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Introduction.

Let A be an R-algebra, where R is a fixed commutative ring. An algebra
over A is a pair (U, 1) where U is an R-algebra and 1: A—U an R-algebra
map. They form a category. The definition of morphisms is obvious.

Sweedler starts to try to classify algebras over A by their underlying
A-bimodules. In almost all the chapters he assumes the algebra A is com-
mutative. His method is useful for such algebras (U,1) over A as i sends A
isomorphically onto the centralizer of A in U.

When A is commutative, he defines a product “X,” on the category of
algebras over A. This product is neither in general associative nor unitary.

A X 4-bialgebra is a triple (B, 4,9) where B is an algebra over A and
4: B—BX ,B,Y9:B—EndpA are maps of algebras over A making some diagrams
commute.

When 4 is an isomorphism and J is injective, he defines €z to be the set
of isomorphism classes of algebras (U, 1) over A such that U=B as A-bimodules.
He shows that ¢ then maps A isomorphically onto the centralizer in U of A.
The product “X ,” makes €5 into an abelian monoid with unit {(B) the class
of B.

Let ¢(B) denote the group of invertible elements in 5.

Among other things he proves that if <U) the class of of U belongs to
@{B) then there is a canonical isomorphism of algebras over A

¢ (U ,UY —> B

with the assumption of the existence of some isomorphism S: B—(B°X ,B)" of
algebras over A, called an “Ess” map. Here we denote by U° the opposite
algebra to U considered as an algebra over A.

Based on this fact, he shows that if A is a simple B-module (via J: B—
EndgA), then all algebras (U, 1) over A with {U)=&{B) are simple. (Exactly,
some additional hypothesis on B is needed).

Further, for a X 4-bialgebra (B, 4, J) where 4 is an isomorphism and J is
injective he constructs some semi-co-simplicial complex consisting of commutative
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algebras and algebra homomorphisms. Taking the groups of invertible ele-
ments, he obtains some complex of abelian groups. He computes the cohomo-
logy groups H*(B) for n=0, 1,2 and shows that H*B)=g&{B)>. The commuta-
tivity of this X s-bialgebra cohomology follows from the cocommutativity of B.

The purpose of this article is to re-obtain the above theory of Sweedler
for algebra A which is not necessarily commutative.

Let A denote the opposite algebra to A with the anti-isomorphism A—A,
a|—a.

If U is an algebra over A, then the opposite algebra U’ is an algebra
over A. We consider algebras over AQA. Here and below we write & to
‘denote ®z. For example EndzA is an algebra over AQA with structure map

ARQA —> EndzA, aRb|— a'b"

where a' (resp. b”) denotes the left (resp. right) translation by a (resp. b).

If U is an algebra over AQRA, then the opposite algebra U° is also an
algebra over ARQA, since A®A is canonically anti-isomorphic with itself. Our
analysis is useful for such algebras (U, i) over AQA that i sends isomorphic-
ally A onto the centralizer of i(A) in U. EndzA is such an algebra.

Our task begins with making a slight but important change of the defini-
tion of “Xx,".

Let M be an A-bimodule and N an A-bimodule. Let

[ aM@.N

denote the quotient module of MQN by the submodule generated by the ele-
ments am@n—mQan with ac A, me M and neN. Let

b
[ § aMz@.N,
denote the submodule of f +M®,N consisting of

{ani®ni]2mi5®ni:zmi®”ib; Vbe A} .

We define M X N to be this R-module.

Let (U,1) be an algebra over A and (V,j) an algebra over A. Then U
is an A-bimodule and V an A-bimodule. The R-module UX ,V is an R-alge-
bra, where 1X1 is the unit and the multiplication is defined by

Suppose M and N are ARA-bimodules. Since the product “X,” is func-
torial, the A-bimodule operation on M induces an A-bimodule structure on
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Mx 4N and the A-bimodule operation on N an A-biomodule structure on MX ,N.

Then MX ,N is an AQA-bimodule. We use the following symbol to explain
this structure

o M5 N)o=[ [ 1 M 5@ 07N, 7

where [, 4,7 and v are general elements of A.

Thus “X,” defines a product on the category of A®A-bimodules. This
product is not necessarily associative. But for three ARA-bimodules M, N
and P, there is an A®A-bimodule MX ,NX ,P and we have canonical AQA-
bilinear maps a: (M X (N)X ,P—MxX ,NX ,Pand a’: M X ,(NX 4P)—=MX 4NX ,P.
If both @ and «’ are injective having the same image, the triple (M, N, P) is
said to associate.

Let (U, 1) and (V, ) be algebras over AQA. Then UX,V is also an alge-
bra over ARA with respect to the algebra map

h: AQA —> UX,V,h(a®b)=i(a)Rjb).

Thus “X ,” induces a product on the category of algebras over AQA.

A “X ,-bialgebra” can be defined to be a triple (B, 4,.9) where B is an
algebra over AQA and 4: B—BX ,B and J: B—~EndzA are maps of algebras
over AQA making some diagrams commute.

If A is a finite projective R-algebra, then EndzA has a unique X 4-bialgebra
structure where J4 is the identity.

If A is a division R-algebra, there is a unique maximal subalgebra B of
EndzA which has a X ,-bialgebra structure with 4 the inclusion.

The above are examples of X ,-bialgebras where 4 is an isomorphism and
J is injective.

When 4 is an isomorphism and 4 is injective, the monoid &z and the
group ¢{B) are defined similarly as [1]. But they are not abelian.

To ensure the existence of an isomorphism

£ (U U —> B

for an algebra U over AQA with (U>=g(B), we also need an “Ess” map for
B. Some difficulty lies in the definition.

To define the Ess map, Sweedler compares the bimodules
((UX VXWX, X)) and (U°X W)X (VX X)°.

When U is an AQA-bimodule, let U° denote the A®A-bimodule where
U—-U° u]—u’ is an R-module isomorphism and (a®5)u’(cRd)=((dR&)u(bQa))’,
a,b,c,d=A, usU.
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If U, V,W and X are AQA-bimodules, then the left [, # AQA- and the
right 7, ? AQA-bimodule structures of the above bimodules come from (; Vi,7 Xr)
and GWry,z Vy) respectively. Hence they are not comparable.

Instead of the latter we use the bimodule

(UK W)X (V)X X)°

where the A®A-bimodule structure comes from (zV;,7Xr). Making use of
some natural AQA-bilinear maps from these bimodules into some bimodule,
we define the Ess map S: B—(B"X ,B)".

We can prove that if S is an isomorphism, then for all algebra U over
A®A with (UY=@(B) there is a natural isomorphism of algebras over AQA
:(U°x,4U)Y—B. Hence [1, Theorem (3.7)] can be applied to re-obtain a
similar result to [1, Theorem (10.3)].

In the same way as [1, Chapter 15] we can form a semi-co-simplicial com-
plex consisting of R-algebras and their homomorphisms from the X ,-bialgebra
(B, 4, 9). Although the algebras appearing in the complex are not commuta-
tive except at 0 and 1, we can define and compute the cohomology groups
H™B) for n=0, 1 and 2 by taking the groups of units. H°B) and H'(B) are
abelian, but H*(B) not. It is shown that we also have H?*(B)=g{B).

The interest of this article is concentrated on the above theory of ¢(B).
We are not dealing with the analogy of the “X ,-bialgebra determined by some
class of ideals {L,} of ARA” or the “X ,-bialgebra D, of differential opera-
tors”’. Sweedler gives some sufficient conditions in order for A to be a simple
D 4-module. He also computes the center of D,. Extending these accounts to
the case when A is not commutative is left to the reader. We consider it is
not too difficult.

§0. Conventions.

Throughout we fix a commutative ring R with unit.

We write &, Hom and End to denote ®z, Homz and Endz. All modules
and algebras are R-modules and R-algebras. They are unitary. Subalgebras
of an algebra have the same unit.

For an algebra A, let A denote the opposite algebra where

A—> A4, al—> a

is an algebra anti-isomorphism.

We shall treat such a module M as is given many representations and
anti-representations of algebras p,: A—End M. We always assume that they
commute in the sense
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Pi(a)Pj(b):Pj(b)Pi(a)
for all ¢, b= A and i+#].

In many cases, each representation is indicated by “position”. For example,
let M be a left ARQA- and right A-bimodule, N a left A- and right AQA-
bimodule and P a left A- and right A-bimodule. Then L=MXNXP has eight
representations and anti-representations

pi:A—>End L, 1=1,2,--,8

each of which corresponds to the letter a; in

L:anEzMas®54Na5yas®a7pgs .

(01, ps, 01, s are representations and p,, ps, P4, 05 anti-representations). They
commute with each other.

In such a case we can use the symbols j and fx of Sweedler [1]. For
example, ?

