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There are three interrelated topics to be treated in this paper:
I. Monomial relations between the periods of abelian varieties with

complex multiplication;
Il. The derivatives of automorphic forms of arithmetic type;
$m$ . The non-vanishing of the first cohomology group of a discrete sub-

group of $SU(n, 1)$ .
To describe our results, let $A$ be an abelian variety of dimension $g$

defined over $\overline{Q}$ , whose endomorphism-algebra contains a totally imaginary
quadratic extension $K$ of a totally real algebraic number field $F$ such that
$[F:Q]=g$ . Throughout the Paper, we denote by $\overline{Q}$ the algebraic closure of
the rational number field $Q$ embedded in the complex number field $C$. Let $\Phi$

be the representation of $K$ on the space of holomorphic l-forms on $A$ . Then
$\Phi$ consists of $g$ injections $\tau$ of $K$ into $C$, and for each $\tau$, there is a Q-rational

l-form to. on $A$ on which an element $x$ of $K$ acts as a scalar $x^{\tau}$ . As shown
in [13], there is a constant $p(\tau, \Phi)$ such that

(0.1) $\int_{c}\omega_{\tau}\sim\pi\cdot p(\tau, \Phi)$ for all l-cycles $c$ on $A$ .

Here and henceforth, we write $a\sim b$ for two complex numbers $a$ and $b$ if
$a/b\in\overline{Q}$ . The first principal aim of this Paper is to prove monomial relations
between $p(\tau, \Phi)$ for various $\Phi$ with the same $K$, as well as relations between
such “ periods “ for a given $K$ and those for an extension of $K$. The constant
$p(\tau, \Phi)$ can be obtained from a Hilbert modular function $f$ with respect to a
congruence subgroup of $GL_{2}(F)$ as follows. Take the variable $z=(z_{1}, \cdots , z_{g})$ on
the product $\mathfrak{H}_{1}^{g}$ of $g$ copies of the upper half plane $\mathfrak{H}_{1}$ . Let $\Phi=\Sigma_{\nu=1}^{g}\tau_{\nu}$ and
$w_{0}=(w^{\tau_{1}}, \cdots , w^{\tau_{g}})$ with an element $w$ of $K$ such that ${\rm Im}(w^{\tau_{\nu}})>0$ for all $\nu$ .
Then

(0.2) $(\partial f/\partial z_{\nu})(w_{0})\sim\pi\cdot p(\tau_{\nu}, \Phi)^{2}$ $(\nu=1, \cdots g)$ ,

if $f$ is $\overline{Q}$-rational, $i$ . $e.$ , if $f$ is the quotient of two Hilbert modular forms with
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Fourier coefficients in $\overline{Q}$ (see [13]). Now we can speak of Q-rational auto-
morphic functions on $\mathfrak{H}_{1}^{g}$ for a more general type of algebraic groups of which
$GL_{2}(F)$ is a special case. The generalization of (0.2) to such functions will be
our second main subject.

As the third topic, which is a sort of by-product, we show the existence
of a discrete subgroup $\Gamma$ of $SU(n, 1)$ such that $H^{1}(\Gamma\backslash \mathfrak{D}_{n}, R)\neq\{0\}$ , where

$\mathfrak{D}_{n}=\{(z_{1}, \cdots z_{n})\in C^{n}|\sum_{k=1}^{n}|z_{k}|^{2}<1\}$ .

Such a non-vanishing was first proved by Kazhdan in [3]. Subsequently
Wallach obtained more general results for $SU(p, q)$ in the case of compact
quotient [1, Ch. VIII].1)

Our results will be obtained by considering a family of abelian varieties
of dimension $mg$ with the above $K$ as a subalgebra of the endomorphism-
algebra. This is parametrized by the points of a symmetric domain $\mathfrak{D}$ of
which $\mathfrak{D}_{n}$ is a special case. We embed $\mathfrak{D}$ into the Siegel upper half space
$\mathfrak{H}_{mg}$ of degree $mg$, and pull back a certain modular form on $\mathfrak{H}_{mg}$ to $\mathfrak{D}$, which
gives rise to a non-vanishing holomorphic l-form on $\Gamma\backslash \mathfrak{D}_{m-1}$ when $\mathfrak{D}=\mathfrak{D}_{m-1}$ .
The study of the first two topics are made by analysing the pull-back of
another type of (meromorphic) modular form at CM-points. This combined
with our previous results concerning l-forms on $A$ in [13] yields the main
theorems on the monomial relations of $p(\tau, \Phi)$ as well as those on the gener-
alization of (0.2).

Obviously our investigation of the second topic admits of a further ex-
tension to the algebraic groups of a more general type; even for the groups
in the present Paper, no effort is expended to make the sharpest statement.
The author believes, however, that our theorems and Propositions are given
to such an extent as to explain the basic ideas and indicate what their
generalizations or analogues in other cases should be.

1. The main theorems on monomial relations between the periods.

We let an isomorphism $\sigma$ of a field act on the right; thus $x^{\sigma}$ denotes the
image under $\sigma$ of an element $x$ of the Peld. Throughout the paper, we
denote by $\rho$ the complex conjugation. By a CM-field, we understand an
algebraic number field $K$ of finite degree with an automorphism $\sigma$ of order
2 such that $\sigma\tau=\tau\rho$ for every injection $\tau$ of $K$ into $C$. Such a $\sigma$ is obviously
unique for $K$ ; therefore we use the same letter $\rho$ for $\sigma$ ; we also denote by
$K_{0}$ the fixed subfield of $K$ by $\rho$ . Then $K_{0}$ is totally real and $K$ is a totally

1) The reader who is interested only in this topic may dispense with \S \S 2, 5, 6,
and 7.
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imaginary quadratic extension of $K_{0}$ . Conversely, such an extension is a
CM-field.

Given an algebraic number field $K$ of finite degree, we denote by $I_{K}$

(resp. $I_{K}(Q)$) the module of all formal linear combinations $\Phi=\Sigma_{\tau}c_{\tau}\tau$ with
$c_{\tau}\in Z$ (resp. $c_{\tau}\in Q$) of the injections $\tau$ of $K$ into $C$. If $c_{\tau}\geqq 0$ for all $\tau,$

$\Phi$ may
be considered an equivalence class of representations of $K$ by complex
matrices; we then put tr $\Phi(a)=\Sigma_{\tau}c_{\tau}a^{\tau}$ for $a\in K$. We call $(K, \Phi)$ a CM-type
if $K$ is a CM-field and the sum of $\Phi$ and its complex conjugate $\Phi\rho$ is the
class of regular representations of $K$ over $Q$ . We shall also say that $\Phi$ is a
CM-type of $K$.

