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\S 1. Introduction.

We can find some examples of arithmetic triangle Fuchsian groups of type
$(2, e_{2}, e_{3})$ in the book written by Fricke-Klein [1]. Mr. T. Kaise has proved
some results on arithmetic triangle groups of type $(e, e, e)$ ([2]). In the paper
[5] we have given a characterization of arithmetic Fuchsian groups. As an
aPplication of this result, we shall determine in the present paper all arithmetic
triangle groups explicitly. In \S 3 we shall give a necessary and sufficient con-
dition for a triangle group to be arithmetic (Theorem 1, \S 3). Making use of
this condition we shall prove that there exist only finitely many arithmetic
triangle groups up to $SL_{2}(R)$ -conjugation (Theorem 2 in \S 4). In \S 5 by making
use of a computer we shall give a complete list of all arithmetic types $(e_{1}, e_{2}, e_{3})$

(Theorem 3, \S 5).
The author is grateful to professor G. Shimura for many valuable sug-

gestions.

\S 2. Triangle Fuchsian groups.

Let $SL_{2}(R)$ be the special linear group of degree 2 over the real number
field $R$ . Then $SL_{2}(R)$ operates on the upper half plane $H=\{z\in C|{\rm Im}(z)>0\}$

by fractional linear transformations. This gives a homomorphism $\pi$ of $SL_{2}(R)$

onto the group Aut $(H)$ of all analytic automorphisms on $H$. For any
$g=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in SL_{2}(R)$ put $\overline{g}=\pi(g)$ . Then we have $\overline{g}(z)=(az+b)/(cz+d)$ . The

kernel of $\pi$ is $\{\pm 1_{2}\}$ .
Let $\Gamma$ be a Fuchsian group of the first kind ( $i$ . $e$ . a discrete subgroup of

$SL_{2}(R)$ such that quotient space $H/\pi(\Gamma)$ is of finite volume). Then $\pi(\Gamma)$ is
generated by $2g$ hyperbolic elements $\{\overline{\alpha}_{i}\},$ $\{\overline{\beta}_{i}\}(1\leqq i\leqq g),$ $s$ elliptic elements $t\overline{\gamma}_{j}$ }
$(1\leqq j\leqq s)$ , and $t$ parabolic elements $\{\overline{\gamma}_{j}\}(s+1\leqq j\leqq s+t)$ , which satisfy the funda-
mental relations

$\left\{\begin{array}{ll}\overline{\alpha}_{1}\overline{\beta}_{1}\overline{\alpha}_{1}^{-1}\overline{\beta}_{1}^{-1} & \ldots\overline{\alpha}_{g}\overline{\beta}_{g}\overline{\alpha}_{g}^{-1}\overline{\beta}_{g}^{-1}\overline{\gamma}_{1}\ldots\overline{\gamma}_{s+t}=\overline{1}_{2},\\\overline{\gamma}_{J^{f}}^{e}=\overline{1}_{2} & (1\leqq j\leqq s),\end{array}\right.$ (1)
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where $e_{f}(1\leqq j\leqq s)$ is a positive integer $\geqq 2$ . Put $ e_{i}=\infty$ for $s+1\leqq j\leqq s+t$ . Then
$(g;e_{1}, \cdots, e_{s+t})$ is called the signature of $\Gamma$ . This satisfies the inequality

$2g-2+\sum_{j=1}^{s+t}(1-1/e_{j})>0$ , (2)

where $1/e_{j}=0$ for $ e_{j}=\infty$ .
In the case where $g=0$ and $s+t=3,$ $\Gamma$ is called a triangle grouP of $tyPe$

$(e_{1}, e_{2}, e_{3})$ . If $t=0$ (resp. $t\geqq 1$), then we say that $\Gamma$ is of comPact (resp. non-
comPact) type. By (1) there exist elliptic or parabolic elements $\{\gamma_{j}\}(1\leqq j\leqq 3)$

of $\Gamma$ which generate $\pi(\Gamma)$ and satisfy the fundamental relations

$\left\{\begin{array}{l}\overline{\gamma}_{1}\overline{\gamma}_{2}\overline{\gamma}_{3}=1_{2},\\\gamma_{j}^{e}!=\overline{1}_{2}\end{array}\right.$

By (2) we have the inequality

$(1\leqq j\leqq s)$ . (3)

$1/e_{1}+1/e_{2}+1/e_{3}<1$ . (4)

By changing generators we may assume that
$ 2\leqq e_{1}\leqq e_{2}\leqq e_{3}\leqq\infty$ . (5)

Now we shall determine all triangle groups of given type $(e_{1}, e_{2}, e_{3})$ up to
$SL_{2}(R)$ -conjugation.

PROPOSITION 1. Notations being as above, let $(e_{1}, e_{2}, e_{3})$ be a triple satisfying
(4) and (5). Then the following assertions hold:

(i) If $s\geqq 1$ and at least one of $e_{f}(1\leqq j\leqq s)$ is even, then there exists a triangle
group $\Gamma_{0}$ of type $(e_{1}, e_{2}, e_{3})$ such that any triangle group of type $(e_{1}, e_{2}, e_{3})$ is
$SL_{2}(R)$ -conjugate to $\Gamma_{0}$ . $\Gamma_{0}$ contains $-1_{2}$ .

(ii) If $2\leqq s\leqq 3$ and all $e_{f}(1\leqq j\leqq s)$ are odd, then there exist two triangle
groups $\Gamma_{0}$ and $\Gamma_{1}$ of $type(e_{1}, e_{2}, e_{3})$ such that any triangle group of this type is
$SL_{2}(R)$ -conjugate to one of these groups. $\Gamma_{0}$ contains $-1_{2}$ and $\Gamma_{1}$ does not. $In$

particular, $\Gamma_{0}$ and $\Gamma_{1}$ are not $SL_{2}(R)$ -conjugate to each other. $\Gamma_{1}$ is a subgroup

of $\Gamma_{0}$ of index 2.
(iii) If either $s=1$ and $e_{1}$ is odd or $s=0$ , then there exist three triangle

groups $\Gamma_{0},$ $\Gamma_{1}$ and $\Gamma_{2}$ of $type(e_{1}, e_{2}, e_{3})$ such that any triangle group of this type
is $SL_{2}(R)$ -conjugate to one of these groups. $\Gamma_{0}$ contains $-1_{2}$ and $\Gamma_{i}(2\leqq i\leqq 3)$

does not. $\Gamma_{i}$ is a subgroup of $\Gamma_{0}$ of index 2.
PROOF. We need the following well-known lemma (cf. [3]).

LEMMA 1. Let $\Gamma$ and $\Gamma^{\prime}$ be two triangle groups of the same type. Then
$\pi(\Gamma)$ and $\pi(\Gamma^{\prime})$ are Aut $(H)$ -conjugate to each other.

It is shown in [3] that for any triple $(e_{1}, e_{2}, e_{3})$ satisfying (4) and (5) there
exists a triangle group $\Gamma_{0}$ of type $(e_{1}, e_{2}, e_{3})$ generated by $\{\gamma_{0j}\}(1\leqq j\leqq 3)$ and
$\{-1_{2}\}$ such that

tr $(\gamma_{0f})=2$ cos $(\pi/e_{j})$ $(1 \leqq i\leqq 3)$ , (6)
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where cos $(\pi/e_{j})=1$ for $ e_{j}=\infty$ .
The fundamental relations are given by

$\left\{\begin{array}{ll}\gamma_{01}\gamma_{02}\gamma_{03}(-1_{2}) & 1_{2},\\\gamma_{0j}^{ej}(-1_{2})=1_{2} & (1\leqq j\leqq s), (-1_{2})^{2}=1_{2},\\\gamma_{0j}(-1_{2})\gamma_{0j}^{-1}(- & 1_{2})=1_{2} (1\leqq j\leqq 3).\end{array}\right.$ (7)

(i) Suppose that $e_{f}$ is even. Let $\Gamma$ be any triangle group of type $(e_{1}, e_{2}, e_{3})$ .
We shall show that $\Gamma$ contains $-1_{2}$ . $\Gamma$ contains an element $\gamma$ such that $\overline{\gamma}$ is
of order $e_{j}$ . Hence we have $\gamma^{e_{j}}=\pm 1_{2}$ . Assume that $\gamma^{e_{j}}=1_{2}$ . Since $e_{j}$ is even,
we have $(\gamma^{e_{j/2}})^{2}=1_{2}$ . Hence $\gamma^{e_{j/2}}=\pm 1_{2}$ . This means that $\overline{\gamma}$ is of the smaller order
than $e_{j}$ , which is a contradiction. Therefore, we see that $\gamma^{e_{j}}=-1_{2}$ . This shows
that $\Gamma$ contains $-1_{2}$ . It implies that $\Gamma=\pi^{-1}(\pi(\Gamma))$ . By Lemma 1, $\Gamma$ is $SL_{2}(R)-$

conjugate to $\Gamma_{0}$ .
(ii) Suppose that all $e_{j}(1\leqq j\leqq s)$ are odd. Put $\gamma_{1j}=-\gamma_{0j}(1\leqq j\leqq 3)$ . Let $\Gamma_{1}$

be the subgroup of $\Gamma_{0}$ generated by $\{\gamma_{1j}|1\leqq j\leqq 3\}$ . By (7) these satisfy the
relations:

$\left\{\begin{array}{l}\gamma_{11}\gamma_{12}\gamma_{13}=1_{2},\\\gamma_{1j}^{ej}=1_{2}\end{array}\right.$ $(1\leqq j\leqq s)$ . (8)

Since $\pi(\Gamma_{1})=\pi(\Gamma_{0}),$ $\Gamma_{1}$ is of type $(e_{1}, e_{2}, e_{3})$ . We shall show that $\Gamma_{1}$ is of index
2 in $\Gamma_{0}$ and that $\Gamma_{1}$ does not contain $-1_{2}$ . Since $\pi(\Gamma_{1})(=\pi(\Gamma_{0}))$ is presented
by (3), in view of (8) there exists a homomorphism $\rho$ of $\pi(\Gamma_{1})$ onto $\Gamma_{1}$ such
that $\rho(\overline{\gamma}_{1j})=\gamma_{1j}(1\leqq j\leqq 3)$ . It is easy to see that $(\pi|_{\Gamma_{1}})\circ\rho=the$ identity and that
$\rho\circ(\pi|_{\Gamma_{1}})=the$ identity. It follows that $\pi|_{\Gamma_{1}}$ is an isomorphism of $\Gamma_{1}$ onto
$\pi(\Gamma_{1})$ . This shows that $\Gamma_{1}$ does not contain $-1_{2}$ and that $[\Gamma_{0} : \Gamma_{1}]=2$ . In
particular, $\Gamma_{1}$ is not $SL_{2}(R)$ -conjugate to $\Gamma_{0}$ .