Q=] M@:N®.P,

Q= M,@N;Q®P

denote L/X, and L/X, respectively, where X, and X, are the submodules of
L generated by

{oa)(D—p(a)(D) | 1,j=1,4,7, ac A, L}
(@)= p;@)D) | i, j=3, 6, ac 4, € L)
respectively. Dually

Q=[MRNP;,

Q= M,@N,®,P

denote the submodules of L

{leL | pi(a)(Dh=p;(a)(D), i,j=2,8, ac A}

{leL | pa)(D=p;(a)D), i,j=3,5,7, ac A}
respectively.
Since each representation commutes with one another, the rest of the

x
representations used to define j or 5 induce representations on the resulting
x
coequalizer or the equalizer.
For example there remain on Q; the following representations:

P25 P35 P05, O¢, Ps on Q,,



464 M. TAKEUCHI

101; 102, P47 ‘05) P7; ‘08 on Q27
ply Ps: (04; Ps; (06) P7 on QSy
01, P2, Py, Pe; Os on Q,.

Therefore we can form the following modules for instance:
Q:={ | M,@:N;®.P
Qu={ | M,®:N;®.P
Q={"[% M, ®N,®.P;
Q={ [z M,@N,®.Ps
ngfufy;;My@)Ni@Pa

Qw:jyj‘ui My®N17®PE-

In the above, we have Q; =, and Q,=Q,, since colimits commute with each
other and so do limits. We shall denote them by

Q=Q={ M,@:N;®.P,

Q=Q:=[ "M, @N,®,P.

u,v
Of course they inherit the representations other than used to define j or f .

Z,Y
On the other hand, ¢, and @,, are not in general isomorphic, but the

inclusion f%M@N@Pg GL induces a homomorphism
[ JaM,@N@Pr—[ M,@N;®P.

Since its image lies clearly in (,, we have a natural homomorphism
§ [aM@N;@P:— [ [ sM,@N;@ Py

We call this last homomorphism “the exchange map from f f to f j. ”,
Y Y

For example, the following chain of natural homomorphisms is induced
from the exchange maps:
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SIS =05 =050 =11,

Any composites may also be called the exchange maps.

In this paper we mainly treat AQA-bimodules. If M is an AR A-bimodule,
we define M° to be the A®A-bimodule, R-isomorphic with M via m|—m?°,
M—M?®, with structure determined by

(a@b)m*(cRd)=((dQE)m(bRa))"
a,b,c,de A, me M. The isomorphism
e My~ My, m'|—m

is compatible with each representation indicated by position [/, u, » and v.

An algebra over A is a pair (U, i) where U is an algebra and i: A—U a
map of algebras. A map of algebras over A from (U, 1) to (V,j) is such an
algebra map f: U—V that j=foi. Then algebras over A form a category.

Each algebra (U, i) over A is an A-bimodule with structure aub=i(a)ui(h),
a,be A, ueU. This is the underlying A-bimodule of (U, 7).

If (U,1) is an algebra over ARQA, let U° denote the opposite algebra to U
with the anti-isomorphism U—U® u|—u’. Then (U’ 1°) is an algebra over
ARQA, where °(a®b)=i(bQa)’, a, b= A. 1f M denotes the underlying ARQA-
bimodule of (U, 1), then the underlying A®QA-bimodule of (U°, i) is M°.

A is a left AQA-module, where (a®@b)c=ach, a, b, c= A.

End A is an algebra over AQA with respect to the algebra map AQA—
End A, a®b|—a'b”, where a'b"(c)=ach, a, b, c= A. The underlying AR A-bimodule
structure of End A is explained by position:

1,7 (End A), 7=Hom (; 74, ,z A) .

A family of submodules {M,} of a module M is directed if for each indices
@, B there is an index y such that M,+Mz;C M, The union U, M, is then
called directed.

If we write MQ, N this denotes the tensor product of the right module
M, with the left module V.

If we write Hom,(M, N) this is the “hom” from the left module M to
the left module ,N.

§1. MXx,N and MXx ,PX ,N as modules.

Until (1.10) let M be an A-bimodule, N an A-bimodule and P an ARQA-
bimodule. '

Yy
1.1. DEFINITION. M><AN:j j :M7@.N,, which is simply a module.
If f: M—>M’ is a map of A-bimodules and g: N—N’ a map of A-bimodules,
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then the map f®g:f 2M®1N—>f M QN induces the following homomor-
phism:

1.2. fXg: MxX ,N—> M'X N’
“x o gives a biadditive functor from (the category of A-bimodules)X (the
category of A-bimodules) to (the category of modules).
1.3. REMARK. PX /N has an A-bimodule structure determined by
d(PX 4 N)y=,P, X ,4N.
Mx 4P has an A-bimodule structure determined by

If P’ is another AQA-bimodule, then the above structures make PX ,P’ into
an AQA-bimodule.
1.4. DEFINITION.

Y,b
Mx 4P X AN:J j‘x aiM@'@z,a_Py,B'@aNb .

If f: M—M’ is a map of A-bimodules, g: P—P’ a map of AQA-bimodules
and A: N—»N' a map of A-bimodules, then f®g®h:j MR PR N—

j M Q7P XN’ induces the map

1.5. fXgXh: MX PX ,N—> M'X P X ,N.

The functor “-X 4-X 4" is additive in each variable.
1.6. REMARK. If M (resp. N) is an AQA-bimodule, then MX PX ,N is
an A-bimodule (resp. A-bimodule), where the structure is indicated by

(MX 4 PX4N)y= M, X ,PX N
(resp. g(MX 4PX ,N)g=Mx 4PX 4%Nyz).
Hence if M, N and P are AQA-bimodules, then MX ,PX ,N has the canonical

A®A-bimodule structure.
1.7. PROPOSITION. The image of the composite (MX AP)XANC,I (M X ,P)

RN gfx aiM®2,ZP®aN 1s contained in MX ,PX (N. Let a:(Mx  P)X N—
Mx ,PX 4N denote the induced map.
i) If 4N is flat, then « is injective. If in addition ,gzA is finitely pre-
‘sented, then « is an isomorphism.
ii) If 4N is projective, then a is an isomorphism.
iii) If 4N is a directed union of projective submodules and LEM@)Z,;P is
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sA-flat, then a is an isomorphism.

iv) If M (resp. N) is an AQA-bimodule, then a is A-bilinear (resp. A-
bilinear.

PRrOOF. iv) is easily checked. The proof of i), ii) and iii) is similar to
[1, (2.5)]. Q.E.D.

There is a similar map

C(/I 4MXA(P><AN)_-9M><AP><AN

for which analogous results hold.
1.8. DEeFINITION. The triple (M, P, N) associates if the maps « and a’ are

injective having the same image.
In this case there is the associalion isomorphism of modules

t:(MX P)X N=Mx ,(PX 4N)

such that a’ot=a. This is A-bilinear (resp. A-bilinear) when M (resp. N) is
an A®A-bimodules, hence A®A-bilinear if both M and N are A®A-bimodules.

1.9. DEFINITION. The AQA-bimodule P is associative if the triple (P, P, P)
associates.

1.10. ProrosiTION. If ,P and 4P are flat and zM and N are directed
unions of projective submodules, then the a and a' maps are isomorphisms.
Hence (M, P, N) associates.

PrOOF. See [1, (2.11)] or use (1.7), iii).

1.11. PROPOSITION. Let M and M’ be AQA-bimodules and N and N’ be left
ARQA-modules. View NQN' as a left AQA-module by (aQb}n®@n")=anQbn’,

R
a,b=A, neN, weN. Consider the composite (M M")Ruea(NQN) ——>
tw cano
[ M@M5QuNREN = [ sMONDM QN —> [ sMO1saN@:M QusalV,

where tw(mQ@m’'Qn@n)=mRxnEm’'@n’ and cano denotes the canonical projec-
tion. This induces a homomorphism

6 : (MX M)Quoa([ N@N') —> [ MR 4saNRM Qo'

where note that LEN@%N’ is a quotient left AQA-module of NQN'.

PrROOF. The left hand side is isomorphic to L(MXAM’)@)A@;(C—N@)CN’).
Let Zi]mi®m§EM>< M, neN and n’'eN’. Then );mic'@)n@m;@n’zzimi@n
®mic@n’ in | MO NQM@zN' for all ceA. Hence Sm@n@m@n'=

2m@QnRImiQQcn’ in f MRz NR M Qae2N'. Therefore the map ¢ is induced.
1 x
Q.E.D.
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In general if P and Q are B-bimodules, where B is an algebra, PRzQ is

a B-bimodule with structure determined by b(pRq)b’'=bp&qb’, b, b’ B, p= P,
g=qQ.