Let $A$ be an abelian variety defined over $C$, and $f$ an injection of $K$ into
End $(A)\otimes Q$ . We say that $(A, c)$ is of type $(K, \Phi)$ if the representation of $K$

through $\iota$ on the space of holomorphic l-forms on $A$ belongs to $\Phi$ . Suppose
$(K, \Phi)$ is a CM-type and $(A, \iota)$ is of type $(K, \Phi)$ and defined over $\overline{Q}$ . Let
$[K:Q]=2g$ and $\Phi=\Sigma_{J}^{g}\tau$ . For each $\nu$ , there is a Q-rational holomorphic
l-form $\omega_{\nu}$ on $A$ satisfying $\omega_{\nu^{\circ}}\iota(a)=a^{\tau_{\nu}}\omega_{\nu}$ for all $a\in K$ such that $\iota(a)\in End(A)$ ;
$\omega_{\nu}$ is unique up to algebraic factors. In [13, Remark 3.4], we have proved:

PROPOSITION 1.1. There exists a non-zero complex number $p(\tau_{\nu}, \Phi)$ depend-

ing only on $K,$ $\Phi$ , and $\tau_{\nu}$ such that $\int_{c}\omega_{\nu}\sim\pi\cdot p(\tau_{\nu}, \Phi)$ for all l-cycles $c$ on $A$ .

The constant $p(\tau_{\nu}, \Phi)$ is determined up to algebraic factors. If the
multiplicity of $\tau$ in $\Phi$ is $0$ , ( $i$ . $e.$ , if $\tau\not\in\{\tau_{1},$ $\cdots$ , $\tau_{g}\},$) we simply define $p(\tau, \Phi)$

to be 1. Now our Prst main result, in a (seemingly) weaker form, can be
stated as

THEOREM 1.2. Let $\Phi_{1},$ $\cdots$ , $\Phi_{m}$ be CM-types of a CM-field $K$, and $\tau$ an
injection of $K$ into C. Then the number

(1.1) $\Pi_{j=1}^{m}[p(\tau, \Phi_{j})/p(\tau\rho, \Phi_{j})]$ ,

up to algebraic factors, depends only on $\tau$ and $\Phi_{1}+\cdots+\Phi_{m}$ . Moreover, let $(L, \Psi)$

be a CM-type such that $K\subset L$ and the restriction of $\Psi$ to $K$ is $\Phi_{1}+\cdots+\Phi_{m}$ . Let
$q_{K}(\tau, \Psi)$ denote the prOduct of $p(\sigma, \Psi)$ for all injections $a$ of $L$ into $C$ which
coincide with $\tau$ on K Then $q_{K}(\tau, \Psi)/q_{K}(\tau\rho, \Psi)$ differs from (1.1) by an algebraic
factor.

The proof will be given in \S 5.
Let $I_{K}^{0}$ (resp. $I_{K}^{0}(Q)$) denote the submodule of $I_{K}$ (resp. $I_{K}(Q)$) consisting of

all $\Sigma_{\tau}c_{-}\tau$ such that $c_{\tau}+c_{\tau\rho}$ does not depend on $\tau$ . Notice that if $\Psi$ is a
CM-type of an extension of $K$, the restriction of $\Psi$ to $K$ belongs to $I_{K}^{0}$ . Now
we state the stronger form of the above theorem as

THEOREM 1.3. Let $\Phi_{1},$ $\cdots$ , $\Phi_{m}$ be CM-types of $K$ and suPpose $\Sigma_{i=1}^{m}r_{i}\Phi_{i}=0$

with $r_{i}\in Q$ . Then, for every injection $\tau$ of $K$ into $C$, we have
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$\Pi_{i=1}^{m}[p(\tau, \Phi_{i})/p(\tau\rho, \Phi_{i})]^{r_{i}}\sim 1$ .

Moreover, let $\Psi$ be a CM-type of an extension $L$ of K SuppOse the restriction
of $\Psi$ to $K$ can be written $\sum_{i=1}^{m}s_{i}\Phi_{i}$ with $s_{i}\in Q$ . Then, for every injection $\tau$ of
$K$ into $C$, we have

$q_{k}(\tau, \Psi)/q_{K}(\tau\rho, \Psi)\sim\Pi_{i=1}^{m}[p(\tau, \Phi_{i})/p(\tau\rho, \Phi_{i})]^{s_{i}}$ ,

where $q_{K}(\tau, \Psi)$ is defined as in Theorem 1.2.
PROOF. The first assertion can be derived from Theorem 1.2 by express-

ing the equality $\sum_{i}r_{i}\Phi_{i}=0$ as $\sum_{i}a_{i}\Phi_{i}=\sum_{i}b_{i}\Phi_{i}$ with positive integers $a_{i}$ and
$b_{i}$ . To prove the second assertion, observe that the restriction of $\Psi$ to $K$

can be written $\sum_{k=1}^{n}\Phi_{k}^{\prime}$ with CM-types $\Phi_{k}^{\prime}$ of $K$. Take positive integers $f,$ $c_{i}$

and $d_{i}$ so that $fs_{i}=c_{i}-d_{i}$ . Then $f\Sigma_{k}\Phi_{k}^{\prime}+\sum_{i}d_{i}\Phi_{i}=\sum_{i}c_{i}\Phi_{i}$ , so that the desired
result follows from Theorem 1.2.

Let us now insert here a few propositions which can easily be derived
from our definition.

PROPOSITION 1.4. Let $(K, \Phi)$ and $(L, \Psi)$ be CM-types such that $K\subset L$ and
the restriction of $\Psi$ to $K$ is $[L:K]$ times $\Phi$ . Then $p(\tau, \Phi)\sim p(a, \Psi)$ if $\tau$ is
the restriction of $\sigma$ to $K$.