Suppose that $2\leqq s\leqq 3$ . Let $\Gamma$ be any triangle group of type $(e_{1}, e_{2}, e_{3})$ . We
shall show that $\Gamma$ is $SL_{2}(R)$ -conjugate to $\Gamma_{0}$ or $\Gamma_{1}$ . Suppose that $\Gamma$ contains
$-1_{2}$ . Then by Lemma 1 $\Gamma$ is $SL_{2}(R)$ -conjugate to $\Gamma_{0}$ . Suppose that $\Gamma$ does
not contain $-1_{2}$ . By Lemma 1 we may assume that $\pi(\Gamma)=\pi(\Gamma_{0})$ . Since $\Gamma$ is
isomorphic to $\pi(\Gamma_{0})$ , there exists a set of generators $\{\gamma_{j}|1\leqq j\leqq 3\}$ of $\Gamma$ such
that $\overline{\gamma}_{j}=\overline{\gamma}_{1j}(1\leqq j\leqq 3)$ . Hence we have $\gamma_{j}=\epsilon_{f}\gamma_{1j}$ , where $\epsilon_{j}=\pm 1(1\leqq j\leqq 3)$ . Since
$\Gamma$ and $\Gamma_{1}$ do not contain $-1_{2}$ , we have $\epsilon_{1}\cdot\epsilon_{2}\cdot\epsilon_{3}=\epsilon_{J^{j}}^{e}=1(1\leqq j\leqq s)$ . Since all $e_{j}$

are odd, we have $\epsilon_{j}=1(1\leqq j\leqq s)$ . By the assumption that $2\leqq s\leqq 3$ we see that
$\epsilon_{j}=1(1\leqq j\leqq 3)$ . This shows $\Gamma=\Gamma_{1}$ .

(iii) First consider the case $(e_{1}, \infty, \infty)$ such that $e_{1}$ is odd. Let $\Gamma_{0}$ and $\Gamma_{1}$

be the same as in (ii). Put $\gamma_{21}=-\gamma_{01},$ $\gamma_{22}=\gamma_{02}$ and $\gamma_{23}=\gamma_{03}$ . Let $\Gamma_{2}$ be the sub-
group of $\Gamma_{0}$ generated by $\{\gamma_{2j}|1\leqq j\leqq 3\}$ . Then by the same argument as in
the case of $\Gamma_{1}$ , we see that $\Gamma_{2}$ is isomorphic to $\pi(\Gamma_{2})$ and that $\Gamma_{2}$ does not
contain $-1_{2}$ . In particular, $\Gamma_{2}$ is not conjugate to $\Gamma_{0}$ . We shall show that
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$\Gamma_{2}$ is not conjugate to $\Gamma_{1}$ . Assume that $\Gamma_{2}$ is conjugate of $\Gamma_{1}$ . Since $\gamma_{23}$ is
a primitive parabolic element of $\Gamma_{2}$ such that tr $(\gamma_{23})=2,$ $\Gamma_{1}$ also contains a
primitive parabolic element $\gamma$ such that tr $(\gamma)=2$ . Consequently, there exists
an element $\delta\in\Gamma_{1}$ such that $\overline{\gamma}=\overline{\delta}^{-1}\cdot\overline{\gamma}_{12}^{\nu}\cdot\overline{\delta}$ or $\overline{\gamma}=\overline{\delta}^{-1}\cdot\overline{\gamma}_{13}^{\nu}\cdot\overline{\delta}$ , where $\nu=\pm 1$ . Since
$\Gamma_{1}$ does not contain $-1_{2}$ , we have $\gamma=\delta^{-1}\cdot\gamma_{12}^{\nu}\cdot\delta$ or $\gamma=\delta^{-1}\cdot\gamma_{13}\cdot\delta$ . Since tr $(\gamma_{12})$

$=tr(\gamma_{13})=-2$ , this is a contradiction.
Let $\Gamma$ be any triangle group of type $(e_{1}, \infty, \infty)$ . We shall show that $\Gamma$ is

$SL_{2}(R)$ -conjugate to one of $\Gamma_{i}(0\leqq i\leqq 2)$ . By Lemma 1 we may assume that
$\pi(\Gamma)=\pi(\Gamma_{0})$ . If $\Gamma contains-1_{2}$ , then $\Gamma=\Gamma_{0}$ . Suppose that $\Gamma$ does not contain
$-1_{2}$ . Since $\Gamma$ is isomorphic to $\pi(\Gamma),$ $\Gamma$ is generated by $\{\gamma_{j}|1\leqq j\leqq 3\}$ such that
$\overline{\gamma}_{j}=\overline{\gamma}_{0j}(1\leqq j\leqq 3)$ . Hence we have $\gamma_{j}=\epsilon_{j}\gamma_{0j}$ , where $\epsilon_{j}=\pm 1(1\leqq j\leqq 3)$ . By the
fundamental relations of $\Gamma$ and $\Gamma_{0}$ we see that $\epsilon_{1}\epsilon_{2}\epsilon_{3}=\epsilon_{1}^{e_{1}}=-1$ . Since $e_{1}$ is odd,
we have $\epsilon_{1}=-1$ . Therefore, we have $\epsilon_{2}=\epsilon_{3}=1$ or $-1$ . Hence we see that
$\Gamma=\Gamma_{1}$ or $\Gamma_{2}$ .

Now consider the type $(\infty, \infty, \infty)$ . We shall give $\Gamma_{0}$ explicitly. Let $\Gamma(1)$

be the modular group $SL_{2}(Z)$ . It is easy to see that $\Gamma_{0}$ can be given as the
group generated by

$\gamma_{01}=\left(\begin{array}{ll}1 & 2\\0 & 1\end{array}\right)$ , $\gamma_{02}=\left(\begin{array}{ll}1 & 0\\-2 & 1\end{array}\right)$ , $\gamma_{03}=\left(\begin{array}{ll}-1 & 2\\-2 & 3\end{array}\right)$ .
Put

$\Gamma(2)=\{\gamma=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in\Gamma(1)|a-1\equiv b\equiv c\equiv d-1(mod 2)\}$ .

Then $\Gamma(2)$ contains $\Gamma_{0}$ . Since $\Gamma(1)$ is of type $(2, 3, \infty)$ , comparing the indices
of $\Gamma_{0}$ and $\Gamma(2)$ in $\Gamma(1)$ we see that $\Gamma_{0}=\Gamma(2)$ . Let $\Gamma_{1}$ and $\Gamma_{2}$ be the subgroups

of $\Gamma_{0}$ generated by $\{-\gamma_{01}, -\gamma_{02}, -\gamma_{03}\}$ and $\{-\gamma_{01}, \gamma_{02}, \gamma_{03}\}$ respectively. Then
$\Gamma_{i}$ does not contain $-1_{2}$ . Since $\gamma_{02}$ is a primitive parabolic element of $\Gamma_{2}$ such
that tr $(\gamma_{02})=2,$ $\Gamma_{2}$ is not conjugate to $\Gamma_{1}$ .

Let $\Gamma$ be any triangle group of type $(\infty, \infty, \infty)$ . We shall show that $\Gamma$ is
$SL_{2}(R)$ -conjugate to one of $\Gamma_{i}(0\leqq i\leqq 2)$ . By Lemma 1 we may assume that
$\pi(\Gamma)=\pi(\Gamma_{0})$ . If $\Gamma$ contains $-1_{2}$ , then we see that $\Gamma=\Gamma_{0}$ . Suppose that $\Gamma$

does not contain $-1_{2}$ . Then $\Gamma$ is generated by $\{\gamma_{j}|1\leqq j\leqq 3\}$ such that $\overline{\gamma}_{j}=\overline{\gamma}_{0j}$

$(1\leqq j\leqq 3)$ . Hence we have $\gamma_{j}=\epsilon_{j}\cdot\gamma_{0j}(1\geqq j\geqq 3)$ , where $\epsilon_{j}=\pm 1$ . Since $\Gamma$ does
not contain $-1_{2}$ , we have $\epsilon_{1}\cdot\epsilon_{2}\cdot\epsilon_{3}=-1$ . Hence $(\epsilon_{1}, \epsilon_{2}, \epsilon_{3})=(-1, -1, -1)$ or
$(-1,1,1)$ or $(1, -1,1)$ or $(1, 1, -1)$ . By the following relations:

$\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 2\\0 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0\\-2 & 1\end{array}\right)$

$\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 0\\-2 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 2\\0 & 1\end{array}\right)$

$\left(\begin{array}{ll}0 & 1\\-1 & 1\end{array}\right)\left(\begin{array}{ll}1 & 2\\0 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1\\-1 & 1\end{array}\right)=\left(\begin{array}{ll}-1 & 2\\-2 & 3\end{array}\right)$
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$\left(\begin{array}{ll}0 & 1\\-1 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0\\-2 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1\\-1 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 2\\0 & 1\end{array}\right)$ ,

we see that the group $\Gamma$ for $(\epsilon_{1}, \epsilon_{2}, \epsilon_{3})=(1, -1,1)$ or $(1, 1, -1)$ is $SL_{2}(R)$ -conjugate
to $\Gamma_{2}$ . This completes the Proof of Proposition 1.