1.12. PROPOSITION. Let M, M’, N and N’ be AQA-bimodules. The com-

. 1Q¢ @
posite (MX M)IRsa(NX JN) —> (Mx M)@uea([ sNQN') = [ :MB4saN
M RuezN’ induces the ARQA-bilinear map

£ (MX M)RQasa(NX 4N') —> (MR 4e2N) X 4(M' @ 4eaN") .

ProoOF. Left to the reader.

§2. The maps 4, 6’ and 6”.

2.1. DEFINITION. If M is a left A-module and N a left A-module, there
are the maps

A: _:M®,End A —> Hom (4, M)
A(m@c)(@)=c(aym,
A _+End A®,N —> Hom (4, N)
A (c@n)(@)y=c(a)n,
A7 [ M@, zEnd AQ,N —>Hom (4, | : ME.N)

A"(mQcRn)(a)=c(a)mRQ@n=mc(a)n ,
ceEnd A, me M, neN, ac A.

Sufficient conditions for 4, A’ or A” to be injective are given in [1, (1.5)7.

2.2. PROPOSITION. If M is an A-bimodule and N an A-bimodule, the maps
A, A" and A" “induce” the maps respectively:

6: MX ,EndA—> M
O(Sm@e)=SelDm,,
0':End AX ,N—> N
0’(;dj®nj)212dj(l)nj.
0" : MxX ,End AX yN—> Mx N
0" (Zm&e@ni)= Zi)ci(._l)mi@mi: Dm eyl

The sense of “inducing” is explained in the proof.
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i) Tne map 6 is A-bilinear and the map 6’ A-bilinear.
ity If M is an AQA-bimodule, then 0 is AQA-bilinear and 6" A-bilinear.
iii) If N is an AQA-bimodule, then 0 is AQA-bilinear and 0" A-bilinear.

PROOF. The map 4: | ;M;®.(End A),—Hom (:A, My) is y, z A-bilinear.

Taking the equalizer y=2z, we obtain the § map as the composite:

M3 End A > [ "Hom (,4, My) =M
fl—F.

The map .4’ induces #’ in the same way.

The map 47: | ;M;@Hom (.5 A, +s A®cNy—Hom (o5 4, | Mz®.N,)isy,
z, b, ¢ A-multilinear. Take the equalizer y=z and b=c.

If in general P is a right AQA-module, we have a canonical isomorphism

_fy’bHom (v54, Py,g)zijy,g, fl—f(1).

Hence we have the induced map

Y,b A"
J L My@QHom (5 A, 27 A)QaNy —>

jy’bHom i, | My ®.Ny)= { ! jij;@),Ny .

This is the map 67 : MX ;End AX ;N—Mx ,N.
i), ii) and iii) are straightforward. Q.E.D.
The maps #, 6 and 6”7 are functorial in each variable.
2.3. PROPOSITION. Let M be an A-bimodule and N an A-bimodule. The
following diagram commutes.

(M 4End A)xX 4N Mx End AX N
ax1 o o
Mx N 150" Mx ,(End AX 4N).

ProOF. This follows from a direct calculation.

24. We show that the maps 8,60’ : End AX ,End A Z End A coincide. Put
0:End A—A, 0(c)=c(1), c=End A.

25. LEMMA. Let X be a right A-module and Y a right A-module. The
map 0 induces isomorphisms
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foom (X,, (End A),)=Hom (X, 4), F|—> doF,

{"Hom (Y7, (End A))=Hom (¥, 4), G| —>d0G.
The inverses are given respectively by
fl—f, where f(s)(a)=f(sa)

gl —>&, where g(t)(a)=g(ta)

ac A, seX, teY, feHom (X, A), gcHom (Y, A).

Proor. Exercise (cf. [1, (5.2)]).

2.6. COROLLARY. If Z is a right AQA-module, the map 0 induces an iso-
morphism

 ["Hom (Z,5, (End Agy=tom ([ Zy, A),  H|—doH.

2.7. PROPOSITION. The maps 6,0’ : End AxX ,End AZEnd A coincide.
PrOOF. Since they are A®A-bilinear, we have only to show dof=d0@’.

If Yc¢;®@d;=End AX, 4End A, then 0(6(X Ci®di)):3(2d7(56i) = chi(l):
1 1 7 1

Zi) c;(1d;(1)=0(X¢;(1)d;)=0(0"(Xc;Qd;)). Hence dof=000".

§3. Ux,V and UX_ WX,V as algebras.

Proposition [1, (3.1)] can be read as follows:
3.1. PROPOSITION. Let U be an algebra over A and V an algebra over A.
I UR,V is a right URV-module with structure determined by (u@v)(u’'Qv’)=

u’Quv’, u, w'el, v, v'eV.
i) There is a module isomorphism

N:UX 4V —> Endyigne U®V(Lpr®x V)

determined by N(Zu,Qu)(u@v)= Zuu@@v;v, Lu;Qu,cUX ,V, ueU, veV.

i) UX,V has an algebra structure determined by
(; uz®vz)(; u;Quj)= g uu; Quvy,

2uQuy, Du;Quv;eUX ,V, with unit 1Q1.
T J

iiiy N is an algebra isomorphism.

If f: U-U’ is a map of algebras over A and g: V—V’ a map of algebras
over A, then fxXg:UX V—U’'X,V’ is a map of algebras.

Corresponding to Remark 1.3, if (U,1) (resp. (V,J)) is an algebra over
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AR®A, Ux 4V is an algebra over A (resp. A) with respect to the algebra map
h:A—Ux,V, ha)=i(a)R1

(resp. h: A —> Ux,V, h(@)=1Rja).
If both U and V are algebras over A®A, then UX ,V is an algebra over AQA
with respect to
h: AQA —> Ux ,V, h(a®b)=i(a)Qjb).

The underlying bimodule structures are the same as described in (1.3).

If f (resp. g) is a map of algebras over ARQA, then fXg is a map of
algebras over A (resp. A). Thus “X,” determines a product on the category
of algebras over ARQA.

Similarly we have:

3.2. PROPOSITION. Let U be an algebra over A, W an algebra over AQA
and V an algebra over A. j U@z aWRaV is a right URQWQV-module as
in (3.1).

i) There is a module isomorphism

N: UX WX 4V —> Enduigns vowor(| sUB:zW@aV)

determined by N(Zu;Quw;Quy)(uQuw@v)=2u;uQw;wQv;v, 2u; Qw,Qu,eUX ,
Wx , V, ueU, weW, veV.
i) Ux ,Wx,V has an algebra structure determined by
(;ui®wi®vi)(12u}®w;®V})=§uiu9®wiW}®viv},

S u,Qu, Ky, §u5®w;®v}EU>< AWX LV, with unit 1Q1R1.

iii) N is an algebra isomorphism.

Corresponding to Remark 1.6, if U (resp. V) is an algebra over ARA,
then UX WX,V has an algebra structure over A (resp. A). If U and V are
algebras over AR®A, then UX WX,V has a natural algebra structure over
ARA. Description of the structure maps is left to the reader.

3.3. PROPOSITION. Let U be an algebra over A, W an algebra over AQA
and V an algebra over A. The following are all algebra maps:

a: (UX WYX, V—UX WX,V
a' s UX (WX V)—> UX WX,V
0: UX,EndA—U
0': EndAx ,V—V
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07 UX,End AX ,V— Ux,V.

Here 0 (resp. 0') is a map of algebras over A (resp. A).

If U is an algebra over AQA, then a, a’ and 0" arve maps of algebras over
A and 6 a map of algebras over AQA.

If V is an algebra over AQA, then a, a’ and 8" are maps of algebras over
A and 0’ a map of algebras over ARA.

Hence if U and V are algebras over ARQA, then the above are all maps of
algebras over ARQA.

ProoF. Straightforward and left to the reader. Q.E.D.

34. COROLLARY. Let U, W and V be as above. If the triple (U, W, V)
associates as bimodules (1.8) then the association isomorphism (UX W)X V=
UX (WX V) ts an isomorphism of algebras.

Let (U, 1) be an algebra over AQA. Suppose that ; sends A isomorphically

~ T

onto | ,U,=the centralizer of i(4) in U. It follows from [1,(3.4)] that there

isTan algebra map

3.5. C: (U°X,4U) —>End A

determined by {((Zu:"Qv:)") (@)= D u;i(@)v;, (Su;"Qu,)’'sU°x U)°, as A.

It is easy to see that  is a map of algebras over ARQA.
If U is a subalgebra of End A over AR®A, then the above condition holds
true. We have then a commutative diagram by [1, (3.8)]:

1xeo)®
U°%x ,U)—— (U< 4End A)°
00
5 ( !
EndA ¢«——— U=U"

consisting of maps of algebras over ARQA.