PROOF. Let $(A, \iota)$ and $(A^{\prime}, \iota^{\prime})$ be of type $(K, \Phi)$ and $(L, \Psi)$ , respectively.
By [7, Proposition 14], $A^{\prime}$ is isogenous to the product of $[L:K]$ copies of
$A$ . Our assertion follows immediately from this fact.

PROPOSITION 1.5. Let $(K, \Phi)$ be a CM-type, and $a$ an isomorphism of a
field $K_{1}$ onto K. Then $p(\sigma\tau, \sigma\Phi)\sim p(\tau, \Phi)$ , where we let $a$ act on $I_{K}$ on the
left in an obvious way.

This is obvious.
The nature of the periods of the anti-holomorphic l-forms $\overline{\omega}_{\nu}$ can be seen

from
PROPOSITION 1.6. $p(\tau, \Phi)^{\rho}\sim p(\tau, \Phi)$ .
PROOF. As shown in [13, pp. 381-383], the number $p(\tau, \Phi)$ can be obtained

as the value $h(w_{0})$ of a quotient $h=f_{1}/f_{2}$ of two Hilbert modular forms $f_{1}$ and
$f_{2}$ , with Fourier coefficients in $K_{0}^{\tau}$ , at a point $w_{0}=(w^{\tau_{1}}, \cdots , w^{\tau_{g}})$ with $w\in K$

such that ${\rm Im}(w^{\tau_{\nu}})>0$ for all $\tau_{\nu}$ . We can take $w$ to be pure imaginary. Then
$h(w_{0})$ is real.

We have so far been interested in $p(\tau, \Phi)$ only up to algebraic factors.
Let us now refine this point by considering them and their products uP to
factors belonging to smaller fields. For simplicity, let us assume that all
number fields in the following discussion are subfields of $C$, and denote by
$K_{ab}$ the maximal abelian extension of a number field $K$. For each $\Phi\in I_{K}$ , let
$K^{\Phi}$ denote the field generated over $Q$ by tr $\Phi(a)$ for all $a\in K$. Let $M$ be the
Galois closure of $K$ over $Q$ , and let $G=Ga1(M/Q)$ and $H=Ga1(M/K)$ . Then $I_{K}$
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can be identified with the Z-module generated by the cosets $ H\alpha$ with $\alpha\in G$ ;
$G$ acts on $I_{K}$ on the right. It is easy to see that

$Ga1(M/K^{\Phi})=\{\gamma\in G|\Phi\gamma=\Phi\}$ (cf. [15, \S 8.3]).

CONJECTURE 1.7. Let $\tau$ be an injection of a CM-field $K$ into $C$, and $\Phi\in I_{K}^{0}$ .
Then we can sPecify a non-zero $comPlex$ number $P(\tau, \Phi)$ , up to factors belonging
to $(K^{\Phi})_{ab}K_{0}^{r}$ , with the Property that if $\Phi=\Sigma_{i=1}^{m}s_{i}\Phi_{i}$ with CM-types $\Phi_{i}$ of $K$ and
$s_{i}\in Z$, then

$P(\tau, \Phi)\sim\Pi_{i=1}^{m}[p(\tau, \Phi_{i})/p(\tau\rho, \Phi_{i})]^{s_{i}}$ .

We now show that this conjecture can be reduced to a certain special
case. Let $[K:Q]=2g$ and let $\Omega$ denote the sum of all injections of $K$ into
$C$. Every element $\Phi$ of $I_{K}^{0}$ can be expressed as $\Phi=a\Omega+\Xi$ with $a\in Z$ and

$\Xi=\Sigma_{\nu=1}^{g}[a_{\nu}\tau_{\nu}+(n-a_{\nu})\tau_{\nu}\rho]$ ,

where the $\tau_{\nu}$ are $g$ injections which form a CM-type of $K$, and the $a_{\nu}$ are
non-negative integers such that $n-a_{g}\leqq a_{g}\leqq\cdots\leqq a_{1}=n$ . Such $n$ is uniquely
determined by $\Phi$ . In view of Proposition 1.5, we can put $P(\tau, \Phi)=P(\tau, \Xi)$ .
Let us prove:
(1.2) Conjecture 1.7 is true if either $n$ is odd or $n=0$ ;
(1.3) Conjecture 1.7 is true if it is true for $n=2$ .

First if $n=0$, we can put $P(\tau, \Xi)=1$ . If $n=1,$ $\Xi$ is a CM-type, and
$P(\tau, \Xi)$ must be $\sim p(\tau_{\nu}, \Xi)$ or $p(\tau_{\nu}, \Xi)^{-1}$ according as $\tau=\tau_{\nu}$ or $\tau=\tau_{\nu}\rho$ . Now
$p(\tau_{\nu}, \Xi)$ can be given as the value $h(w)$ as explained in the proof of Proposi-
tion 1.6, which settles the problem, since the quotient of two such values
belong to $(K^{\Xi})_{ab}K_{0^{\nu}}^{\tau}$ . If $n=2,$ $\Xi$ has the form

(1.4) $\Xi=\Sigma_{\nu=1}^{r}2_{T_{\nu}}+\Sigma_{=r+1}^{g}(\tau_{\nu}+\tau_{\nu}\rho)$

with $0<r\leqq g$ . Let us assume that one can specify $P(\tau, \Xi)$ for such $\Xi$ as in
our conjecture. Suppose $n>2$ . If $a_{g}>n/2$ (which is the case when $n$ is odd),
$\Xi$ can be written

$\Xi=\Sigma_{j=1}^{t}[b_{j}\xi_{j}+(n-b_{j})\xi_{j}\rho]$

with partial sums $\xi_{1},$ $\cdots$ , $\xi_{t}$ of $\sum_{y=1}^{g}\tau_{\nu}$ such that $\sum_{j=1}\xi_{j}=\sum_{=1}^{g}\tau_{\nu}$ and positive
integers $b_{j}$ such that $n-b_{t}<b_{t}<\cdots<b_{1}=n$ . Then we can find CM-types
$\Phi_{1},$ $\cdots$ , $\Phi_{n}$ such that $\Xi=\Sigma_{i=1}^{n}\Phi_{i}$ and each $\Phi_{i}$ has an expression $\Phi_{i}=\xi_{1}+\cdots+$

