Groups of algebras over $A \otimes \overline{A}$

By Mitsuhiro TAKEUCHI

(Received May 21, 1976)

Introduction.

Let A be an R-algebra, where R is a fixed commutative ring. An algebra over A is a pair (U, i) where U is an R-algebra and $i: A \rightarrow U$ an R-algebra map. They form a category. The definition of morphisms is obvious.

Sweedler [1] starts to try to classify algebras over A by their underlying A-bimodules. In almost all the chapters he assumes the algebra A is commutative. His method is useful for such algebras (U, i) over A as i sends A isomorphically onto the centralizer of A in U.

When A is commutative, he defines a product " \times_A " on the category of algebras over A. This product is neither in general associative nor unitary.

 $A \times_A$ -bialgebra is a triple $(B, \mathcal{A}, \mathcal{S})$ where B is an algebra over A and $\mathcal{A}: B \rightarrow B \times_A B, \mathcal{S}: B \rightarrow \operatorname{End}_R A$ are maps of algebras over A making some diagrams commute.

When $\mathcal J$ is an isomorphism and $\mathcal J$ is injective, he defines $\mathcal E_B$ to be the set of isomorphism classes of algebras (U,i) over A such that $U\cong B$ as A-bimodules. He shows that i then maps A isomorphically onto the centralizer in U of A. The product " \times_A " makes $\mathcal E_B$ into an abelian monoid with unit $\langle B \rangle$ the class of B.

Let $\mathcal{G}\langle B \rangle$ denote the group of invertible elements in \mathcal{E}_B .

Among other things he proves that if $\langle U \rangle$ the class of U belongs to $\mathcal{L}(B)$ then there is a canonical isomorphism of algebras over A

$$\zeta \colon (U^0 \times_A U)^0 \longrightarrow B$$

with the assumption of the existence of some isomorphism $\mathcal{S}: B \to (B^0 \times_A B)^0$ of algebras over A, called an "Ess" map. Here we denote by U^0 the *opposite* algebra to U considered as an algebra over A.

Based on this fact, he shows that if A is a simple B-module (via $\mathcal{G}: B \to \operatorname{End}_R A$), then all algebras (U, i) over A with $\langle U \rangle \in \mathcal{G}\langle B \rangle$ are simple. (Exactly, some additional hypothesis on B is needed).

Further, for a \times_A -bialgebra $(B, \mathcal{A}, \mathcal{S})$ where \mathcal{A} is an isomorphism and \mathcal{S} is injective he constructs some semi-co-simplicial complex consisting of commutative

algebras and algebra homomorphisms. Taking the groups of invertible elements, he obtains some complex of abelian groups. He computes the cohomology groups $H^n(B)$ for n=0,1,2 and shows that $H^2(B)\cong \mathcal{G}\langle B\rangle$. The commutativity of this \times_A -bialgebra cohomology follows from the *cocommutativity* of B.

The purpose of this article is to re-obtain the above theory of Sweedler for algebra A which is not necessarily *commutative*.

Let \overline{A} denote the opposite algebra to A with the anti-isomorphism $A \rightarrow \overline{A}$, $a \mid \rightarrow \overline{a}$.

If U is an algebra over A, then the opposite algebra U^0 is an algebra over \overline{A} . We consider algebras over $A \otimes \overline{A}$. Here and below we write \otimes to denote \otimes_R . For example $\operatorname{End}_R A$ is an algebra over $A \otimes \overline{A}$ with structure map

$$A \otimes \overline{A} \longrightarrow \operatorname{End}_{R} A$$
, $a \otimes \overline{b} | \longrightarrow a^{l} b^{r}$

where a^{l} (resp. b^{r}) denotes the left (resp. right) translation by a (resp. b).

If U is an algebra over $A \otimes \overline{A}$, then the opposite algebra U° is also an algebra over $A \otimes \overline{A}$, since $A \otimes \overline{A}$ is canonically anti-isomorphic with itself. Our analysis is useful for such algebras (U, i) over $A \otimes \overline{A}$ that i sends isomorphically \overline{A} onto the centralizer of i(A) in U. End_RA is such an algebra.

Our task begins with making a slight but important change of the definition of " \times_A ".

Let M be an \overline{A} -bimodule and N an A-bimodule. Let

$$\int_{a} \overline{a} M \bigotimes_{a} N$$

denote the quotient module of $M \otimes N$ by the submodule generated by the elements $\bar{a}m \otimes n - m \otimes an$ with $a \in A$, $m \in M$ and $n \in N$. Let

$$\int_{a}^{b} \int_{a} \overline{a} M_{\overline{o}} \otimes_{a} N_{b}$$

denote the submodule of $\int_a \overline{a} M \otimes_a N$ consisting of

$$\{\sum_{i} m_i \otimes n_i | \sum_{i} m_i \bar{b} \otimes n_i = \sum_{i} m_i \otimes n_i b, \ \forall b \in A\}$$
.

We define $M \times_A N$ to be this R-module.

Let (U,i) be an algebra over \overline{A} and (V,j) an algebra over A. Then U is an \overline{A} -bimodule and V an A-bimodule. The R-module $U\times_A V$ is an R-algebra, where $1\otimes 1$ is the unit and the multiplication is defined by

$$(\sum_{i} u_{i} \otimes v_{i})(\sum_{j} u'_{j} \otimes v'_{j}) = \sum_{i,j} u_{i} u'_{j} \otimes v_{i} v'_{j}.$$

Suppose M and N are $A \otimes \overline{A}$ -bimodules. Since the product " \times_A " is functorial, the A-bimodule operation on M induces an A-bimodule structure on

 $M\times_{A}N$ and the \overline{A} -bimodule operation on N an \overline{A} -biomodule structure on $M\times_{A}N$. Then $M\times_{A}N$ is an $A\otimes \overline{A}$ -bimodule. We use the following symbol to explain this structure

$$_{l,\overline{u}}(M\times_{A}N)_{r,\overline{v}}=\int_{a}^{b}\int_{a}^{l,\overline{a}}M_{r,\overline{b}}\otimes_{a,\overline{u}}N_{b,\overline{v}}$$

where l, u, r and v are general elements of A.

Thus " \times_A " defines a product on the category of $A \otimes \overline{A}$ -bimodules. This product is not necessarily associative. But for three $A \otimes \overline{A}$ -bimodules M, N and P, there is an $A \otimes \overline{A}$ -bimodule $M \times_A N \times_A P$ and we have canonical $A \otimes \overline{A}$ -bilinear maps $\alpha : (M \times_A N) \times_A P \to M \times_A N \times_A P$ and $\alpha' : M \times_A (N \times_A P) \to M \times_A N \times_A P$. If both α and α' are injective having the same image, the triple (M, N, P) is said to associate.

Let (U, i) and (V, j) be algebras over $A \otimes \overline{A}$. Then $U \times_A V$ is also an algebra over $A \otimes \overline{A}$ with respect to the algebra map

$$h: A \otimes \overline{A} \longrightarrow U \times_A V, h(a \otimes \overline{b}) = i(a) \otimes j(\overline{b}).$$

Thus " \times_A " induces a product on the category of algebras over $A \otimes \overline{A}$.

A " \times_A -bialgebra" can be defined to be a triple (B, Δ, \mathcal{J}) where B is an algebra over $A \otimes \overline{A}$ and $\Delta : B \to B \times_A B$ and $\mathcal{J} : B \to \operatorname{End}_R A$ are maps of algebras over $A \otimes \overline{A}$ making some diagrams commute.

If A is a finite projective R-algebra, then $\operatorname{End}_R A$ has a unique \times_A -bialgebra structure where $\mathcal S$ is the identity.

If A is a division R-algebra, there is a unique maximal subalgebra B of $\operatorname{End}_R A$ which has a \times_A -bialgebra structure with $\mathcal S$ the inclusion.

The above are examples of \times_A -bialgebras where Δ is an isomorphism and $\mathcal S$ is injective.

When Δ is an isomorphism and \mathcal{S} is injective, the monoid \mathcal{E}_B and the group $\mathcal{G}\langle B\rangle$ are defined similarly as [1]. But they are *not abelian*.

To ensure the existence of an isomorphism

$$\zeta: (U^0 \times_A U)^0 \longrightarrow B$$

for an algebra U over $A \otimes \overline{A}$ with $\langle U \rangle \in \mathcal{G} \langle B \rangle$, we also need an "Ess" map for B. Some difficulty lies in the definition.

To define the Ess map, Sweedler [1] compares the bimodules

$$((U\times_{A}V)^{\mathbf{0}}\times_{A}(W\times_{A}X)^{\mathbf{0}})^{\mathbf{0}}\quad\text{and}\quad (U^{\mathbf{0}}\times_{A}W)^{\mathbf{0}}\times_{A}(V^{\mathbf{0}}\times_{A}X)^{\mathbf{0}}\,.$$

When U is an $A \otimes \overline{A}$ -bimodule, let $U^{\mathfrak{o}}$ denote the $A \otimes \overline{A}$ -bimodule where $U \to U^{\mathfrak{o}}$, $u \mid \to u^{\mathfrak{o}}$ is an R-module isomorphism and $(a \otimes \overline{b})u^{\mathfrak{o}}(c \otimes \overline{d}) = ((d \otimes \overline{c})u(b \otimes \overline{a}))^{\mathfrak{o}}$, $a, b, c, d \in A, u \in U$.

If U, V, W and X are $A \otimes \overline{A}$ -bimodules, then the left l, \overline{u} $A \otimes \overline{A}$ - and the right r, \overline{v} $A \otimes \overline{A}$ -bimodule structures of the above bimodules come from $(\overline{u} V_{\overline{v}}, \overline{r} X_{\overline{l}})$ and $(\overline{r} W_{\overline{l}}, \overline{u} V_{\overline{v}})$ respectively. Hence they are *not comparable*.

Instead of the latter we use the bimodule

$$(((U^0 \times_A W)^0 \times_A V)^0 \times_A X)^0$$

where the $A \otimes \overline{A}$ -bimodule structure comes from $(\overline{u}V_{\overline{v}}, \overline{r}X_{\overline{t}})$. Making use of some natural $A \otimes \overline{A}$ -bilinear maps from these bimodules into some bimodule, we define the Ess map $S: B \rightarrow (B^0 \times_A B)^0$.

We can prove that if S is an isomorphism, then for all algebra U over $A \otimes \overline{A}$ with $\langle U \rangle \in \mathcal{G}\langle B \rangle$ there is a natural isomorphism of algebras over $A \otimes \overline{A}$ $\zeta: (U^0 \times_A U)^0 \to B$. Hence [1, Theorem (3.7)] can be applied to re-obtain a similar result to [1, Theorem (10.3)].

In the same way as [1, Chapter 15] we can form a semi-co-simplicial complex consisting of R-algebras and their homomorphisms from the \times_A -bialgebra $(B, \mathcal{A}, \mathcal{G})$. Although the algebras appearing in the complex are *not commutative* except at 0 and 1, we can define and compute the cohomology groups $H^n(B)$ for n=0, 1 and 2 by taking the groups of units. $H^0(B)$ and $H^1(B)$ are abelian, but $H^2(B)$ not. It is shown that we also have $H^2(B) \cong \mathcal{G}(B)$.

The interest of this article is concentrated on the above theory of $\mathcal{G}\langle B\rangle$. We are not dealing with the analogy of the " \times_A -bialgebra determined by some class of ideals $\{L_\alpha\}$ of $A\otimes A$ " or the " \times_A -bialgebra D_A of differential operators". Sweedler gives some sufficient conditions in order for A to be a simple D_A -module. He also computes the center of D_A . Extending these accounts to the case when A is not commutative is left to the reader. We consider it is not too difficult.

§ 0. Conventions.

Throughout we fix a commutative ring R with unit.

We write \otimes , Hom and End to denote \otimes_R , Hom_R and End_R. All modules and algebras are R-modules and R-algebras. They are unitary. Subalgebras of an algebra have the same unit.

For an algebra A, let \overline{A} denote the opposite algebra where

$$A \longrightarrow \overline{A}$$
, $a | \longrightarrow \overline{a}$

is an algebra anti-isomorphism.

We shall treat such a module M as is given many representations and anti-representations of algebras $\rho_i \colon A \to \operatorname{End} M$. We always assume that they commute in the sense

$$\rho_i(a)\rho_j(b) = \rho_j(b)\rho_i(a)$$

for all $a, b \in A$ and $i \neq j$.

In many cases, each representation is indicated by "position". For example, let M be a left $A \otimes \overline{A}$ - and right A-bimodule, N a left \overline{A} - and right $A \otimes \overline{A}$ -bimodule and P a left A- and right \overline{A} -bimodule. Then $L = M \otimes N \otimes P$ has eight representations and anti-representations

$$\rho_i: A \longrightarrow \text{End } L, \quad i=1, 2, \dots, 8$$

each of which corresponds to the letter a_i in

$$L = {}_{a_1,\overline{a}_2} M_{a_3} \otimes_{\overline{a}_4} N_{a_5,\overline{a}_6} \otimes_{a_7} P_{\overline{a}_8}$$
.

 $(\rho_1, \rho_6, \rho_7, \rho_8)$ are representations and $\rho_2, \rho_3, \rho_4, \rho_5$ anti-representations). They commute with each other.

In such a case we can use the symbols \int_x and \int_x of Sweedler [1]. For example,

$$Q_1 = \int_{-x} M \bigotimes_{\bar{x}} N \bigotimes_{x} P$$
,

$$Q_2 = \int_y M_y \otimes N_{\overline{y}} \otimes P$$

denote L/X_1 and L/X_2 respectively, where X_1 and X_2 are the submodules of L generated by

$$\{\rho_i(a)(l) - \rho_i(a)(l) \mid i, j=1, 4, 7, a \in A, l \in L\}$$

$$\{\rho_i(a)(l) - \rho_i(a)(l) \mid i, j=3, 6, a \in A, l \in L\}$$

respectively. Dually

$$Q_3 {=} {\int}^u {\overline{u}} M {igotimes} N {igotimes} P_{\overline{u}}$$
 ,

$$Q_4 = \int_{0}^{v} M_v \otimes N_v \otimes {}_{v} P$$

denote the submodules of L

$$\{l \in L \mid \rho_i(a)(l) = \rho_i(a)(l), i, j = 2, 8, a \in A\}$$

$$\{l \in L \mid \rho_i(a)(l) = \rho_i(a)(l), i, j = 3, 5, 7, a \in A\}$$

respectively.

Since each representation commutes with one another, the rest of the representations used to define $\int_x^x \int_x^x \int_x^x \int_x^x dx dx$ induce representations on the resulting coequalizer or the equalizer.