PROPOSITION 2. Let $\Gamma$ be a triangle group of $tyPe(e_{1}, e_{2}, e_{3})$ . Then tr $(\Gamma)$

is contained in the ring $Z$ [ $2,2$ cos $(\pi/e_{1}),$ $2$ cos $(\pi/e_{2}),$ $2$ cos $(\pi/e_{3})$] generated by
{2, 2 cos $(\pi/e_{1}),$ $2$ cos $(\pi/e_{2}),$ $2$ cos $(\pi/e_{3})$ } over $Z$, where $\pi/e_{j}=0$ for $ e_{f}=\infty$ . In
Particular, the field $k_{1}=Q(tr(\gamma)|\gamma\in\Gamma)$ coincides with $Q(\cos(\pi/e_{1})$ , cos $(\pi/e_{2})$ ,

cos $(\pi/e_{3}))$ .
PROOF. Clearly we may assume that $\Gamma contains-1_{2}$ . Hence it is sufficient

to verify the assertion for $\Gamma_{0}$ defined in the Proof of Proposition 1. Now we
need the following

LEMMA 2. Let $\Gamma$ be a finitely generated subgroup of $SL_{2}(R)$ . Let $\{\delta_{1}, \cdots, \delta_{r}\}$

be a set of generators of $\Gamma$ . For any subset $\{i_{1}, \cdots, i_{s}\}$ of $\{1, \cdots, r\}$ Put $t_{i_{1}\cdots i_{S}}$

$=tr(\delta_{t_{1}}\cdots\delta_{i_{s}})$ . Then tr $(\Gamma)$ is contained in the ring $Z[f_{i_{1}\cdots i_{s}}|\{i_{1}, \cdots, i_{s}\}\subset\{1, \cdots, r\}]$ .
PROOF OF LEMMA 2. This lemma is given in the book [4] p. 148, without

proof. We shall sketch the proof. For any $\gamma\in\Gamma$ we have $\gamma^{2}-t\cdot\gamma+1_{2}=0$ ,
where $t=tr(\gamma)$ . Hence we have for any integer $n$ ,

$\gamma^{n}=f_{n}(t)\cdot\gamma+g_{n}(t)\cdot 1_{2}$ , (9)

where $f_{n}(T)$ and $g_{n}(T)$ are monic polynomials in $Z[T]$ . Moreover, for any
$\alpha,$

$\beta,$ $\gamma\in\Gamma$ we have

$\int tr(\alpha)$
. tr $(\beta)=tr(\alpha\cdot\beta)+tr(\alpha\cdot\beta^{-1})$ ,

(10)
(tr $(\alpha\beta\alpha\gamma)=tr(\alpha\beta)\cdot tr(\alpha\gamma)-tr(\beta\cdot\gamma^{-1})$ .

For any $\gamma\in\Gamma$ we can express

$\gamma=\delta_{i_{1}}^{n_{1}}\ldots\delta_{i_{s}}^{n_{s}}$ .

Let $m(\gamma)$ be the minimum of $\sum_{j=1}^{\$}|n_{j}|$ for all such expressions. Making use of

(9) and (10) by induction on $m(\gamma)$ we can verify the assertion of Lemma 2.
Since $\Gamma_{0}$ is generated by $\{\gamma_{01}, \gamma_{02}, -1_{2}\}$ , by Lemma 1 we can prove Propo-

sition 2. Q. E. D.
Let $\Gamma$ be a Fuchsian group of the first kind. Let $k_{1}=Q(tr(\gamma)|\gamma\in\Gamma)$ be

the field generated by the set tr $(\Gamma)$ over $Q$ . Let $A(\Gamma)$ be the vector space
generated by $\Gamma$ over $k_{1}$ in $M_{2}(R)$ . It is shown in [5] that $A(\Gamma)$ is a quaternion
algebra over $k_{1}$ .

PROPOSITION 3. Let $\Gamma$ be a triangle group of $tyPe(e_{1}, e_{2}, e_{3})(2\leqq e_{1}\leqq e_{2}\leqq e_{3}$

$\leqq\infty)$ . Let $\{\gamma_{j}\}(1\leqq j\leqq 3)$ be the elements of $\Gamma$ such that $\{\overline{\gamma}_{j}\}(1\leqq j\leqq 3)$ satisfy
(3). Then $\{1_{2}, \gamma_{1}, \gamma_{2}, \gamma_{3}\}$ is a basis $ofA(\Gamma)$ over $k_{1}$ . For any $\xi=x_{0}1_{2}+x_{1}\cdot\gamma_{1}+x_{2}\cdot\gamma_{2}$

$+x_{3}\cdot\gamma_{3}\in A(\Gamma)$ the reduced norm $n_{\Lambda(\Gamma)}(\xi)$ can be expressed as follows:
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$n_{A(\Gamma)}(\xi)=(x_{0}, x_{1}, x_{2}, x_{3})\cdot D\cdot{}^{t}(x_{0}, x_{1}, x_{2}, x_{3})$ ,
where

$D=\left(\begin{array}{llll}1 & tr(\gamma_{1})/2 & tr(\gamma_{2})/2 & tr(\gamma_{3})/2\\tr(\gamma_{1})/2 & 1 & tr(\gamma_{2}\cdot\gamma_{1}^{-1})/2 & \gamma_{1}^{-1})/2tr(\gamma_{3}\cdot\\tr(\gamma_{2})/2 & \gamma_{1}^{-1})/2tr(\gamma_{2}\cdot & 1 & tr(\gamma_{3}\cdot\gamma_{2}^{-1})/2\\tr(\gamma_{3})/2 & tr(\gamma_{3}\cdot\gamma_{1}^{-1})/2 & \gamma_{2}^{-1})/2tr(\gamma_{3}\cdot & 1\end{array}\right)$ . (11)

PROOF. Assume that $\gamma_{1}$ commutes with $\gamma_{2}$ . Then we see that $\Gamma$ is abelian,

which is a contradiction. Hence $\gamma_{1}$ does not commute with $\gamma_{2}$ . First consider
the case where $\gamma_{1}$ is elliptic. We can find an element $g\in SL_{2}(C)$ such that
$g^{-1}\cdot\gamma_{1}\cdot g=\left(\begin{array}{ll}w & 0\\0 & 1/w\end{array}\right)$ , where $w$ is a complex number such that $w^{2}\neq 1,$ $\neq 0$ . Put

$g^{-1}\cdot\gamma_{2}\cdot g=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ . Since $\gamma_{1}$ does not commute with $\gamma_{2}$ , we see that $bc\neq 0$ .

Making use of (4), we have $g^{-1}\cdot\gamma_{3}\cdot g=\pm\left(\begin{array}{lll}-d/ & w & bw\\c/w & & -aw\end{array}\right)$ . By the equation

$\left|\begin{array}{llll}1 & 0 & 0 & l\\w & 0 & 0 & 1/w\\a & b & c & d\\-d/w & bw & c/w & -aw\end{array}\right|=bc(w-1/w)^{2}\neq 0$ ,

we see that $\{1_{2}, g^{-1}\cdot\gamma_{1}\cdot g, g^{-1}\cdot\gamma_{2}\cdot g, g^{-1}\cdot\gamma_{3}\cdot g\}$ are linearly independent over $C$.
Hence $\{1_{2}, \gamma_{1}, \gamma_{2}, \gamma_{3}\}$ is linearly independent over $k_{1}$ . Suppose that $\gamma_{1}$ is para-
bolic. By the same argument as in the elliptic case we can verify the asser-
tion.

Now we shall give the reduced norm $n_{A(\Gamma)}(\xi)$ of $A(\Gamma)$ with respect to the
basis $\{1_{2}, \gamma_{1}, \gamma_{2}, \gamma_{3}\}$ . For any $\xi\in A(\Gamma)$ denote by $\xi$ the image of $\xi$ under the
main involution of $A(\Gamma)$ . Then we have $\xi\cdot\xi=n_{A(\Gamma)}(\xi)\cdot 1_{2}=\det(\xi)\cdot 1_{2}$ . It follows

that for any $\xi=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in A(\Gamma)$ we have $\xi=\left(\begin{array}{ll}d & -b\\-c & a\end{array}\right)$ . In particular, we have
$\tilde{\gamma}=\gamma^{-1}$ for any $\gamma\in\Gamma$ . Therefore, for the expression $\xi=x_{0}1_{2}+x_{1}\cdot\gamma_{1}+x_{2}\cdot\gamma_{2}+x_{3}\cdot\gamma_{3}$

we have $\xi=x_{0}1_{2}+x_{1}\gamma_{1}^{-1}+x_{2}\gamma_{2}^{-1}+x_{3}\cdot\gamma_{3}^{-1}$ . Now it is easy to obtain the explicit
form of the reduced norm. Q. E. D.