$\xi_{s}+\xi_{s+1}\rho+\cdots+\xi_{t}\rho$ Observe that if $\Xi\gamma=\Xi$ for an element $\gamma\in G$ , then $\xi_{j}\gamma=\xi_{j}$

for every $j$, and hence $\Phi_{i}\gamma=\Phi_{i}$ for every $i$ . This implies that $K^{\Phi_{i}}\subset K^{\Xi}$ .
Therefore we can put $P(\tau, \Xi)=\Pi_{i=1}^{n}P(\tau, \Phi_{i})$ . Next suppose $a_{g}=n/2$ ; then
$n\geqq 4$ . We are going to define $P(\tau, \Xi)$ by induction on $n$ . We observe that

$\Xi=\sum_{\nu=1}^{r}[a_{\nu}\tau_{\nu}+(n-a_{\nu})_{T_{\nu}}\rho]+(n/2)\Sigma_{\nu=r+1}^{g}(\tau_{\nu}+\tau_{\nu}\rho)$
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with the integer $\gamma$ such that $a_{r-1}>a_{r}=\cdots=a_{g}$ . Put

$\Psi=\Sigma_{\nu=1}^{r}2\tau_{\nu}+\sum ff_{=r+1}(\tau_{\nu}+\tau_{\nu}\rho)$

and $\Xi=\Psi+\Xi^{\prime}$ . Then $\Xi\gamma=\Xi$ implies $\Psi\gamma=\Psi$ and $\Xi^{\prime}\gamma=\Xi^{\prime}$ , and hence $K^{\Psi}K^{\Xi\prime}$

$\subset K^{\Xi}$ . By induction, $P(\tau, \Psi)$ and $P(\tau, \Xi^{\prime})$ are meaningful. Therefore we can
put $P(\tau, \Xi)=P(\tau, \Psi)P(\tau, \Xi^{\prime})$ .

We shall prove in \S 7 that if $\Xi$ is given by (1.4), $P(\tau_{\nu}, \Xi)$ can be sPecified
as in our conjecture at least for $\nu\leqq r$ . Thus the conjecture is reduced to the
problem of finding $P(\tau_{\nu}, \Xi)$ for such $\Xi$ and for $\nu>r$.

2. Applications and examples.

The above theorems imply various interesting relations between the
periods $p(\tau, \Phi)$ . For simplicity, we assume in this section that all fields are
subfields of $C$. Let us begin with the simplest case where $K$ is an imaginary
quadratic field. There are two CM-types $(K, \varphi)$ and $(K, \rho)$ with the identity
map of $K$ as $\varphi$ . The period in these cases is given by means of an elliptic
modular form $h$ of weight 1 with algebraic Fourier coefficients. In fact, if
$w$ is an element of $K$ such that ${\rm Im}(w)>0$ and $h(wJ\neq 0$ , we have $ P(\varphi, \varphi)\sim$

$p(\rho, \rho)\sim h(w)$ by [13, Remark 3.4]. As a special case of Theorem 1.2, we
obtain

PROPOSITION 2.1. Let $(L, \Psi)$ be a CM-tyPe. $SuPPose$ that $L$ contains an
imaginary quadratic field $K$ and the restriction of $\Psi$ to $K$ is $ r\varphi+s\rho$ with non-
negative integers $\gamma$ and $s$, where $\varphi$ denotes the identity map of K. Then
$q_{K}(\varphi, \Psi)/q_{K}(\rho, \Psi)\sim h(w)^{r-S}$ .

A similar but somewhat different result has been obtained by Gross [2]

with no mention of $p(\tau, \Phi)$ in the higher-dimensional case.
EXAMPLE 2.2. Suppose in particular $r=s$ in Proposition 2.1. Then we

have $q_{K}(\varphi, \Psi)\sim q_{K}(\rho, \Psi)$ which is a non-trivial relation between the periods;
this happens even when $(L, \Psi)$ is primitive. For instance, let $L_{0}$ be a totally
real extension of $Q$ of degree 4 with no subfields of degree 2, and let $L=L_{0}K$

with an imaginary quadratic field $K$. We can define a CM-type $\Psi=\sum_{\nu=1}^{4}\tau_{\nu}$ of
$L$ so that $\tau_{1}=\tau_{2}=\varphi$ and $\tau_{3}=\tau_{4}=\rho$ on $K$. Then $(L, \Psi)$ is primitive and

(2.1) $p(\tau_{1}, \Psi)p(\tau_{2}, \Psi)\sim p(\tau_{3}, \Psi)p(\tau_{4}, \Psi)$ .

Similar examples can be obtained for fields of higher degree.
We now study the periods in connection with the reflex of a given CM-

type. First, for a fixed CM-field $K$ of degree $2g$ , take a pair of CM-types $\Phi_{0}$

and $\Phi_{1}$ of the forms

$\Phi_{0}=\tau_{1}+\tau_{2}+\cdots+\tau_{g}$ , $\Phi_{1}=\tau_{1}+(\tau_{2}+\cdots+\tau_{g})\rho$ ,



Periods of abelian varieties 567

where $\tau_{1}$ is the identity map of $K$, and for each injection $\tau$ of $K$ into $C$,
define an element $p_{K}(\tau)$ of $C^{\times}/\overline{Q}^{\times}$ by

(2.2) $p_{K}(\tau)\sim\left\{\begin{array}{ll}p(\tau_{1}, \Phi_{0})p(\tau_{1}, \Phi_{1}) & if \tau=\tau_{1},\\1/[p[\tau_{1}, \Phi_{0})p(\tau_{1}, \Phi_{1})] & if \tau=\rho,\\p(\tau_{i}, \Phi_{0})/p(\tau_{i}\rho, \Phi_{1}) & if \tau=\tau_{i},\\p(\tau_{i}\rho, \Phi_{1})/p(\tau_{i}, \Phi_{0}) & if \tau=\tau_{i}\rho.\end{array}\right.$

By Theorem 1.2, this definition does not depend on the choice of $\tau_{2},$
$\cdots$ , $\tau_{g}$ .