For example there remain on Q_i the following representations:

$$\rho_2, \rho_3, \rho_5, \rho_6, \rho_8$$
 on Q_1 ,

$$ho_1, \,
ho_2, \,
ho_4, \,
ho_5, \,
ho_7, \,
ho_8 \qquad ext{on } Q_2 \, , \\
ho_1, \,
ho_3, \,
ho_4, \,
ho_5, \,
ho_6, \,
ho_7 \qquad ext{on } Q_3 \, , \\
ho_1, \,
ho_2, \,
ho_4, \,
ho_6, \,
ho_8 \qquad ext{on } Q_4 \, . \\
ho_1, \,
ho_2, \,
ho_4, \,
ho_6, \,
ho_8 \qquad ext{on } Q_4 \, . \\
ho_1, \,
ho_2, \,
ho_4, \,
ho_6, \,
ho_8 \qquad ext{on } Q_4 \, . \\
ho_1, \,
ho_2, \,
ho_4, \,
ho_6, \,
ho_8 \qquad ext{on } Q_4 \, . \\
ho_1, \, \end{tabular}$$

Therefore we can form the following modules for instance:

$$Q_{5} = \int_{y} \int_{x} M_{y} \otimes_{\bar{x}} N_{\bar{y}} \otimes_{x} P$$

$$Q_{6} = \int_{x} \int_{y} M_{y} \otimes_{\bar{x}} N_{\bar{y}} \otimes_{x} P$$

$$Q_{7} = \int^{u} \int^{v}_{\bar{u}} M_{v} \otimes N_{v} \otimes_{v} P_{\bar{u}}$$

$$Q_{8} = \int^{v} \int^{u}_{\bar{u}} M_{v} \otimes N_{v} \otimes_{v} P_{\bar{u}}$$

$$Q_{9} = \int^{u} \int_{y} M_{y} \otimes N_{\bar{y}} \otimes P_{\bar{u}}$$

$$Q_{10} = \int_{y} \int^{u}_{\bar{u}} M_{y} \otimes N_{\bar{y}} \otimes P_{\bar{u}}.$$

In the above, we have $Q_5 \cong Q_6$ and $Q_7 \cong Q_8$, since colimits commute with each other and so do limits. We shall denote them by

$$Q_5 = Q_6 = \int_{x,y} {}_x M_y \otimes_{\bar{x}} N_{\bar{y}} \otimes_x P,$$

$$Q_7 = Q_8 = \int_{u,v} {}_{\bar{u}} M_v \otimes N_v \otimes_v P_{\bar{u}}.$$

Of course they inherit the representations other than used to define $\int_{x,u}$ or $\int_{x,u}^{u,v}$.

On the other hand, Q_9 and Q_{10} are not in general isomorphic, but the inclusion $\int_{-\overline{u}}^{u} M \otimes N \otimes P_{\overline{u}} \subset L$ induces a homomorphism

$$\int_{y} \int_{\overline{u}}^{u} M_{y} \otimes N_{\overline{y}} \otimes P_{\overline{u}} \longrightarrow \int_{y} M_{y} \otimes N_{\overline{y}} \otimes P.$$

Since its image lies clearly in Q_9 , we have a natural homomorphism

$$\int_{y} \int_{\overline{u}}^{u} M_{y} \otimes N_{\overline{y}} \otimes P_{\overline{u}} \longrightarrow \int_{y}^{u} \int_{y} \overline{u} M_{y} \otimes N_{\overline{y}} \otimes P_{\overline{u}}.$$

We call this last homomorphism "the exchange map from $\int_y \int_y^u to \int_y^u$

For example, the following chain of natural homomorphisms is induced from the exchange maps:

$$\int_{\mathcal{U}} \int_{x}^{v} \int_{x} \int_{x}^{u} \longrightarrow \int_{x}^{v} \int_{x} \int_{x}^{u} \longrightarrow \int_{x}^{v} \int_{x}^{u} \int_{x}^{u} \longrightarrow \int_{x}^{u} \int_{x}^{u} \int_{x}^{u} \longrightarrow \int_{x}^{u} \int_{x}$$

Any composites may also be called the exchange maps.

In this paper we mainly treat $A \otimes \overline{A}$ -bimodules. If M is an $A \otimes \overline{A}$ -bimodule, we define $M^{\mathfrak{o}}$ to be the $A \otimes \overline{A}$ -bimodule, R-isomorphic with M via $m \mid \rightarrow m^{\mathfrak{o}}$, $M \rightarrow M^{\mathfrak{o}}$, with structure determined by

$$(a \otimes \bar{b})m^0(c \otimes \bar{d}) = ((d \otimes \bar{c})m(b \otimes \bar{a}))^0$$

 $a, b, c, d \in A, m \in M$. The isomorphism

$$l_{,\overline{u}} M^{0}_{r,\overline{v}} \xrightarrow{\sim} v_{,\overline{r}} M_{u,\overline{l}}, \quad m^{0} | \rightarrow m$$

is compatible with each representation indicated by position l, u, r and v.

An algebra over A is a pair (U, i) where U is an algebra and $i: A \rightarrow U$ a map of algebras. A map of algebras over A from (U, i) to (V, j) is such an algebra map $f: U \rightarrow V$ that $j=f \circ i$. Then algebras over A form a category.

Each algebra (U, i) over A is an A-bimodule with structure aub=i(a)ui(b), $a, b \in A, u \in U$. This is the underlying A-bimodule of (U, i).

If (U,i) is an algebra over $A \otimes \overline{A}$, let $U^{\mathfrak{o}}$ denote the *opposite* algebra to U with the anti-isomorphism $U \rightarrow U^{\mathfrak{o}}$, $u \mid \rightarrow u^{\mathfrak{o}}$. Then $(U^{\mathfrak{o}}, i^{\mathfrak{o}})$ is an algebra over $A \otimes \overline{A}$, where $i^{\mathfrak{o}}(a \otimes \overline{b}) = i(b \otimes \overline{a})^{\mathfrak{o}}$, $a, b \in A$. If M denotes the underlying $A \otimes \overline{A}$ -bimodule of (U, i), then the underlying $A \otimes \overline{A}$ -bimodule of $(U^{\mathfrak{o}}, i^{\mathfrak{o}})$ is $M^{\mathfrak{o}}$.

A is a left $A \otimes \overline{A}$ -module, where $(a \otimes \overline{b})c = acb$, $a, b, c \in A$.

End A is an algebra over $A \otimes \overline{A}$ with respect to the algebra map $A \otimes \overline{A} \to \operatorname{End} A$, $a \otimes \overline{b} \mid \to a^l b^r$, where $a^l b^r(c) = acb$, a, b, $c \in A$. The underlying $A \otimes \overline{A}$ -bimodule structure of End A is explained by position:

$$_{l,\overline{u}}$$
 (End $A)_{r,\overline{v}} = \text{Hom}(_{r,\overline{v}}A,_{l,\overline{u}}A)$.

A family of submodules $\{M_{\alpha}\}$ of a module M is directed if for each indices α , β there is an index γ such that $M_{\alpha}+M_{\beta}\subset M_{7}$. The union $\bigcup_{\alpha}M_{\alpha}$ is then called directed.

If we write $M \otimes_A N$ this denotes the tensor product of the right module M_A with the left module $_AN$.

If we write $\operatorname{Hom}_{{\scriptscriptstyle A}}(M,N)$ this is the "hom" from the left module ${_{\scriptscriptstyle A}}M$ to the left module ${_{\scriptscriptstyle A}}N.$

§ 1. $M \times_A N$ and $M \times_A P \times_A N$ as modules.

Until (1.10) let M be an \overline{A} -bimodule, N an A-bimodule and P an $A\otimes \overline{A}$ -bimodule.

1.1. Definition. $M \times_A N = \int_x^y \int_x \bar{x} M_{\bar{y}} \otimes_x N_y$, which is simply a module.

If $f: M \rightarrow M'$ is a map of \overline{A} -bimodules and $g: N \rightarrow N'$ a map of A-bimodules,

then the map $f\otimes g:\int_x \bar{x} M\otimes_x N \to \int_x \bar{x} M'\otimes_x N'$ induces the following homomorphism:

1.2.
$$f \times g : M \times_{A} N \longrightarrow M' \times_{A} N'$$
.

" \times_A " gives a biadditive functor from (the category of \overline{A} -bimodules) \times (the category of A-bimodules) to (the category of modules).

1.3. Remark. $P \times_A N$ has an A-bimodule structure determined by

$$_{x}(P\times_{A}N)_{y}=_{x}P_{y}\times_{A}N$$
.

 $M \times_A P$ has an \overline{A} -bimodule structure determined by

$$_{\bar{x}}(M\times_{A}P)_{\overline{y}}=M\times_{A\bar{x}}P_{\overline{y}}$$
.

If P' is another $A \otimes \overline{A}$ -bimodule, then the above structures make $P \times_A P'$ into an $A \otimes \overline{A}$ -bimodule.

1.4. Definition.

$$M \times_A P \times_A N = \int_{r}^{y,b} \int_{r} d\bar{x} M_{\bar{y}} \otimes_{x,\bar{a}} P_{y,\bar{b}} \otimes_a N_b$$
.

If $f: M \to M'$ is a map of \overline{A} -bimodules, $g: P \to P'$ a map of $A \otimes \overline{A}$ -bimodules and $h: N \to N'$ a map of A-bimodules, then $f \otimes g \otimes h: \int_{x,a} \overline{x} M \otimes_{x,\overline{a}} P \otimes_a N \to \int_{x,a} \overline{x} M' \otimes_{x,\overline{a}} P' \otimes_a N'$ induces the map

1.5.
$$f \times g \times h : M \times_{A} P \times_{A} N \longrightarrow M' \times_{A} P' \times_{A} N'$$
.

The functor " $-\times_A-\times_A-$ " is additive in each variable.

1.6. REMARK. If M (resp. N) is an $A \otimes \overline{A}$ -bimodule, then $M \times_A P \times_A N$ is an A-bimodule (resp. \overline{A} -bimodule), where the structure is indicated by

$$_{l}(M\times_{A}P\times_{A}N)_{r}=_{l}M_{r}\times_{A}P\times_{A}N$$

(resp.
$$_{\overline{u}}(M \times_A P \times_A N)_{\overline{v}} = M \times_A P \times_A _{\overline{u}} N_{\overline{v}})$$
.

Hence if M, N and P are $A\otimes \overline{A}$ -bimodules, then $M\times_{A}P\times_{A}N$ has the canonical $A\otimes \overline{A}$ -bimodule structure.

- 1.7. PROPOSITION. The image of the composite $(M \times_A P) \times_A N \stackrel{\iota}{\hookrightarrow} \int_{a} \overline{a} (M \times_A P) \otimes_a N \stackrel{\iota \otimes 1}{\longrightarrow} \int_{x,a} \overline{x} M \otimes_{x,\overline{a}} P \otimes_a N$ is contained in $M \times_A P \times_A N$. Let $\alpha : (M \times_A P) \times_A N \rightarrow M \times_A P \times_A N$ denote the induced map.
- i) If ${}_{A}N$ is flat, then α is injective. If in addition ${}_{A\otimes \overline{A}}A$ is finitely presented, then α is an isomorphism.
 - ii) If $_{A}N$ is projective, then α is an isomorphism.
 - iii) If ${}_{A}N$ is a directed union of projective submodules and $\int_{x} \bar{x} M \bigotimes_{x,\bar{a}} P$ is

 $-\overline{a}\overline{A}$ -flat, then α is an isomorphism.

iv) If M (resp. N) is an $A \otimes \overline{A}$ -bimodule, then α is A-bilinear (resp. \overline{A} -bilinear.

PROOF. iv) is easily checked. The proof of i), ii) and iii) is similar to [1, (2.5)]. Q. E. D.

There is a similar map

$$\alpha': M \times_A (P \times_A N) \longrightarrow M \times_A P \times_A N$$

for which analogous results hold.

1.8. DEFINITION. The triple (M, P, N) associates if the maps α and α' are injective having the same image.

In this case there is the association isomorphism of modules

$$t: (M \times_A P) \times_A N \cong M \times_A (P \times_A N)$$

such that $\alpha' \circ t = \alpha$. This is A-bilinear (resp. \overline{A} -bilinear) when M (resp. N) is an $A \otimes \overline{A}$ -bimodules, hence $A \otimes \overline{A}$ -bilinear if both M and N are $A \otimes \overline{A}$ -bimodules.

- 1.9. DEFINITION. The $A \otimes \overline{A}$ -bimodule P is associative if the triple (P, P, P) associates.
- 1.10. PROPOSITION. If $_AP$ and $_{\overline{A}}P$ are flat and $_{\overline{A}}M$ and $_AN$ are directed unions of projective submodules, then the α and α' maps are isomorphisms. Hence (M,P,N) associates.

PROOF. See [1, (2.11)] or use (1.7), iii).

1.11. PROPOSITION. Let M and M' be $A \otimes \overline{A}$ -bimodules and N and N' be left $A \otimes \overline{A}$ -modules. View $N \otimes N'$ as a left $A \otimes \overline{A}$ -module by $(a \otimes \overline{b})(n \otimes n') = an \otimes \overline{b}n'$, $a, b \in A, n \in N, n' \in N'$. Consider the composite $(M \times_A M') \otimes_{A \otimes \overline{A}} (N \otimes N') \xrightarrow{\iota \otimes 1} \int_{x,a,b} \overline{x} M_a \otimes_x M'_{\overline{b}} \otimes_a N \otimes_{\overline{b}} N' \xrightarrow{tw} \int_x \overline{x} M \otimes_A N \otimes_x M' \otimes_{\overline{A}} N' \xrightarrow{\operatorname{cano}} \int_x \overline{x} M \otimes_{A \otimes \overline{A}} N \otimes_x M' \otimes_{A \otimes \overline{A}} N'$, where $\operatorname{tw}(m \otimes m' \otimes n \otimes n') = m \otimes n \otimes m' \otimes n'$ and cano denotes the canonical projection. This induces a homomorphism

$$\phi: (M \times_{A} M') \otimes_{A \otimes \overline{A}} \left(\int_{c} \overline{c} N \otimes_{c} N' \right) \longrightarrow \int_{x} \overline{x} M \otimes_{A \otimes \overline{A}} N \otimes_{x} M' \otimes_{A \otimes \overline{A}} N'$$

where note that $\int_{c} \overline{c} N \otimes_{c} N'$ is a quotient left $A \otimes \overline{A}$ -module of $N \otimes N'$.

PROOF. The left hand side is isomorphic to $\int_c (M \times_A M') \otimes_{A \otimes \overline{A}} (\overline{c} N \otimes_c N')$. Let $\sum_i m_i \otimes m_i' \in M \times_A M'$, $n \in N$ and $n' \in N'$. Then $\sum_i m_i \overline{c} \otimes n \otimes m_i' \otimes n' = \sum_i m_i \otimes n \otimes m_i' \otimes n' = \sum_i m_i \otimes n \otimes m_i' \otimes n'$ for all $c \in A$. Hence $\sum_i m_i \otimes \overline{c} n \otimes m_i' \otimes n' = \sum_i m_i \otimes n \otimes m_i' \otimes c n'$ in $\int_{x} \overline{x} M \otimes_{A \otimes \overline{A}} N \otimes_x M' \otimes_{A \otimes \overline{A}} N'$. Therefore the map ϕ is induced. Q. E. D.