PROPOSITION 4. Let $\Gamma$ be a triangle group of type $(e_{1}, e_{2}, e_{3})(2\leqq e_{1}\leqq e_{2}\leqq e_{3}$

$\leqq\infty)$ . Let $k_{0}$ be the field
$Q((\cos(\pi/e_{1}))^{2}, (\cos(\pi/e_{2}))^{2},$ $(\cos(\pi/e_{3}))^{2}$ , cos $(\pi/e_{1})$ cos $(\pi/e_{2})$ cos $(\pi/e_{3}))$ .

Let $\{\gamma_{f}|1\leqq j\leqq 3\}$ be a set of generators of $\Gamma$ such that $\{\overline{\gamma}_{j}\}(1\leqq j\leqq 3)$ satisfy (3).

Let $A_{0}$ be the vector space generated by $\{1_{2}, \gamma_{2}^{2}, \gamma_{3}^{2}, \gamma_{2}^{?}\cdot\gamma_{3}^{2}\}$ in $M_{2}(R)$ over $k_{0}$ . Then
$A_{0}$ is a quaternion algebra over $k_{0}$ such that $A_{0}\bigotimes_{k_{0}}k_{1}=A(\Gamma)$ .
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PROOF. In view of Proposition 1 we may assume that $\Gamma$ contains $-1_{2}$ and
that $\{\gamma_{j}|1\leqq j\leqq 3\}$ satisfy (6) and (7). By the equations $\gamma_{j}^{2}-t_{j}\cdot\gamma_{j}+1_{2}=0$ , where
$t_{i}=tr(\gamma_{j})=2$ cos $(\pi/e_{j})(1\leqq j\leqq 3)$ , we have

$\gamma_{2}^{2}\cdot\gamma_{3}^{2}=(1-t_{1}t_{2}t_{3})1_{2}-t_{2}\cdot\gamma_{2}-t_{3}\cdot\gamma_{3}+t_{2}t_{3}\cdot\gamma_{1}$ .
Hence we see that

$[1_{2}, \gamma_{2}^{2}, \gamma_{3}^{2}, \gamma_{2}^{2}\cdot\gamma_{3}^{2}]=[1_{2}, \gamma_{2}, \gamma_{3}, \gamma_{1}]Q$ , (12)

where

$Q=\left(\begin{array}{llll}1 & -1 & -1 & 1-t_{1}t_{2}t_{3}\\0 & t_{2} & 0 & -t_{2}\\0 & 0 & t_{3} & -t_{3}\\0 & 0 & 0 & t_{2}t_{3}\end{array}\right)$ . (13)

By (4) we see that $ 3\leqq e_{2}\leqq e_{3}\leqq\infty$ . Hence $t_{2}t_{3}\neq 0$ . Therefore, the matrix $Q$ is
non-singular. By Proposition 3, $\{1_{2}, \gamma_{2}^{2}, \gamma_{3}^{2}, \gamma_{2}^{2}\cdot\gamma_{3}^{2}\}$ is a basis of $A(\Gamma)$ over $k_{1}$ .
Now we shall show that $A_{0}$ is a $k_{0}$ -algebra. Constructing the multiplication
table of $A_{0}$ with respect to $\{1_{2}, \gamma_{2}^{2}, \gamma_{3}^{2}, \gamma_{2}^{2}\cdot\gamma_{\vec{3}}^{9}\}$ , it is sufficient to show that $\gamma_{2}^{4},$ $\gamma_{3}^{4}$

and $\gamma_{3}^{2}\cdot\gamma_{2}^{2}$ are contained in $A_{0}$ . Since tr $(\gamma^{\frac{Q}{j}})(=t_{j}^{2}-2)$ is contained in $k_{0},$ $\gamma_{j}^{4}$

$(=tr(\gamma_{j}^{2})\cdot\gamma_{j}^{2}-1_{2})$ is contained in $A_{0}$ . By the following calculations:

$\gamma_{3}^{2}\cdot\gamma_{2}^{2}=-(\gamma_{3}^{2}\cdot\gamma_{2}^{2})^{-1}+tr(\gamma_{3}^{2}\cdot\gamma_{2}^{2})1_{2}=-(-\gamma_{2}^{2}+(t_{2}^{2}-2)1_{2})$

. $(-\gamma_{3}^{2}+(t_{3}^{2}-2)1_{2})+tr((t_{2}\cdot\gamma_{2}-1_{2})(t_{3}\cdot\gamma_{3}-1_{2}))1_{2}$

$=(t_{2}^{2}+t_{3}^{2}-t_{2}^{2}t_{3}^{2}-t_{1}t_{2}t_{3}-2)1_{2}+(t_{3}^{2}-2)\cdot\gamma_{2}^{2}+(t_{2}^{2}-2)\cdot\gamma_{3}^{2}-\gamma_{2}^{2}\cdot\gamma_{3}^{2}$ ,

we see that $\gamma_{3}^{2}\cdot\gamma_{2}^{2}$ belongs to $A_{0}$ . Clearly $A_{0}\otimes k_{1}=A(\Gamma)$ . Q. E. D.
$k_{0}$

Let $\Gamma$ be a Fuchsian group of the first kind. Let $\Gamma^{(2)}$ be the subgroup of
$\Gamma$ generated by $\{\gamma^{2}|\gamma\in\Gamma\}$ . Then $\Gamma^{(2)}$ is a normal subgroup of $\Gamma$ such that the
quotient group $\Gamma/\Gamma^{(2)}$ is a finite elementary abelian group of type $(2, 2, \cdots 2)$ .
Let $k_{2}$ be the Peld $Q((tr(\gamma))^{2}|\gamma\in\Gamma)$ . Then it can be proved that $k_{2}$ coincides
with the field $Q(tr(\gamma)|\gamma\in\Gamma^{(2)})$ (cf. [5]).

PROPOSITION 5. Notations being the same as above, $k_{2}$ coincides with $k_{0}$

and $A(\Gamma^{(2)})$ coincides with $A_{0}$ .
PROOF. In view of Proposition 1 we may assume that $\Gamma$ contains $-1_{2}$ .

Therefore, we can take $\{\gamma_{j}|1\leqq j\leqq 3\}$ satisfying (6) and (7). Clearly $ t_{j}^{2}(=(tr(\gamma_{f}))^{2}\rangle$

is contained in $k_{2}$ . By the equations

tr $(\gamma_{1}^{2}\cdot\gamma_{2}^{2}\cdot\gamma_{3}^{2})=tr((t_{1}\cdot\gamma_{1}-1_{2})(t_{2}\cdot\gamma_{2}-1_{2})(t_{3}\cdot\gamma_{3}-1_{2}))$

$=t_{1}^{2}+t_{2}^{2}+t_{3}^{2}+t_{1}t_{2}t_{3}-2$ ,

we see that $t_{1}t_{2}t_{3}$ is contained in $k_{2}$ . This shows that $k_{0}$ is contained in $k_{2}$ and
that $A_{0}$ is contained in $A(\Gamma^{(2)})$ . In order to verify the converse inclusion we
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distinguish three cases.
(i) Suppose that at least two of $\{e_{j}|1\leqq j\leqq 3\}$ are odd. If $e_{1},$ $e_{2}$ are odd,

then by (7) we see that $\gamma_{1}\equiv\gamma_{2}\equiv-1_{2}(mod \Gamma^{(2)})$ . Hence $\gamma_{3}\equiv-1_{2}(mod \Gamma^{(2)})$ .
This implies that $\Gamma$ is generated by $\Gamma^{(2)}$ and $-1_{2}$ . It follows that $k_{2}=k_{1}$ and
that $A(\Gamma^{(2)})=A(\Gamma)$ . Since $e_{1}$ and $e_{2}$ are odd, we see that $Q((\cos(\pi/e_{j}))^{2})$

$=Q(\cos(\pi/e_{j}))(1\leqq j\leqq 2)$ and that cos $(\pi/e_{1})$ cos $(\pi/e_{2})\neq 0$ . Therefore, $k_{2}=k_{1}=k_{0}$

and $A(\Gamma^{(2)})=A_{0}$ . In the other cases we can similarly verify our assertions.
(ii) Suppose that one of $\{e_{j}|1\leqq j\leqq 3\}$ is odd and the others are all even

or $\infty$ . If $e_{1}$ is odd, then $\gamma_{1}\equiv-1_{2}(mod \Gamma^{(2)})$ and $\gamma_{2}\equiv\gamma_{3}\equiv-1_{2}(mod \Gamma^{(2)})$ . Now
we shall define a homomorphism $\nu_{23}$ of $\Gamma$ onto $Z/2Z$. We can express any
$\gamma\in\Gamma$ as follows:

$\gamma=\pm\gamma_{i_{1}}^{n_{1}}\ldots\gamma_{i_{r}}^{n_{r}}$ .
Put $\nu_{23}(\gamma)=\sum_{i_{j}=2,3}n_{j}$

(mod2). Since $e_{2}$ and $e_{3}$ are even or $\infty$ , in view of (7) this

is well-defined. It is easy to see that $\nu_{23}$ is a homomorphism of $\Gamma$ onto $Z/2Z$.
Let $\Gamma_{23}$ be the kernel of $\nu_{23}$ . Then it is a subgroup of $\Gamma$ of index 2. $\Gamma_{23}$

contains $\Gamma^{(2)}$ and $-1_{2}$ . Since $\Gamma$ is generated by $\Gamma^{(2)}$ and $\{\gamma_{2}, -1_{2}\}$ , we see that
$\Gamma=\Gamma_{23}+\gamma_{2}^{-1}\cdot\Gamma_{23}$ and that $\Gamma_{23}=\Gamma^{(2)}\cup(-1_{2})\cdot\Gamma^{(2)}$ . We need the following well-
known lemma ( $e$ . $g$ . cf. [6], p. 96).