Let $\Phi$ be an arbitrary CM-type of $K$, and $(J, \Psi)$ the reflex of $(K, \Phi)$ in the
sense of [11, 1.3] ( $i$ . $e.$ , the dual defined in [9, 5.1] and [15, 8.3]). Then $J=K^{\Phi}$ .
Let $M$ be the Galois closure of $K$ over $Q$ and let $G=Ga1(M/Q)$ . Consider $\Phi$

and $\Psi$ as the sets of injections of $K$ and $J$ into $M$. For each $\sigma\in\Psi$ take
$\gamma\in G$ which gives $a$ on $J$. Observe that $\Phi\gamma$ is a CM-type of $K$ depending
only on $a$ , since $\Phi\alpha=\Phi$ for $\alpha\in Ga1(\Lambda f/J)$ ; therefore we write $\Phi\gamma$ also $\Phi\sigma$ .

THEOREM 2.3. If $(J, \Psi)$ is the $re.\beta ex$ of $(K, \Phi)$ and $\sigma\in\Psi$, we have

$p(a, \Psi)^{2}\sim\Pi_{\tau\in\Phi\sigma}p_{K}(\tau)$ .
PROOF. Observe that $(J^{\sigma}, \sigma^{-1}\Psi)$ is the reflex of $(K, \Phi\sigma)$ . By Proposition

1.5, we have $p(\sigma, \Psi)\sim p(1, \sigma^{-1}\Psi)$ . Therefore, taking $\Phi\sigma$ and $\sigma^{-1}\Psi$ in place of
$\Phi$ and $\Psi$ , it is sufficient to prove

(2.3) $p(1, \Psi)^{2}\sim\Pi_{\tau\in\Phi}p_{K}(\tau)$

when $ 1\in\Phi$ and $ 1\in\Psi$ . Since $M$ is a CM-field, we can define $p_{M}(\alpha)$ for each
$\alpha\in G$ . We consider $\rho$ an element of $G$ , which is actually contained in the
center. For a subset $X$ of $G$ , we use the same letter $X$ for the element of
$I_{M}$ which is the sum of the elements of $X$. Let us now prove

(2.4) $\Pi_{a\in X}p_{M}(\alpha)\sim p(1,1+X^{-1}+Y)/p(1,1+X^{-1}\rho+Y)$

if $X$ and $Y$ are subsets of $G$ such that $1+X^{-1}+Y$ is a CM-type of $M$, where
$X^{-1}=\{\gamma^{-1}|\gamma\in X\}$ . This is obvious if $X$ is empty. Assume (2.4) is true for $X$

and let $W=X\cup\{\beta\}$ ; suppose $1+W^{-1}+Z$ is a CM-type. Then we have

$p_{M}(\beta)\sim p(\beta, 1+\beta+\beta X^{-1}+\beta Z)/p(\beta\rho, 1+\beta\rho+\beta X^{-1}\rho+\beta Z\rho)$

$\sim p(1,1+W^{-1}+Z)/p(1,1+X^{-1}+\beta^{-1}\rho+Z)$ .
This multiplied by (2.4) with $ Y=Z+\beta^{-1}\rho$ proves the case of $X\cup\{\beta\}$ ; thus the
proof of (2.4) is completed by induction. Let $H=Ga1(M/K)$ . Then $p_{K}(H\beta)$

for $\beta\in G$ is meaningful. Now we have

(2.5) $p_{K}(H\beta)\sim\Pi_{\alpha\in H\beta}p_{M}(\alpha)$ .
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In fact, if $\beta\not\in H$, we take a CM-type $\sum_{\nu=1}^{g}\tau_{\nu}$ of $K$ so that $\tau_{1}=id_{K}$ and $\tau_{2}$ is
represented by $ H\beta$ . Let $H\beta_{\nu}$ represent $\tau_{\nu}$ for $\nu>1$ with $\beta=\beta_{2}$ . Then

$p_{K}(\tau_{2})\sim p(\tau_{2}, \tau_{1}+\tau_{2}+\cdots+\tau_{g})/p(\tau_{2}\rho, \tau_{1}+\tau_{2}\rho+\cdots+\tau_{g}\rho)$

$\sim P(\beta, H+H\beta_{2}+\cdots+H\beta_{g})/p(\beta\rho, H+H\beta_{2}\rho+\cdots+H\beta_{g}\rho)$

by Proposition 1.4. Define $Y$ by $\beta Y+\beta=H\beta_{2}+\cdots+H\beta_{g}$ . Then

$p_{K}(\tau_{2})\sim p(\beta, H+\beta+\beta Y)/p(\beta\rho, H+\beta\rho+\beta Y\rho)$

$\sim p(1,1+\beta^{-1}H+Y)/p(1,1+\beta^{-1}H\rho+Y)\sim\Pi_{\alpha\in H\beta}p_{M}(\alpha)$

by (2.4); this proves (2.5) in the case $\beta\not\in H$. To prove the case $H\beta=H$, put
$A=H-1$ and $B=H\beta_{2}+\cdots+H\beta_{g}$ . Then

$\Pi_{a\in H}p_{M}(\alpha)\sim p_{M}(1)\Pi_{a\in A}p_{M}(\alpha)$

$\sim p(1,1+A+B\rho)p(1,1+A\rho+B)p(1,1+A+B)/p(1,1+A\rho+B)$ (by (2.4))

$\sim p(1, H+B)p(1, H+B\rho)$

$\sim p(\tau_{1}, \tau_{1}+\cdots+\tau_{g})p(\tau_{1}, \tau_{1}+(\tau_{2}+\cdots+\tau_{g})\rho)$ (by Proposition 1.4)

$\sim p_{K}(\tau_{1})$ .

This completes the proof of (2.5). Now let $\Phi$ be represented by $H\gamma_{1},$ $\cdots$ , $H\gamma_{g}$ ,

and let $S=H\gamma_{1}+\cdots+H\gamma_{g}=1+X$. By (2.4) and (2.5),

$\Pi_{\tau\in\Phi}p_{K}(\tau)\sim\Pi_{\alpha\in S}p_{M}(\alpha)\sim p_{M}(1)\Pi_{\alpha\in X}p_{M}(\alpha)$

$\sim p(1,1+X^{-1})p(1,1+X^{-1}\rho)p(1,1+X^{-1})/p(1,1+X^{-1}\rho)$

$\sim p(1,1+X^{-1})^{2}\sim p(1, S^{-1})^{2}$ .