In general if P and Q are B-bimodules, where B is an algebra, $P \otimes_B Q$ is a B-bimodule with structure determined by $b(p \otimes q)b' = bp \otimes qb'$, $b, b' \in B$, $p \in P$, $q \in Q$.

1.12. PROPOSITION. Let M, M', N and N' be $A \otimes \overline{A}$ -bimodules. The composite $(M \times_A M') \otimes_{A \otimes \overline{A}} (N \times_A N') \xrightarrow{1 \otimes \iota} (M \times_A M') \otimes_{A \otimes \overline{A}} \left(\int_c \overline{c} N \otimes_c N' \right) \xrightarrow{\phi} \int_x \overline{x} M \otimes_{A \otimes \overline{A}} N \otimes_x M' \otimes_{A \otimes \overline{A}} N'$ induces the $A \otimes \overline{A}$ -bilinear map

$$\xi:\, (M\times_{A}M') \bigotimes_{A\otimes\overline{A}}(N\times_{A}N') \longrightarrow (M\bigotimes_{A\otimes\overline{A}}N)\times_{A}(M'\bigotimes_{A\otimes\overline{A}}N') \;.$$

PROOF. Left to the reader.

- § 2. The maps θ , θ' and θ'' .
- 2.1. Definition. If M is a left \overline{A} -module and N a left A-module, there are the maps

$$\Lambda: \int_{x} \overline{x} M \otimes_{x} \operatorname{End} A \longrightarrow \operatorname{Hom} (A, M)$$

$$\Lambda(m \otimes c)(a) = \overline{c(a)} m,$$

$$\Lambda': \int_{x} \overline{x} \operatorname{End} A \otimes_{x} N \longrightarrow \operatorname{Hom} (A, N)$$

$$\Lambda'(c \otimes n)(a) = c(a) n,$$

$$\Lambda'': \int_{x,y} \overline{x} M \otimes_{x,\overline{y}} \operatorname{End} A \otimes_{y} N \longrightarrow \operatorname{Hom} \left(A, \int_{z} \overline{z} M \otimes_{z} N\right)$$

$$\Lambda''(m \otimes c \otimes n)(a) = \overline{c(a)} m \otimes n = m \otimes c(a) n,$$

 $c \in \text{End } A$, $m \in M$, $n \in N$, $a \in A$.

Sufficient conditions for Λ , Λ' or Λ'' to be injective are given in [1, (1.5)]. 2.2. Proposition. If M is an \overline{A} -bimodule and N an A-bimodule, the maps Λ , Λ' and Λ'' "induce" the maps respectively:

$$\begin{split} \theta &: M \times_A \operatorname{End} A \longrightarrow M \\ \theta &(\sum_i m_i \otimes c_i) = \sum_i \overline{c_i(1)} m_i \,, \\ \theta' &: \operatorname{End} A \times_A N \longrightarrow N \\ \theta' &(\sum_j d_j \otimes n_j) = \sum_j d_j(1) n_j \,, \\ \theta'' &: M \times_A \operatorname{End} A \times_A N \longrightarrow M \times_A N \\ \theta'' &(\sum_i m_i \otimes c_i \otimes n_i) = \sum_i \overline{c_i(1)} m_i \otimes n_i = \sum_i m_i \otimes c_i(1) n_i \,. \end{split}$$

The sense of "inducing" is explained in the proof.

- i) The map θ is \overline{A} -bilinear and the map θ' A-bilinear.
- ii) If M is an $A \otimes \overline{A}$ -bimodule, then θ is $A \otimes \overline{A}$ -bilinear and θ'' A-bilinear.
- iii) If N is an $A \otimes \overline{A}$ -bimodule, then θ' is $A \otimes \overline{A}$ -bilinear and θ'' \overline{A} -bilinear.

PROOF. The map $A: \int_{x} \overline{x} M_{\overline{y}} \otimes_{x} (\operatorname{End} A)_{z} \to \operatorname{Hom}(_{z}A, M_{\overline{y}})$ is y, z A-bilinear. Taking the equalizer y=z, we obtain the θ map as the composite:

$$M \times_A \text{End } A \xrightarrow{A} \int_{0}^{y} \text{Hom } (yA, M_{\overline{y}}) \cong M$$

$$f \mid \longrightarrow f(1).$$

The map A' induces θ' in the same way.

The map $A'': \int_{x,a} \overline{x} M_{\overline{y}} \otimes \operatorname{Hom}(z,\overline{c}A, z,\overline{a}A) \otimes_a N_b \to \operatorname{Hom}(z,\overline{c}A, \int_x \overline{x} M_{\overline{y}} \otimes_x N_b)$ is y, z, b, c A-multilinear. Take the equalizer y=z and b=c.

If in general P is a right $A \otimes \overline{A}$ -module, we have a canonical isomorphism

$$\int_{-\infty}^{y,b} \operatorname{Hom}(y,\overline{b}A, P_{y,\overline{b}}) \cong \int_{-\infty}^{y} P_{y,\overline{y}}, \qquad f | \longrightarrow f(1).$$

Hence we have the induced map

$$\int^{y,b} \int_{x,a} \bar{x} M_{\overline{y}} \otimes \operatorname{Hom} (_{y,\overline{b}} A, _{x,\overline{a}} A) \otimes_{a} N_{b} \xrightarrow{A''}$$

$$\int^{y,b} \operatorname{Hom} (_{y,\overline{b}} A, \int_{x} \bar{x} M_{\overline{y}} \otimes_{x} N_{b}) \cong \int^{y} \int_{x} \bar{x} M_{\overline{y}} \otimes_{x} N_{y} .$$

This is the map $\theta'': M \times_A \text{End } A \times_A N \rightarrow M \times_A N$.

i), ii) and iii) are straightforward.

Q. E. D.

The maps θ , θ' and θ'' are functorial in each variable.

2.3. Proposition. Let M be an \overline{A} -bimodule and N an A-bimodule. The following diagram commutes.

PROOF. This follows from a direct calculation.

- 2.4. We show that the maps θ , θ' : End $A \times_A$ End $A \rightrightarrows$ End A coincide. Put θ : End $A \to A$, $\partial(c) = c(1)$, $c \in$ End A.
- 2.5. Lemma. Let X be a right A-module and Y a right \overline{A} -module. The map ∂ induces isomorphisms

$$\int_{-\infty}^{x} \operatorname{Hom}(X_{x}, (\operatorname{End} A)_{x}) \cong \operatorname{Hom}(X, A), \qquad F | \longrightarrow \partial \circ F,$$

$$\int_{-\infty}^{y} \operatorname{Hom}(Y_{\overline{y}}, (\operatorname{End} A)_{\overline{y}}) \cong \operatorname{Hom}(Y, A), \qquad G | \longrightarrow \partial \circ G.$$

The inverses are given respectively by

$$f \mid \longrightarrow \hat{f}$$
, where $\hat{f}(s)(a) = f(sa)$

$$g \mid \longrightarrow \check{g}$$
, where $\check{g}(t)(a) = g(t\bar{a})$

 $a \in A$, $s \in X$, $t \in Y$, $f \in \text{Hom}(X, A)$, $g \in \text{Hom}(Y, A)$.

PROOF. Exercise (cf. [1, (5.2)]).

2.6. Corollary. If Z is a right $A \otimes \overline{A}$ -module, the map ∂ induces an isomorphism

$$\int_{z}^{x,y} \operatorname{Hom} (Z_{x,\overline{y}}, (\operatorname{End} A)_{x,\overline{y}}) \cong \operatorname{Hom} \left(\int_{z}^{z} Z_{z,\overline{z}}, A \right), \qquad H | \to \partial \circ H.$$

2.7. PROPOSITION. The maps θ , θ' : End $A \times_A$ End $A \rightrightarrows$ End A coincide.

PROOF. Since they are $A \otimes \overline{A}$ -bilinear, we have only to show $\partial \circ \theta = \partial \circ \theta'$. If $\sum_{i} c_{i} \otimes d_{i} \in \text{End } A \times_{A} \text{ End } A$, then $\partial (\theta(\sum_{i} c_{i} \otimes d_{i})) = \partial (\sum_{i} \overline{d_{i}(1)} c_{i}) = \sum_{i} \overline{d_{i}(1)} c_{i}(1) = \sum_{i} c_{i}(1) d_{i}(1) = \partial (\sum_{i} c_{i}(1) d_{i}) = \partial (\theta'(\sum_{i} c_{i} \otimes d_{i}))$. Hence $\partial \circ \theta = \partial \circ \theta'$.

§ 3. $U \times_A V$ and $U \times_A W \times_A V$ as algebras.

Proposition [1, (3.1)] can be read as follows:

- 3.1. PROPOSITION. Let U be an algebra over \overline{A} and V an algebra over A. $\int_{x} \overline{x} U \otimes_{x} V \text{ is a right } U \otimes V\text{-module with structure determined by } (u \otimes v)(u' \otimes v') = uu' \otimes vv', \ u, \ u' \in U, \ v, \ v' \in V.$
 - i) There is a module isomorphism

$$N: U \times_{A} V \longrightarrow \operatorname{End}_{\operatorname{right} U \otimes V} \left(\int_{x} \tilde{x} U \otimes_{x} V \right)$$

 $\label{eq:determined} \textit{determined by } N(\sum_i u_i \otimes v_i)(u \otimes v) = \sum_i u_i u \otimes v_i v, \ \sum_i u_i \otimes v_i \in U \times_A V, \ u \in U, \ v \in V.$

ii) $U \times_A V$ has an algebra structure determined by

$$(\sum_{i} u_{i} \otimes v_{i})(\sum_{j} u'_{j} \otimes v'_{j}) = \sum_{i,j} u_{i} u'_{j} \otimes v_{i} v'_{j},$$

 $\sum_{i} u_{i} \otimes v_{i}$, $\sum_{j} u'_{j} \otimes v'_{j} \in U \times_{A} V$, with unit $1 \otimes 1$.

iii) N is an algebra isomorphism.

If $f: U \rightarrow U'$ is a map of algebras over \overline{A} and $g: V \rightarrow V'$ a map of algebras over A, then $f \times g: U \times_A V \rightarrow U' \times_A V'$ is a map of algebras.

Corresponding to Remark 1.3, if (U, i) (resp. (V, j)) is an algebra over

 $A \otimes \overline{A}$, $U \times_A V$ is an algebra over A (resp. \overline{A}) with respect to the algebra map

$$h: A \longrightarrow U \times_A V$$
, $h(a) = i(a) \otimes 1$

(resp.
$$h: \overline{A} \longrightarrow U \times_A V$$
, $h(\overline{a}) = 1 \otimes j(\overline{a})$).

If both U and V are algebras over $A \otimes \overline{A}$, then $U \times_A V$ is an algebra over $A \otimes \overline{A}$ with respect to

$$h: A \otimes \overline{A} \longrightarrow U \times_{A} V$$
, $h(a \otimes \overline{b}) = i(a) \otimes j(\overline{b})$.

The underlying bimodule structures are the same as described in (1.3).

If f (resp. g) is a map of algebras over $A \otimes \overline{A}$, then $f \times g$ is a map of algebras over A (resp. \overline{A}). Thus " \times_A " determines a product on the category of algebras over $A \otimes \overline{A}$.

Similarly we have:

- 3.2. PROPOSITION. Let U be an algebra over \overline{A} , W an algebra over $A \otimes \overline{A}$ and V an algebra over A. $\int_{x,a} \overline{x} U \otimes_{x,\overline{a}} W \otimes_a V$ is a right $U \otimes W \otimes V$ -module as in (3.1).
 - i) There is a module isomorphism

$$N: U \times_A W \times_A V \longrightarrow \operatorname{End}_{\operatorname{right} U \otimes W \otimes V} \left(\int_{x,a} \bar{x} U \otimes_{x,\overline{a}} W \otimes_a V \right)$$

determined by $N(\sum_{i} u_{i} \otimes w_{i} \otimes v_{i})(u \otimes w \otimes v) = \sum_{i} u_{i} u \otimes w_{i} w \otimes v_{i} v$, $\sum_{i} u_{i} \otimes w_{i} \otimes v_{i} \in U \times_{A} W \times_{A} V$, $u \in U$, $w \in W$, $v \in V$.

ii) $U \times_A W \times_A V$ has an algebra structure determined by

$$(\sum_{i} u_{i} \otimes w_{i} \otimes v_{i})(\sum_{i} u'_{j} \otimes w'_{j} \otimes v'_{j}) = \sum_{i,j} u_{i} u'_{j} \otimes w_{i} w'_{j} \otimes v_{i} v'_{j},$$

 $\sum_{i} u_{i} \otimes w_{i} \otimes v_{i}, \ \sum_{j} u'_{j} \otimes w'_{j} \otimes v'_{j} \in U \times_{A} W \times_{A} V, \ with \ unit \ 1 \otimes 1 \otimes 1.$

iii) N is an algebra isomorphism.

Corresponding to Remark 1.6, if U (resp. V) is an algebra over $A \otimes \overline{A}$, then $U \times_A W \times_A V$ has an algebra structure over A (resp. \overline{A}). If U and V are algebras over $A \otimes \overline{A}$, then $U \times_A W \times_A V$ has a natural algebra structure over $A \otimes \overline{A}$. Description of the structure maps is left to the reader.

3.3. PROPOSITION. Let U be an algebra over \overline{A} , W an algebra over $A \otimes \overline{A}$ and V an algebra over A. The following are all algebra maps:

$$\alpha:\,(U\times_{A}W)\times_{A}V\longrightarrow U\times_{A}W\times_{A}V$$

$$\alpha': U \times_{A} (W \times_{A} V) \longrightarrow U \times_{A} W \times_{A} V$$

$$\theta: U \times_A \operatorname{End} A \longrightarrow U$$

$$\theta' : \operatorname{End} A \times_{4} V \longrightarrow V$$

$$\theta'': U \times_A \operatorname{End} A \times_A V \longrightarrow U \times_A V$$
.

Here θ (resp. θ') is a map of algebras over \overline{A} (resp. A).

If U is an algebra over $A \otimes \overline{A}$, then α , α' and θ'' are maps of algebras over A and θ a map of algebras over $A \otimes \overline{A}$.

If V is an algebra over $A \otimes \overline{A}$, then α , α' and θ'' are maps of algebras over \overline{A} and θ' a map of algebras over $A \otimes \overline{A}$.

Hence if U and V are algebras over $A \otimes \overline{A}$, then the above are all maps of algebras over $A \otimes \overline{A}$.

PROOF. Straightforward and left to the reader. Q. E. D.

3.4. COROLLARY. Let U, W and V be as above. If the triple (U, W, V) associates as bimodules (1.8) then the association isomorphism $(U \times_A W) \times_A V \cong U \times_A (W \times_A V)$ is an isomorphism of algebras.

