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§1. Introduction.

In the present paper and a few papers to follow, we shall make an operator
theoretical study of the finite element method applied to the initial boundary
value problems for partial differential equations of parabolic type.

The particular objectives of the present paper are twofold. Firstly, we
intend to develop a method of error analysis of a general nature which is in
conformity with the theory of holomorphic semigroups (cf. Yosida or
Kato [13]). Specific descriptions of this method would be only possible after
introduction of necessary notions and notation as in the following sections.
However, it seems to be appropriate to give a few comments here of the
motivation or the idea of our method. The initial boundary value problem
which we are going to consider can be formulated as an evolution equation
in a Hilbert space X of the following form with an m-sectorial operator A

(Kato [13], Chap. V, VI):

du .
W"f—Au-——O, (t>0),
u(0)=a,

where t is the time variable and a is the initial value. The solution u : [0, co)
—X is given in terms of the semigroup ¢ ‘4 generated by —A as

u(t)=e ta.

Reflecting the parabolicity of the original equation, this semigroup ¢4 is a

holomorphic semigroup and it admits of the integral representation (the Dun-

ford integral)
1

-tA
e = =
271

jre-%z—A)-ldz (t>0).

1) A part of this paper was reported by the first author at the IRIA symposium
in December, 1975, 2nd international symposium on computing methods in applied
sciences and engineering (cf. Fujita [8]).
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Here the path I of the complex integration is the positively oriented boundary
of a certain sector in the complex z-plane. The above integral representation
suggests to us that if we approximate A by some operator or other, say, by
its finite element approximation A, to be introduced in § 2, then investigation
of the convergence of the resolvent (z—A4,)™! of A, to the resolvent (z—A)™?
of A will provide us with the corresponding information about the convergence
of the approximate solution for the initial value problem. The rate of con-
vergence of the so-called semi-discrete approximation, which approximates e *4
essentially by e '4?, will be derived along this line. Furthermore, if the time
variable ¢ is also discretized with time mesh >0 and if we adopt, say, the
forward difference finite element approximation, then e *4* itself is approximated
in turn by G,(4,)=(1—7A,)" (t=nt; n=1, 2, ---). This is nothing but approxi-
mation of the exponential function of A, by the polynomial G, of A, and can
be treated again within the framework of the calculus of operator-valued holo-
morphic functions.

The second aim of the present paper is to deduce the optimum rate of
convergence valid for >0 of the semi-discrete as well as the difference finite
element approximations. It is emphasized that in doing so we shall make
neither the assumption of the self-adjointness of A nor the regularity assump-
tion of a. Moreover, one of our typical results is the bound Ch?|a|/t of the
error in the case of the semi-discrete approximation. Thus our results might
be said to generalize or sharpen the existing estimates of the rate of con-
vergence under consideration by various authors (e.g., Babuska and Aziz [1],
Bramble and Thomée [4], Douglas and Dupont [6] and Zlamal [24]), although
in this paper we deal only with basic but simple approximations mainly for
the sake of simplicity of presentation.

Certain generalizations and modifications of the results obtained in this
paper are immediate or straightforward. These will be discussed in forth-
coming papers.

The present paper is composed of six sections. In §2 we formulate the
problem to be solved and the scheme of approximation to be analyzed more
concretely. §3 contains a theorem concerning the finite element approximation
of the resolvent operators with complex argument. In §4 we derive estimates
of the rate of convergence of the semi-discrete approximation. §5 is con-
cerned with the semi-discrete approximation of the inhomogeneous equation
u,+Au=f(t). §6 is devoted to derivation of the rate of convergence of the
difference finite element approximations.
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§2. Notations and preliminaries.

Let 2 be a bounded domain in the plane R® and assume either that the
boundary 082 is smooth (of C®-class) or that 2 is a convex polygon. In £2 we
are given an elliptic operator L of the following form:

- o%u i ou
Lu ~iq§10fj(x)*azg}7—+ ;21 bj(x)“az +e(xu,
where the coefficients a;;, b;, ¢ are possibly complex valued but are sufficiently
smooth, e. g., a;;=C? b,eC' and ¢=C° up to the boundary. L is assumed to
be uniformly and strongly elliptic.

The initial boundary value problem which we are going to consider is
composed of the following equations.

