v=1,--,n)}

in the same way as in the proof of Lemma 5.1. The argument employed in
easily gives us the elementary solution E(f x,v). The detailed

proof is left to the reader. Q.E.D.
We will give several examples of partially micro-hyperbolic operators.
ExaMPLE 1. M=R*={(x,, x,)}, P=D,—axiD, (e =C*, m=1). In this

case, the set of real characteristics Vg of P is {(x, vV —1(&, dx)oo)& ~/—1 S*M ;

£:=0, x,=0}=V,JV_ where V.,={&,=0, £&=0, x,=0}. V. is one dimen-
sional. We use x; as the parameter on V.. P is partially micro-hyperbolic
with respect to the direction

0 = +(dx,+adx,+bd&,+cd&,) on V. for any a, b, c= R
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(see S-K-K [1] Chapter I Lemma 3.1.5).

If ¢=0, € belongs to S*L. Therefore P is solvable. The good elementary
solution E(x, v) is given explicitly as follows:
Set

Sa(x1, M1y 25, Wy) =

1 Y(£(x—y1)
2ra/—1 z,/2m—1v1—0Cm—Dax,zi" '—w,/2m—1vV1—2m—1)ay,wi™* *

Then f. is a hyperfunction defined on Imz, =2k Imw, and |z,|, |w,| <1 for
k>1. We set

E(x, )= f(x5, 31, %o+ v/ =10, y,— +/~10)
—_.f-*(xly N1y, Xo— '\/jl—d, y2+ '\/Tlo> .

Then clearly, P,E=PfE=0(x—y). In the sequel, we restrict ourselves to the
analysis only on V.. Let u be a section of the solution sheaf C? defined on
{x;=V,; x;,>a}. Then there is a holomorphic function ¢(z) defined on
re UCC satisfying; for every b>a, there is ¢>0 such that U contains
{reC; |t|<e, Imz>Ima)b(Rer)*™}, and u is a boundary value of
o(z,/2m—1+1—2m—1)ax,z3"?) from Im z,>0. Moreover ¢(r) is determined
uniquely by # modulo holomorphic function defined in a neighbourhood of =0.
It follows that there is a solution of P defined on {x, & V,; x,> a} that cannot
be continued to a solution defined in a neighbourhood of x,=a. In this case,
the uniqueness of continuation holds in both directions.
EXAMPLE 2.

M=R?,  P=x++—1x}.
Ve={(x, vV—=1<§, dx)o0); x,=x,=0}.

In this case, P is partially micro-hyperbolic with respect to the direction §=
dé,+adx,+bdx,+cdé, for any a, b, ce R. 6 belongs to S*L if and only if
&, = —c&,. Therefore, if £&,#0, P is solvable. Furthermore, since it is known
that P: 38— ® is surjective, P is micro-locally solvable everywhere. The
authors conjecture that pseudo-differential operator is solvable even if it is
partially micro-hyperbolic with respect to the direction # & S*L. In the original
case, the singularity propagates to the direction &,/|&,|. The elementary solu-
tion E(x,y) of P is

Remark that operator x;-+ +/—1 x% considered in &,+ 0 is equivalent to that
of Example 1 by means of a quantized contact transformation.
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§ 6. Existence and uniqueness theorems.

In this section we list up the existence and uniqueness theorems which
follow from the existence of the “good” elementary solution of (partially)
micro-hyperbolic operators ((Theorem 6.1)).

In this section N denotes a hypersurface of a real analytic manifold M.
We use the local coordinate system x=(x;, x’) on M so that N={xe M|x,=0}.

To begin with we note the following theorem which is a trivial corollary
of [Theorem 5.2

THEOREM 6.1. Let P(x, D,) be a single pseudo-differential operator of finite
order which is partially micro-hyperbolic at x*-++/—190, then there exists an
elementary solution E of P in Huv=ig, l.e. there exists an element E in
H perv=T90 SALISfYING

PE=EP=1.

The proof immediately follows from [Theorem 5.2 (Cf. the arguments at
the beginning of §2.)
The first consequence of is the following existence theorem.
THEOREM 6.2. Let P(x, D,) be partially micro-hyperbolic at x*-+/—1390
with {8, 0> =0 where x* is a point in ~—1S*M=1L and 0 is the canonical
1-form of L. Then
P

Copo —> Cpn
s surjective.