Let (U, i) be an algebra over $A \otimes \overline{A}$. Suppose that i sends \overline{A} isomorphically onto $\int_{-x}^{x} U_{x}$ =the centralizer of i(A) in U. It follows from [1, (3.4)] that there is an algebra map

3.5.
$$\zeta: (U^0 \times_A U)^0 \longrightarrow \operatorname{End} A$$

determined by $i(\overline{\zeta((\sum_i u_i{}^0 \otimes v_i)^0)(a)}) = \sum_i u_i i(\bar{a}) v_i$, $(\sum_i u_i{}^0 \otimes v_i)^0 \in (U^0 \times_A U)^0$, $a \in A$.

It is easy to see that ζ is a map of algebras over $A \otimes \overline{A}$.

If U is a subalgebra of End A over $A \otimes \overline{A}$, then the above condition holds true. We have then a commutative diagram by [1, (3.8)]:

$$(U^{0} \times_{A} U)^{0} \xrightarrow{(1 \times \iota)^{0}} (U^{0} \times_{A} \text{ End } A)^{0}$$

$$\downarrow \zeta \qquad \qquad \downarrow \theta^{0}$$

$$\text{End } A \leftarrow \qquad \qquad U = U^{00}$$

consisting of maps of algebras over $A \otimes \overline{A}$.

Since A is not commutative, the lemma [1, (3.10)] must be rewritten as:

- 3.6. Lemma. Let A be a division algebra, C a left A-subspace of End A and M an \overline{A} -bimodule.
- i) If $\{c_1, \dots, c_s\} \subset C$ is a finite left A-linearly independent set, then there exists $\{a_{ij}\} \cup \{b_{ij}\} \subset A$ satisfying $\sum_i c_k(b_{ij}) a_{ij} = \delta_{ik}$ with $i, k=1, \dots$, s.
- ii) If C is a sub-A-bimodule of EndA, then $m \in \theta(\overline{A}m\overline{A} \times_A C)$ if $m \in \theta(M \times_A C)$. Similar results hold, for θ' , an A-bimodule N and a left sub- \overline{A} -module D of End A.

Just as [1, (3.12)] we have:

3.7. Theorem. Let A be a division algebra and E a subalgebra of End A over $A \otimes \overline{A}$. If $\theta: E^0 \times_A E \to E^0$ is surjective, then E is a simple algebra. The

center of E is

$$\{a^l \mid a \in A, u(a) = au(1), \forall u \in E\}.$$

3.8. Remark. If (U,i) is an algebra over $A \otimes \overline{A}$, we denote by $\langle U \rangle$ the class of algebras over $A \otimes \overline{A}$ which are isomorphic to U as algebras over $A \otimes \overline{A}$. If U and V are algebras over $A \otimes \overline{A}$, then the product $\langle U \rangle \langle V \rangle = \langle U \times_A V \rangle$ is well-defined. This is the canonical product on isomorphism classes of algebras over $A \otimes \overline{A}$. The product is neither commutative nor associative. If U, V and W are algebras over $A \otimes \overline{A}$, where (U, V, W) associates, then $(\langle U \rangle \langle V \rangle) \langle W \rangle = \langle U \rangle \langle \langle V \rangle \langle W \rangle$ in view of (3.4).

For an $A \otimes \overline{A}$ -bimodule M, define \mathcal{E}_M by

3.9. $\mathcal{E}_{M} = \{\text{isomorphism classes } \langle U \rangle \text{ of algebras over } A \otimes \overline{A} \}$ where $U \cong M$ as an $A \otimes \overline{A}$ -bimodule $\{A \otimes \overline{A}\}$.

If $e \in \mathcal{E}_M$, $f \in \mathcal{E}_N$ where M and N are $A \otimes \overline{A}$ -bimodules, then $ef \in \mathcal{E}_{M \times_A N}$.

3.10. DEFINITION. An $A\otimes \overline{A}$ -bimodule M is idempotent as a bimodule if $M\cong M\times_A M$ as $A\otimes \overline{A}$ -bimodules. An algebras (U,i) over $A\otimes \overline{A}$ is idempotent as an algebra over $A\otimes \overline{A}$ if $U\cong U\times_A U$ as an algebra over $A\otimes \overline{A}$, i. e., $\langle U\rangle = \langle U\rangle\langle U\rangle$.

If M is an idempotent $A \otimes \overline{A}$ -bimodule, then, for e, $f \in \mathcal{E}_M$, we have $ef \in \mathcal{E}_M$. If M is also an associative bimodule, then the product in \mathcal{E}_M is associative.

3.11. DEFINITION. If (U,i) is an algebra over $A \otimes \overline{A}$ which is idempotent as an algebra over $A \otimes \overline{A}$ and associative as an $A \otimes \overline{A}$ -bimodule, let $\mathcal{E}\langle U \rangle$ denote the monoid of equivalence classes $C \in \mathcal{E}_U$ where $C\langle U \rangle = C = \langle U \rangle C$. Let $\mathcal{Q}\langle U \rangle$ denote the group of invertible elements in $\mathcal{E}\langle U \rangle$.

Similarly to [1, (4.9)] we have

3.12. PROPOSITION. Let E be a subalgebra of $\operatorname{End} A$ over $A \otimes \overline{A}$, where $\theta = \theta' : E \times_A E \to E$ is an isomorphism of algebras over $A \otimes \overline{A}$. Assume E is associative as an $A \otimes \overline{A}$ -bimodule. If U is an algebra over $A \otimes \overline{A}$ with $U \cong E$ as an $A \otimes \overline{A}$ -bimodule, then

$$\theta: U \times_{A} E \to U$$
 and $\theta': E \times_{A} U \to U$

are isomorphisms of algebras over $A \otimes \overline{A}$. Hence we have $\mathcal{E}\langle E \rangle = \mathcal{E}_E$.

§ 4. \times_A -Coalgebras and \times_A -bialgebras.

4.1. DEFINITION. $A \times_A$ -coalgebra is a triple (C, Δ, \mathcal{S}) where C is an $A \otimes \overline{A}$ -bimodule and $\Delta : C \to C \times_A C$ and $\mathcal{S} : C \to \text{End } A$ are $A \otimes \overline{A}$ -bilinear maps such that the following diagrams commute:

We do not assume the associativity (1.9) of C.

4.2. DEFINITION. When (C, Δ, \mathcal{S}) is a \times_A -coalgebra, we put $c[a] = \mathcal{S}(c)(a)$, $c \in C$, $a \in A$.

A morphism of \times_A -coalgebras from (C, Δ, \mathcal{S}) to $(C', \Delta', \mathcal{S}')$ is an $A \otimes \overline{A}$ -bilinear map $u: C \rightarrow C'$ such that $\Delta' \circ u = (u \times u) \circ \Delta$ and $\mathcal{S}' \circ u = \mathcal{S}$. They form a category.

- 4.3. PROPOSITION. Let (C, Δ, \mathcal{S}) be a \times_A -coalgebra except that co-associativity of Δ is not assumed. If $d \in C$ and $\Delta(d) = \sum_i d_i \otimes d_i' \in C \times_A C \subset \int_{x^{\overline{x}}} C \otimes_x C$, then, for $a, b \in A$,
 - i) $da = \sum_{i} d_{i} [a] d'_{i}$, $d\bar{a} = \sum_{i} \overline{d'_{i} [a]} d_{i}$,
 - ii) $d[ab] = \sum_{i} d_{i}[a]d'_{i}[b]$.

PROOF. i) Since $\Delta(da) = \sum_i d_i a \otimes d_i'$, $da = \theta'(\sum_i d_i a \otimes d_i') = \sum_i (d_i a) [1] d_i' = \sum_i d_i [a] d_i'$. Similar for $d\bar{a}$.

- ii) $d[ab]=(da)[b]=\sum_{i}d_{i}[a]d'_{i}[b]$ by i).
- 4.4. PROPOSITION. Let (C, Δ, \mathcal{S}) be a \times_A -coalgebra. If $\Delta: C \to C \times_A C$ is an isomorphism (or equivalently if $\theta: C \times_A C \to C$ is or equivalently if $\theta': C \times_A C \to C$ is) then the $A \otimes \overline{A}$ -bimodule C is associative.

PROOF. By definition, $\alpha \circ (\Delta \times 1) \circ \Delta = \alpha' \circ (1 \times \Delta) \circ \Delta : C \to C \times_A C \times_A C$ where $(\Delta \times 1) \circ \Delta$ and $(1 \times \Delta) \circ \Delta$ are isomorphisms. This map is injective having the retract

$$C \times_A C \times_A C \xrightarrow{\theta''} C \times_A C \xrightarrow{\theta} C$$
.

Hence α and α' are injective and have the same image.

4.5. DEFINITION. A \times_A -bialgebra is a \times_A -coalgebra (B, Δ, \mathcal{J}) where B is an algebra over $A \otimes \overline{A}$ and $\Delta : B \to B \times_A B$ and $\mathcal{J} : B \to \text{End } A$ are maps of algebras

over $A \otimes \overline{A}$.

If $(B, \mathcal{A}, \mathcal{S})$ is a \times_A -bialgebra, then A is a left B-module via (4.2).

Morphisms of \times_A -bialgebras are morphisms of \times_A -coalgebras which are at the same time maps of algebras over $A \otimes \overline{A}$. They also make a category.

4.6. EXAMPLE. Let H be a bialgebra over R and A an H-module algebra [2]. Cocommutativity is not needed. Let $B=A\otimes \overline{A}\otimes H$. This is an algebra with unit $1\otimes \overline{1}\otimes 1$ and multiplication determined by

$$(a \otimes \bar{b} \otimes g)(c \otimes \bar{d} \otimes h) = \sum_{(g)} ag_{(1)}(c) \otimes \overline{g_{(3)}(d)b} \otimes g_{(2)}h$$
 ,

 $a, b, c, d \in A, g, h \in H$, where we used the sigma notation of [2]. B is an algebra over $A \otimes \overline{A}$ with respect to

$$A \otimes \overline{A} \to B$$
, $a \otimes \overline{b} \mid \to a \otimes \overline{b} \otimes 1$.

The map $\mathcal{S}: B \to \text{End } A$, $\mathcal{S}(a \otimes \bar{b} \otimes g)(c) = ag(c)b$, a, b, $c \in A$, $g \in H$, is a map of algebras over $A \otimes \bar{A}$. The map

$$\Delta: B \longrightarrow \int_{x} \bar{x} B \otimes_{x} B$$

$$\Delta(a \otimes \bar{b} \otimes g) = \sum_{(y)} (a \otimes \bar{1} \otimes g_{(1)}) \otimes (1 \otimes \bar{b} \otimes g_{(2)}),$$

 $a, b \in A, g \in H$, is left $A \otimes \overline{A}$ -linear with image contained in $B \times_A B$. The induced map $\Delta : B \to B \times_A B$ is a map of algebras over $A \otimes \overline{A}$.

The reader can easily check that $(B=A\otimes \overline{A}\otimes H, \Delta, \mathcal{S})$ is a \times_A -bialgebra.

Taking H=R (acting trivially on A) in particular, we know that $A\otimes \overline{A}$ has a canonical \times_A -bialgebra structure $(\mathcal{A},\mathcal{J})$ where $\mathcal{A}:A\otimes \overline{A}\to (A\otimes \overline{A})\times_A (A\otimes \overline{A})$ and $\mathcal{A}:\overline{A}\otimes A\to \operatorname{End} A$ are the unique maps of algebras over $A\otimes \overline{A}$.

4.7. PROPOSITION. i) Let C and D be \times_A -coalgebras. $C \otimes_{A \otimes \overline{A}} D$ is an $A \otimes \overline{A}$ -bimodule by the above of (1.12). Let

$$\mathcal{\Delta}: C \otimes_{A \otimes \overline{A}} D \xrightarrow{\mathcal{\Delta} \otimes \mathcal{\Delta}} (C \times_A C) \otimes_{A \otimes \overline{A}} (D \times_A D) \xrightarrow{\xi} (C \otimes_{A \otimes \overline{A}} D) \times_A (C \otimes_{A \otimes \overline{A}} D)$$

$$\mathcal{S}: C \otimes_{A \otimes \overline{A}} D \xrightarrow{\mathcal{S} \otimes \mathcal{S}} \operatorname{End} A \otimes_{A \otimes \overline{A}} \operatorname{End} A \xrightarrow{\operatorname{product}} \operatorname{End} A$$

where ξ is defined at (1.12). Then $(C \bigotimes_{A \otimes \overline{A}} D, \Delta, \mathcal{S})$ is a \times_A -coalgebra.

ii) Let C, D and E be \times_A -coalgebras. The canonical isomorphism $(C \otimes_{A \otimes \overline{A}} D) \otimes_{A \otimes \overline{A}} E \cong C \otimes_{A \otimes \overline{A}} (D \otimes_{A \otimes \overline{A}} E)$ is an isomorphism of \times_A -coalgebras.

PROOF. Left to the reader. Q. E. D.

In general an algebra over A can be identified with a triple (M, p, u) where M is an A-bimodule, $p: M \otimes_A M \to M$ and $u: A \to M$ are A-bilinear maps such that the product p is associative with unit u.

4.8. Proposition. $A \times_A$ -bialgebra can be identified with a triple (B, p, u) where B is a \times_A -coalgebra and $p: B \otimes_{A \otimes \overline{A}} B \to B$ and $u: A \otimes \overline{A} \to B$ are maps of \times_A -coalgebras such that (M, p, u) is an algebra over $A \otimes \overline{A}$, where M denotes the underlying $A \otimes \overline{A}$ -bimodule of B. (Note that $A \otimes \overline{A}$ has a canonical \times_A -coalgebra structure by (4.6)).

PROOF. Follows immediately from the definition.

4.9. Lemma. Let C be a \times_A -coalgebra and $f: C \to \text{End } A$ an $A \otimes \overline{A}$ -bilinear map. Put

$$F: C \longrightarrow C \times_A C \xrightarrow{1 \times f} C \times_A \text{ End } A \xrightarrow{\theta} C$$
.

Then F is $A \otimes \overline{A}$ -bilinear and $\mathcal{J}F = f$.

PROOF. Let $c \in C$ and $\Delta(c) = \sum_i c_i \otimes c_i'$. Then $F(c) = \sum_i \overline{f(c_i')(1)} c_i$ and $F(c) [1] = \sum_i \overline{f(c_i')(1)} c_i [1] = \sum_i c_i [1] f(c_i')(1) = f(\sum_i c_i [1] c_i')(1) = f(c)(1)$ using (4.3), i). Hence $\partial \mathcal{F} F = \partial f$. Since f and $\mathcal{F} F$ are $A \otimes \overline{A}$ -bilinear, $f = \mathcal{F} F$ by (2.6).