2.1 = Lu (t>0, xe 2),
(2.2) u=0 (t>0, x€02),
(2.3) Ul =g =a(x) (xeQ),

where the initial value a=a(x) is a given function €L,(2). If we introduce
the (complex) Hilbert space X=L,(2) and define an operator A: 9(A)—X by

(2.4) D(A)=H (D) NHI(2)

and
Au=—Lu (ue 9(A)),

then the problem (2.1)~(2.3) is reduced to the following initial value problem
of the evolution equation, for u: [0, o0)—X,

(2.5) Ay Au=0,

with

(2.6) w(0)=a.

As in the symbol H/(Q) (j=0, 1, ---) stands for the Sobolev space Wi(2)
of order j, and the symbol | |; means the standard norm in H/(2). For
instance,

(2.7) uli=lultnee = lulzce+1VullZg .

We simply write || | in place of || |. 82) is the set {ucsHY(R); ul,=0}.
H'Y(2) and H{(£2) can be regarded as Hilbert spaces under their inner product
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(,): consistent with the norm [2.7), while the inner product in X=L,(2) will
be written as (,). We put

V=Hif).

As is well known, the operator A can be associated with a sesquilinear form
o: VxV—-C such that

(2.8) lo(u, V)| Zcllulllvl,  (w, ve V),
(2.9) Reo(u, w)zcluli—4ful®>  (ueV),
(2.10) : olu, v) =(Au, v) (ue 9(A4), ve V),

where ¢,, ¢, and 2, are positive constants. Since replacement of u by e *‘u in
implies replacement of A by A+2,, which in turn corresponds to changing
o(,) to o(,)+4,(,), we may assume 4,=0 without loss of generality. Hence,

(2.9) Re a(u, u) = c,l|\ull} ueV).

A consequence of (2.8)~(2.10) is that there exists an angle 6, (0<8,<x/2)
with the following properties: if a subset of the complex plane G, is defined
by

(2.11) G,={z;0,<|argz| <7},
then G,Cp(A)=the resolvent set of A, and

M,
2]

(2.12) I(z—A) = (zeGy)

for some positive constant M;. Moreover, the semigroup {¢~*4},-, which solves
the initial value problem and by

u(t)=e"a t=0)
is a holomorphic semigroup (e.g., see Kato [13], Yosida [21], and Lions and
Magenes [17]). It also admits of the representation

(2.13) etd=_L1 [ otz p)14z

T 27 ry

where I'; is the positively oriented boundary, running from +ocoe®t to +coe™*01,
of the sector

(2.14) 2,={z; largz!<6,}.

From (2.12) and [2.13) follow some useful inequalities, for instance,

1AGz—A) =C,
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and

(2.15) A%ty < -5x

= (a>0).

Henceforth we may denote various positive constants (various positive con-
stants depending on a parameter, say, «) indifferently by C (C,) when the
distinction seems unnecessary from the context. Finally we note that the
graph norm |Aull of A is equivalent to H*(£)-norm. This is the case also
with A*, the adjoint operator of A. Furthermore, 9(AY?) coincides with V
(see Lions [16]).

We now turn to the finite element approximation. By V, we mean the
set of “trial functions”, i being the size parameter of the subdivision of £.
If £ is a convex polygon, the subdivision should be a regular triangulation of
Q, and & represents the largest diameter of the element triangles. In this case,
we set

V,.="“the set of all functions in V which are
linear in each element”.

If the boundary is curved, then we adopt such trial functions as were con-
structed by Zlamal [22], which are piecewise linear in interior elements, and
are obtained by pulling back linear functions in elements adjacent to the
boundary. In any case, we have

V.V
and thus our approximation is of a conforming type. If #" represents the

function €V, which coincides with a given function u at every nodal point,
then, we know that

lu—a*| =Ch*|ul, (ue H¥Q))
and

(2.16) lu—a*|,=Chijul, (ue H2))
(see Bramble and Zlamal [3], Zl4mal [22]). For a later use, we introduce”

ﬁ":ﬁhu:the projection of u= V on V,
with respect to H'-inner product,
for which we have

(2.17) lu—"| = Chllull, (weV),

(2.18) lu—a"|, = Chlu], (weVAH(2))

1) Use of %" was kindly suggested to us by Dr. F. Kikuchi through an oral com-
munication.
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and
(2.19) lu—t*l =CR*ul, (ue VAHYQ))
as shown at the end of this section. Incidentally, we put

P,u=the projection of u= X on V,
with respect to L,-inner product.