Since A is not commutative, the lemma [1, (3.10)] must be rewritten as:

3.6. LEMMA. Let A be a division algebra, C a left A-subspace of End A
and M an A-bimodule.

i) If {c,,--+,c}CC is a finite left A-linearly independent set, then there
exists {a;;}\J{b;;} CA satisfying ;ck(bij)aijzéik with 1, k=1, -+, s.

ii) If Cis a sub-A-bimodule of EndA, then me 0(AmA X ,C) if mef(Mx ,C).

Similar results hold, for 6/, an A-bimodule N and a left sub-A-module D
of End A.

Just as [1, (3.12)] we have:

3.7. THEOREM. Let A be a division algebra and E a subalgebra of End A
over AQA. If 0:E°x ,E—E" is surjective, then E is a simple algebra. The
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center of E is
{a' | ac A, u(a)=au(l), Vue E}.

3.8. REMARK. If (U,1) is an algebra over AQA, we denote by (U the
class of algebras over A®A which are isomorphic to U as algebras over
ARA. 1f U and V are algebras over ARA, then the product (UNXV)=
{Ux ,V> is well-defined. This is the canonical product on isomorphism classes
of algebras over AQA. The product is neither commutative nor associative.
If U, Vand W are algebras over ARA, where (U, V, W) associates, then
KUXVIKW )=KU >V )XXW?3) in view of (3.4).

For an AQA-bimodule M, define &y by

39. &y={isomorphism classes (U} of algebras over ARA
where U=M as an AQA-bimodule} .

If e=&y, fE€y where M and N are A®A-bimodules, then ef=&y. ,y.

3.10. DEFINITION. An AQ®A-bimodule M is idempotent as a bimodule if
M=Mx M as AQA-bimodules. An algebras (U,i) over AQA is idempotent
as an algebra over ARQA if U=Ux ,U as an algebra over ARA, i.e, (U>=
UXUY. )

If M is an idempotent A@A-bimodule, then, for ¢, f=&,, we have efc&y.
If M is also an associative bimodule, then the product in €4 is associative.

3.11. DEFINITION. If (U, 1) is an algebra over A®A which is idempotent
as an algebra over ARA and associative as an A®A-bimodule, let &U
denote the monoid of equivalence classes Ce&y where CKU>=C=(U>C. Let
g{U) denote the group of invertible elements in &U ).

Similarly to [1, (4.9)] we have
3.12. PROPOSITION. Let E be a subalgebra of End A over ARA, where

0=0': Ex ,E—FE is an isomorphism of algebras over ARQA. Assume E is asso-
ciative as an ARQA-bimodule. If U is an algebra over AQA with U=E as an

ARA-bimodule, then
: UX ,E—-U and 0 : Ex,U—-U

are isomorphisms of algebras over ARA. Hence we have K E>=¢&.

§4. x ,~Coalgebras and X ,-bialgebras.

4.1. DEFINITION. A X 4-coalgebra is a triple (C, 4, 9) where C is an ARQA-
bimodule and 4: C—Cx ,C and J:C—End A are AQA-bilinear maps such that
the following diagrams commute:
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cx 0 =X _(ex 0%,

SN i

4 a’
1%
Ccx ,C CX 4(CX ,C)
4 4
CXACG_‘ C——) CX.‘{C
ﬂxll ll lli
6 0

EndAx ,C—>C—Cx ,EndA.

We do not assume the associativity (1.9) of C.

4.2. DEFINITION. When (C, 4, 9) is a X 4-coalgebra, we put c[al=4(c)(a),
ceC, as A.

A morphism of X ,-coalgebras from (C, 4,9) to (C’, 4’,9") is an ARQA-
bilinear map u: C—C’ such that 4’cu=(uXu)od and J’ou=J9. They form a
category.

43. PROPOSITION. Let (C,4,9) be a X 4-coalgebra except that co-associa-
tivity of 4 is not assumed. If d=C and 4(d)=X2d,Qd}sCx ACCI CR,C, then,
for a, be A, ' :

1) da:;di[a]d; a’d:;ma’i,

ii) d[ab]:Eidi[a]d{-[b].

PROOF. 1) Since 4(da)=Xd;a®Rd}], da=0'(Zd,aQd)=>(d;a)[11d;=
>d;[ald;. Similar for da.

ii) dlab]=(da)lb]=2d:[aldi[b] by D).

44. PROPOSITION. Let (C, 4d,9) be a X 4-coalgebra. If 4:C—Cx ,C is an
isomorphism (or equivalently if 6:Cx ,C—C is or equivalently if 6':Cx ,C—C
is) then the AQA-bimodule C is associative.

PrROOF. By definition, ac(dx1)od=a’c(1x4d)od: C—Cx ,x , where
(4x1)od and (1xd)od are isomorphisms. This map is injective having the
retract

0” 0
Cx Cx ,C—Cx C—C.
Hence a and a’ are injective and have the same image.

4.5. DEFINITION. A X y-bialgebra is a X j-coalgebra (B, 4, 9) where B is

an algebra over AQA and 4: B—BX ,B and J: B—End A are maps of algebras
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over ARQA.
If (B,4,9) is a X 4-bialgebra, then A is a left B-module via (4.2).
Morphisms of X 4-bialgebras are morphisms of X ,-coalgebras which are
at the same time maps of algebras over AQA. They also make a category.
46. ExamMpPLE. Let H be a bialgebra over R and A an H-module algebra
[2] Cocommutativity is not needed. Let B=AQARXH. This is an algebra
with unit 1®1®1 and multiplication determined by

(a®5®g)(6®5®h)= g} agay(0)Q8cs(d)bQgxh

a,b,c,deA, g, he H, where we used the sigma notation of [2]. B is an alge-
bra over AQA with respect to

ARA— B, aQb|— aRQbR1.

The map J:B—End A4, 9(aRQbRQg)(c)=ag(c)b, a, b, cc A, ge H, is a map of
algebras over AQA. The map

4:B —>LEB®$B

4(aRbRg)= 2 (aR1R21)RURbREw) »

a,be A, geH, is left AQA-linear with image contained in BX 4B. The induced
map 4: B—Bx ,B is a map of algebras over ARQA.

The reader can easily check that (B=ARARH, 4, 9) is a X 4-bialgebra.

Taking H=R (acting trivially on A) in particular, we know that AQA
has a canonical X ,-bialgebra structure (4, 9) where 4 : AQA—~(ARQA) X J(ARQA)
and J: AQA—End A are the unique maps of algebras over ARQA.

4.7. PROPOSITION. i) Let C and D be X j-coalgebras. CQuszD is an
ARA-bimodule by the above of (1.12). Let

44 3
4: CQusaD —> (CX 4O)Rasa(DX 4D) —> (CQ452D) X 4(CR422D)

IRI product
I: CR 43D —> End AR, ez End A———End A

where & 1s defined at (1.12). Then (CQR4aD, 4, 9) is a X 4-coalgebra.

ii) Let C, D and E be X 4-coalgebras. The canonical isomorphism (CR 492D)
R asiE =CR 4373(DR 4szE) is an isomorphism of X 4-coalgebras.

PrOOF. Left to the reader. Q.E.D.

In general an algebra over A can be identified with a triple (M, p, u)
where M is an A-bimodule, p: MR M—M and u: A—M are A-bilinear maps
such that the product p is associative with unit u.
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4.8. PROPOSITION. A X 4-bialgebra can be identified with a triple (B, p, u)
where B is a X 4-coalgebra and p: BQuzzB—B and u: AQA—B are maps of
X g-coalgebras such that (M, p, u) is an algebra over AQA, where M denotes the
underlying AQA-bimodule of B. (Note that AQA has a canonical X 4-coalgebra
structure by (4.6)).

PrOOF. Follows immediately from the definition.

49. LeEMMA. Let C be a X 4-coalgebra and f: C—End A an ARA-bilinear
map. Put

IxXf 0
F.C—Cx,C—Cx EndA—C.
Then F is AQA-bilinear and IF=f.
ProOF. Let c=C and 4(c)=>¢;Qci. Then F(c)=Xf(ci)(1)c; and F(c)[1]

:Z}f(d)(l)ci[lﬁlzZici[ljf(62)(1):f(Zici[llc@‘)(l):f(C)(l) using (4.3), i). Hence
09F=0f. Since f and JF are ARA-bilinear, f=49F by (2.6).

4.10. PROPOSITION. Let C be a X 4-coalgebra. Let C#* denote the module
of all ARQA-bilinear maps from C into End A. C# is an algebra with unit 4
and with product determined by

0=0"

xg
fxg: C—>CxX,C—>End AX,End A— End 4, f, g=C*.