4.10. PROPOSITION. Let C be a \times_A -coalgebra. Let C^* denote the module of all $A \otimes \overline{A}$ -bilinear maps from C into End A. C^* is an algebra with unit $\mathcal S$ and with product determined by

$$f*g\colon C \longrightarrow C \times_A C \stackrel{f\times g}{\longrightarrow} \operatorname{End} A \times_A \operatorname{End} A \stackrel{\theta=\theta'}{\longrightarrow} \operatorname{End} A, \ f, \ g \in C^{\sharp} \ .$$

PROOF. Let f, g, $h \in C^*$. That $f * \mathcal{J} = f$ follows from (4.9). Similarly $\mathcal{J} * g = g$. The associativity (f*g)*h = f*(g*h) follows from the following commutative diagram:

where we write \times and E to denote \times_A and End A. The commutativity of the regions I and II follows from (2.3).

4.11. COROLLARY. Let C be a \times_A -coalgebra. Suppose $\mathcal{G}: C \rightarrow \text{End } A$ is

injective.

- i) The maps θ , $\theta': C \times_A C \rightarrow C$ coincide.
- ii) Let $\operatorname{End}_{A\otimes \overline{A}-bi}(C)$ denote the R-module of $A\otimes \overline{A}$ -bilinear endomorphisms of C. This is an algebra with unit 1 and with product determined by

$$f*g: C \longrightarrow C \times_A C \xrightarrow{f \times g} C \times_A C \xrightarrow{\theta = \theta'} C, \quad f, g \in \operatorname{End}_{A \otimes \overline{A} - bi}(C).$$

- iii) We have $f*g=f\circ g=g\circ f$, $f,g\in \operatorname{End}_{A\otimes \overline{A}-bi}(C)$. Hence the algebra $(\operatorname{End}_{A\otimes \overline{A}-bi}(C),*)$ equals the endomorphism ring of the $A\otimes \overline{A}$ -bimodule under composite. This is commutative.
 - iv) The map \mathcal{I} induces an isomorphism of algebras $\operatorname{End}_{A\otimes\overline{A}-bi}(C)\cong C^*$.

PROOF. i) is obvious. ii) and iv) follow from (4.9) and (4.10). Let $c \in C$ and $\underline{A}(c) = \sum_i c_i \otimes c_i'$. Then $(f*g)(c) = \theta(\sum_i f(c_i) \otimes g(c_i')) = \sum_i \overline{g(c_i')} [1] f(c_i) = f(\sum_i \overline{g(c_i')} [1] c_i) = f(g(c))$, where we used 1*g = g. Similarly $(f*g)(c) = \theta'(\sum_i f(c_i) \otimes g(c_i')) = \sum_i f(c_i) [1] g(c_i') = g(\sum_i f(c_i) [1] c_i') = g(f(c))$ by f*1 = f. This proves iii).

4.12. PROPOSITION. Let C be a \times_A -coalgebra and $E=\mathcal{G}(C)$. Assume $\theta: E\times_A E\to E$ is injective. Then θ is an $A\otimes \overline{A}$ -bimodule isomorphism and (E,θ^{-1},ι) gives E the structure of a \times_A -coalgebra, where $\iota: E\to \operatorname{End} A$ is the inclusion. The map $\mathcal{J}: C\to E$ is a \times_A -coalgebra map.

PROOF. The same as [1, (6.3)].

4.13. THEOREM. Let $D \subset \operatorname{End} A$ be a sub- $A \otimes \overline{A}$ -bimodule where $\theta: D \times_A D \to D$ is an isomorphism and $A: \int_{x,\overline{y}} \overline{D} \otimes_{x,\overline{y}} D \otimes_{y} D \to \operatorname{Hom}(A, \int_{x} \overline{x} D \otimes_{x} D)$ (see (2.1)) is injective. Then $(D, \theta^{-1}, \epsilon)$ is an associative \times_A -coalgebra.

PROOF. The associativity follows from (4.4). We have only to show $\alpha(\Delta\times 1)\Delta=\alpha'(1\times\Delta)\Delta: D\to D\times_A D\times_A D$ where $\Delta=\theta^{-1}$. Let $d\in D$ and $\Delta(d)=\sum_i d_i\otimes d_i'$. Put $u=\sum_i \Delta(d_i)\otimes d_i'$, $v=\sum_i d_i\otimes \Delta(d_i')=\sum_k e_k\otimes e_k'\otimes e_k''$ in $\int_{x,\overline{y}}D\otimes_{x,\overline{y}}D\otimes_y D$. Then, for $a\in A$, $\Lambda(u)(a)=\sum_i \overline{d_i'[a]}\Delta(d_i)=\Delta(\sum_i \overline{d_i'[a]}d_i)=\Delta(d\bar{a})$ by (4.3). $\Lambda(v)(a)=\sum_i e_k \overline{\otimes e_k''[a]}e_k'=\sum_i d_i\otimes d_i'\bar{a}$ by (4.3) again. Since $\Delta(d\bar{a})=\Delta(d)\bar{a}=\sum_i d_i\otimes d_i'\bar{a}$, we have $\Lambda(u)(a)=\Lambda(v)(a)$. Hence u=v by assumption. Q. E. D.

If in addition D is a subalgebra over $A \otimes \overline{A}$ in the above, then (D, θ^{-1}, ι) is clearly a \times_A -bialgebra.

4.14. COROLLARY. Suppose A is a finite projective R-module. Then for all \overline{A} -bimodule M and A-bimodule N, the maps

$$\theta: M \times_A \operatorname{End} A \longrightarrow M$$
 and $\theta': \operatorname{End} A \times_A N \longrightarrow N$

are isomorphisms. In particular there is a unique $A \otimes \overline{A}$ -bilinear map Δ : End $A \to \operatorname{End} A \times_A \operatorname{End} A$ making (End A, Δ) into $A \times_A$ -bialgebra.

PROOF. Since all Λ maps (2.1) are isomorphisms, the θ maps are isomorphisms. Similarly the θ' maps are too. Hence the latter half follows from (4.13).

\S 5. The case where A is a division algebra.

Suppose that A is a division algebra. But R is arbitrary. We know that the θ , θ' and θ'' maps are injective by [1, (1.5)]. The maps α and α' are isomorphisms and hence any triple (M, P, N) of $A \otimes \overline{A}$ -bimodules associates (1.8).

Let B be the image of

$$\theta : \operatorname{End} A \times_A \operatorname{End} A \longrightarrow \operatorname{End} A$$

which is a subalgebra of End A over $A \otimes \overline{A}$.

5.1. THEOREM. $\theta: B \times_A B \to B$ is bijective and (B, θ^{-1}, ι) is the unique maximal \times_A -coalgebra in End A with co-unit ι . B is actually a \times_A -bialgebra.

PROOF. Using (3.6) instead of [1, (3.10)] the proof is similar to [1, (7.1)]. 5.2. Lemma. Let M be an \overline{A} -bimodule and B as above.

- i) The inclusion $M \times_A B \xrightarrow{1 \times \iota} M \times_A \text{End } A$ is an isomorphism of \overline{A} -bimodules.
- ii) The map $\theta: M \times_A \operatorname{End} A \to M$ has the image $M' = \{m \in M | \overline{A}m\overline{A} \text{ is left } \overline{A}\text{-finite dimensional}\}.$
- iii) M' is a sub- \overline{A} -bimodule of M and the inclusion $M' \times_A B \xrightarrow{\iota \times \iota} M \times_A \operatorname{End} A$ is an isomorphism of \overline{A} -bimodules.
 - iv) $\theta: M' \times_A B \rightarrow M'$ is an isomorphism.

PROOF. M' is clearly a sub- \overline{A} -bimodule of M. Let $m=\theta(\sum_i m_i \otimes c_i)$ with $\sum_i m_i \otimes c_i \in M \times_A \operatorname{End} A$. Then $m\bar{a}=\theta(\sum_i m_i \otimes c_i\bar{a})=\sum_i \overline{c_i(a)}m_i$. Hence $\overline{A}m\overline{A} \subset \sum_i \overline{A}m_i$ is left \overline{A} -finite dimensional and so $\theta(M \times_A \operatorname{End} A) \subset M'$.

Conversely if $m \in M'$, then $A: \int_{x^{\overline{x}}} \overline{A} m \overline{A} \otimes_{x} \operatorname{End} A \to \operatorname{Hom}(A, \overline{A} m \overline{A})$ is an isomorphism. Hence so is $\theta: \overline{A} m \overline{A} \times_{A} \operatorname{End} A \to \overline{A} m \overline{A}$. This means that $\theta: M' \times_{A} \operatorname{End} A \to M'$ is an isomorphism. In particular $M' = \theta(M \times_{A} \operatorname{End} A)$.

Consider the following diagram:

$$(M \times_{A} \operatorname{End} A) \times_{A} \operatorname{End} A \xrightarrow{\theta \times 1} M' \times_{A} \operatorname{End} A \xrightarrow{\theta} M'$$

$$A \times_{A} \operatorname{End} A \times_{A} \operatorname{End} A \xrightarrow{\theta''} M \times_{A} \operatorname{End} A \xrightarrow{\theta} M$$

$$A \times_{A} \operatorname{End} A \times_{A} \operatorname{End} A \xrightarrow{1 \times \theta'} M \times_{A} B.$$

It follows that $\theta(M \times_A B) = \theta(M' \times_A \text{End } A) = M'$ in M. This proves the lemma. Q. E. D.

As a corollary we have

$$B = \{c \in \text{End } A \mid \overline{A}c\overline{A} \text{ is left } \overline{A}\text{-finite dimensional}\}.$$

On the other hand we also have

$$B = \{c \in \text{End } A \mid AcA \text{ is left } A\text{-finite dimensional}\}$$

since $B = \theta'(\text{End } A \times_A \text{ End } A)$ and the dual statement of (5.2) holds.

Let $D = \{ f \in \text{End } A \mid AfA \text{ is right } A\text{-finite dimensional} \}$. Then $D^0 = \text{Im } (\theta : (\text{End } A)^0 \times_A \text{End } A \to (\text{End } A)^0) \text{ and } \theta : D^0 \times_A B \to D^0 \text{ is an isomorphism by (5.2).}$

Let $\delta: D^0 \rightarrow D^0 \times_A B$ and $\Delta: B \rightarrow B \times_A B$ be the inverses of the θ maps.

Let E denote the sum of all $A \otimes \overline{A}$ -bimodules $X \subset \operatorname{End} A$ which satisfy (i) $X \subset B \cap D$, (ii) $\Delta(X) \subset X \times_A X \subset B \times_A B$ and (iii) $\delta(X^0) \subset X^0 \times_A X \subset D^0 \times_A B$. Then just as [1, (7.3)] we have

5.3. THEOREM. E is the unique maximal \times_A -bialgebra (with $\mathcal{G}=\iota$) in End A which satisfies: $E^0 \times_A E \rightarrow E^0$ is surjective (or bijective).

§ 6. The Ess map and simplicity.

So far in the generalization (over commutative $A \rightarrow \text{over } A \otimes \overline{A}$) we have encountered no difficulties. To obtain the theorem [1, (10.2), (10.3)] we also need the Ess map. Its definition must be changed when we work over $A \otimes \overline{A}$, since the maps \mathcal{B} and \mathcal{C} in [1, (9.1)] make no sense unless A is commutative.

The definition of an ess map of a \times_A -bialgebra is given in (6.8) after the following rather long chain of definitions and lemmas. The analogies of [1, (10.2), (10.3)] are established in (6.13) and (6.14).

6.1. DEFINITION. Let U, V, W and X be $A \otimes \overline{A}$ -bimodules. Let

$$\begin{split} & \varPhi(U,\,W,\,V) \!=\! \int^{y,b} \!\! \int_{x,a}\!\! _{b,\bar{x}} U_{a,\bar{y}} \!\otimes_{a} \! W_{b} \!\otimes_{x} \! V_{y}\,, \\ & \varPsi(U,\,W,\,V,\,X) \!=\! \int^{b,q} \!\! \int_{p} \!\! _{p} \!\! \int^{y} \!\! \int_{x,a}\!\! _{b,\bar{x}} \!\! U_{a,\bar{y}} \!\otimes_{a,\bar{p}} W_{b,\bar{q}} \!\otimes_{x} \!\! V_{y} \!\!\otimes_{p} \!\! X_{q}\,. \end{split}$$

We make the above modules into $A \otimes \overline{A}$ -bimodules with structure determined by

$$\iota_{,\overline{u}} \Phi(U, W, V)_{r,\overline{v}} = \Phi(U, \overline{u}W_{\overline{v}}, \overline{r}V_{\overline{\iota}})$$

$$\iota_{,\overline{u}} \Psi(U, W, V, X)_{r,\overline{v}} = \Psi(U, W, \overline{u}V_{\overline{v}}, \overline{r}X_{\overline{\iota}}).$$

- 6.2. LEMMA. Let U, V, W and X be $A \otimes \overline{A}$ -bimodules.
- a) The image of the composite

$$(U\times_A V)^{\scriptscriptstyle 0}\times_A W \subset \int_a (U_a\times_A V) \otimes_a W \xrightarrow{\iota \otimes 1} \int_{x,a} U_a \otimes_x V \otimes_a W \cong \int_{x,a} U_a \otimes_a W \otimes_x V \otimes_x$$

is contained in $\Phi(U, W, V)$. Let

$$\mathcal{B}: (U \times_{A} V)^{0} \times_{A} W \longrightarrow \Phi(U, W, V)$$

denote the induced map. This is $A \otimes \overline{A}$ -bilinear.

b) The image of the composite

$$((U^{0}\times_{A}W)^{0}\times_{A}V)^{0} \subseteq \int_{x}((\bar{x}U)^{0}\times_{A}W) \otimes_{x}V \xrightarrow{\iota \otimes 1} \int_{x,a} \bar{x}U_{a} \otimes_{a}W \otimes_{x}V$$

is contained in $\Phi(U, W, V)$. Let

$$\mathcal{C}: ((U^0 \times_A W)^0 \times_A V)^0 \longrightarrow \mathcal{\Phi}(U, W, V)$$

denote the induced map. This is $A \otimes \overline{A}$ -bilinear.

c) The map

$$\Phi(U, W, V) \otimes X \xrightarrow{\iota \otimes 1} \int_{\mathbb{R}^d} U_a \otimes_a W \otimes_x V \otimes X$$

induces a canonical map

$$\Phi(U, W, V) \otimes X \longrightarrow \int_{x-a}^{y,b} \int_{x-a}^{x} U_{a,\overline{y}} \otimes_a W_b \otimes_x V_y \otimes X.$$

This induces a canonical map

$$\Phi(U, W, V) \times_{A} X \longrightarrow \int_{0}^{q} \int_{D}^{y,b} \int_{x,a} \int_{0,\bar{x}}^{y,b} U_{a,\bar{y}} \otimes_{a,\bar{p}} W_{b,\bar{q}} \otimes_{x} V_{y} \otimes_{p} X_{q}.$$

Applying the exchange map: $\int_{p}^{b} \int_{p}^{b} (\text{see Conventions})$ we obtain the map

$$\lambda : (\Phi(U, W, V) \times_A X)^0 \longrightarrow \Psi(U, W, V, X).$$

This is $A \otimes \overline{A}$ -bilinear.