In this framework, our finite element approximation A,: V,—V, of A is
defined by

(2.20) (Anon, ¢n)=o0(en, ¢n) (O, PrE V).

In other words, A, is the operator associated with the sesquilinear form o,

which is the restriction of ¢ on V,X V.
Let u,=u,(t) be the approximate solution of the problem [2.5), by the
semi-discrete finite element approximation. Namely, we assume that u; : [0, o)

—V, satisfies

(2.21) ‘dc‘it—Wh, ©n)t+0(Un, 1) =0 (onE V)
and
uh<0) =dap.
Then we can write instead of
((jjt lth+Ahuh:O,

and also have
uy(t)=etrq, .

If P,a is taken as the approximation a, of the initial value a, then we have
uy(t) =et42Pa.

REMARK 2.1. implies Re (Au, u)=0 (us D(A)) and, hence, A is accre-
tive. Consequently, e™*4 is a contraction: e *4|<1, (+>0). This is also the
case with e t4%,

Moreover, if the time variable ¢ is discretized with the time mesh 7>0,

then the difference finite element approximation is given by

Up(t+7)—u(t)+7z Au,(t) =0 (t=nt, ne N)

or
up(t+o)—up(t)+cAu(t+7)=0  (t=nr, ne N),

according as the time difference is taken forward or backward. Therefore we
have
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(2.22) uy(t)=(U—zAy)"a, (t=nt, ne N)
for the forward approximation, and
(2.23) u () =U+7A;) "a, (t=nz, neN)

for the backward approximation. More sophisticated difference approximations,
e. g., the Crank-Nicolson method, might be treated in this manner but will
not be discussed in this paper.

Proof of (2.17), and (2.19).

Putting e=u—#", we have
(2.29) (e, o)1 =0 (Vo€ Va)
and, hence, taking ¢,=#"—a" we have in view of
lelit=(e, et+@n)1=(e, u—a"),
= el lu—a™|, < Chlel,ul.,

which implies [(2.18). Making use of a modification of Nitsche’'s trick we can
estimate |le|| as follows:

o ed o el
lel = sup =7~ =sup — g

where 7€ VAHYQ) is related with ¢ by
n=(—A+1)"¢
or, equivalently, (n, ¢);=(¢, ¢) (Vp=V). By [2.18) we have

lp—7M. = Chlipl, = Chl¢ll,
whence follows

I(e, D)l =1(e, p—7")u| = lellsllp—7"I,

= Chlell;-1¢l
with the aid of [(2.24). Consequently we have
(2.25) el = Chllel,.

Since |e];=|lull; by the definition of #", (2.25) gives Finally, substitution
of [(2.18) into [2.25) yields [(2.19).

§ 3. Approximation of the resolvent.

The objective of this section is to prove the following
THEOREM 3.1. There exist a positive constant C and an acute angle 6, such
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that for any feX and for any zeG,={z; 0,<|arg z|<n} we have

(3.1 lex(2) = ChI I,
(3.1) lex(2)| =CR*I 11T,
(3.3) lex(2 = CRI I/ 1217,

where e,(2)=(z— A) f—(z— A, P f=w(2)—w,(2).
We begin with consideration of the numerical range of the sesquilinear
form o.

LEMMA 3.2. There exist positive constants 0, and y, such that

(3.4) IIm a(¢, ¢)| = d,(Re a(p, ©)—7ollell})

for all oV,
PrROOF. From and it is easy to show

2c 4
|Im oo, )| = 2 ~(Re aly, 9)——F-leli) .
Thus (3.4) holds good with

_ 2¢ _ G
(3.5) 50-—v——62 and 7,= 9 -

Q.E.D.
Henceforth d, and 7, will denote those in and we set

O,=tan"'s, (0<0,< %) ,

whereas we choose a 6, subject to 6,<60,<wn/2 once for all and define the

sectors G;, 2, by and with this #,, accordingly. ['; denotes the
positively oriented boundary of X',.
LEMMA 3.3. There exists a positive constant 0, such that