PROOF. For any microfunction f defined in a neighbourhood of x* we can
find 7 which coincides f in a neighbourhood U of x* and has its support in
the closure of U. Taking U sufficiently small, we may assume that the ele-
mentary solution E of P defined in a neighbourhood of (x*, —x*)e LC LXL
operates on f Clearly u= Ef gives the required solution of the equation Pu=jf
near x*. This completes the proof of the theorem.

THEOREM 6.3. Let x* be a point in L=+/—1S*M and I' be a non empty
open convex set in SKL. Denote by G the set of all closed sets whose normal
set at x* is disjoint from the polar of I', and W be the set of all open neigh-
bourhood of x*., Assume that a pseudo-differential operator P(x, D,) is partially
microhyperbolic at x* with respect to the direction I', then we have the follow-
ing isomorphism :

,
CE.=1lim CP(U) ==, lim CE(U—G).
L"——;u ggg

Here CP denotes the microfunction solution sheaf of the pseudo-differential equa-
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tion P(x, D,)u=0. In other words, l;m HE(CP),. =0 holds for any k.
=1

PrOOF. We first show that the natural restriction map r is injective. Let
u be in CP(U) with support in G\ U for some G in ¢ and some U <lU. Clearly
u belongs to My. Therefore E operates on u by [Proposition 1.7, Hence we
have

u=PEu=EPu=0Q

in a neighbourhood of x*. This implies the injectivity of the map 7.

Next we prove the surjectivity of . Let u be an element in CE(U—UNG)
for some G in ¢. Then the flabbiness of the sheaf of microfunctions allows
us to find an extension # of u to U. Clearly Supp PiC UNG. Hence p=Pii
belongs to My. Therefore Ep is well-defined. Moreover there exists a closed
set G containing G which satisfies

Sr*é M ' =0
and
Supp EpnU'cGnU’

for some neighbourhood U’C U of x* by the support property of E. It is also
clear that P(ii—Ep)=0 holds. Clearly u=i#—Ejyu coincides with u in U'—G.
Thus u defines an extension of u| U—G to a neighbourhood of x* satisfying
the equation Pu=0. This implies the surjectivity of the map r.

As a trivial corollary of the above theorem, we have the following result
about the propagation of analyticity of solutions.

COROLLARY. Let p be the canonical map from \/:TS*M?;N—— V=1SEM

to ~/—1S*N. Assume that N is non-characteristic with respect to a linear
differential operator P(x, D,) and that P is partially micro-hyperbolic with respect
to x,-direction at any point in p~*(x'*) for any x'* in ~/—1S*N. Then there
exists a neighbourhood U of N such that any hyperfunction solution u(x) of the
equation P(x, D)u(x)=0 that is defined on U and real analytic in {xeU|x,<0}
1s necessarily real analytic in U,

Moreover partially micro-hyperbolic differential operators enjoy the follow-
ing existence theorem.

THEOREM 6.4. Let P(x, D,) be a linear differential operator which is partially
micro-hyperbolic in some {(&,. dx)> direction at any point x*=(x°, ¥—1g) in
T (xDC V—1S*M for x° in M, Then we can find a neighbourhood U of x°
such that

P(x, D)
(8/WU) ———> (3/A)(U)
1s surjective.
PrOOF. First we take a finite open covering {W;}, of z7%(U) in ~/—1S*M
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for a sufficiently small neighbourhood U of x, so that it satisfies the following
condition: There exists an open set W, containing the closure of W; where
the equation P(x, D,)u=Ff has a microfunction solution u on = '(U) whose
support is in ¥/, for any microfunction / with compact support in the closure
of W; so that w|r, is a proper map and that z(W,) contains a neighbour-
hood U of x°.

Such a choice of {W,} is possible by the assumption of the partial micro-
hyperbolicity of P(x, D.) in the <{&,., dx)> direction. In fact P has an elemen-
tary solution in 4 .v=igs (3& H'(£,.), hence it is possible to define F, as
the union of some cones with their vertexes in W; if W, is sufficiently small.
The properness of F, over U; follows from the assumption that P is partially
micro-hyperbolic in {&,., dx)>-direction.