LEMMA 3. Let $G$ be a grouP generated by $\{a_{i}|i\in I\}$ . Let $H$ be a subgroup

of G. Let $\{b_{j}|j\in J\}$ be a comPlete set of $rePresentatives$ of the right cosets $G/H$.
Let $c_{if}$ be an element of $H$ uniquely determined by $a_{i}b_{j}=b_{k}c_{ij}$ for any pair $(a_{i}, b_{j})$ .
Then $\{c_{ij}|i\in I, j\in J\}$ generates $H$.

Since $\Gamma$ is generated by $\{\gamma_{1}, \gamma_{2}, -1_{2}\}$ and $\Gamma=\Gamma_{23}+\gamma_{2}^{-1}\cdot\Gamma_{23},$ aPplying Lemma
3 to $\Gamma$ , we see that $\Gamma_{23}$ is generated by $\{\gamma_{1}, \gamma_{2}\cdot\gamma_{1}\cdot\gamma_{2}^{-1}, \gamma_{2}, -1_{2}\}$ . We shall show
that $\Gamma_{23}$ is contained in $A_{0}$ . Clearly $\gamma_{2}^{?}$ and $-1_{2}$ are contained in $A_{0}$ . By the
equations $\gamma_{j}^{-1}=(1/t_{j})(\gamma_{j}^{-2}+1_{2})(2\leqq j\leqq 3)$ we have

$\gamma_{1}=-\gamma_{3}^{-1}\cdot\gamma_{2}^{-1}=(-t_{1}/(t_{1}t_{2}t_{3}))(\gamma_{3}^{-2}+1_{2})(\gamma_{2}^{-2}+1_{2})$ .

Since $e_{1}$ is odd, $Q(t_{1}^{2})=Q(t_{1})$ . This shows that $\gamma_{1}$ is contained in $A_{0}$ . Since
$\gamma_{1}(\gamma_{2}\cdot\gamma_{1}\cdot\gamma_{2}^{-1})\cdot\gamma_{2}^{2}\cdot\gamma_{3}^{2}=1_{2},$ $\gamma_{2}\cdot\gamma_{1}\cdot\gamma_{2}^{-1}$ is also contained in $A_{0}$ . Therefore, $\Gamma^{(2)}$ is
contained in $A_{0}$ . Consequently, $k_{2}\subset k_{0}$ and $A(\Gamma^{(2)})\subset A_{0}$ . Therefore, we see that
$k_{2}=k_{0}$ and that $A(\Gamma^{(2)})=A_{0}$ . In the case where $e_{2}$ (resp. $e_{3}$ ) is odd and the
others are all even or $\infty$ , we can define a homomorphism $\nu_{31}$ (resp. $\nu_{12}$) of $\Gamma$

onto $Z/2Z$. In the same way we can verify our assertions.
(iii) SuPpose that all $e_{j}(1\leqq j\leqq 3)$ are even or $\infty$ . In this case we can

define homomorphisms $\nu_{23},$ $\nu_{31},$ $\nu_{12}$ of $\Gamma$ onto $Z/2Z$ in the same way as in (ii).
Put $\Gamma_{ij}=Ker(\nu_{ij})$ . Then $\Gamma_{ij}$ is a subgroup of $\Gamma$ of index 2 and contains the
group $\Gamma_{0}^{(2)}$ generated by $\Gamma^{(2)}$ and $-1_{2}$ . Since $\Gamma$ is generated by $\Gamma_{0^{2)}}$

( and $\{\gamma_{1}, \gamma_{2}\}$ ,
we see that $[\Gamma:\Gamma_{0}^{(2)}]=2$ or 4. Since $\Gamma_{23},$ $\Gamma_{31}$ and $\Gamma_{12}$ are different subgroups
of $\Gamma$ , we see that $[\Gamma_{31} ; \Gamma_{0}^{(2)}]=2$ and that $\Gamma_{31}=\Gamma_{0}^{(2)}+\gamma_{2}^{-1}\cdot\Gamma_{0}^{(2)}$ . APplying Lemma
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3 to $\Gamma$ and $\Gamma_{31}$ we see that $\Gamma_{31}$ is generated by $\{\gamma_{2}, \gamma_{3}\cdot\gamma_{2}\cdot\gamma_{3}^{-1}, \gamma_{3}^{2}, -1_{2}\}$ . Applving
again Lemma 3 to $\Gamma_{31}$ and $\Gamma_{0}^{(2)}$ we see that $\Gamma_{0}^{(2)}$ is generated by

$\{\gamma_{2}^{2}, \gamma_{2}\cdot\gamma_{3}\cdot\gamma_{2}\cdot\gamma_{3}^{-1}, \gamma_{3}\cdot\gamma_{2}\cdot\gamma_{3}^{-1}\cdot\gamma_{2}^{-1}, \gamma_{3}^{2}, \gamma_{2}\cdot\gamma_{3}^{2}\cdot\gamma_{2}^{-1}, -1_{2}\}$ .
By the equations

$\gamma_{2}\cdot\gamma_{3}\cdot\gamma_{2}\cdot\gamma_{3}^{-1}=(1/(t_{2}^{2}t_{3}^{2}))(\gamma_{2}^{2}+1_{2})(\gamma_{3}^{2}+1_{2})(\gamma_{2}^{2}+1_{2})(\gamma_{3}^{-2}+1_{2})$ ,

$\gamma_{3}\cdot\gamma_{2}\cdot\gamma_{3}^{-1}\cdot\gamma_{2}^{-1}=(1/(t_{2}^{2}t_{3}^{2}))(\gamma_{8}^{2}+1_{2})(\gamma_{2}^{2}+1_{2})(\gamma_{3}^{-2}+1_{2})(\gamma_{2}^{-2}+1_{2})$ ,

$\gamma_{2}\cdot\gamma_{3}^{2}\cdot\gamma_{2}^{-1}=(1/t_{2}^{2})(\gamma_{2}^{2}+1_{2})\cdot\gamma_{3}^{2}\cdot(\gamma_{2}^{-2}+1_{2})$ ,

we see that $\Gamma_{0}^{(2)}$ is contained in $A_{0}$ . Hence $k_{2}\subset k_{0}$ and $A(\Gamma^{(2)})\subset A_{0}$ . This shows
that $k_{2}=k_{0}$ and that $A(\Gamma^{(2)})=A_{0}$ . Q. E. D.

\S 3. Arithmetic triangle groups.

Let $k$ be a totally real algebraic number field of finite degree. Let $A$ be
a quaternion algebra over $k$ such that there exists an R-isomorphism $\rho$

$\rho$ : $A\otimes_{Q}R-M_{2}(R)\oplus H\oplus\cdots\oplus H$ , (14)

where $H$ is the Hamilton quaternion algebra over $R$ . Then there exists a k-
isomorphism $\rho_{1}$ of $A$ into $M_{2}(R)$ . Let $O$ be an order of $A$ . Put $U=\{\epsilon\in O|\epsilon O$

$=0,$ $n_{A}(\epsilon)=1$ }, where $n_{A}()$ is the reduced norm of $A$ . Then $U$ is called the
unit group of $0$ of norm 1. Let $\Gamma(A, 0)$ be the image of $U$ under $\rho_{1}$ . Then
$\Gamma(A, 0)$ is a subgroup of $SL_{2}(R)$ . It is well-known that $\Gamma(A, O)$ is a Fuchsian
group of the first kind.

DEFINITION 1. Let $\Gamma$ be a Fuchsian group of the first kind. $\Gamma$ is called
arithmetic if $\Gamma$ is commensurable with $\Gamma(A, O)$ . If $\Gamma$ is a subgroup of $\Gamma(A, 0)$

of finite index, we say that $\Gamma$ is derived from a quaternion algebra.
REMARK. The isomorphism $\rho$ is not unique. If we take another iso-

morphism $\rho^{\prime}$ , then $\rho_{1}$ is changed into the composite of $\rho_{1}$ with an inner auto-
morphism of $M_{2}(R)$ . Therefore, if $\Gamma$ is arithmetic, then the conjugate group
$g\cdot\Gamma\cdot g^{-1}$ of $\Gamma$ by $g\in SL_{2}(R)$ is also arithmetic.

DEFINITION 2. If a triangle group of type $(e_{1}, e_{2}, e_{3})$ is arithmetic, we say
that the triPle $(e_{1}, e_{2}, e_{3})$ is arithmetic.

By Proposition 1 and the above remark, if the triple $(e_{1}, e_{2}, e_{3})$ is arithmetic,
then all triangle groups of this type are arithmetic. Now we shall prove

THEOREM 1. Let $\Gamma$ be a triangle group of type $(e_{1}, e_{2}, e_{3})(2\leqq e_{1}\leqq e_{2}\leqq e_{3}\leqq\infty)$ .
Let $k_{0}$ be the field

$Q((\cos(\pi/e_{1}))^{2}, (\cos(\pi/e_{2}))^{2},$ $(\cos(\pi/e_{3}))^{2}$ , cos $(\pi/e_{1})$ cos $(\pi/e_{2})$ cos $(\pi/e_{3}))$ .
Then the following assertions hold:

(i) Suppose that $\Gamma$ is of compact type. Then $\Gamma$ is arithmetic if and only

if either $k_{0}=Q$ or $k_{0}\supseteqq Q$ and for any non-identity isomorphjsm $\sigma$ of $k_{0}$ into $R$
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the following inequality holds:

$\sigma((\cos(\pi/e_{1}))^{2}+(\cos(\pi,/e_{2}))^{2}+(\cos(\pi/e_{3}))^{2}$

$+2\cos(\pi/e_{1})$ cos $(\pi/e_{2})$ cos $(\pi/e_{3})-1)<0$ . (15)

(ii) SuPpose that $\Gamma$ is of non-compact type. Then $\Gamma$ is arithmetic if and
only if $k_{0}$ coincides with $Q$ .