(3.6) Lzl oI’ +leli=dlzllel*—ale, ¢l

Jfor all o€V and z€G,.
PROOF. We may assume ¢+0, and put

) =rdleli/lel®,
Lo)=ale, o)/ lel*.
Defining a sector 2, with vertex u(p) by
2,={z; larg (z—plp)| =0} ,

we notice that (3.4) implies {(¢)€2,. On the other hand, we see by an ele-
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mentary consideration
dist. (z, 2'.) = z|sin (0,—0,)+ () sin 0,
if zeG,. Thus putting

0, = (min{sin (6,—8,), 7,sinf,})*,
we have

[zllell?—a(e, @)1= lel*|z2—L(¢)]
> gl dist. (z, 3,)
25—11(12|I{¢Hg+!19025%)

which establishes the lemma.
COROLLARY 3.4. As for A, we have

3.7) [zl llenll+llenli = 0,1 ((z— A, n)| (@n € Vi)

Furthermore,
G,C p(A,)=the resolvent set of A,

and the following inequalities hold good:
I(z—An) el = 0.l fall/ | 2| (JnE Vi),

Iz=An) i = aill full/ 1217 (fas Vi),

[ An(z—Ap) fal = A+l (FaE Vi),
for all zeG,.
PROOF. is simply a restriction of in view of

we can calculate with w,=(z—A,)"'f, as

|z} [wal* +wali = 0, (fr, wa)| = 0.0 fallllwall
and obtain
lz[wyll = 0.l fall

lwallt = 0,1 falllwall = G311 Fll®/ | 21
[ Apwpll = zwp—fol = 2| lwall £ 1l fall £ 0+ DI fall

whence follows the corollary.
REMARK 3.5. From the general theory we know that

(3.8) [A%(z—A) M =Colz|™" (2€G,, 0=a=1).
On the other hand, by making use of we can show
(3.9) Iz—=A)fli=0.071/121

Q.E.D.

From

Q.E.D.
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by an elementary argument as above, which is equivalent to the special case
a=1/2 of (3.8) in view of D(AY*)=V. See Lions [16]. Moreover, (3.8) remains
valid with the same C, even if A is replaced by A;.

PrOOF OF THEOREM 3.1. w and w, satisfy

z(w, p)—o(w, p)=(f, ¢) (p€V)
and

z2(Wn, ©n)—0(Wh, ©1)=(J, @n) (prE V4,
respectively. Therefore,

(3.10) z(en, on)—0(en, ¢n) =0 (on € V).
Thus in virtue of we have for any ¢,€V,
| 2] llenll®+ llenlli = 0,1 2] enl* —a(en, en)]

=0,]z(ep, eh+(ph)_0’(ghrjeh+§0h)|'
Setting ¢,=w,—7", we have

(3.11) |z| lleal®+llenlii = 0,1 2(en, w—D")—0(en, w—0")]
= 0,(|zl lenllllw—" | +cillenll hw—w"1)

= Ch(lzl{erlllwll+lleall w2
by (2.17) and [(2.18). On the other hand,

lwl,=(z=A)"Fl.=CIf1I/ 127,

[wl,=CllAwll,=CIl f1f.
Hence we are lead to

|zl [en]®+ llenlii = CRI f(12]*enl +enl,)
and moreover, to

(3.12) |z|llenl*+lenli = CA*| FII

with a suitable constant C. [(3.12) gives|(3.1)and (3.3). In order to derive (3.2)
we resort to Nitsche's trick. Let A* be the adjoint operator of A. A* is
nothing but the accretive operator associated with the sesquilinear form o*(u, v)
=o(v, u). And we know D(A¥)=VNH*Q)=2D(A). For any geX let us esti-
mate |(e, g)|. Defining » by y=(z—A*)"'g, we have

|(en, )| =1z(en, p)—0(en, )|
=|z(en, n—7")—0(en, n—7")|
= C(zllealllp=7"+llenlllp—7"1)
< CChlz[ M F1-Rligll+AIFIE-Rlg)
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by means of [3.10), (3.3), (3.1}, (2.17) and [2.18). Noting that the inequalities
(3.8) and (3.9) are true with A replaced by A*, namely, that

Il =Clgll/lz]"?
and
Inl.=Clgl,

we see from the inequalities above that

\(en, 1 =CR¥ fllllgl (g X).