ProoF. Let f, g, heC¥#. That fxJ=f follows from (4.9). Similarly J*g
=g. The associativity (f*g)xh=s+(gxh) follows from the following commuta-
tive diagram:

(f*g)xh
c><(c DXL _ excywe LEXE pypycE E><E
: ' / \
C CxCxc—LXEXM By
) : \ /
ox o124 CX(CXC)fX(th>E><(E < E)
k FX(g*h)

where we write X and E to denote X, and End A. The commutativity of
the regions I and II follows from (2.3).
4.11. COROLLARY. Let C be a X ,-coalgebra. Suppose 9:C—End A is
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njective.

i) The maps 6, 6§’ : Cx ,C—C coincide.

ii) Let Endygz_s(C) denote the R-module of ARA-bilinear endomorphisms
of C. This is an algebra with unit 1 and with product determined by

fxXg 6=0’
fxg: C—>Cx ,C —> Cx ,C —>C, f,g=Endssz-5:(C).

iii) We have fxg=fog=gof, f, g€ Endsezu(C). Hence the algebra
(Endagz-0(C), *) equals the endomorphism ring of the AQA-bimodule under
composite. This is commutative.

iv) The map 9 induces an isomorphism of algebras Endez-s:(C)=C*.

PROOF. i) is obvious. ii) and iv) follow from (4.9) and (4.10). Let ceC
and 4(c) =X ¢;Qc;.  Then (f+g)(c) = H(Z/(c)Rg(ch) = ;g(c{-)[ljf(ci) =
A(Sg@EiTIe)=1(g()), where we used lsg=g. Similarly (f+g)()=0'(3/(c)

gle)=2fe1]g(c)=g(Zf(c)l1Ie)=g(f(¢)) by fx1=f. This proves iii).

4.12. PROPOSITION. Let C be a X 4-coalgebra and E=J9(C). Assume 6:
Ex 4E—E is injective. Then 0 is an AQA-bimodule isomorphism and (E, 87, ¢)
gives E the structure of a X 4-coalgebra, where ¢: E—End A is the inclusion.
The map 9:C—E is a X 4-coalgebra map.

PrROOF. The same as [1, (6.3)].

4.13. THEOREM. Let DCEnd A be a sub-ARQA-bimodule where 6 : DX ,D—D

1s an isomorphism and /l:j‘ DX 7 DRy D—Hom (A,f :DR,.D) (see (2.1)) 1s
X, x

injective. Then (D, 071, ¢) is an associative X 4-coalgebra.
Proor. The associativity follows from (4.4). We have only to show
a(dxVd=a’(AxMNHd: D—Dx Dx ,D where 4=0"'. Let d=D and 4(d)=

?@@dé- Put u=234(d,)®d, U:Z_di®d(d;>:§€k®e;e Key inf D@27 D&y D.
Then, for as A, Aw)(a)=Xd[a]d(d,)=4(Xd[ald,)=4(da) by (4.3). AQw)(a@)=

gek@)e};[a]e;:;di@d{-d by (4.3) again. Since A(dd):d(d)d:Zidi(@d;d, we
have A(u)(a)=A(v)(a). Hence u=v by assumption. Q.E.D.
If in addition D is a subalgebra over ARA in the above, then (D, 87}, ¢)
is clearly a X 4-bialgebra.
4.14. COROLLARY. Suppose A isa finite projective R-module. Then for all
A-bimodule M and A-bimodule N, the maps

0:MxX ,EndA—>M and 6 :End AX,N—>N

are isomorphisms. In particular there is a unique AQA-bilinear map 4:End A
—End Ax ,End A making (End A, 4,¢) into a X 4-bialgebra.

ProOF. Since all 4 maps (2.1) are isomorphisms, the # maps are isomor-
phisms. Similarly the #” maps are too. Hence the latter half follows from (4.13).
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§5. The case where A is a division algebra.

Suppose that A is a division algebra. But R is arbitrary. We know that
the @, ¢/ and 6”7 maps are injective by [1, (1.5)]. The maps « and a’ are
isomorphisms and hence any triple (M, P, N) of A®A-bimodules associates
(1.8).

Let B be the image of

0:End AX ,EndA—>End A

which is a subalgebra of End A over AQA.
5.1. THEOREM. @:BX ,B—B is bijective and (B, 871, ¢) is the unique maxi-
mal X 4-coalgebra in End A with co-unit ¢. B is actually a X 4-bialgebra.
Proor. Using (3.6) instead of [1, (3.10)] the proof is similar to [1, (7.1)].
5.2. LEMMA. Let M be an A-bimodule and B as above.

1xe -
i) The inclusion Mx ;B —> Mx ,End A is an isomorphism of A-bimodules.

ii) The map 6: MxX  End A—M has the image M ={me M|AmA is left

A-finite dimensional}.
— ¢ Xt
iii) M’ is a sub-A-bimodule of M and the inclusion M’ X ,B —> MX ,End A

is an isomorphism of A-bimodules.

iv) 0: M x ,B—M is an isomorphism.

PROOF. M’ is clearly a sub-A-bimodule of M. Let m:B(iZmi(g)ci) with
>mQc;e MX4End A. Then mézﬁ(Zmi(@cid):Em)mi. Hence ZmECZ_f—lmi
is left A-finite dimensional and so 8(Mx , End A)C M.

Conversely if me M’, then A:f sAmAR, End A—Hom (4, AmA) is an iso-
morphism. Hence so is 8: AmAX ,End A—AmA. This means that 0: M'X 4
End A—M’ is an isomorphism. In particular M'=60(M X ,End A).

Consider the following diagram:

6
(Mx +End A)X , End A—2% « M'x ,End A—L = m
m
al
‘ ;
Mx ,End AX , End A M ,End A M
a’|] 0

>< /
I‘JX A(End AX A End A) 1 ,\? J‘IX .43 .
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It follows that (M X ,B)=6(M’'X ,End A)=M’ in M. This proves the lemma.
Q.E.D.

As a corollary we have

B=1{ccEnd A | AcA is left A-finite dimensional}.

On the other hand we also have

B={ceEnd A | AcA is left A-finite dimensional}

since B==6’'(End AX ,End A) and the dual statement of (5.2) holds.

Let D={f<End A | AfA is right A-finite dimensional}. Then D'=Im (¢:
(End A)’X 4 End A—(End A)°) and 8: D*X ,B—D° is an isomorphism by (5.2).

Let 0: D°-D°X ,B and 4: B—BX 4 B be the inverses of the ¢ maps.

Let E denote the sum of all AQA-bimodules XCEnd A which satisfy (i)
XCBND, (ii)) 4(X)cXx ,XCBx B and (iii) 6(X)cX’°x ,XCD'%x ,B. Then
just as [1, (7.3)] we have

5.3. THEOREM. E isthe unique maximal X ,-bialgebra (with 9=¢) in End A
which satisfies: E°X 4E—E° is surjective (or bijective).

§6. The Ess map and simplicity.

So far in the generalization (over commutative A—over ARA) we have
encountered no difficulties. To obtain the theorem [1, (10.2), (10.3)] we also
need the Ess map. Its definition must be changed when we work over ARA,
since the maps @ and C in [1, (9.1)] make no sense unless A is commutative.

The definition of an ess map of a X ,-bialgebra is given in (6.8) after the
following rather long chain of definitions and lemmas. The analogies of [1,
(10.2), (10.3)] are established in (6.13) and (6.14).

6.1. DEFINITION. Let U, V, W and X be AQA-bimodules. Let

oW, W =" L UsRIND.V,,

VO, W, V0= ['f aUei®us Waz@aVo@p X,

We make the above modules into A®A-bimodules with structure determined
by
Z,E@(UJ W} V)T,;:@(U) EW’F; FVL—)

VWU, W, V, X),s=% U, W,z V5,7 Xr) .

6.2. LEMMA. Let U, V, W and X be AQA-bimodules.
a) The tmage of the composite
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U VP3G [ Uk V@I L5 UR.V@W = U@ WD,V
is contained in O(U, W, V). Let

B (UXAV)OXAW_é@(U; W} I/)
denote the induced map. This is AQA-bilinear.
b) The image of the composite

(@ W% VG [ (GUY* @V EL U7,V

s contained in O(U, W, V). Let
C: ((UOXAW)OX AV)O - @(U; W.~ V)

denote the induced map. This is AQA-bilinear.
c¢) The map

ow, w, x| U.e.We.VexX

induces a canonical map
¥,
U, W, VIQX—> [ 1:Usy@aW,@.V,BX.

This induces a canonical map

oW, W, V)< X — [ {7 aUas@usWea®.V,@,%,.

b b
Applying the exchange map: f f —>f f (see Conventions) we obtain the map
D D

2: (OU, W, V)X X)) — WU, W,V,X).