PROOF. Straightforward.

- 6.3. Lemma. Let (U, i) and (V, j) be algebras over $A \otimes \overline{A}$.
- a) If j induces an isomorphism: $\overline{A} \cong \int_{-x}^{x} V_{x}$ and there is an $A \otimes \overline{A}$ -bilinear isomorphism $\sigma: U \to V$, then
- i) There is a unique invertible element $b \in A$ where $\sigma(i(\bar{a})) = j(\bar{a}\bar{b}) = j(\bar{b}\bar{a})$ for all $a \in A$. In particular b belongs to the center of A.
 - ii) i induces an isomorphism: $\overline{A} \cong \int_{-x}^{x} U_{x}$.
- iii) We have $\overline{T} = \{ \overline{a} \in \overline{A} \mid \overline{a}u = u\overline{a} \text{ for all } u \in U \} = \{ \overline{a} \in \overline{A} \mid \overline{a}v = v\overline{a} \text{ for all } v \in V \}$ and $i : \overline{T} \rightarrow \text{center } (U), \ j : \overline{T} \rightarrow \text{center } (V) \text{ are isomorphisms.}$

b) If $h: \overline{A} \to U \times_A V$ is injective, so is $j: \overline{A} \to V$.

PROOF. This can be proved in the same way as [1, (9.3)]. Q. E. D.

Let (U, i) and (V, j) be algebras over $A \otimes \overline{A}$. Fix an element $d \in A$ for a moment. The map

$$f(d): \int_{x.a} \bar{x} U_a \otimes_a U \otimes_x V \otimes V \longrightarrow \int_{x} \bar{x} U \otimes_x V, \ f(d)(u \otimes u' \otimes v \otimes v') = uu' \otimes v \, \bar{d}v' ,$$

 $u, u' \in U, v, v' \in V$ restricted to $\int_{x,a}^{y} \int_{x,a} U_{a,\overline{y}} \otimes_{a} U \otimes_{x} V_{y} \otimes V$ induces

$$f(d): \int_{\mathcal{D}} \int_{x,a}^{y} \int_{x,a} \bar{x} U_{a,\overline{y}} \otimes_{a,\overline{p}} U \otimes_{x} V_{y} \otimes_{p} V \longrightarrow \int_{x} \bar{x} U \otimes_{x} V.$$

 $\begin{array}{l} \text{Indeed if } \sum_{i}u_{i}\otimes u'_{i}\otimes v_{i}\otimes v'_{i} \in \int^{y}\!\!\int_{x_{i}a^{\overline{x}}}\!\!U_{a,\overline{y}}\otimes_{a}U\otimes_{x}V_{y}\otimes V, \text{ then } f(d)(\sum_{i}u_{i}\otimes\bar{p}u'_{i}\otimes v_{i}\otimes v'_{i}) = \sum_{i}u_{i}\bar{p}u'_{i}\otimes v_{i}\bar{d}v'_{i} = f(d)(\sum_{i}u_{i}\bar{p}\otimes u'_{i}\otimes v_{i}\otimes v'_{i}) = f(d)(\sum_{i}u_{i}\otimes u'_{i}\otimes v_{i}\,p\otimes v'_{i}) = \sum_{i}u_{i}u'_{i}\otimes v_{i}\bar{d}pv'_{i} = f(d)(\sum_{i}u_{i}\otimes u'_{i}\otimes v_{i}\otimes pv'_{i}) \text{ for all } p\in A. \end{array}$

This map induces an R-linear map

$$f(d): \Psi(U, U, V, V) \longrightarrow \int_{x^{b}, \bar{x}}^{b, q} U_{b, \bar{q}} \otimes_{x} V_{q} = \int_{b}^{b} (U \times_{A} V)_{b}.$$

It can be easily verified that this map satisfies:

6.4.
$$\begin{cases} f(d)(ax) = f(d)(x)\bar{a} \\ f(d)(\bar{a}x) = \bar{a}f(d)(x) \\ f(d)(xa) = f(ad)(x) \\ f(d)(x\bar{a}) = f(da)(x) \end{cases}$$

 $a, d \in A, x \in \Psi(U, U, V, V).$

Recall that $\int_{x} U \otimes_{x} V$ is a left $U \times_{A} V$ -module (3.1). Hence if $d \in A$ is fixed, the map

$$\begin{split} g(d) : & \int_{x,a} (U_a \times_A V) \otimes_{a,\bar{x}} U \otimes_x V \longrightarrow \int_{x} \bar{x} U \otimes_x V \,, \\ g(d) [(\sum_i u_i \otimes v_i) \otimes u' \otimes v'] = & \sum_i u_i u' \otimes v_i \bar{d}v' \,, \end{split}$$

 $\sum_{i} u_i \otimes v_i \in U \times_A V$, $u' \in U$, $v' \in V$, is well-defined. This induces \mathbf{a} map

$$\int_{x,a}^{y,b} \int_{x,a} ({}_{b}U_{a} \times {}_{A}V) \otimes_{a,\bar{x}} U_{b,\bar{y}} \otimes_{x} V_{y} \longrightarrow \int_{x}^{y,b} \int_{x} {}_{b,\bar{x}} U_{b,\bar{y}} \otimes_{x} V_{y}$$

or equivalently a map

$$g(d): ((U\times_A V)^0\times_A U\times_A V)^0 \longrightarrow \int_b^b (U\times_A V)_b$$
.

This also satisfies:

6.5.
$$\begin{cases} g(d)(ax) = g(d)(x)\bar{a} \\ g(d)(\bar{a}x) = \bar{a}g(d)(x) \\ g(d)(xa) = g(ad)(x) \\ g(d)(x\bar{a}) = g(da)(x) \end{cases}$$

 $a, d \in A, x \in ((U \times_A V)^0 \times_A U \times_A V)^0.$

- 6.6. Lemma. Let (U,i) and (V,j) be algebras over $A \otimes \overline{A}$. Suppose $h: \overline{A} \to \int_b^b (U \times_A V)_b$ is an isomorphism.
 - a) The linear maps

$$\mathcal{D}: \Psi(U, U, V, V) \longrightarrow \operatorname{End} A$$

$$\mathcal{E}: ((U \times_{A} V)^{0} \times_{A} U \times_{A} V)^{0} \longrightarrow \text{End } A$$

are defined by

$$h(\overline{\mathcal{D}(x)(a)}) = f(a)(x), \qquad h(\overline{\mathcal{E}(y)(a)}) = g(a)(y),$$

 $a \in A$, $x \in \Psi(U, U, V, V)$, $y \in ((U \times_A V)^0 \times_A U \times_A V)^0$. Then \mathcal{D} and \mathcal{E} are $A \otimes \overline{A}$ -bilinear.

b) Suppose further $i: \overline{A} \to \int_b^b U_b$ and $j: \overline{A} \to \int_b^b V_b$ are both isomorphisms. We have then the following commutative diagram:

$$(((U^{0}\times U)^{0}\times V)^{0}\times V)^{0} \xrightarrow{(\mathcal{C}\times 1)^{0}} (\Phi(U,U,V)\times V)^{0} \xrightarrow{(\mathcal{B}\times 1)^{0}} (((U\times V)^{0}\times U)^{0}\times V)^{0}$$

$$\downarrow ((\zeta\times 1)^{0}\times 1)^{0} \qquad \qquad \downarrow \qquad \qquad$$

Here the ζ maps are defined in (3.5) and \times denotes \times_A . This diagram consists of $A \otimes \overline{A}$ -bilinear maps.

PROOF. The existence of \mathcal{D} and \mathcal{E} is clear. That they are $A \otimes \overline{A}$ -bilinear follows from (6.4) and (6.5). To check the commutativity of the diagram is left to the reader.

6.7. LEMMA. Let (U,i) be an algebra over $A \otimes \overline{A}$ where $i : \overline{A} \to \int_{-x}^{x} U_x$ is isomorphic. If $\mathcal{S} : U \to \text{End } A$ is a map of algebras over $A \otimes \overline{A}$, the following diagram commutes:

$$(U^{0} \times_{A} U)^{0} \xrightarrow{\qquad \qquad } \operatorname{End} A$$

$$\downarrow (1^{0} \times \mathcal{I})^{0} \qquad \qquad \uparrow \mathcal{I}$$

$$(U^{0} \times_{A} \operatorname{End} A)^{0} \xrightarrow{\qquad } U^{00} = U.$$

PROOF. If $x = \sum_i u_i^0 \otimes u_i' \in U^0 \times_A U$, then $\mathcal{J}(\sum_i u_i' \mathcal{J}(u_i')(1))(d) = \sum_i \mathcal{J}(u_i)(\mathcal{J}(u_i')(1)d)$ $= \sum_i \mathcal{J}(u_i)(\mathcal{J}(\bar{d}u_i')(1)) = \mathcal{J}(\sum_i u_i \bar{d}u_i')(1), \ d \in A$. Since $\sum_i u_i \bar{d}u_i' = i(\overline{\zeta(X^0)(d)})$, we have $\mathcal{J}(\sum_i u_i \bar{d}u_i')(1) = \zeta(x^0)(d)$.

6.8. Definition. Suppose $(B, \mathcal{A}, \mathcal{S})$ is a $\times_{\mathcal{A}}$ -bialgebra. An Ess is a map of algebras over $A \otimes \overline{A}$

$$S: B \longrightarrow (B^0 \times {}_{A}B)^0$$

which makes the following diagrams commute:

We see in the next section (§ 7) when the inverse of $\theta: B^0 \times_A B \to B^0$ which is assumed to be bijective, satisfies the above conditions. In particular if A is a finite projective R-algebra, then $\theta: (\operatorname{End} A)^0 \times_A \operatorname{End} A \to (\operatorname{End} A)^0$ is an isomorphism by (4.14) and we see that the inverse θ^{-1} gives the unique Ess map of the \times_A -bialgebra $\operatorname{End} A$ (ibid.).

6.9. Proposition. Let $(B, \Delta, \mathcal{S}, \mathcal{S})$ be a \times_A -bialgebra with Ess where

 $\Delta: B \rightarrow B \times_A B$ and $S: B \rightarrow (B^0 \times_A B)^0$ are isomorphisms and S is injective. Let (U,i) and (V,j) be algebras over $A \otimes \overline{A}$ which are $A \otimes \overline{A}$ -bimodule isomorphic to B.

a) We have isomorphisms:

$$i: \overline{A} \longrightarrow \int_{-x}^{x} U_{x}, \quad j: \overline{A} \longrightarrow \int_{-x}^{x} V_{x}, \quad h: \overline{A} \longrightarrow \int_{-x}^{x} (U \times_{A} V)_{x}.$$

b) We have

$$\mathcal{S}: B \xrightarrow{\mathcal{S}} (B^0 \times_{A} B)^0 \xrightarrow{\zeta} \text{End } A$$

or equivalently

$$\zeta: (B^0 \times_A B)^0 \xrightarrow{\theta^0} B^{00} = B \xrightarrow{\mathcal{J}} \operatorname{End} A$$
.

c) The triple $((U\times_A V)^0, U, V)$ associates (1.8). The maps $\mathcal{B}: (U\times_A V)^0\times_A U \to \Phi(U, U, V)$ and $\mathcal{C}: ((U^0\times_A U)\times_A V)^0\to \Phi(U, U, V)$ are injective and have the same image. Let $\tau: (U\times_A V)^0\times_A U\cong ((U^0\times_A U)^0\times_A V)^0$ denote the induced isomorphism. We have then the following commutative diagram:

where \times denotes \times_A .

PROOF. a) Since $U \cong V \cong U \times_A V \cong B$ as $A \otimes \overline{A}$ -bimodules and $\mathcal{G} : B \to \text{End } A$ is injective, this follows from (6.3). b) follows from (6.7).

c) Since \mathcal{S} and Δ are isomorphisms, the third diagram in (6.8) shows that $\alpha': B^0 \times_A (B \times_A B) \to B^0 \times_A B \times_A B$ and $\alpha: (B^0 \times_A B) \times_A B \to B^0 \times_A B \times_A B$ have the same image. The composite $\alpha'(1^0 \times \Delta) \mathcal{S}^0: B^0 \to B^0 \times_A B \times_A B$ is injective having $\theta'' \qquad \theta$ as retract the composite $B^0 \times_A B \times_A B \longrightarrow B^0 \times_A B \longrightarrow B^0$. Hence (B^0, B, B) associates and $((U \times_A V)^0, U, V)$ does too. Since the composite

$$(B^0 \times_{A} B)^0 \times_{A} B \xrightarrow{\zeta \times 1} \operatorname{End} A \times_{A} B \xrightarrow{\theta'} B$$

which equals by b)

$$(B^{0}\times_{A}B)^{0}\times_{A}B \xrightarrow{\theta^{0}\times 1} B^{00}\times_{A}B = B\times_{A}B \xrightarrow{\theta'} B$$

is an isomorphism, the proposition (6.6), b) applied to U=V=B implies that $\mathfrak{D}\lambda(\mathcal{C}\times 1)^0$ there is injective. Hence $\mathcal{C}\times 1$ is injective. Then the injectivity of \mathcal{C} follows from the next lemma (6.10). It follows from the second diagram in (6.8) that \mathcal{B} and \mathcal{C} for (B,B,B) are both injective and have the same image

in $\Phi(B, B, B)$. Since $U \cong V \cong B$ as $A \otimes \overline{A}$ -bimodules, it follows from the functoriality that $\mathcal{B}: (U \times_A V)^0 \times_A U \to \Phi(U, U, V)$ and $\mathcal{C}: ((U^0 \times_A U)^0 \times_A V)^0 \to \Phi(U, U, V)$ are injective having the same image. The commutativity of the diagram is an immediate consequence of (6.6), b).

6.10. Lemma. Let (B, Δ, \mathcal{J}) be a \times_A -bialgebra where $\Delta: B \to B \times_A B$ is an isomorphism. If M, N and P are $A \otimes \overline{A}$ -bimodules isomorphic to B and $f: M \to N$ an $A \otimes \overline{A}$ -bilinear map, then the map $f \times 1: M \times_A P \to N \times_A P$ is injective (resp. surjective) if and only if so is f.

PROOF. We can assume P=B. Then $\theta: M\times_A B\to M$ and $\theta: N\times_A B\to N$ are isomorphisms, since so is $\theta: B\times_A B\to B$ and we have a commutative diagram

$$\begin{array}{ccc} M\times_{A}B & \xrightarrow{\theta} & M \\ & \downarrow f\times 1 & & \downarrow f \\ N\times_{A}B & \xrightarrow{\theta} & N. \end{array}$$

This proves the lemma.