This implies (3.2). Q.E.D.
REMARK 3.6. and (3.2) hold true for z=0.
REMARK 3.7. (3.2) and can be written, respectively, as

(3.13) [(z—A) "' —(z2—An)'P,|| = Ch?
and
(3.14) [(z—A)"'—(z—An) Py = Ch/| 2| 2.

In other words, the estimates in give the rate of convergence
measured in the operator norm.
REMARK 3.8. When combined with the obvious inequality

(3.15) leall = lwl+llwall = CILAN/ 121 +CIP I/ 12l = CILAI H 21

(3.2) yields

lea@ =Co L2V yet (0<ax).

|z]

These slight generalizations of the error estimates are apparent with the
estimates in the other theorems in the present paper and will not be stated

explicitly (see Fujita [8]).

§4. Rate of convergence of the semi-discrete finite
element approximation.

In this section we suppose that u(#)=e ‘4a is the solution of the original
problem, and u,=u,(t)=e"4"a, is the semi-discrete approximating solution with
the initial value a,€V,. First of all we claim the following

THEOREM 4.1. Suppose that a,=P,a. Then we have for the error g,(t)=
u(t)—uy(t) the following estimates:

(4.1) lenfi=ChtMlal, (>0,
(4.2) len =CR*Hall,  (£>0).
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ProOOF. Let 6, and I'; be as mentioned in §3. We then have
(4.3) eh(t):% & (e A (2= A) P dz.
Hence it follows by means of [3.1), / being replaced by g, that
lea(Dl, = C7f e toenhlaldp

=Cht'|a|.
Similarly, (3.2) yields [4.2}, because

lea(Df = C/hzﬁaHJ‘:g‘zﬂcos ‘91dp

=Ch* Y a| .

Q.E.D.
REMARK 4.2. can be written as

le=t4—e=t4rp | < Ch?tt.

We proceed to the case of a more general choice of a,. Namely, we sup-
pose that a, is in V), but not necessarily equal to Pr,a. The following theorem
is concerned with such a case.

THEOREM 4.3. Let a,€V,. Then with the same notation as in Theorem
4.1, we have

len(Dl, = C(ht Y ap||+172la—axl)
and

len() = C(R*t | anll+lla—anl) .
Proor. In view of P,a,=a,, we can write
ex(t) =e t1a—e g,
= (a—a,)+ (e A —e 4Py,
= &0(1)+e(0).
ey’ (t) can be estimated as

le~*4(a—ap)ll; = Ct™*la—ay|
or
le*(a—an)| = la—au],

while ¢(t) is dealt with by making use of Then the theorem is
obvious. Q.E.D.
THEOREM 4.4. Suppose that asV and a,=P,a. Then with the same nota-
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tion as in Theorem 4.1 we have
lex(D = Cht=**all,,

len(®)ll =< Chlall,,
and

len(Dll = Ch*="#|all, .

PrROOF. Going back to [Theorem 3.1, we have to modify and (3.2) as

(4.4) len(2)l = Chlz| =2 [l
and
(4.5) len(2)| = Ch*|z| V2| fl,,

respectively. This can be done by noting that [(3.11) yields the inequality

(4.6) [z lenll®*+llenlli = Cl 2| |w—2"|*+ w—@"3) .

By [(2.17) and [2.18), [(4.6) gives

(4.7) lz] fenl*+lenlli = CR(| 2| fw]i+llw]3)
=Chr*[z] M It
since
lwll, = CIAY* w| =C|(z— A) AV f |
= Cliz— AT A S
=Clz[7fl1,
and since
lwl, = Cll Aw| =C|| AY*(z— A) ' AV*f |
= Cl AV (z—A) I AVEf |
=Clz|72]7l,.
is obvious from [4.7), which gives also
(4.8) leall = Chlz| M f 1.

Again with resort to Nitsche’s trick as in the proof of [Theorem 3.1, we obtain

from and [4.8). In order to complete the proof we have only to

estimate the contour integral in by means of [4.4), (4.5) and [4.8).
Q.E.D.
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§5. A remark on the semi-discrete approximation for
inhomogeneous equations.

In order to exemplify the convenience of the error estimates in terms of
the operator norm which have been obtained in the preceding section, we deal
with the semi-discrete approximation for the following initial value problem :

A =gy (0=t=T),
(5.1)

u®)=a,
where the given function f:[0, T]—X is assumed to be Holder continuous
with exponent # (0<#<1); namely, there exists a constant N, such that

(5.2) IfO=A=Nt=s1?, (¢, s€[0, T]).