For any f(x) in (8/%)(U) we can find an extension f(x) of f(x) in (B/A)(M)
with its support in the closure of U by the flabbiness of the sheaf $8/%. Then
using the flabbiness of the sheaf of microfunctions we can find microfunctions

~
.

k
{/;}:-1 so that Supp f; is contained in the closure of W, and that Zlfj:f
]:
After this decomposition of / we can find u; so that P(x, D,)u;=f; in W; and
k
that Supp u; is contained in F;. Since 7|r; is a proper map, u= 2 %; makes
J=1

sense. Clearly Pu=7F holds as an equation for microfunctions. Moreover u
belongs to C(z~'(U)). Therefore P(x, D)u(x)=f(x) holds in (B/A)U). This
proves the surjectivity of P(x, D,). Q.E.D.
Moreover we can prove the following
TEEOREM 6.5. Let P(x, D,) satisfy the conditions in Theorem 6.4. Then
we can find a neighborhood U of x° on which

P(x, D): 8(U)— s(U)
1S surjective.
PROOF. The method of the proof of the preceding theorem shows the
existence of a hyperfunction E(x, v) defined in U,X U, for a neighbourhood U,
of x° which satisfies

P(x, D)E(x, y)=d(x—y)+fx,3)  (x,y€ V)

for a real analytic function f(x, y) and which depends real analytically on .
Note that we can find microfunctions f; so that Supp f; is contained in W,;N\4°
and X f;=0(x—y) for any locally finite open covering {W,} of 4% the antidia-
gonal set in v/ —1S*(MX M), since the sheaf of microfunctions is flabby. The
assumption of partial micro-hyperbolicity in <{&,., dx) direction implies that
Pn(x°, v/—19)#0 for some 7 (maybe complex), the Cauchy-Kovalevsky theo-
rem asserts the existence of a real analytic function v(x, ¥) defined in a neigh-
bourhood W of (x,, x,) in M X M which satisfies P(x, D )v(x, y)=f(x, y) there.
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Therefore we can find a neighbourhood U, of x, and a hyperfunction F(x, y)
defined on U, X U, such that

P(x, D)F(x, y)=0(x—)
holds for (x,3)e U, x U,. This implies the surjectivity of

P(x, D;): 3(U) —> B(U)
for any open set U&U,; by the aid of the flabbiness of the sheaf of hyper-
functions. Q.E.D.

As explained thus far, partially micro-hyperbolic operators enjoy the good
existence and unique continuation theorems. Moreover some partially micro-
hyperbolic operators have their inverse in L, not merely in % ..v=1g. The
typical example of such an operator is D,++/—1x%*D, considered at x,=0,
71=0, 9, #0.

Generally we have the following result concerning pseudo-differential
operators which have their inverse in £ .

THEOREM 6.6. Let I' be a convex cone in S%: L for x¢ in L=~/—15*M.
Assume that a pseudo-differential operator P(x, D,) is partially micro-hyperbolic
in I' at x¥. Define Z by {x*¥*& LXL; pp(p(x*) =D (D(x*))=0} and assume
that the closure SpZ of Z—L in ELXL is disjoint from I'*®. Then P(x, D)
has a two-sided inverse in L.

PROOF. The assumption of partial micro-hyperbolicity assures the existence
of the elementary solution £ of P. Moreover, if we denote Supp E by G, then
the closure S;G of G—L in 7L\>A<—lj is contained in I'°® near xF. On the other
hand G is contained in LX L\ (Z\UL), since a pseudo-differential operator is
invertible where its principal symbol does not vanish. This implies that S;G
is contained in S, Z. Therefore the assumption that S,Z is disjoint from /'°®
implies that S;G is disjoint from /'°% Since S,G is contained in ['°%, S.G is
void. This implies that G is contained in the anti-diagonal set 4% in LXL,
that is, G defines a kernel function of a micro-local operator by the definition.
This completes the proof of the theorem. Q.E.D.