Now the restriction of $S^{-1}$ to $J$ is exactly $[M:J]\Psi$ according to the definition
of the reflex. Thus $p(1, S^{-1})\sim p(1, \Psi)$ by Proposition 1.4, and we obtain (2.2).

This completes the proof.
REMARK 2.4. Let $\mathfrak{C}_{K}$ denote the set of all CM-types of $K$. Then $\mathfrak{E}_{K}$ has

$2^{g}$ elements and $G$ acts on $\mathfrak{E}_{K}$ on the right. Let $\{\Phi_{1}, \cdots , \Phi_{s}\}$ be a complete
set of representatives for $\mathfrak{C}_{K}/G$ , and let $(J_{i}, \Psi_{i})$ be the reflex of $(K, \Phi_{i})$ . Then
$\{\Phi_{i}\gamma|\gamma\in G\}$ contains exactly $[J_{i} : Q]$ elements, so that $\sum_{i=1}^{s}[J_{i} : Q]=2^{g}$ . Since
the reflex of $(K, \Phi_{i}\gamma)$ is $(J_{\iota^{\gamma}}, \gamma^{-1}\Psi_{i})$ , the CM-types $(J_{i}, \Psi_{i})$ , for $i=1,$ $\cdots$ , $s$ ,
“ represents “ the reflexes of all the CM-types of $K$ Observe that $p_{K}(\tau\rho)$

$=p_{K}(\tau)^{-1}$ . Therefore the above theorem shows that the $2^{g-1}$ numbers $p(\sigma, \Psi_{i})^{2}$

are monomials of $g$ numbers $p_{K}(\tau_{1}),$ $p_{K}(\tau_{g})$ and their inverses. As shown
in [11, 1.9, 1.10], it can happen that $s=1$ and $[J_{1} : Q]=2^{g}$ . In any case, at
most $g$ of the numbers $p(a, \Psi_{i})$ can be algebraically independent. We can
refine this point as follows.
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THEOREM 2.5. Let $\Psi=\Sigma_{\lambda=1}^{h}\sigma_{\lambda}$ be a CM-type of a CM-field $J$ of degree $2h$ ,
and $M$ the Galois closure of $J$ over Q. Further let $t(\Psi)$ be the dimension of the
svbspace of $I_{J}^{0}(Q)$ generated over $Q$ by $\Psi\gamma$ for all $\gamma\in Ga1(M/Q)$ , and let $\delta(\Psi)$

$=h+1-t(\Psi)$ . Then the module

$\{(x_{1}, \cdots x_{h})\in Z^{h}|\Pi_{\lambda=1}^{h}p(a_{\lambda}, \Psi)^{x_{\lambda}}\sim 1\}$

has rank at least $\delta(\Psi)$ .
PROOF. We note that $\delta(\Psi)\geqq 0$, since $I_{J}^{0}(Q)$ has dimension $h+1$ . Let $(K, \Phi)$

be the reflex of $(J, \Psi)$ , and $(J^{\prime}, \Psi^{\prime})$ the reflex of $(K, \Phi)$ . Then the restriction
of $\Psi$ to $J^{\prime}$ is $[J:J^{\prime}]\Psi^{\prime}$ . Obviously $t(\Psi)=t(\Psi^{\prime})$ ; therefore Proposition 1.4
reduces the problem to $(J^{\prime}, \Psi^{\prime})$ ; so we assume $J=J^{\prime}$ . Now by Kubota [17],

we have

(2.6) $t(\Psi)=t(\Phi)$ .
(This is non-trivial, but can be proved in an elementary way.) Changing $\Phi$

for $\Phi\rho$ if necessary, we may assume that $\rho\not\in\Phi$ . Let $W$ be the subspace of
$I_{K}^{0}(Q)$ generated by $\Phi a$ for all $ a\in\Psi$ . Since $\Phi\gamma+\Phi\gamma\rho=\Phi+\Phi\rho$ , we see that
$\Phi\gamma\in W+Q\Phi\rho$ for all $\gamma\in G$ . Observe that $\Phi\rho\not\in W$. Therefore $W$ has dimension
$t(\Phi)-1$ . If $\sum_{\lambda=1}^{h}x_{\lambda}\Phi\sigma_{\lambda}=0$, then Theorem 2.3 implies that

$\square ?_{=1}p(\sigma_{\lambda}, \Psi)^{2x_{\lambda}}\sim 1$ .
This proves our theorem.

REMARK 2.6. (a) Since $t(\Psi)=t(\Psi^{\prime})\leqq\frac{1}{2}[J^{\prime} : Q]+1$ , we have $\delta(\Psi)=0$ only

when $\Psi$ is primitive. The converse is not true, however.
(b) If $J$ is a Galois extension of $Q$ , it can easily be seen that $t(\Psi)$ is the

dimension of the space generated over $Q$ by $\gamma\Psi$ for all $\gamma\in Ga1(J/Q)$ .
PROPOSITION 2.7. Let $(K, \Phi)$ and $(L, \Psi)$ be $CM_{-}types$ . SuPpose that $K\subset L$,

$\delta(\Psi)=0$ , and $L$ is a Galois extension of Q. Then, for each injection $\tau$ of $K$

into $C$, we have

(2.7) $p(\tau, \Phi)\sim\Pi_{\alpha\in G}p(\alpha, \Psi)^{b_{\alpha}}$

with $b_{a}\in Q$, where $G=Ga1(L/Q)$ .
PROOF. There is a CM-type $\Psi_{1}$ of $L$ whose restriction to $K$ is $[L:K]\Phi$ .