PROOF. (i) We may assume that $\Gamma$ contains $-1_{2}$ . Hence $\Gamma$ is generated
by $\{\gamma_{1}, \gamma_{2}, \gamma_{3}, -1_{2}\}$ which satisfy (6) and (7). By Proposition 5 we have $k_{2}=k_{0}$

and $A(\Gamma^{(2)})=A_{0}$ . By (11), (12) and (13), for any $\xi=y_{0}1_{2}+y_{1}\cdot\gamma_{2}^{2}+y_{2}\cdot\gamma_{3}^{2}+y_{3}\cdot\gamma_{2}^{2}\cdot\gamma_{3}^{2}$

$\in A_{0}$ , the reduced norm $n_{A_{0}}(\xi)$ can be written as
$n_{A_{0}}(\xi)=(y_{0}, y_{1}, y_{2}, y_{3})\cdot D_{0}\cdot{}^{t}(y_{0}, y_{1}, y_{2}, y_{3})$ ,

where $D_{0}={}^{t}QDQ$ .
Let $d_{i}$ (resp. $d_{0i}$) be the principal minor determinant of $D$ (resp. $D_{0}$) of

degree $i(1\leqq i\leqq 4)$ . Then we have

$\left\{\begin{array}{l}d_{1}=1,\\d_{2}=1-(\cos(\pi/e_{2}))^{2}\\d_{3}=-(\cos(\pi/e_{1}))^{2}-(\cos(\pi/e_{2}))^{2}-(\cos(\pi/e_{3}))^{2}\\-2 cos (\pi/e_{1}) cos (\pi/e_{2}) cos (\pi/e_{3})+1 ,\\d_{4}=d_{3}^{2}.\end{array}\right.$

Since $Q$ is an upper triangular matrix, we see easily that

$|$ $d_{01}=1d_{02}=2^{2}(\cos(\pi/e_{2}))^{2}(1-(\cos(\pi/e_{2}))^{2})d_{03}=-2^{4}(\cos(\pi/e_{2})\cos(\pi/e_{3}))^{2}((\cos(\pi/e_{1}))^{2}+(\cos d_{04}^{+2.\cos(\pi/e_{1})\cos(\pi/e_{2})\cos(\pi/e_{3})-1)}=d_{03}^{2}(\pi/e_{2}))^{2}+(\cos(\pi/e_{3}))^{2}$

Suppose that $\Gamma$ is commensurable with $\Gamma(A, O)$ . Then it is shown in [5] that
$k_{2}=k$ and that $A(\Gamma^{(2)})=A$ . By Proposition 5 we see that $k=k_{0}$ and that $A=A_{0}$ .
Suppose that $k_{0}\supsetneqq Q$ . Since $A$ satisfies (14), for any non-identity isomorphism
$\sigma$ of $k_{0}$ into $R$ the conjugate form $\sigma(n_{A_{0}}(\xi))$ of $n_{A_{0}}(\xi)$ must be positive definite.
Since $d_{01},$ $d_{02}$ and $d_{04}$ are totally positive, $\sigma(n_{A_{0}}(\xi))$ is positive definite if and
only if $\sigma(d_{03})$ is positive. This is equivalent to (15).

Conversely suppose that either $k_{0}=Q$ or $k\supsetneqq Q$ and for any non-identity
isomorphism $\sigma$ of $k_{0}$ into $R$ the inequality (15) holds. Then $A_{0}=A(\Gamma^{(2)})$ satisfies
(14). Since $\Gamma^{(2)}\subset A_{0\cap}SL_{2}(R)$ , for any non-identity isomorphism $\sigma$ of $k_{0}$ into $R$

we see that $\sigma(tr(\Gamma^{(2)})\subset[-2,2]$ . On the other hand, by Proposition 2 tr $(\Gamma^{(2)})$
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is contained in the ring of integers in $k_{0}$ . It follows from Theorem 2 in [5]

that $\Gamma^{(2)}$ is a Fuchsian group derived from a quaternion algebra. Since $\Gamma^{(2)}$

is of finite index in $\Gamma,$ $\Gamma$ is arithmetic.
(ii) Suppose that $\Gamma$ is of non-compact type commensurable with $\Gamma(A, O)$ .

Then we see that $k_{2}=k_{0}$ and that $A_{0}=A(\Gamma^{(2)})=A$ . We shall show that $k_{0}=Q$ .
Assume that $k_{0}$ is a proper extension of $Q$ . Then there exists a non-identity
isomorphism $\sigma$ of $k_{0}$ into $R$ . Suppose that $ e_{2}=\infty$ . Then we have $d_{02}=0$ . So
that the conjugate matrix $\sigma(D_{0})$ of $D_{0}$ by $\sigma$ is not positive definite, which is
a contradiction. Suppose that $ e_{2}<\infty$ . Then we have $ e_{3}=\infty$ . Hence cos $(z/e_{3})$

$=1$ . In this case we have $d_{03}=-2^{4}(\cos(\pi/e_{2}))^{2}(\cos(\pi/e_{1})+\cos(\pi/e_{2}))^{2}$ . This
shows that $\sigma(d_{03})$ is negative, which is a contradiction. This proves that $k_{0}=Q$ .

Conversely suppose that $k_{0}=Q$ . Then we see that tr $(\Gamma)$ is contained in $Z$.
It follows from Theorem 2 in [5] that $\Gamma^{(2)}$ is a Fuchsian group derived from
a quaternion algebra over $Q$ . This implies that $\Gamma$ is arithmetic. Q. E. D.

\S 4. Finiteness of arithmetic triangle groups up to $SL_{2}(R)$-conjugation.

Let $\Im$ be the set of all triples $(e_{1}, e_{2}, e_{3})$ of positive integers $e_{j}(1\leqq j\leqq 3)$

such that $ 2\leqq e_{1}\leqq e_{2}\leqq e_{3}<\infty$ and $1/e_{1}+1/e_{2}+1/e_{3}<1$ .
DEFINITION 3. Let $p_{n}(n=1,2, \cdots)$ be the n-th odd prime number in order

of magnitude. Let $(e_{1}, e_{2}, e_{3})$ be an element of $\Im$ . Let $e$ be the least common
multiple of $\{e_{j}\}$ . If $p_{1}p_{2}\cdots p_{n- 1}$ divides $e$ and $p_{n}$ does not divide $e$ , we say that
$(e_{1}, e_{2}, e_{3})$ is of the n-th type. Let $s_{n}^{\alpha}$ be the set of all $(e_{1}, e_{2}, e_{3})\in\Im$ of the n-th
type. Furthermore, put

$\Im_{n,1}=\{(e_{1}, e_{2}, e_{3})\in\Im_{n}|2p_{n}<e_{1}\leqq e_{2}\leqq e_{3}\}$ ,

$\Im_{n,2}=\{(e_{1}, e_{2}, e_{3})\in\Im_{n}|e_{1}<2p_{n}<e_{2}\leqq e_{3}\}$ ,

$\Im_{n,3}=\{(e_{1}, e_{2}, e_{3})\in\Im_{n}|e_{1}\leqq e_{2}<2p_{n}<e_{3}\}$ ,

$\Im_{n,4}=\{(e_{1}, e_{2}, e_{3})\in\Im_{n}|e_{1}\leqq e_{2}\leqq e_{3}<2p_{n}\}$ .
Then we have

$\Im=\bigcup_{n=1}^{\infty}\Im_{n}$ , $\Im_{n}=\bigcup_{i=1}^{4}\Im_{n,i}$ .

Let $\mathfrak{A}$ be the set of all $(e_{1}, e_{2}, e_{3})$ of arithmetic type. Put

$\mathfrak{A}_{n}=\mathfrak{U}\cap\Im_{n}$ , $\mathfrak{U}_{n,i}=\mathfrak{A}\cap\Im_{n,i}$ $(1\leqq i\leqq 4)$ .
Then we have

$\mathfrak{A}=U\mathfrak{A}_{n}n=1\infty$ $\mathfrak{A}_{n}=\bigcup_{i=1}^{4}\mathfrak{A}_{n,i}$ .
Now we shall prove

PROPOSITION 6. Notations being as above, $\mathfrak{A}_{n}$ is a finite set for each positive
integer $n$ . More Precisely, the following assertions hold:
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(i) If $(e_{1}, e_{2}, e_{3})$ is contained in $\mathfrak{A}_{n,1}$ , then

$e_{1}<3p_{n}$ , $e_{2}<4p_{n}$ , $e_{3}<p_{n}(2p_{n}+1)$ .
(ii) If $(e_{1}, e_{2}, e_{3})$ is contained in $\mathfrak{A}_{n,2}$ , then either

$e_{1}<p_{n}$ , $e_{2}<2p_{n}^{2}$ , $e_{3}<2p_{n}^{4}$ ,
$or$

$p_{n}<e_{1}<2p_{n}$ , $e_{2}<2p_{n}(p_{n}+1)$ , $e_{3}<4p_{n}^{3}(p_{n}+1)$ .
(iii) If $(e_{1}, e_{2}, e_{3})$ is contained in $\mathfrak{A}_{n,3}$ , then

$e_{1}\leqq e_{2}<2p_{n}$ , $e_{3}<4p_{n}^{3}$ .
(iv) If $(e_{1}, e_{2}, e_{3})$ is contained in $\mathfrak{A}_{n,4}$ , then