The semi-discrete approximate u,: [0, T1—V, for u is determined by the dif-
ferential equation

(53 B+ A =Puf(t)  (OI=T)

and the initial condition
(5.4) uh(O) — Pha .

Then we have the following
THEOREM 5.1. Let u and u, be as above. Then for the error e,(t)=u(t)
—uy(t) we have

(5.5) lea®ll < CRAt M all+ | FD]+1°N,)
where the constant C is independent of t, h, a and f.
ProOOF. In view of Duhamel’s principle we have
u(t)=c t4at [ ee-vAf(s)ds
0
and

uy(t) = e~ Prat [ foma=vanp £\ ds .
0

Therefore we can write as
alt) = e+ e
with
el (t)=e"a—erPa,

()= [ (o0 AP AnP ) f(5)— f(1)ds
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and
()= [ (e A e 4P, (1),

From the inequality |lei’| =Ch’~'|a]| is obvious. Also, by virtue
of and Remark 4.2, we have

el < [ et eonanp, || f5)— 1) ds
< O (t—s$)7 Ny(t—s)ds

< C'N,h*%/0 =Ch*N,t? .
In order to estimate ¢, we first carry out the integration on the right hand
side :
e =—AYe =D+ At (e 4 — P, f(1) .

The operator K,(t)=A"(e**—1)—Ay'(e”**r—1)P,, (>0), is represented by the
contour integral

(5.6) Ko(f) =

27t

-1 A) AN 1PV d
L (- (- AP e,

where I” is the positively oriented infinite path {z=pe**’1, 0<p<oo}. In fact,
can be easily verified in consideration that 0= p(A), 0= o(A,) and the
function (e **—1)/z is regular at z=0. Then in[5.6) we may deform I" to the
following I, » being any positive number :

Iro=ryury (as sets),
I'o=1{re:0,<10|<r},
"= {pe*%1:r<p<oo}.
Moreover, we may write

1 et
27Ti rm 2

L w 2dz

rm 2

6.7 Ky(t)=

W (2)dz— 271”. f

with Wy(z)=(z— A)"'—(z— A,)"'Pr. The second integral on the right hand side
of turns out to be 0, since (1/z)W,(2) is holomorphic in the domain G
exterior to I'™, i.e., in GP={z=G,: |z| =7}, and since [|(1/2)W,(2)|=0(|z|-?)
as |z|—oco in G. On the other hand, choosing »=1/f, we can estimate the
first integral on the right hand side of as follows.

Iy

~ | rgl/,wl_‘?;z_l IWa()l 1 dz + F?m‘%”— l | Wal2)ldz|

tz

Wa(2)dz

0"
z
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< Ch2<f awteldz] 4+ Lw(l/z) Idzl)

ePCSI

<Ch*(te- wz(n—ﬁ )+ f dp) =Ch*.
Here use has been made of the estimate |W,(2)|<Ch®* due to Theorem 3.1.
Thus we have [|K,(1)||=Ch® and, therefore,

el = Cr FDI -

Summing up the obtained bounds for & (j=1, 2, 3), we establish the theorem.
Q.E.D.

§6. Rate of convergence of the difference finite
element approximation.

In this section, we shall make a study of the case where the time variable
is also discretized, i.e., the difference finite element approximation. Only basic
but simple schemes are considered, while we leave schemes involving more
sophisticated approximation of the time derivative to a forthcoming paper.

6.1. Backward difference approximation.

We first deal with the backward difference approximation [(2.23) Thus
u,(H)=(I+7A,) "a, (t=nr, n=0,1, ---) is taken as the approximation to u(¥)=
e t4a, For the sake of completeness, we state the following

THEOREM 6.1. The backward difference approximation (2.23) is uncondition-
ally stable.® Precisely, we have

(6.1) I(I+zA)™" =1

for any n.

PrROOF. By virtue of we have Re (A0, ¢,)=0 for all ¢,€V,. In
other words, A, is accretive and hence, ([4+-7A4,)™" is a contraction for any
>0

I(I+7A) =1,
This yields [(6.1) Q.E.D.