This is AQA-bilinear.
PROOF. Straightforward.
6.3. LEMMA. Let (U,1) and (V,)) be algebras over AQA.

a) If j induces an isomorphism: /szxxl/x and there is an ARQA-bilinear
isomorphism o: U—V, then

i) There is a unique invertible element be A where o(i(@))=j(ab)=j(ba)
for all ac A. In particular b belongs to the center of A.

—_ x
ii) 1 induces an isomorphism: Agj Uz

iii) We have T={G<= A | qu=ua for all ue U}‘:{deg |av=va for all ve V}
and i: T—center (U), j: T—center (V) are isomorphisms.
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b) If h: A—Ux,V is injective, so is j: A—V.
ProofF. This can be proved in the same way as [1, (9.3)]. Q.E.D.
Let (U, 1) and (V,j) be algebras over AQA. Fix an element de A for a

moment. The map

f@): | 2Ue@eURVOV —> [ JUR.V, f(d)u@u'Qv@v)=uw' Qudv’,
u, WU, v, v'EV restricted to | | :Us7DuUR,V,®V induces
v
f@): '] tUag®u5URV®,V —= [ sUD.V.

Indeed it Su.QuRvQvie | ! [ Uag®UR.V,QV, then fd)(Su@pui®
viQU) =2 uiﬁu§®vic7v£:f(d)(2i] U FQURVQv) Zf(d)(;uz@llé@vi;b@v%):guﬂé@
vi;bgv;-——;um{@viﬁpv;:f(d)(Zui®u§®vi®pv§) for all pe A.

This map induces an R-I;near map

@) W, 0, V, V) —> [ [ elz@.Ve=[ U V.

It can be easily verified that this map satisfies:
fd)ax)=1f(d)(x)a
oL [ fld)(@x)=afd)(x)
l Fd)(xa)=f(ad)(®)
Hd)(xa)=F(da)(x)
a, de A, xe¥ (U, U, V, V).
Recall that L5U®1V is a left UX ,V-module (3.1). Hence if de A is fixed,

the map
g@): | (UaX V)0 URV — [ LURLV,

g DL(Su@u)Du' Qv I=Dua'Quidv’,
2uRQuieUX ,V, wel, v'eV, is well-defined. This induces @ map
Y0 Y,b
J7T 60X aV@0U05 @2V —> [ [ 0,5Uns @,V

or equivalently a map
b
8(d): (UL VIX LUK V) —> [ ((UX V).

This also satisfies:
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g(d)(ax)=g(d)(x)a
g(d)(ax)=ag(d)(x)
g(d)(xa)=g(ad)(x)
g(d)(xa)=g(da)(x)

a, de A, xe(UX V)% ,UX V)"
, 6.6. LEMMA. Let (U,i) and (V, ) be algebras over AQA. Suppose h: A—
j‘ (UX 4V, 1s an isomorphism.
a) The linear maps

6.5.

9:¥WU,U,V,V)—>End A

& (UX VYXx ,Ux V¥ —>End A4
are defined by
M D(x)(a)=/(a)(x),  h(E(¥)(a))=g(a)(y),

ac A, xeU WU, U, V, V), ye(Ux VX ,UX,4V). Then D and & are ARA-
bilinear. ,
- b -
b) Suppose further i:A——>jl »Up and j: A—»f » Vs are both isomorphisms.

We have then the following commutative diagram:

(((UX U)X V)i Vo D' oW, U, v)x yp-EXD VX UYX V)
((EX1)°Xx1)° A a®
((End AX V)X V)° ¥, z} vV, V) (UXV)XUXV)°
(67°%1)° D € a’
(Vox V) ¢ —— End A : (UXVYXUXV))".

Heve the { maps are defined in (3.5) and X denotes X ,. This diagram consists
of ARQA-bilinear maps.

ProOOF. The existence of 9 and &€ is clear. That they are A®QA-bilinear
follows from (6.4) and (6.5). To check the commutativity of the diagram is
left to the reader.

6.7. LEMMA. Let (U,i) be an algebra over ARQA where i:ﬁejszz is

isomorphic. If §:U—End A is a map of algebras over ARQA, the following
diagram commutes:
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(U< ,U)° P——E—%ﬁ End A4
| @exaoy ” (I
(U"X ,End A —> U=/,
PROOF. If x=Xul@uje U° ,U, then S(Suisu)(L)(d)=2I(u)(Iw)(1)d)
:;J(ui)(J(Ju;)(l)) l::J(lZ u;dul)(1), de A. Sin::e ;uﬂu;:i(m)), we have
I u;dup)(D)=C(x")(d).

6.8. DEFINITION. Suppose (B, 4, 9) is a X 4-bialgebra. An Ess is a map

of algebras over ARA
S: B —> (B'X 4B’

which makes the following diagrams commute :

SO
B —> B°% B

l1° ll“xﬂ
B° j— B°%< ,End A

4°%
B B 1 (Bx.BYx,B

0

B 9(B, B, B)

0

3
A

(Sx1)°

(BX 4B)° ((B°X 4B)° X 4B)

B'x B L X4 _ Box (B ,B)

0

BO BOX ABXAB

0

/N
A

0
Bx B S _ (B ,B)x ,B

We see in the next section (§7) when the inverse of 8: B°x ,B—B° which
is assumed to be bijective, satisfies the above conditions. In particular if A
is a finite projective R-algebra, then #: (End A)°X , End A—(End A)® is an iso-
morphism by (4.14) and we see that the inverse §~' gives the unique Ess map
of the X ,-bialgebra End A (ibid.).

6.9. PROPOSITION. Let (B,d,9,S) be a X ,-bialgebra with Ess where
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4:B—Bx B and S§:B—(B"X B)" are isomorphisms and I is injective. Let

(U,7) and (V,j) be algebras over ARA which are ARQA-bimodule isomorphic
to B.

a) We have isomorphisms:

i:A— (U, A"V, h;A‘—>ﬁ(U><AV)x.
b) We have

S €
d:B—(B%x,B—>EndA
or equivalently

0

. g
¢: (B 4B — B"”=B —> End A.

c) The triple (Ux ,V)°, U, V) associates (1.8). The maps B: (UX ,V)°x U
—O(U,U, V) and C: (U U)X V)—@U, U, V) are injective and have the
same image. Let 7:(UX V)X U=({(U'X U)X ,V)° denote the induced 1so-
morphism. We have then the following commutative diagram:

(rx1)° ass
(((UXUYX VX V) = ((UxVYxU)XV) = (UXV)X(UxV))°
| @xpexay Ke
(0/0><1>0 C
((End AX V)X V) ————— 5 (VX V)” —> End 4

where X denotes X 4.

PROOF. a) Since U=V=UX,V=B as AQA-bimodules and J: B—End A
is injective, this follows from (6.3). b) follows from (6.7).

¢) Since S and 4 are isomorphisms, the third diagram in (6.8) shows that
a’:B'x (Bx B)—B'x< ,Bx,B and «a:(B°X ,B)X ,B—B°x Bx B have the
same image. The composite a’(1°x4)S°: B°—B°x ,BX ,B is injective having

a7 0
as retract the composite B°x ,Bx 4B —> B*%X ,B —> B°’. Hence (B, B, B) as-

sociates and ((Ux ,V)°, U, V) does too. Since the composite
Ix1 0’

(BOX AB)OXAB — End AXAB e B

which equals by b)
0°x1 6’
(BO>< AB>0>< AB — BOOX AB:BX AB —_—> B

is an isomorphism, the proposition (6.6), b) applied to U=V=B implies that
DACX1)° there is injective. Hence CXx1 is injective. Then the injectivity of
C follows from the next lemma (6.10). It follows from the second diagram in
(6.8) that @ and C for (B, B, B) are both injective and have the same image
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in @B, B, B). Since U=V=B as A®A-bimodules, it follows from the func-
toriality that B: (UX, V)X ,U—-@WU,U,V) and C: (U°X U)X V)" —
O(U,U, V) are injective having the same image. The commutativity of the
diagram is an immediate consequence of (6.6), b).

6.10. LEMMA. Let (B, 4,9) be a X ,-bialgebra where 4: B—BX ,B is an
isomorphism. If M, N and P are AQA-bimodules isomorphic to B and f: M—N
an A®A-bilinear map, then the map fx1: MX P—NX P is injective (resp.
surjective) if and only if so is f.

PrOOF. We can assume P=DB. Then 6: MX ,B—M and §: NX ,B—N are
isomorphisms, since so is 6: BX 4,B—B and we have a commutative diagram

6
Mx B —> M

lrx1 s

Nx B — N.
This proves the lemma.