$e_{1}\leqq e_{2}\leqq e_{3}<2p_{n}$ .
PROOF. The assertion (iv) is trivial by definition of $\mathfrak{A}_{n,4}$ . Let $(e_{1}, e_{2}, e_{3})$ be

an element of $\mathfrak{A}$ . Let $e$ be the least common multiple of $\{e_{f}|1\leqq j\leqq 3\}$ . Then
the field $Q(\cos(\pi/e))$ is a normal extension of $Q$ whose Galois group is iso-
morphic to $(Z/2eZ)^{\times}/\{\pm 1\}$ . For any integer $a$ prime to $2e$ we can give the
corresponding element $\sigma_{a}$ of Gal $(Q(\cos(\pi/e))/Q)$ by $\sigma_{a}(\cos(\pi/e))=\cos(\pi a/e)$ .
There exists a unique integer $a_{j}(1\leqq j\leqq 3)$ such that $\sigma_{a}(\cos(\pi/e_{j}))=\cos(\pi a/e_{j})$

$=\cos(\pi a_{f}/e_{j}),$ $1\leqq a_{j}\leqq e_{j}-1$ . Now the condition (15) in Theorem 1 is equivalent
to the following conditions:

For any integer $a$ prime to $2e$ such that

$((\cos(\pi a_{1}/e_{1}))^{2}, (\cos(\pi a_{2}/e_{2}))^{2},$ $(\cos(\pi a_{3}/e_{3}))^{2}$ ,

cos $(\pi a_{1}/e_{1})$ cos $(\pi a_{2}/e_{2})$ cos $(\pi a_{3}/e_{3}))$

$\neq((\cos(\pi/e_{1}))^{2}, (\cos(\pi/e_{2}))^{2},$ $(\cos(\pi/e_{3}))^{2}$ ,

cos $(\pi/e_{1})$ cos $(\pi/e_{2})$ cos $(\pi/e_{3}))$ , (16)

the inequality holds:

$(\cos(\pi a_{1}/e_{1}))^{2}+(\cos(\pi a_{2}/e_{2}))^{2}+(\cos(\pi a_{3}/e_{3}))^{2}$

+2 cos $(\pi a_{1}/e_{1})$ cos $(\pi a_{2}/e_{2})$ cos $(\pi a_{3}/e_{3})-1<0$ . (17)

By an easy calculation we have

cos $\pi(1-|a_{1}/e_{1}-a_{2}/e_{2}|)<\cos(\pi a_{3}/e_{3})<\cos\pi(|a_{1}/e_{1}+a_{2}/e_{2}-1|)$ .
Since

$|a_{1}/e_{1}-a_{2}/e_{2}|<1$ and $|a_{1}/e_{1}+a_{2}/e_{2}-1|<1$ ,

we have
$|a_{1}/e_{1}+a_{2}/e_{2}-1|<a_{3}/e_{3}<1-|a_{1}/e_{1}-a_{2}/e_{2}|$ . (18)

This is equivalent to the inequalities:
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$\{$

$a_{1}/e_{1}+a_{2}/e_{2}+a_{3}/e_{3}>1$ ,

$-a_{1}/e_{1}+a_{2}/e_{2}+a_{8}/e_{3}<1$ ,

$a_{1}/e_{1}-a_{2}/e_{2}+a_{3}/e_{3}<1$ ,

$a_{1}/e_{1}+a_{2}/e_{2}-a_{3}/e_{3}<1$ .

(19)

We need the following
LEMMA 4. Let $(e_{1}, e_{2}, e_{3})$ be an element of $\mathfrak{A}_{n}$ . Let $a_{f}(1\leqq j\leqq 3)$ be the

integer defined above for $a=p_{n}$ . Then the following inequalities hold:

$a_{j}\leqq p_{n}$ $(1 \leqq j\leqq 3)$ , $|e_{1}e_{2}-a_{1}e_{2}-a_{2}e_{1}|\geqq 1$ .
PROOF. Suppose that $e_{j}<p_{n}$ . Since $a_{j}\leqq e_{j}-1$ , we see that $a_{j}<p_{n}$ . Suppose

that $p_{n}<e_{j}$ . Then by definition of $a_{j}$ we have $a_{f}=p_{n}$ . This proves the first
set of inequalities.

Assume that $e_{1}e_{2}-a_{1}e_{2}-a_{2}e_{1}=0$ . Since $a_{f}\equiv\pm p_{n}(mod e_{j})$ , we have $p_{n}e_{1}\equiv 0$

$(mod e_{2})$ . Since $p_{n}$ is prime to $e_{2}$ , we have $e_{1}\equiv 0(mod e_{2})$ . Similarly, we have
$e_{2}\equiv 0(mod e_{1})$ . Consequently, we see that $e_{1}=e_{2}$ and that $a_{1}=a_{2}$ . Hence
$e_{1}^{2}-2a_{1}e_{1}=0$ . Hence $e_{1}=2a_{1}$ . It implies that $2p_{n}\equiv 0(mod e_{1})$ . Hence $2\equiv 0$

$(mod e_{1})$ . This means that $e_{1}=e_{2}=2$ , which contradicts (4). Q. E. D.
In the cases of $\mathfrak{A}_{n,1},$ $\mathfrak{A}_{n,2},$ $\mathfrak{A}_{n,3}$ by the inequality $2P_{n}<e_{3}$ we see that $\sigma_{p_{n}}$ is

not the identity on $k_{0}$ . Therefore, (18) and (19) are valid for $a=p_{n}$ .
(i) Let $(e_{1}, e_{2}, e_{3})$ be an element of $\mathfrak{A}_{n,1}$ . Then for $a=p_{n}$ we have $a_{1}=a_{2}$

$=a_{3}=p_{n}$ . By (19) we have $3P_{n}/e_{1}\geqq p_{n}/e_{1}+p_{n}/e_{2}+p_{n}/e_{3}>1$ . Hence $e_{1}<3p_{n}$ .
Furthermore, we have $2p_{n}/e_{2}\geqq p_{n}/e_{2}+p_{n}/e_{3}>1-P_{n}/e_{1}>1/2$ . Hence $e_{2}<4p_{n}$ . By
the inequalities $p_{n}/e_{3}>1-p_{n}/e_{1}-p_{n}/e_{2}\geqq 1-2p_{n}/(2p_{n}+1)=1/(2p_{n}+1)$ , we see that
$e_{3}<p_{n}(2p_{n}+1)$ .

(ii) Let $(e_{1}, e_{2}, e_{3})$ be an element of $\mathfrak{U}_{n,2}$ . Then for $a=p_{n}$ we have $a_{2}=a_{3}=p_{n}$ .
By definition we have $e_{1}<2p_{n}$ . Suppose that $e_{1}<p_{n}$ . Then $2p_{n}/e_{2}\geqq p_{n}/e_{2}+p_{n}/e_{3}$

$>1-a_{1}/e_{1}\geqq 1/e_{1}$ . Hence $e_{2}<2p_{n}e_{1}<2p_{n}^{2}$ . By the inequalities $p_{n}/e_{3}>|e_{1}e_{2}-a_{1}e_{2}$

$-a_{2}e_{1}|/(e_{1}e_{2})\geqq 1/(e_{1}e_{2}),$ $wehavee_{3}<p_{n}e_{1}e_{2}<2p_{n}^{4}$ . $SupposethatP_{n}<e_{1}<2p_{n}$ . Then
we have $a_{1}=p_{n}$ . By the inequalities $2p_{n}/e_{2}>1-p_{n}/e_{1}\geqq 1/(p_{n}+1)$ , we have
$e_{2}<2p_{n}(p_{n}+1)$ and $e_{3}<p_{n}e_{1}e_{2}<4p_{n}^{3}(p_{n}+1)$ .

(iii) Let $(e_{1}, e_{2}, e_{3})$ be an element of $\mathfrak{A}_{n,3}$ . Then by dePnition we have
$e_{1}\leqq e_{2}<2p_{n}$ . In the same way as in (ii) we have $e_{3}<p_{n}e_{1}e_{2}<4p_{n}^{3}$ . Q. E. D.

PROPOSITION 7. The notations being as above, the following assertions hold:
(i) $\mathfrak{A}_{n,1}$ is $emPty$ for all $n\geqq 9$ ;
(ii) $\mathfrak{A}_{n,2}$ is emPty for all $n\geqq 12$ ;
(iii) $\mathfrak{A}_{n,3}$ is emPty for all $n\geqq 10$ ;
(iv) $\mathfrak{U}_{n,4}$ is empty for all $n\geqq 7$.
PROOF. Making use of the results of Proposition 6, by definition of $\mathfrak{A}_{n,i}$

we see that
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(i) If $\mathfrak{A}_{n,1}$ is non-empty, then $p_{1}\cdots p_{n-1}<12p_{n}^{3}(2p_{n}+1)$ ;
(ii) If $\mathfrak{A}_{n,2}$ is non-empty, then either $p_{1}\cdots p_{n-1}<4p_{n}^{7}$ or $p_{1}\cdots p_{n- 1}<16p_{n}^{5}(p_{n}$

$+1)^{2}$ ;
(iii) If $\mathfrak{A}_{n,3}$ is non-empty, then $p_{1}\cdots p_{n-1}<16p_{n}^{5}$ ;
(iv) If $\mathfrak{A}_{n,4}$ is non-empty, then $p_{1}\cdots p_{n-1}<8p_{n}^{3}$ .