Take $\beta\in G$ which gives $\tau$ on $K$ If $\delta(\Psi)=0,$ $I_{L}^{0}(Q)$ is generated by $\alpha\Psi$ for all
$\alpha\in G$ , so that $\Psi_{1}=\sum_{a\in G}c_{\alpha}\alpha\Psi$ with $c_{a}\in Q$ . Then, for $\tau\in\Phi$ ,

$p(\tau, \Phi)\sim p(\beta, \Psi_{1})\sim\Pi_{\alpha\in G}[p(\beta, \alpha\Psi)/p(\beta\rho, \alpha\Psi)]^{c_{\alpha}}$

$\sim\Pi_{a\in G}[p(\alpha^{-1}\beta, \Psi)/p(\alpha^{-1}\beta\rho, \Psi)]^{c_{a}}$

by Theorem 1.3 and Proposition 1.5. This proves our assertion.
REMARK 2.8. (a) It often happens that $I_{L}^{0}$ is generated over $Z$ by $\alpha\Psi$ for
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all $\alpha\in G$ . In such a case, we have (2.7) with $b_{\alpha}\in Z$.
(b) The above proposition includes the case $K=L$ . Therefore, when $L$ is

normal over $Q$ and $\delta(\Psi)=0$, the quantities $p_{L}(a)$ are algebraically dependent

on $p(\alpha, \Psi)$ and vice versa.
Let us now assume that $K$ is an imaginary cyclic extension of $Q$ of

degree $2g$ . It can easily be seen that if $\Phi=\Sigma_{\nu=0}^{g-1}\sigma^{\nu}$ with a generator $\sigma$ of
$Ga1(K/Q)$ , we have $\delta(\Phi)=0$, and $\sigma^{\nu}\Phi$ for $\nu=0,1,$ $\cdots$ , $g$ form a basis of $I_{K}^{0}$ over
$Z$. Let $(L, \Psi)$ be a CM-type such that $K\subset L$ . Then the restriction of $\Psi$ to
$K$ belongs to $I_{K}^{0}$ , and hence can be written $\sum_{\nu=0}^{g}s_{\nu}\sigma^{\nu}\Phi$ with $s_{\nu}\in Z$. By Theo-
rem 1.3 and Proposition 1.5, we have

(2.8) $q_{K}(\sigma^{\lambda}, \Psi)/q_{K}(\sigma^{\lambda+g}, \Psi)\sim\Pi_{\nu=0}^{g}[p(\sigma^{\lambda-\nu}, \Phi)/p(\sigma^{\lambda+g-\nu}, \Phi)]^{s_{\nu}}$

$(\lambda=0,1, \cdots, g-1)$ .

If the restriction of $\Psi$ to $K$ is $\Sigma_{\nu=0}^{2g-1}r_{\nu}a^{\nu}$ with $0\leqq r_{\nu}\in Z$, we have $s_{0}=r_{0},$ $s_{1}=$

$r_{1}-r_{0},$ $\cdots$ , $s_{g-1}=r_{g-1}-r_{g-2}$ , and $s_{g}=r_{g}-r_{g-1}+r_{0}$ . Consider (2.8) as “ linear
equations ” in the variables $p(\sigma^{\mu}, \Phi)$ for $\mu=0,1,$ $\cdots$ , $g-1$ . The determinant
of the coefficients can be given in terms of $\gamma_{\nu}$ ; if it is non-vanishing, we can
express $p(\sigma^{\mu}, \Phi)$ by means of $q_{K}(\sigma^{\lambda}, \Psi)$ . For example, if $g=2$ , we obtain

PROPOSITION 2.9. Let $K$ be an imaginary cyclic extension of $Q$ of degree 4,
and $\Phi=1+a$ with a generator $\sigma$ of $Ga1(K/Q)$ . Let $(L, \Psi)$ be a $CM_{-}type$ such
that $K\subset L$ , and let the restriction of $\Psi$ to $K$ be $\sum_{\nu=0}^{3}r_{\nu}a^{\nu}$ with $0\leqq r_{\nu}\in Z$.
SuPpose $r_{0}\neq r_{1}$ or $r_{1}\neq r_{2}$ , and let

$a=(r_{1}-r_{2})/[(r_{1}-r_{2})^{2}+(r_{0}-r_{1})^{z}]$ , $b=(r_{0}-r_{1})/[(r_{1}-r_{2})^{2}+(r_{0}-r_{1})^{2}]$ .
Then we have

$p(1, \Phi)\sim q_{K}(1, \Psi)^{a}q_{K}(\sigma^{2}, \Psi)^{-a}q_{K}(\sigma, \Psi)^{-b}q_{K}(\sigma^{3}, \Psi)^{b}$ ,

$p(\sigma, \Phi)\sim q_{K}(1, \Psi)^{b}q_{K}(a^{2}, \Psi)^{-b}q_{K}(a, \Psi)^{a}q_{K}(\sigma^{3}, \Psi)^{-a}$ .

Observe that $r_{0}+r_{2}=r_{1}+r_{3}=[L:K]$ . Therefore if $[L:K]$ is odd, we
have $r_{0}\neq r_{1}$ or $r_{1}\neq r_{2}$ .

Coming back to the case of an arbitrary degree, if equations (2.8) are not
independent, we obtain non-trivial relations among $p(\tau, \Psi)$ .

EXAMPLE 2.10. Suppose that $L$ is a cyclic extension of $Q$ of degree 18,
$[L:K]=3$ , and $\tau$ a generator of $Ga1(L/Q)$ which coincides with $\sigma$ on $K$ Put
$\Psi=1+\tau^{10}+\sum_{\nu=2}^{8}\tau$“. Then $(L, \Psi)$ is primitive. In this case, the right-hand sides
of (2.8) for $\lambda=0$ and $\lambda=2$ are the same; for $\lambda=1$ , we obtain its inverse.
Therefore

$p(1, \Psi)p(\tau^{6}, \Psi)/p(\tau^{3}, \Psi)\sim p(\tau^{4}, \Psi)p(\tau^{10}, \Psi)/p(\tau^{7}, \Psi)$

$\sim p(\tau^{2}, \Psi)p(\tau^{8}, \Psi)/p(\tau^{5}, \Psi)\sim p(1, \Phi)p(\sigma^{2}, \Phi)/p(a, \Phi)$ .
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In fact, we can easily verify that $\delta(\Psi)=2$ , and these relations are those
guaranteed by Theorem 2.5 and its proof.

The relations given by Proposition 2.7 can be used to express the periods
in terms of the values of the gamma-function. For example, let $L=Q(\zeta)$ ,
$\zeta=\exp(2\pi i/l)$ with an odd prime 1. As shown by Weil [16], if $\Psi$ is the
CM-type of $L$ obtained from a curve of the form $y^{l}=x^{a}(1-x),$ $p(\alpha, \Psi)$ is the
product of an algebraic number, a power of $\pi$ , and a monomial of $\Gamma(t/l)$ for
$t=1,$ $\cdots$ , $l-1$ . It was shown by Kubota [17] that $\delta(\Psi)=0$ for $a=1$ . Therefore
Proposition 2.7 guarantees an expression for $p(\tau, \Phi)$ in terms of $\Gamma(t/l)$ for
every CM-type $\Phi$ of every imaginary subfield of $Q(\zeta)$ .