6.11. LEMMA. Let (B,4,9,S8) be a X j-bialgebra with ess where S: B—
(B°X 4B)° is an isomorphism. If M, N and P are ARA-bimodules isomorphic
to B and f: M—N an AQA-bilinear map, then the map fOx1: M°X P—N°X ,P
is injective (rvesp. surjective) if and only if so is f.

PrOOF. The same as (6.10).

6.12. THEOREM. Let (B, 4,9,S8) be a X 4-bialgebra with ess where 9 is
injective and 4 and S are isomorphisms.

a) Suppose U is an algebra over AQA which is AQA-bimodule isomorphic
to B. Then (U°xX ,U) is ARA-bimodule isomorphic to B. There is a unique
map of algebras over AQA

Z: (U'%x,U)—>B
such that 9Z={ (3.5).

b) If U and V are algebras over ARA which are ARQA-bimodule isomor-
phic to B and where UX V=B as an algebra over ARA, then Z:(U°X U)°
—B is injective and Z&: (V°X ,V)'—B is surjective.

c) If in addition VX U=B in b), then both the & maps there are isomor-
phisms.

PROOF. a) (U°x,U)°=(B°%X,B)’=B as A®A-bimodules. Hence C:
(U°% 4U)—End A factors as {=4%Z uniquely by (4.9). c¢) follows from b).

b) Let y: UxX, V=B be an isomorphism of algebras over ARA. The map

L ((UX VYY) (UX V)Y —>End A
which equals the composite

(W vy U vy D)

€
(B°% 4B —>End A
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is injective having J4(B) as its image. Then the commutative diagrom of (6.9),
c) tells us that Z:(V°x ,V)*—B is surjective and (ZX1)°X1: (MX ,V)'X ,V
—(Bx ,V)"x ,V is injective, where we put M=(U"X ,U)’. Applying the lemmas
(6.10) and (6.11) we conclude that Z: (U°X ,U)—B is injective.

6.13. COROLLARY. Let (B,4,d,S) be a X ,-bialgebra with ess where 9 is
injective and 4 and S are isomorphisms.

i) The triple (B°, B, B) associates.

i) If Uis an algebra over AQA with (UYcG({B), then U°=B°X U
as an algebra over AQA.

iti) If B°=B as an algebra over ARA, then for each (U a{(B), LU
belongs to @{B) and {U°)={U>.

ProOOF. 1) is shown in (6.9), ¢). If <U)=g@(B), then U°X U=B°’ as an
algebra over A®A by (6.12), ¢). Since §: U°X ,B—U"° is an isomorphism, we
have U'z=U°X B=U°X ,(UX ,UHY=UX U)X ,U*'=B°X,U* as algebras
over AQA. This proves ii) and iii). Q.E.D.

Since we have established the analogy of [1, (10.2)] the following theorem
which is similar to [1, (10.3)] follows from [1, (3.7), (3.9)].

6.14. THEOREM. Let (B,4,9,S) be a X j-bialgebra with ess where 9 is
injective and 4 and S are isomorphisms. Furthermore assume that B is flal as
a left (right) A-module and 0+M"X ,B (B*X /M) for any A-bimodule 0+ MCB.
The following are equivalent:

a) A is a simple B-module,

b) B is a simple algebra,

¢) If U is any algebra over AQA with {U>cG{B), then U is a simple
algebra.

§ 7. [Existence of the ess.

Let (C, 4,9) be a X 4-coalgebra. We give a sufficient condition for some
section of 6:C°x ,C—C° (assumed to be surjective) to satisfy the conditions
of (6.8).

Define the maps

21§ sCu®uC®.C —> Hom (AQARA, A)

2,1 €500, —> Hom (AQARA, A)

to be the composites
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A1 Hom (A’ AZ)
2,: | :Cu®.C®,C —> Hom (4, | Ca®uC) ———>

0

Hom (A4, Hom (4, 9))
Hom (A4, Hom (4, C)) »Hom (A, Hom (4, Hom (4, A)))

=Hom (AQARA, A),

A, Hom (A4, 4,)
2,1 | Cu®27CQaC —> Hom (4, [C.0,0) ————>

Zy

Hom (4, Hom (4, 4))
Hom (4, Hom (4, C)) +Hom (A, Hom (4, Hom (4, A)))

=Hom (ARARA, A).

In the above the map 4, (resp. 4,, 4,, 4,) denotes the A-map (2.1) with
respect to the left # A-module f 7 C.RC, (resp. C,, j C:R2xC, Cy).

Explicitly we have
91(61®CZ®C3)(01®02®03)261[62[02:}01]63[03]
2,(,R¢,Q¢)(a,Qa,RQaz)=c,[c,[a, e[ as]a,]

a;s A, c;=C. (Recall (4.2).)

If the map Y and all the A-maps for C are injective, then £, and £, are
injective.

7.1. LEMMA. If 6°:(C°x ,C)"—C is surjective and has an A-bilinear section
S: C—(C°x ,C)°, then

axb=2x;y,[alb
where a, be A and x=C with S(x)=2x;&y; in j Co®R.C. In particular we have
ax[b]*—“;xityi[a]b] .

VPROOF. Since & is A-bilinear, we have S(axb):Exi®5yid in ‘f C.®.C.
Applying the 6 map, we have axb=3 x,(by;@)[1]=3x,y,[alb. Evaluating at
1, we have ax[b]=(axb)[1]1=X x,[¥;[alb].

7.2. PROPOSITION. Let (C, d,9) be a X 4-coalgebra where there is an ARQA-
bilinear map S: C—(C°X 4,C)° such that 1=0°0S. If the maps R, and 2, are
injective, then the following diagrams commute :
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CO%,C. 4°x1

(CX 4C)°Xx 4C

0

C® &(C,CCC)

]

a
AV

(C><AC)°__(§Z<_1_)_°._ ((COX 4C)° X 4C)°

cox,c _L1'*x4

C'% A(CX 4C)

0

C® C'%X CX 4C

0

A
W

Cox,C S XL (0o ,CYxuC

PROOF. Let b, deC, S(b)=3b®c; in | Ca®.C and 4(d)=3d,;Qd} in
{ C®.C. Then B X DS (B)=Sbu@e:Rbix and C(SX1)°4°(d)=2d Qe @d)

in [ :CuaBCOLC, where A(b)=Xb;@bis and S(d)=Sdp@esm Let fi=
2, 8(d°x1)S°(h) and f,= 2,C(S x 1)°4°(d). Then fila,Ra, R a;) =
S bisleiLaz]a,] bixLas] = 2 bi[c; La;]a,a,] = a,b[a,a5] by (43) and (7.1) and
f(a,Qa,Qas) =d;nlesnlazlaJd [as] = 2ad;[a]d [as]=a,d[a,a,] similarly, for
a,, a, a,=A. Hence if b=d, then f,=/,, since £, is injective.

Let g, = 2,0/AXDHS°() and g,= 2,a(S°x1)S°(d). Then for a;€A4,
8:(a:Ra,Ra,)=3b[cinla,Icinlas]a, 1= b:[ ;[ aza,]a,]=a,a.b[a,] by (4.3) and (7.1)
and gz(a1®az®a3):Zdjk[fjk[azjej[asjaljzEazdj[ej[asjaljzaza:«sd[alj by (7.1),
where S(b)=2b0:Qc;, S(d)=d;Re;, d(c))=2cinQcin and S(d;)=2d;xRf jr It
follows from the injectivity of £, that g,=g, if b=d.

7.3. COROLLARY. Let (B, 4,9) be a X 4-bialgebra, Suppose 9 is injective

and the map /l:j MR, B—Hom (A, M) is injective for each left A-module M.

If 6°: (B°X 4B)’—>B"=B 1is an isomorphism, then S=0°"* is an Ess map.

7.4. COROLLARY. Let A be a finite projective R-algebra. Then the
X 4-bialgebra End A (4.14) has a unique Ess map.

7.5. COROLLARY. If A is a division algebra, then the X ,-bialgebra E of
(5.3) has a unique Ess map.
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§ 8. Cohomology of a X ,-bialgebra.

Let (B, 4, 9) be a X 4-bialgebra, where J is injective. Let §:A®E and
B=BQR4sa " QueabB, n>0.
These are X 4-coalgebras by (4.6) and (4.7).. Hence we can form algebras (Z;)#
by (4.10). .
Define the ARA-bilinear maps i,: B—B by i,(1)=1, i,(5;Q -+ @by)=b, ++ by,
9

b,=B. The co-unit for B is i —> B — End A,

Let M, be the module of A®A-bilinear maps from B to B. It follows
from (4.9) that M, is an algebra with unit 7, and with product determined by

n n o FXE& =6’
fxg:B—>BxX B — Bx,B — B

and the injection 4 : B—End A induces the algebra isomorphisms an(g)*.