Now Proposition 7 is a direct consequence of the following
LEMMA 5. For any Positive integer $n$ we denote by $p_{n}$ the n-th odd Prime

number in order of magnitude. Then the following assertions hold:
(i) $p_{1}\cdots p_{n-l}<12p_{n}^{3}(2p_{n}+1)$ if and only if $n\leqq 8$ ;
(ii) (a) $p_{1}\cdots p_{n-1}<4p_{n}^{7}$ if and only if $n\leqq 11$ ;

(b) $p_{1}\cdots p_{n-1}<16p_{n}^{5}(p_{n}+1)^{2}$ if and only if $n\leqq 11$ ;
(iii) $p_{1}\cdots p_{n- 1}<16p_{n}^{5}$ if and only if $n\leqq 9$ ;
(iv) $p_{1}\cdots p_{n- 1}<8p_{n}^{3}$ if and only if $n\leqq 6$ .
PROOF. (i) Suppose that $p_{1}\cdots p_{n- 1}<12p_{n}^{3}(2p_{n}+1)$ . Then we have $p_{1}\cdots p_{n- 1}$

$<32p_{n}^{4}$ . By $Ceby\check{s}ev’ s$ theorem on the distribution of prime numbers we have
$p_{n- 1}<p_{n}<2p_{n- 1}$ . Hence $p_{n}^{4}<2^{10}p_{n- 4}\cdots p_{n- 1}$ . Therefore, we have $p_{1}\cdots p_{n- 5}<2^{15}$ .
By an easy calculation we see that $n\leqq 10$ . Now we can easily verify the
assertion (i).

In the similar way we can also verify the assertions (ii), (iii) and (iv).
Q. E. D.

This completes the Proof of Proposition 7.
Now we can prove the following
THEOREM 2. There exist only finitely many arithmetic triangle groups up

to $SL_{2}(R)$ -conjugation.
PROOF. First consider the compact case. In this case our assertion is a

direct consequence of Proposition 1, 6 and 7.
We turn to the non-compact case. Let $\Gamma$ be a triangle group of non-

compact type $(e_{1}, e_{2}, e_{3})$ . Then by Theorem 1, $\Gamma$ is arithmetic if and only if
$k_{0}=Q((\cos(\pi/e_{1}))^{2}, (\cos(\pi/e_{2}))^{2},$ $(\cos(\pi/e_{3}))^{2}$ , cos $(\pi/e_{1})$ . cos $(\pi/e_{2})\cdot(\cos\pi/e_{3}))$ coin-
cides with $Q$ . It follows that $e_{f}=2$ or 3 or 4 or 6 or $\infty$ . By Proposition 1 we
can verify our assertion. Q. E. D.

\S 5. Determination of all arithmetic types $(e_{1}, e_{2}, e_{3})$ .
5.1. Non-compact types.
Let $(e_{1}, e_{2}, e_{3})$ be a triple of non-compact type. Then by an argument in

the Proof of Theorem 2, we see that $e_{f}=2$ or 3 or 4 or 6 or $\infty(1\leqq j\leqq 3)$ .
Considering all the conditions for $(e_{1}, e_{2}, e_{3})$ to be arithmetic, we see that
$(e_{1}, e_{2}, e_{3})$ must be one of the following triples:

$(2, 3, \infty),$ $(2,4, \infty),$ $(2,6, \infty),$ $(2, \infty, \infty),$ $(3,3, \infty),$ $(3, \infty, \infty)$ ,
$(4, 4, \infty),$ $(6,6, \infty),$ $(\infty, \infty, \infty)$ .
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5.2. Compact types
In order to make use of a computer we shall derive some inequalities. By

Proposition 6 and 7 we see that $\mathfrak{A}=\bigcup_{n=1}^{11}\mathfrak{A}_{n}$ and we obtain the absolute bounds:

$e_{1}\leqq 73$ , $e_{2}\leqq 2811$ , $e_{3}\leqq 10^{7}$ .
Let $(e_{1}, e_{2}, e_{3})$ be an element of $\mathfrak{A}_{n}$ such that $\sigma_{p_{n}}$ is not the identity on $k_{0}$ .
Then for $a=p_{n}$ we have

$2P_{n}/e_{2}\geqq a_{2}/e_{2}+a_{3}/e_{3}>1-a_{1}/e_{1}$ .
Hence we have

$e_{1}\leqq e_{2}<c_{2}=2p_{n}e_{1}/(e_{1}-a_{1})$ . (20)

By the inequalities $p_{n}/e_{3}>|1-a_{1}/e_{1}-a_{2}/e_{3}|\geqq 1/(e_{1}e_{2})$ , we have

$e_{3}<c_{3}=p_{n}e_{1}e_{2}/|e_{1}e_{2}-a_{1}e_{2}-a_{2}e_{1}|\leqq p_{n}e_{1}e_{2}<2p_{n}^{2}e_{1}/(e_{1}-a_{1})$ . (21)

Hence $e_{2}e_{3}<4p_{n}^{3}e_{1}^{3}/(e_{1}-a_{1})^{2}$ . Let $q(e_{1}, n)$ be the product of all $p_{m}(1\leqq m\leqq n-1)$

such that $p_{m}$ divides $e_{1}$ , where $q(e_{1}, n)=1$ if no such $p_{m}$ exists. Since $p_{1}\cdots p_{n-1}$

.. divides $e_{1}e_{2}e_{3}$ , we have

$p_{1}$ $p_{n-1}/q(e_{1}, n)<4p_{n}^{3}e_{1}^{3}/(e_{1}-a_{1})^{2}$ .
Put

$A(e_{1}, n)=q(e_{1}, n)e_{1}^{3}/(e_{1}-a_{1})^{2}$ $B(n)=P_{1}$ $P_{n-1}/(4p_{n}^{3})$ .
Then we have

$B(n)<A(e_{1}, n)$ . (22)

Let $d_{3}(e_{1}e_{2}, n)$ be the product of all $p_{m}(1\leqq m\leqq n-1)$ such that $p_{m}$ does not
divide $e_{1}e_{2}$ . Then $e_{3}$ must be a multiple of $d_{3}(e_{1}e_{2}, n)$ . By making use of a
computer for all triples $(e_{1}, e_{2}, e_{3})$ satisfying (20), (21) and (22) we check the
condition (19) for any integer $a$ prime to $2e$ satisfying (16). In this way we
can obtain all $(e_{1}, e_{2}, e_{3})$ in $\mathfrak{A}_{n}$ such that $\sigma_{p_{n}}$ is not the identity on $k_{0}$ .

On the other hand, if $\sigma_{p_{n}}$ is the identity on $k_{0}$ , then $(e_{1}, e_{2}, e_{3})$ is contained
in $\mathfrak{A}_{n,4}$ . Hence we have $e_{1}\leqq e_{2}\leqq e_{3}<34$ . By making use of a computer for all
triples $(e_{1}, e_{2}, e_{3})$ such that $e_{1}\leqq e_{2}\leqq e_{3}\leqq 33$ we check the condition (19) for any
integer $a$ prime to $2e$ satisfying (16). Making use of the computer TOSBAC-
3400, Saitama University, we have the following

THEOREM 3. The complete list of all triPles $(e_{1}, e_{2}, e_{3})$ of arithmetic $tyPe$ is
as follows:

(i) Compact types.

(2, 3, 7), (2, 3, 8), (2, 3, 9), (2, 3, 10), (2, 3, 11), (2, 3, 12), (2, 3, 14), (2, 3, 16),
(2, 3, 18), (2, 3, 24), (2, 3, 30), (2, 4, 5), (2, 4, 6), (2, 4, 7), (2, 4, 8), (2, 4, 10),
(2, 4, 12), (2, 4, 18), (2, 5, 5), (2, 5, 6), (2, 5, 8), (2, 5, 10), (2, 5, 20), (2, 5, 30),
(2, 6, 6), (2, 6, 8), (2, 6, 12), (2, 7, 7), (2, 7, 14), (2, 8, 8), (2, 8, 16), (2, 9, 18),
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(2, 10, 10), (2, 12, 12), (2, 12, 24), (2, 15, 30), (2, 18, 18),

(3, 3, 4), (3, 3, 5), (3, 3, 6), (3, 3, 7), (3, 3, 8), (3, 3, 9), (3, 3, 12), $(3, 3_{l}^{*}15)$ ,
(3, 4, 4), (3, 4, 6), (3, 4, 12), (3, 5, 5), (3, 6, 6), (3, 6, 18), (3, 8, 8), (3, 8, 24),
(3, 10, 30), (3, 12, 12),

(4, 4, 4), (4, 4, 5), (4, 4, 6), (4, 4, 9), (4, 5, 5), (4, 6, 6), (4, 8, 8), (4, 16, 16),

(5, 5, 5), (5, 5, 10), (5, 5, 15), (5, 10, 10),

(6, 6, 6), (6, 12, 12), (6, 24,.24), (7, 7, 7), (8, 8, 8), (9, 9, 9), (9, 18, 18),
(12, 12, 12), (15, 15, 15).

(ii) Non-compact types.

$(2, 3, \infty),$ $(2,4, \infty),$ $(2,6, \infty),$ $(2, \infty, \infty),$ $(3,3, \infty),$ $(3, \infty, \infty),$ $(4,4, \infty)$ ,
$(6, 6, \infty),$ $(\infty, \infty, \infty)$ .
REMARK. As to the triples of types $(2, 3, e_{3}),$ $(2,4, e_{3})$ and $(2, 6, e_{3})$ , our result

coincides with the list of [1] pp. 610-611. It remains to classify all triples
listed in Theorem 3 with respect to the commensurability. In the non-compact
case this is trivial because these groups are all commensurable with some con-
jugate group of the modular group.
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