REMARK 6.2. If Re(Aupn, 0n)=—2]@sll? as follows from [2.9Y, then we
have instead of

[Ttz =™ (n=0,1, )

1) The stability condition sup ¢|| 4| < +co assumed in Fujita [8] is superfluous as
t,h

long as L,-stability of (2.23) is concerned.
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with some y>4, for sufficiently small <.

As for the rate of convergence we have

THEOREM 6.3. Let a,=P,a in the backward difference finite element appro-
ximation (2.23) and denote the errov u(t)—u,(t) by e(t); namely

e(t)=ea—(1+7A,)"a,.
Then we have

(6.2) le@®) < C(h*+2)tlall  (t=nz, n=1,2, -).
PrROOF. Putting

e =¢tg—p P a=¢"tg—e M ng,
and
e =(e t4r—(J+7A,) Ma, = Kpay ,

we notice e=e®+¢®, According to [Theorem 4.1,
e = Ch®*t ] al .

Therefore, it is enough to show

(6.3) [ Kall < Crt™*.

Now we can easily verify for n=>1

(6.4) —K; :f‘:%((l‘i_SAh)-ne_n(r_s)Ah)dS
=nf SA(I4sA,) " e M D Ads
0

T
= nf SAYV(T+5A,) . A2 -9 4ngs
0

On the other hand, we have

(65) | Ajftem =042 < Cln(z —s)) "

as is seen from and Remark 3.5. Also by the inequality
(6.6) I AZ(1+5An) " *I S Colks)™™  (k>ea, s>0),
which we shall prove below, we obtain

(6.7) A (1+sA)~ "] = C((n+1)s)~*2 < C(ns) =

for n=1, 2, ---. By means of and we can estimate [K,| from (6.4),
namely,
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T /
1Kl = C’nj s(ns) **(n(r—s))"2ds
0

=CnB( -, ) =Cr/(nr) =Cet™.
Thus we have In order to prove we define F,=F,(2) by
Fo(2) = (RA)*A+2)7*

and write
(6.8) Fi(sAp) = (ksAp)*(I+sA,)™"
:_271? o Plse)e— Ay dz,

where the path of integration I'; is mentioned in § 3.
For zeI'; we note
|1+sz|=1+4spcos b,

and, denoting the smallest positive integer >a by k,, we have for k=k,

[14-sz]*=(1+spcos ) =1+ k(k—l)"k'(f_k°+1) (sp cos G,)k
0!

by means of the binomial theorem. Therefore we can choose a positive con-
stant 7, such that

(6.9) 1452 * < (L 7ulbsp)™ (ze ).

In view of |(z—A)£C|z|™* (zeT",) we obtain from (6.9)
IFds ANl =Cf 0°°<ksp>a<1+,0<ksp>ko)-l_d§

C “ a - d7]
= L Ui (1+To7]k°) L o +co,
noting ky>a.

In this way we get [|[F(s4,)|=C, which implies and completes the
proof of the theorem. Q.E.D.

6.2. Forward difference approximation.

We turn to the forward difference approximation [2.22). Namely, u,(f)=
(I-tAp)"a, (t=nt, n=1, 2, ---) is taken as the approximate to u(f)=e¢ *4a. For
this approximation, we need a stability condition to be imposed on % and .
We claim the following

THEOREM 6.4. Suppose that the condition

(6.10) 7| Al = 2cos b,
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is satisfied as , h—0, where 0, is the angle defined by 6,=tan™'d, in §3. Then
the forward difference approximation is stable. Precisely, we have

(6.11) (I=zA)" =2 (n=L2, ).

Proor. Take any ¢n,&V, with ||¢nll=1. Then the complex number (=
((I—7 An)on, on)=1—70(¢s, @) satisfies |{| =<1 as is easily verified in account
of |arg zo(¢n, ¢n)l=larg a(¢s, ¢r)| =6, and |zo(@s, @) =Tl Anll=2cos b,. Thus
the numerical range of the operator S,=I—7A, is included in the unit disk in
the complex plane. Therefore by virtue of a mapping theorem for the nu-
merical range (see Kato [12], for instance), the numerical range of S7 is also
included in the unit disk. Obviously, this implies ||S7]|<2. Q.E.D.