In view of (4.11), M, is identified with the endomorphism algebra of the
ARA-bimodule B. It is commutative.

For an algebra M, M* denotes the group of units in M.

M7 is hence identified with the group of automorphisms of the ARA-
bimodule B.

8.1. LEMMA. For each n=0, define the linear maps

ei:lwn—_>Mn+1y l:O: 1:""77‘_*_1;

by
n+1 b3 1®f i2
eo(f): B=BQugaB —> B QusaB —> B
n+1 t-1 2 n-1 1®12®1 t—1 n~1t f
ei(f): B=BRugaB QusaB B @43aBXR4za B —> B
O0<i<n+1
n+1  m f®1 iz
eni1i(f): B=BRugaB —> BQuaB—> B
for feM,.

a) These are algebra maps.

b) {M,, e, -, ens1}ta=o SOrms a semi-co-simplicial complex.

ProoF. This is left to the reader.

In the following we consider the partial complex {M,, ¢;}%-, and form the
cohomology groups H™(B), n=0, 1,2 with respect to the “units” functor (?)*.

8.2. H° theorem. The map M,—B, f|—f(1) is an injective algebra map
with image
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z,y .
j 2,7 Bz,y=the centralizer of ARQA in B.
Since A zjx,Bx, we have

[ eiBoz=( Ay =center ().

In particular M, is commutative. We identify M, with the centralizer of ARA
in B. Then e,(m)(b)=bm, e,(m)(b)=mb, me M,, b B. Hence

Ker (e, e, : M, —= M,)=center (B).

If we define H(B)=Ker (¢, ¢,: MiZ M), then H(B)=center (B)*.
8.3. LEMMA. Let o, yeM, and feM,.

2 ORXT 5 1y
a) ep)*e(a)=ey0)xe(y): B — B—B

2 O 2

b) eo(y)xexo)+f=F*e\(r)*ey(o): B —@ B —f>B-

o) eo)xf=fxe(o): é -—f+ B L B.

d) The images of the algebra maps e;: M,—M,, 1=0,1, 2, are contained in
the center of M,. .

PROOF. Let b, ccB and 4(b)=2b,Qb; 4(c)=3c¢;Qcj. Then 4(b@c)=
Ebz‘(g)cj@)bé@d-

a) [eo(r) *ex(0)](b® ) = 0"(Xbiy(c;) ®o(bi)cy) = X by[y (c)[11] a(bi)c; =
220(bLy(c)[111b3)c; =Za(by (e pL1)c; (by (4.3))=a(b)yr(c;)[1]c;=a(b)y(c), since
r*i,==7. That e (y)*ey(0)=e,(0)*e,(y) is proved in the following.

b) Let g=e,(y)*ex(0). (g+/)(bQc)=0"(Zo(b:)y(c)QFf (biRc))=2/(a(b:)[r(c;)
[1116:&c)=2f(aby (¢, )[1])&®c;) (since oxiy=0¢ and 4(by(c;)[11)=Zb:y(c;,)[1]
®b)=2f(e(L)Rr(c,)[11c;)=f(a(b)Ry(c)), since yx*i,=7.

(f=g)b®c)=0(Zf(b: @ c;) ®olbi)y(cs)) =Za)lyc)111f(b: Qc;) =
S eir (e HIIDIIb:Re ) =2 f(a(by (c;)[11)&c; (since i,x0=0 and d(by(c})[1])
= ST = S AeB)RTEIe,) =o(B)Dr(c)) since i*7=7.

Hence g belongs to the center of M,. Taking o=1; or y=1; we see that
the images ¢,(M,) and e,(M,) are also contained in the center of M,. In parti-
cular we have e,(7)*e,(0)=e,(a)*e,().

c) (f*e,(0))(b&®e)=0"(Zf(b:Qc;)RQa(bic;))=2a(f(b:&Qc,[1]bics)=a(f(bQc))
since fxi,=f.

(4(0) % /) (b@e) = 0(Zo(bic;) R f(biRc;)) = XLa(f(bi®c;)[1]bic;) = o(f(b X))

since 1,xf=f.

d) follows from the above.
8.4. As a corollary we have the following complex of abelian groups
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50 51
M§; — M7 — center (M,)*
where d,(x)=ey(x)*e,(x)7", 0:(¥)=e,(y)*ei(¥) ' *ey(y), x€ M5, yeM{, and can
form the cohomology groups H°(B)=Ker (d,) and H'(B)=Ker (4,)/Im (3,).

8.5. H' theorem. An element feM, is a l-cocycle if e, (f)=e,(f)*e,(f)
or equivalently if f(bc)=f(b)f(c), b, ceB. 1If a 1-cocycle is invertible, the inverse
is also a 1-cocycle.

Hence Ker (d,: M;—center (M,)*) consists of all A®A-bilinear automor-
phisms f: B—B such that f(bc)=f(b)f(c), b, ccB. Then f(1)=1 clearly. Hence

Ker (6,) = Aut,g45a(B)
as groups. If xe M;{CB*, then
0o(x)(b)=x""bx, beB.

Hence 0,(M;) consists of all inner automorphisms by elements of the centralizer
of AQA in B.

Therefore the group H'(B) is isomorphic to the group of automorphisms of
B as an algebra over AQA modulo the subgroup of inner automorphisms of B
induced by invertible elements of center (A).

8.6. LEMMA. Let f, geM, Then

3 1RfF » &
el(f)xe(g)=ex(g)xe(f): B — B—> B,

s 8R1 » f
e,(f)*e,(g)=ey(g)xe,(f): B — B—>B.
PrROOF. The computation is similar to (8.3) and left to the reader.
8.7. DEFINITION. Let f, ge M, and o= M.
a) fis a 2-cocycle if e,(f)*e,(f)=e,(f)*es(f).
b) f~g if fxd,(0)=g where 0,(0)=¢e,(0)*e,(0) " *e,(0).
88. LEMMA. Let f, f/, g, g =M, and o, t=M;.
a) If f~g, f/'~g/, then fxf" ~ gxg’.
b) f~gif and only if f(e(b)&ao(c))=0(g(b&c)), b, cEB.
c) If f~g then f is a 2-cocycle if and only if so is g,
d) If f, g are 2-cocycles, then so is [*g.
e) fis a 2-cocycle if and only if f(bRQf(cRd))=f(f(bRc)Rd), b, ¢, d=B.
f) If f is an invertible 2-cocycle then so is 7.
g) 0,(0) ts an invertible 2-cocycle.
PrROOF. Easy.
8.9. DEFINITION. HZ2(B)={invertible 2-cocycles}/0,(M]).

_ 2
8.10. REMARK. An AXA-bilinear map f: B—B is a 2-cocycle if and only
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if f gives on B a structure of an associative, non-unitary algebra over ARA.
If M and N are associative non-unitary algebras over A®QA, then MxX N
is too, in the same way as (3.1).
8.11. LEMMA. Let f be an invertible 2-cocycle. Then the associative product

z,Y

f: 123v—+B has the unit in j ’I,ng,;. Hence (B, f) is an algebra over ARA.

PROOF. g=f"! is also a 2-cocycle. Since fxg=i, 2f(b:Qc,)[11gbiRc))
=bc, b,ceB. In particular ¢=2g(f(1RcH[1I1RQc})=2g(1Rf(1Rc[1]c]).
Since the map f':B—B, f/(b)=f1Qb) is ARQA-bilinear, f'*i,=f’. Hence
2 (ARc[11c; =f(1&Qc). Therefore g(1RQF(1RQc))=c. If we write

bJ? c=f(bQc),  boc=g(b&c)
g
then the map lc}? : B—B is injective and 1o?: B—B is surjective. Interchang-
e A

ing f and g or the left and the right, we conclude that the maps 1?? and ??1

are bijective. Since lefx’yx,;Bz,y—, we conclude that the project f: B—B has
the unit in the centralizer of AQA in B just as [1, (16.4)].
8.12. H® theorem. Suppose 4:B—Bx ,B is an isomorphism. Then the
AQRA-bimodule B is associative (4.4) and €;=&(B) by (3.12).
2
Let X be the set of 2-cocycles f such that the product f: B—B has the

unit in the centralizer of AQA in B. X contains the invertible 2-cocycles by
(8.11).

If f, g€ X, then we have an isomorphism of algebras over AQA

4:(B,f+g)=(B, )X 4B, g).
This means fxg= X and the map X—&(B), f|—<{B, f)> which is clearly surjec-
tive, is a monoid homomorphism.

It follows from (8.8), b) that (B, f>=<(B,g> where f,g= X if and only if
f~g for some o= M;. Hence we have a monoid isomorphism

X/0,(M{)=&(B).
Taking the invertible elements we have a group isomorphism

H*(B)=g{B).
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