6.11. Lemma. Let $(B, \Delta, \mathcal{S}, \mathcal{S})$ be a \times_A -bialgebra with ess where $\mathcal{S}: B \to (B^{\circ} \times_A B)^{\circ}$ is an isomorphism. If M, N and P are $A \otimes \overline{A}$ -bimodules isomorphic to B and $f: M \to N$ an $A \otimes \overline{A}$ -bilinear map, then the map $f^{\circ} \times 1: M^{\circ} \times_A P \to N^{\circ} \times_A P$ is injective (resp. surjective) if and only if so is f.

PROOF. The same as (6.10).

- 6.12. THEOREM. Let $(B, \Delta, \mathcal{S}, \mathcal{S})$ be a \times_A -bialgebra with ess where \mathcal{S} is injective and Δ and \mathcal{S} are isomorphisms.
- a) Suppose U is an algebra over $A \otimes \overline{A}$ which is $A \otimes \overline{A}$ -bimodule isomorphic to B. Then $(U^0 \times_A U)^0$ is $A \otimes \overline{A}$ -bimodule isomorphic to B. There is a unique map of algebras over $A \otimes \overline{A}$

$$\mathcal{Z}: (U^0 \times_{\mathcal{A}} U)^0 \longrightarrow B$$

such that $\mathcal{IZ}=\zeta$ (3.5).

- b) If U and V are algebras over $A \otimes \overline{A}$ which are $A \otimes \overline{A}$ -bimodule isomorphic to B and where $U \times_A V \cong B$ as an algebra over $A \otimes \overline{A}$, then $\mathfrak{Z}: (U^0 \times_A U)^0 \to B$ is injective and $\mathfrak{Z}: (V^0 \times_A V)^0 \to B$ is surjective.
- c) If in addition $V \times_A U \cong B$ in b), then both the $\mathcal Z$ maps there are isomorphisms.

PROOF. a) $(U^0 \times_A U)^0 \cong (B^0 \times_A B)^0 \cong B$ as $A \otimes \overline{A}$ -bimodules. Hence ζ : $(U^0 \times_A U)^0 \to \operatorname{End} A$ factors as $\zeta = \mathscr{I} \times \operatorname{Iniquely} B$ uniquely by (4.9). c) follows from b).

b) Let $\gamma: U \times_A V \cong B$ be an isomorphism of algebras over $A \otimes \overline{A}$. The map

$$\zeta: ((U\times_A V)^0\times_A (U\times_A V))^0 \longrightarrow \text{End } A$$

which equals the composite

$$((U \times_A V)^0 \times_A (U \times_A V))^0 \xrightarrow{(\gamma^0 \times \gamma)^0} (B^0 \times_A B)^0 \xrightarrow{\zeta} \operatorname{End} A$$

is injective having $\mathcal{J}(B)$ as its image. Then the commutative diagrom of (6.9), c) tells us that $\mathcal{Z}: (V^0 \times_A V)^0 \to B$ is surjective and $(\mathcal{Z} \times 1)^0 \times 1: (M \times_A V)^0 \times_A V \to (B \times_A V)^0 \times_A V$ is injective, where we put $M = (U^0 \times_A U)^0$. Applying the lemmas (6.10) and (6.11) we conclude that $\mathcal{Z}: (U^0 \times_A U) \to B$ is injective.

- 6.13. COROLLARY. Let $(B, \Delta, \mathcal{S}, \mathcal{S})$ be a \times_A -bialgebra with ess where \mathcal{S} is injective and Δ and \mathcal{S} are isomorphisms.
 - i) The triple (B^0, B, B) associates.
- ii) If U is an algebra over $A \otimes \overline{A}$ with $\langle U \rangle \in \mathcal{G} \langle B \rangle$, then $U^0 \cong B^0 \times_A U^{-1}$ as an algebra over $A \otimes \overline{A}$.
- iii) If $B^0 \cong B$ as an algebra over $A \otimes \overline{A}$, then for each $\langle U \rangle \in \mathcal{G}\langle B \rangle$, $\langle U^0 \rangle$ belongs to $\mathcal{G}\langle B \rangle$ and $\langle U^0 \rangle = \langle U \rangle^{-1}$.

PROOF. i) is shown in (6.9), c). If $\langle U \rangle \in \mathcal{G}\langle B \rangle$, then $U^0 \times_A U \cong B^0$ as an algebra over $A \otimes \overline{A}$ by (6.12), c). Since $\theta : U^0 \times_A B \to U^0$ is an isomorphism, we have $U^0 \cong U^0 \times_A B \cong U^0 \times_A (U \times_A U^{-1}) \cong (U^0 \times_A U) \times_A U^{-1} \cong B^0 \times_A U^{-1}$ as algebras over $A \otimes \overline{A}$. This proves ii) and iii). Q. E. D.

Since we have established the analogy of [1, (10.2)] the following theorem which is similar to [1, (10.3)] follows from [1, (3.7), (3.9)].

- 6.14. THEOREM. Let $(B, \Delta, \mathcal{S}, \mathcal{S})$ be a \times_A -bialgebra with ess where \mathcal{S} is injective and Δ and \mathcal{S} are isomorphisms. Furthermore assume that B is flat as a left (right) A-module and $0 \neq M^0 \times_A B$ ($B^0 \times_A M$) for any A-bimodule $0 \neq M \subset B$. The following are equivalent:
 - a) A is a simple B-module,
 - b) B is a simple algebra,
- c) If U is any algebra over $A \otimes \overline{A}$ with $\langle U \rangle \in \mathcal{G} \langle B \rangle$, then U is a simple algebra.

§ 7. Existence of the ess.

Let (C, Δ, \mathcal{S}) be a \times_A -coalgebra. We give a sufficient condition for some section of $\theta: C^0 \times_A C \rightarrow C^0$ (assumed to be surjective) to satisfy the conditions of (6.8).

Define the maps

$$\Omega_1: \int_{x,a} \bar{x} C_a \otimes_a C \otimes_x C \longrightarrow \operatorname{Hom} (A \otimes A \otimes A, A)$$

$$\Omega_2: \int_{x,a} C_x \otimes_{x,\overline{a}} C \otimes_a C \longrightarrow \text{Hom}(A \otimes A \otimes A, A)$$

to be the composites

$$\operatorname{Hom}\left(A,\operatorname{Hom}\left(A,C\right)\right) \xrightarrow{\operatorname{Hom}\left(A,\operatorname{Hom}\left(A,\mathcal{S}\right)\right)} \operatorname{Hom}\left(A,\operatorname{Hom}\left(A,\operatorname{Hom}\left(A,A\right)\right)\right)$$

 $\cong \operatorname{Hom}(A \otimes A \otimes A, A)$,

$$\Omega_2: \int_{x,a} C_x \otimes_{x,\overline{a}} C \otimes_a C \xrightarrow{\Lambda_3} \operatorname{Hom}(A, \int_x C_x \otimes_x C) \xrightarrow{\operatorname{Hom}(A, \Lambda_4)}$$

$$\operatorname{Hom}(A,\operatorname{Hom}(A,C)) \xrightarrow{\operatorname{Hom}(A,\operatorname{Hom}(A,\mathcal{S}))} \operatorname{Hom}(A,\operatorname{Hom}(A,\operatorname{Hom}(A,A)))$$

$$\cong \operatorname{Hom}(A \otimes A \otimes A, A).$$

In the above the map Λ_1 (resp. Λ_2 , Λ_3 , Λ_4) denotes the Λ -map (2.1) with respect to the left \bar{u} \bar{A} -module $\int_a \bar{u} C_a \otimes C_a$ (resp. C_u , $\int_x C_x \otimes_{x,\bar{u}} C$, C_u).

Explicitly we have

$$Q_1(c_1 \otimes c_2 \otimes c_3)(a_1 \otimes a_2 \otimes a_3) = c_1 [c_2 [a_2] a_1] c_3 [a_3]$$

$$\mathcal{Q}_2(c_1 \otimes c_2 \otimes c_3)(a_1 \otimes a_2 \otimes a_3) = c_1 [c_2 [a_2] c_3 [a_3] a_1]$$

 $a_i \in A$, $c_i \in C$. (Recall (4.2).)

If the map $\mathcal S$ and all the Λ -maps for C are injective, then Ω_1 and Ω_2 are injective.

7.1. LEMMA. If $\theta^0: (C^0 \times_A C)^0 \to C$ is surjective and has an A-bilinear section $S: C \to (C^0 \times_A C)^0$, then

$$axb = \sum_{i} x_{i} y_{i} [a]b$$

where $a, b \in A$ and $x \in C$ with $S(x) = \sum_{i} x_i \otimes y_i$ in $\int_a C_a \otimes_a C$. In particular we have

$$ax[b] = \sum_{i} x_i [y_i[a]b].$$

PROOF. Since S is A-bilinear, we have $S(axb) = \sum_i x_i \otimes \bar{b} y_i \bar{a}$ in $\int_a C_a \otimes_a C$. Applying the θ map, we have $axb = \sum_i x_i (\bar{b} y_i \bar{a})[1] = \sum_i x_i y_i [a]b$. Evaluating at 1, we have $ax[b] = (axb)[1] = \sum_i x_i [y_i [a]b]$.

7.2. PROPOSITION. Let (C, Δ, \mathcal{S}) be a \times_A -coalgebra where there is an $A \otimes \overline{A}$ -bilinear map $S: C \rightarrow (C^0 \times_A C)^0$ such that $1 = \theta^0 \circ S$. If the maps Ω_1 and Ω_2 are injective, then the following diagrams commute:

PROOF. Let $b, d \in C$, $S(b) = \sum b_i \otimes c_i$ in $\int_a C_a \otimes_a C$ and $\Delta(d) = \sum d_j \otimes d'_j$ in $\int_{x} C \otimes_x C$. Then $\mathcal{B}(\Delta^0 \times 1) S^0(b) = \sum b_{ik} \otimes c_i \otimes b'_{ik}$ and $C(S \times 1)^0 \Delta^0(d) = \sum d_{jh} \otimes e_{jh} \otimes d'_j$ in $\int_{x,a} C_a \otimes_a C \otimes_x C$, where $\Delta(b_i) = \sum b_{ik} \otimes b'_{ik}$ and $\Delta(d_j) = \sum d_{jh} \otimes e_{jh}$. Let $f_1 = \Omega_1 \mathcal{B}(\Delta^0 \times 1) S^0(b)$ and $f_2 = \Omega_1 C(S \times 1)^0 \Delta^0(d)$. Then $f_1(a_1 \otimes a_2 \otimes a_3) = \sum b_{ik} [c_i [a_2] a_1] b'_{ik} [a_3] = \sum b_i [c_i [a_2] a_1 a_3] = a_2 b [a_1 a_3]$ by (4.3) and (7.1) and $f_2(a_1 \otimes a_2 \otimes a_3) = d_{jh} [e_{jh} [a_2] a_1] d'_j [a_3] = \sum a_2 d_j [a_1] d'_j [a_3] = a_2 d [a_1 a_3]$ similarly, for $a_1, a_2, a_3 \in A$. Hence if b = d, then $f_1 = f_2$, since Ω_1 is injective.

Let $g_1 = \Omega_2 \alpha'(1 \times \Delta) \mathcal{S}^0(b)$ and $g_2 = \Omega_2 \alpha(\mathcal{S}^0 \times 1) \mathcal{S}^0(d)$. Then for $a_i \in A$, $g_1(a_1 \otimes a_2 \otimes a_3) = \sum b_i [c_{ih}[a_2]c'_{ih}[a_3]a_1] = \sum b_i [c_i[a_2a_3]a_1] = a_2 a_3 b[a_1]$ by (4.3) and (7.1) and $g_2(a_1 \otimes a_2 \otimes a_3) = \sum d_{jk} [f_{jk}[a_2]e_j[a_3]a_1] = \sum a_2 d_j [e_j[a_3]a_1] = a_2 a_3 d[a_1]$ by (7.1), where $\mathcal{S}(b) = \sum b_i \otimes c_i$, $\mathcal{S}(d) = d_j \otimes e_j$, $\Delta(c_i) = \sum c_{ih} \otimes c'_{ih}$ and $\mathcal{S}(d_j) = \sum d_{jk} \otimes f_{jk}$. It follows from the injectivity of Ω_2 that $g_1 = g_2$ if b = d.

- 7.3. COROLLARY. Let (B, Δ, \mathcal{S}) be a \times_A -bialgebra, Suppose \mathcal{S} is injective and the map $\Lambda: \int_{x^{\overline{x}}} M \otimes_x B \to \operatorname{Hom}(A, M)$ is injective for each left \overline{A} -module M. If $\theta^0: (B^0 \times_A B)^0 \to B^{00} = B$ is an isomorphism, then $\mathcal{S} = \theta^{0-1}$ is an Ess map.
- 7.4. COROLLARY. Let A be a finite projective R-algebra. Then the \times_A -bialgebra End A (4.14) has a unique Ess map.
- 7.5. COROLLARY. If A is a division algebra, then the \times_A -bialgebra E of (5.3) has a unique Ess map.

§ 8. Cohomology of a \times_A -bialgebra.

Let $(B, \mathcal{A}, \mathcal{S})$ be a \times_A -bialgebra, where \mathcal{S} is injective. Let $\mathring{B} = A \otimes \overline{A}$ and

$$\stackrel{n}{B} = \overbrace{B \otimes_{A \otimes \overline{A}} \cdots \otimes_{A \otimes \overline{A}} B}^{n}, \quad n > 0.$$

These are \times_A -coalgebras by (4.6) and (4.7). Hence we can form algebras $(B)^*$ by (4.10).

Define the $A \otimes \overline{A}$ -bilinear maps $i_n : \stackrel{n}{B} \to B$ by $i_0(1) = 1$, $i_n(b_1 \otimes \cdots \otimes b_n) = b_1 \cdots b_n$, $b_i \in B$. The co-unit for $\stackrel{n}{B}$ is $\stackrel{n}{B} \stackrel{i_n}{\longrightarrow} B \stackrel{\mathcal{S}}{\longrightarrow} \operatorname{End} A$.

Let M_n be the module of $A \otimes \overline{A}$ -bilinear maps from B to B. It follows from (4.9) that M_n is an algebra with unit i_n and with product determined by

$$f*g: \stackrel{n}{B} \longrightarrow \stackrel{n}{B} \times \stackrel{n}{A} \stackrel{f}{B} \stackrel{f \times g}{\longrightarrow} B \times {}_{A}B \stackrel{\theta=\theta'}{\longrightarrow} B$$

and the injection $\mathcal{J}: B \to \text{End } A$ induces the algebra isomorphisms $M_n \cong (B)^*$.

In view of (4.11), M_1 is identified with the endomorphism algebra of the $A \otimes \overline{A}$ -bimodule B. It is *commutative*.

For an algebra M, M^* denotes the group of units in M.

 M_1^{\times} is hence identified with the group of automorphisms of the $A \otimes \overline{A}$ -bimodule B.