REMARK 6.5. If A, is self-adjoint, then we can take #,=0 and (6.10) is
reduced to

a(©n, ©1) 2

loal> = 7 -

REMARK 6.6. If ¢ satisfies, for some 4,>0,
larg (a(@n, on)+Al@nl>) =0,

in place of |arg (s, ¢n)] =6, which occurs when [2.9) is assumed, then we
have under the condition 7(||A,]+2,)<2cos 8,

(I=z(Ap+2, )" =2 (n=1,2,-),
whence follows
[(I—z A" = H{U—(Ap+ A D)+ AT}

< N n k< 7\"
=23 (}, Je2)* =21+ 7h)
é Zenril o 22“1

with the aid of the binomial theorem. Therefore the forward difference
approximation is again stable under the above-mentioned condition in this case.
As to the rate of convergence we have
THEOREM 6.7. Let a,=P,a in the forward difference finite element appro-
ximation (2.22). Also suppose that the following stability condition is satisfied:

(6.12) sup 7| Azl <2cos 8, .
Then for the error

) =ult)—uy(t)=e "a—(I—7A)"a, (t=nz, n=1, 2, ---),
we have

(6.13) (Ol = C(h*+2)t 7 all .
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PROOF. Since 6, chosen in §3 was arbitrary except for the condition
0,<0,<rm/2, we may assume

(6.14) sup 7| A, <2cos b,

without loss of generality.

As before, let us put

t4

eP=e Mg —g t4ng,

and

e® = e—tAhah_(I—z-Ah)"ah = Ka,.

Again, it is enough to show |K[|=Czt™?, for [e®|<Ch% *|a| follows from
Theorem 4.1. Similarly to [6.4), we have

T d -n(z-$
(6.15) ]{h:——jo .d_s(([_sAh)ne (z )Ah)ds
= nj rSA?L([—s/—lh)”‘le""’“”“‘hals
0

T
= nj. SA%L/Q([*~SA;L)”_1'A}L/ze_n(r_s)Ahds .
0

Therefore, if we use and the inequality
(6.16) [AZ(T—=sA)" | = Cans)™  (a>0, 0<s=7)

to be proved below, we obtain for n=2
Kl = C'”frS((n“‘l)s)‘g’/z(n(r—s))‘”zds
0
=’ - _1_. _1_ -1
=C'n"¥(n—1) 3/23( 5 = )écn

=Cr/(nt)=Crt™*.

On the other hand, for n=1, | K,|=|e"4*—(1—7A,)|=C=Cz/r=Cz/t is obvious

from [(6.14). Thus it remains to prove (6.16). To this end we choose positive
constants £ and g subject to

(6.17) | Apl(L+k) S p<2cosb,.

This is possible in view of [(6.14). Then we introduce a positively oriented
contour I which is composed of the following two portions (as sets):

I'Y={re*"1; 0<r<R},

I’'®={Re¥; —0,<60<6,},
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where R=p/s. We define a function F,=F,, by
Fo()=(nA)*1-=2".

We want to show [|F,(sA,)|=C. Let us consider the Dunford integral
_ 1 1 1 1 4
Fo(sAp) =5 fan(SZ)hz_Ah dz=—5—(ID+1%),

where I (j=1, 2) means the contribution to the integral from ['’. Suppose
that z=re="1< ['®, Then we have

[1—sz|?=1+s72—2srcos, (O<sr=p).

Hence in view of p<2cos§,, we can choose a positive y which depends only
on ¢, and g such that

[1—sz|=1—ysr O=sr=p).
Therefore, we have

(6.18) el =cf nsrya—ysry-2-

< Cj m(nsr)“e‘?’””———ir = C‘g TgiprEdE=CY.
0 0

We proceed to I and suppose that z€ ['®, Then

) 1 1 1 1
— AN < R
e = AL T R 1AL
z| R
1 1 _ 1 1tk
é*p_—T:“”i—“ R
1+«

by [(6.17). Also we can verify that for z=s"'pe?='®
[1—sz| <|1—pe'®t| =1+ p*—2p cos 4,)"*

=1—p(2cos0,—p))?=06<1.
In this way, we have

(6.19) oy =cf” srys-arLEE R 4 < Clnpyrar < c
‘01 K

since n%0"—0 as n—oco by 0<o<1. and (6.19) yield |F.(s4,)|=C, and,
hence, [(6.16). Q.E.D.
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