Moreover, if we assume that the characteristic variety V of P is regular
in the complex domain, then we have the following result. (Cf. Egorov [2],
Treves [2])

THEOREM 6.7. Assume that V is defined by a(x, n)+ ~/—1b(x, 7)=0 where
(vV=1)"™a(x, v—17) and (~=1)""b(x, ~/—1%) are real for (x, ¥/—1%) in
v =1S*M near x¥=(x, v'—17,) and that grada(x, 7) and o are linearly
independent there. Assume further that (~/—1)"™b(x, ~/—1%) is positive (or
negative) on each real bicharacteristic strip of (v/—1)™a(x, v—1n) and not
identically zero there. Then P(x, D,) is invertible in Lyt
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PROOF. By a suitable “quantized” contact transformation, we may assume
from the beginning that a(x, »)=7%,. While, the assumption on b implies that
b has the zero of (finite) even order with positive (or negative) coefficients on
each bicharacteristics of a(x, )=7w,. It is clear that we have an elementary
solution E(x, y) of P such that G=Supp F is contained in {x, =y,} by the partial
micro-hyperbolicity of P. On the other hand since a(x, n)=17,, G is contained
in {(x* y*)e LXL; x,=y, and x* and y* lie on the same bicharacteristic
strip of a}. Then GC VUL by the invertibility of elliptic operators. More-
over [Theorem 6.6 asserts that GCLC LX L. Thus P is seen to have a right
inverse in Ly,.;.  Applying the same argument to P* we see that P is
invertible in £y, Q.E.D.

REMARK. Only the assumption of positivity (or negativity) of
(v/—1)"™b(x~/—17) implies the solvability of the equation P(x, D,)u=7, since
P is still partially micro-hyperbolic under this weak assumption. (Cf. Egorov
[1], Nirenberg and Treves [1]).

Thus far we have discussed the existence and unique extension theorems
for partially micro-hyperbolic operators. If we assume the micro-hyperbolicity
of the operator, then we can further show the well-posedness of the Cauchy
problems for such an operator. Here “well-posedness” means the unique ex-
istence of the solutions.

For the sake of simplicity of the terminology, we introduce the following
definition. We always assume that N is non-characteristic with respect to P.

DEFINITION 6.8. A pseudo-differential operator P(x, D.) defined in a neigh-
bourhood of dx,=0 is said to be micro-hyperbolic in x,-direction at x’* in
\/le*Nng, if P is micro-hyperbolic with respect to x-direction at any
point in o~ (x’*). We also say that P is micro-hyperbolic in x,-direction in
Uc «/rl_S*N>I§M, if P is so at any point in U. (Cf. Kawai [1]).

Now we have the following theorem.

THEOREM 6.9. Let P(x, D) be micro-hyperbolic in U, V be the characteristic
variety of P. Denote by k the number of the points in VN p '(x'*), counting
their multiplicities for x'* & U. Then there exist a neighbourhood W of Vrp=(U)
and a unique microfunction solution of the following Cauchy problem in W :

Plx, D )u=0
5\ , .
F*ath> u!z1=0::#j(x )5 ]:O! '“!k_ly

where pi(x’) is a microfunction on U.
PROOF. Since asserts the existence of the elementary solution
for Cauchy problems, the proof is immediate.
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Moreover, if the operator P is a hyperbolic differential operator, then the
Cauchy problem in the space of hyperfunctions is obviously well-posed. In
fact we have the following theorem. This is the case treated by Bony-Schapira
and [2].

THEOREM 6.10. Let P(x, D,) be a hyperbolic linear differential operator of
order m. Then there exist a neighbourhood W of N and a unique hyperfunc-
tion solution of the following Cauchy problem i W:

P(x, D)u(x)=0

0\’ )
( axl u!zlzozﬂj(x/>y ]:O; "':WL—lv

where pi(x’) is a hyperfunction in x’ defined on W\ N.
ProoOF. Applying the Cauchy-Kovalevsky theorem we can find E,(x, y’)
which satisfies in a neighbourhood of N the following:

PEkZO
5\ o .
<a_t) Epla=0=0;:0(x"—y"), 0=j, k=m—1.

Then the Holmgren’s uniqueness theorem asserts that supp E,(x, y’) is contained
in K,\U(—K,), where K is a proper cone in {x, =0}, because E, is real analytic
outside the cone. Therefore the assertion follows immediately. Q.E.D.
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