8.1. Lemma. For each $n \ge 0$, define the linear maps

$$e_i: M_n \longrightarrow M_{n+1}, \quad i=0, 1, \dots, n+1,$$

by

$$\begin{split} e_{0}(f) \colon \overset{n+1}{B} &\cong B \otimes_{A \otimes \overline{A}} \overset{n}{B} \overset{1 \otimes f}{\longrightarrow} B \otimes_{A \otimes \overline{A}} B \overset{i_{2}}{\longrightarrow} B \\ e_{i}(f) \colon \overset{n+1}{B} &\cong \overset{i-1}{B} \otimes_{A \otimes \overline{A}} \overset{2}{B} \otimes_{A \otimes \overline{A}} B \overset{n-i}{\longrightarrow} \overset{1 \otimes i_{2} \otimes 1}{\longrightarrow} \overset{i-1}{B} \otimes_{A \otimes \overline{A}} B \otimes_{A \otimes \overline{A}} B \overset{n-i}{\longrightarrow} B \\ 0 &< i < n+1 \\ e_{n+1}(f) \colon \overset{n+1}{B} &\cong \overset{n}{B} \otimes_{A \otimes \overline{A}} B \overset{f \otimes 1}{\longrightarrow} B \otimes_{A \otimes \overline{A}} B \overset{i_{2}}{\longrightarrow} B \end{split}$$

$$e_{n+1}(f): B \cong B \otimes_{A \otimes \overline{A}} B \longrightarrow B \otimes_{A \otimes \overline{A}}$$

for $f \in M_n$.

- a) These are algebra maps.
- b) $\{M_n, e_0, \dots, e_{n+1}\}_{n=0}^{\infty}$ forms a semi-co-simplicial complex.

PROOF. This is left to the reader.

In the following we consider the partial complex $\{M_n, e_i\}_{n=0}^3$ and form the cohomology groups $H^n(B)$, n=0, 1, 2 with respect to the "units" functor $(?)^{\times}$.

8.2. H^0 theorem. The map $M_0 \rightarrow B$, $f \mid \rightarrow f(1)$ is an injective algebra map with image

$$\int_{x,\overline{y}}^{x,y} B_{x,\overline{y}} =$$
the centralizer of $A \otimes \overline{A}$ in B .

Since $\overline{A} \cong \int_{-x}^{x} B_{x}$, we have

$$\int_{x,\overline{y}}^{x,y} B_{x,\overline{y}} \cong \int_{\overline{y}}^{y} \overline{A}_{\overline{y}} = \operatorname{center}(\overline{A}).$$

In particular M_0 is commutative. We identify M_0 with the centralizer of $A \otimes \overline{A}$ in B. Then $e_0(m)(b)=bm$, $e_1(m)(b)=mb$, $m \in M_0$, $b \in B$. Hence

$$\operatorname{Ker}(e_0, e_1: M_0 \Longrightarrow M_1) = \operatorname{center}(B)$$
.

If we define $H^0(B) = \text{Ker}(e_0, e_1: M_0 \stackrel{\times}{\to} M_1^{\times})$, then $H^0(B) \cong \text{center}(B)^{\times}$.

8.3. LEMMA. Let σ , $\gamma \in M_1$ and $f \in M_2$.

a)
$$e_0(\gamma) * e_2(\sigma) = e_2(\sigma) * e_0(\gamma) : \stackrel{2}{B} \xrightarrow{\sigma \otimes \gamma} \stackrel{2}{B} \xrightarrow{i_2} B.$$

b)
$$e_0(\gamma) * e_2(\sigma) * f = f * e_0(\gamma) * e_2(\sigma) : \stackrel{2}{B} \xrightarrow{\sigma \bigotimes \gamma} \stackrel{2}{B} \xrightarrow{f} B.$$

c)
$$e_1(\sigma) * f = f * e_1(\sigma) : \stackrel{2}{B} \xrightarrow{f} \xrightarrow{\sigma} B$$
.

d) The images of the algebra maps $e_i: M_1 \rightarrow M_2$, i=0, 1, 2, are contained in the center of M_2 .

PROOF. Let $b, c \in B$ and $\Delta(b) = \sum b_i \otimes b'_i$, $\Delta(c) = \sum c_j \otimes c'_j$. Then $\Delta(b \otimes c) = \sum b_i \otimes c_j \otimes b'_i \otimes c'_j$.

- a) $[e_0(\gamma) * e_2(\sigma)](b \otimes c) = \theta'(\sum b_i \gamma(c_j) \otimes \sigma(b_i') c_j') = \sum b_i [\gamma(c_i)[1]] \sigma(b_i') c_j' = \sum \sigma(b_i [\gamma(c_j)[1]] b_i') c_j' = \sum \sigma(b\gamma(c_j)[1]) c_j'$ (by (4.3)) $= \sum \sigma(b)\gamma(c_j)[1] c_j' = \sigma(b)\gamma(c)$, since $\gamma * i_1 = \gamma$. That $e_0(\gamma) * e_2(\sigma) = e_2(\sigma) * e_0(\gamma)$ is proved in the following.
- b) Let $g=e_0(\gamma)*e_2(\sigma)$. $(g*f)(b\otimes c)=\theta'(\sum \sigma(b_i)\gamma(c_j)\otimes f(b_i'\otimes c_j'))=\sum f(\sigma(b_i)[\gamma(c_j))$ $[1]]b_i'\otimes c_j')=\sum f(\sigma(b\gamma(c_j)[1])\otimes c_j')$ (since $\sigma*i_1=\sigma$ and $\Delta(b\gamma(c_j)[1])=\sum b_i\gamma(c_j)[1]$ $\otimes b_i')=\sum f(\sigma(b)\otimes \gamma(c_j)[1]c_j')=f(\sigma(b)\otimes \gamma(c))$, since $\gamma*i_1=\gamma$.

$$\frac{(f*g)(b\otimes c)}{\sum f(\sigma(b_i')\overline{\gamma(c_j')}[1])} f(b_i\otimes c_j) \otimes \sigma(b_i')\gamma(c_j')) = \sum \overline{\sigma(b_i')}[\gamma(c_j')[1]]} f(b_i\otimes c_j) = \sum f(\overline{\sigma(b_i'\overline{\gamma(c_j')}[1])}) \otimes c_j \text{ (since } i_1*\sigma = \sigma \text{ and } \Delta(b\overline{\gamma(c_j')}[1]) = \sum b_i\otimes b_i\overline{\gamma(c_j')}[1]) = \sum f(\sigma(b)\otimes\overline{\gamma(c_j')}[1]c_j) = f(\sigma(b)\otimes\gamma(c)) \text{ since } i_1*\gamma = \gamma.$$

Hence g belongs to the center of M_2 . Taking $\sigma=i_1$ or $\gamma=i_1$ we see that the images $e_0(M_1)$ and $e_2(M_1)$ are also contained in the center of M_2 . In particular we have $e_0(\gamma)*e_2(\sigma)=e_2(\sigma)*e_0(\gamma)$.

c) $(f*e_1(\sigma))(b\otimes c) = \theta'(\sum f(b_i\otimes c_j)\otimes \sigma(b_i'c_j')) = \sum \sigma(f(b_i\otimes c_j)[1]b_i'c_j') = \sigma(f(b\otimes c))$ since $f*i_2 = f$.

 $(e_1(\sigma)*f)(b\otimes c) = \theta(\sum \sigma(b_ic_j)\otimes f(b_i'\otimes c_j')) = \sum \sigma(\overline{f(b_i'\otimes c_j')}[1]b_ic_j) = \sigma(f(b\otimes c))$ since $i_2*f=f$.

- d) follows from the above.
- 8.4. As a corollary we have the following complex of abelian groups

$$M_0^{\times} \xrightarrow{\delta_0} M_1^{\times} \xrightarrow{\delta_1} \operatorname{center} (M_2)^{\times}$$

where $\delta_0(x)=e_0(x)*e_1(x)^{-1}$, $\delta_1(y)=e_0(y)*e_1(y)^{-1}*e_2(y)$, $x\in M_0^\times$, $y\in M_1^\times$, and can form the cohomology groups $H^0(B)=\mathrm{Ker}\,(\delta_0)$ and $H^1(B)=\mathrm{Ker}\,(\delta_1)/\mathrm{Im}\,(\delta_0)$.

8.5. H^1 theorem. An element $f \in M_1$ is a 1-cocycle if $e_1(f) = e_0(f) * e_2(f)$ or equivalently if f(bc) = f(b)f(c), b, $c \in B$. If a 1-cocycle is invertible, the inverse is also a 1-cocycle.

Hence Ker $(\delta_1: M_1^{\times} \rightarrow \text{center } (M_2)^{\times})$ consists of all $A \otimes \overline{A}$ -bilinear automorphisms $f: B \rightarrow B$ such that f(bc) = f(b)f(c), b, $c \in B$. Then f(1) = 1 clearly. Hence

$$\operatorname{Ker}(\delta_1) \cong \operatorname{Aut}_{\operatorname{alg}/A \otimes \overline{A}}(B)$$

as groups. If $x \in M_0^{\times} \subset B^{\times}$, then

$$\delta_0(x)(b) = x^{-1}bx$$
, $b \in B$.

Hence $\delta_0(M_0^{\times})$ consists of all inner automorphisms by elements of the centralizer of $A \otimes \overline{A}$ in B.

Therefore the group $H^1(B)$ is isomorphic to the group of automorphisms of B as an algebra over $A \otimes \overline{A}$ modulo the subgroup of inner automorphisms of B induced by invertible elements of center (\overline{A}) .

8.6. Lemma. Let $f, g \in M_2$. Then

$$e_0(f) * e_2(g) = e_2(g) * e_0(f) : \stackrel{3}{B} \xrightarrow{1 \otimes f} \stackrel{2}{B} \xrightarrow{g} B,$$

$$e_1(f) * e_3(g) = e_3(g) * e_1(f) : \stackrel{3}{B} \xrightarrow{g \otimes 1} \stackrel{2}{B} \xrightarrow{f} B.$$

PROOF. The computation is similar to (8.3) and left to the reader.

- 8.7. DEFINITION. Let f, $g \in M_2$ and $\sigma \in M_1^{\times}$.
- a) f is a 2-cocycle if $e_0(f) * e_2(f) = e_1(f) * e_3(f)$.
- b) $f \sim g$ if $f * \delta_2(\sigma) = g$ where $\delta_2(\sigma) = e_0(\sigma) * e_1(\sigma)^{-1} * e_3(\sigma)$.
- 8.8. Lemma. Let f, f', g, $g' \in M_2$ and σ , $\tau \in M_1^{\times}$.
- a) If $f \sim g$, $f' \sim g'$, then $f * f' \sim g * g'$.
- b) $f \sim g$ if and only if $f(\sigma(b) \otimes \sigma(c)) = \sigma(g(b \otimes c))$, $b, c \in B$.
- c) If $f \sim g$ then f is a 2-cocycle if and only if so is g,
- d) If f, g are 2-cocycles, then so is f*g.
- e) f is a 2-cocycle if and only if $f(b \otimes f(c \otimes d)) = f(f(b \otimes c) \otimes d)$, b, c, $d \in B$.
- f) If f is an invertible 2-cocycle then so is f^{-1} .
- g) $\delta_2(\sigma)$ is an invertible 2-cocycle.

PROOF. Easy.

- 8.9. DEFINITION. $H^2(B) = \{\text{invertible 2-cocycles}\}/\delta_2(M_1^{\times}).$
- 8.10. REMARK. An $A \otimes \overline{A}$ -bilinear map $f: \stackrel{2}{B} \to B$ is a 2-cocycle if and only

if f gives on B a structure of an associative, non-unitary algebra over $A \otimes \overline{A}$.

If M and N are associative non-unitary algebras over $A \otimes \overline{A}$, then $M \times_A N$ is too, in the same way as (3.1).

8.11. Lemma. Let f be an invertible 2-cocycle. Then the associative product $f: \stackrel{?}{B} \to B$ has the unit in $\int_{x,\overline{y}}^{x,y} B_{x,\overline{y}}$. Hence (B,f) is an algebra over $A \otimes \overline{A}$.

PROOF. $g=f^{-1}$ is also a 2-cocycle. Since $f*g=i_2$, $\sum f(b_i\otimes c_j)[1]g(b_i'\otimes c_j')=bc$, $b,c\in B$. In particular $c=\sum g(f(1\otimes c_j)[1]\otimes c_j')=\sum g(1\otimes f(1\otimes c_j)[1]c_j')$. Since the map $f':B\to B$, $f'(b)=f(1\otimes b)$ is $A\otimes \overline{A}$ -bilinear, $f'*i_1=f'$. Hence $\sum f(1\otimes c_j)[1]c_j'=f(1\otimes c)$. Therefore $g(1\otimes f(1\otimes c))=c$. If we write

$$b \circ c = f(b \otimes c)$$
, $b \circ c = g(b \otimes c)$

then the map $1 \circ ?: B \to B$ is injective and $1 \circ ?: B \to B$ is surjective. Interchanging f and g or the left and the right, we conclude that the maps $1 \circ ?$ and $? \circ 1$ are bijective. Since $1 \in \int_{-x,\overline{y}}^{x,y} B_{x,\overline{y}}$, we conclude that the project $f: B \to B$ has the unit in the centralizer of $A \otimes \overline{A}$ in B just as [1, (16.4)].

8.12. H^2 theorem. Suppose $\Delta: B \to B \times_A B$ is an isomorphism. Then the $A \otimes \overline{A}$ -bimodule B is associative (4.4) and $\mathcal{E}_B = \mathcal{E} \langle B \rangle$ by (3.12).

Let X be the set of 2-cocycles f such that the product $f: \stackrel{?}{B} \to B$ has the unit in the centralizer of $A \otimes \overline{A}$ in B. X contains the invertible 2-cocycles by (8.11).

If $f, g \in X$, then we have an isomorphism of algebras over $A \otimes \overline{A}$

$$\Delta: (B, f*g) \cong (B, f) \times_A (B, g)$$
.

This means $f*g \in X$ and the map $X \rightarrow \mathcal{E}\langle B \rangle$, $f \mid \rightarrow \langle B, f \rangle$ which is clearly surjective, is a monoid homomorphism.

It follows from (8.8), b) that $\langle B,f\rangle = \langle B,g\rangle$ where $f,g\in X$ if and only if $f\sim g$ for some $\sigma\in M_1^\times$. Hence we have a monoid isomorphism

$$X/\delta_2(M_1^{\times}) \cong \mathcal{E}\langle B \rangle$$
.

Taking the invertible elements we have a group isomorphism

$$H^2(B) \cong \mathcal{G}\langle B \rangle$$
.

References

- [1] M. E. Sweedler, Groups of Simple Algebras, I. H. E. S. Publ., n⁰44 (1975), 79-189.
- [2] M.E. Sweedler, Hopf Algebras, W.A. Benjamin Inc., New York, 1969.

Mitsuhiro TAKEUCHI Department of Mathematics University of Tsukuba Sakura-mura, Ibaraki Japan