More CM-types of cyclotomic fields can be obtained from the factors of
the jacobian of the curve $x^{d}+y^{e}=1$ with arbitrary positive integers $d$ and $e$ .
The periods of abelian integrals in the case $d=e$ have been computed by
Rohrlich in [2, Appendix]. It seems that Theorem 1.3 and the idea in the
proof of Proposition 2.7, together with a careful analysis of these CM-types,
will lead to a general result about an expression of $p(\tau, \Phi)$ as a monomial of
the values of $\Gamma$ for an arbitrary CM-type $\Phi$ of an arbitrary imaginary cyclo-

tomic field, which will give a generalization of the formula of Chowla and
Selberg in [6]. In the cases in which the periods are expressed by $\Gamma(t/l)$ ,

our monomial relations can often be checked directly by means of the known
relations of $\Gamma$ such as $\Gamma(s)\Gamma(1-s)\sim\pi$ for $s\in Q$ . Probably this is always so
in such cyclotomic cases. In other words, it is unlikely that our relations
produce new algebraic relations between the values of $\Gamma$ .

Finally we mention that $p(\tau, \Phi)$ is closely connected with the values of
L-functions of a CM-field with Hecke characters, as shown by [12, Theorem 2].

3. The symmetric domain of a unitary group.

To simplify our notation, we denote by $diag[X_{1}, \cdots , X_{m}]$ the square
matrix with square matrices $X_{1},$ $\cdots$ , $X_{m}$ on the diagonal blocks and with $0$

in all other blocks. If $S$ is a ring, we let $S_{q}^{p}$ denote the module of all $p\times q$

matrices with entries in $S$ ; we Put $S^{p}=S_{1}^{p}$ and $M_{p}(S)=S_{p}^{p}$ . For a complex
hermitian matrix $H$, we write $H>0$ if $H$ is positive dePnite. Given two
non-negative integers $\gamma$ and $s$ , put $J_{r.s}=diag[1_{\gamma}, -1_{s}]$ , $m=r+s$ , where $1_{r}$

denotes the identity matrix of degree $r$, and define a unitary group $U(r, s)$ by

(3.1) $U(r, s)=\{\alpha\in GL_{m}(C)|{}^{t}\overline{\alpha}J_{r,s}\alpha=J_{r.s}\}$ ;

we understand that $J_{rs}=1_{m}$ if $rs=0$ . The quotient of $U(r, s)$ modulo a maxi-
mal compact subgroup is isomorphic to a bounded symmetric domain $\mathfrak{D}(r, s)$

defined by
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(3.2) $\mathfrak{D}(r, s)=\{z\in C_{s}^{r}|1_{r}-z\cdot{}^{t}\overline{z}>0\}$ .

To define the action of $U(r, s)$ on $\mathfrak{D}(r, s)$ , let $\mathfrak{X}$ be the set of all elements $Y$

of $GL_{m}(C)$ such that ${}^{t}\overline{Y}J_{r.s}Y=diag[A, -B]$ with $0<A={}^{t}\overline{A}\in C_{r}^{r}$ and $0<B=$
${}^{t}\overline{B}\in C_{s}^{s}$ . Put

(3.3) $Y(z)=\left\{\begin{array}{ll}1_{r} & z\\\iota_{\overline{Z}} & 1_{s}\end{array}\right\}$ $(z\in \mathfrak{D}(r, s))$ .

It can easily be seen that

$(z, u, v)\rightarrow Y(z)\left(\begin{array}{ll}u & 0\\0 & v\end{array}\right)$

gives a bijective map of $\mathfrak{D}(r, s)\times GL_{r}(C)\times GL_{s}(C)$ onto $\chi$ . Obviously $\alpha Y\in \mathfrak{X}$ if
$\alpha\in U(r, s)$ and $Y\in \mathfrak{X}$ . Therefore, if $z\in \mathfrak{D}(r, s)$ , we can define a point $\alpha(z)$ of
$\mathfrak{D}(r, s)$ by

(3.4) $\alpha\cdot Y(z)=Y(\alpha(z))\cdot diag[\overline{\lambda(\alpha,z)}, \mu(\alpha, z)]$

with $\lambda(\alpha, z)\in GL_{r}(C)$ and $\mu(\alpha, z)\in GL_{s}(C)$ . Notice that both $\lambda$ and $\mu$ are
holomorphic factors of automorphy. Put

(3.5) $R(z, w)=\overline{{}^{t}Y(z)}J_{r,s}Y(w)=\left\{\begin{array}{lll}1_{r}-z\cdot & {}^{t}\overline{w} & w-z\\{}^{t}\overline{z}-{}^{t}\overline{w} & & \iota_{\overline{z}w-1_{s}}\end{array}\right\}$ .
Substituting $\alpha(z)$ and $\alpha(w)$ for $z$ and $w$ , we find

(3.6) $R(z, w)=[{}^{t}\lambda(\alpha_{0}, z)\iota^{\frac{0}{\mu(\alpha,z)}]R(\alpha(z)}’\alpha(w))^{-}\left\{\begin{array}{llll}\lambda(\alpha, & w) & 0 & \\0 & & \mu(\alpha, & w)\end{array}\right\}$ .

Comparing the uPper right blocks of both sides, we obtain

(3.7) $dz\circ\alpha={}^{t}\lambda(\alpha, z)^{-1}dz\mu(\alpha, z)^{-1}$ $(\alpha\in U(r, s))$ .

Put $\xi(z)=1_{r}-z\cdot{}^{t}\overline{z}$ and $\eta(z)=1_{s}-{}^{t}\overline{z}z$ . Since $R(z, z)=diag[\xi(z), -\eta(z)]$ , (3.6)

yields

(3.8) $\xi(z)={}^{t}\lambda(\alpha, z)\xi(\alpha(z))\overline{\lambda(\alpha,z)}$ , $\eta(z)=\overline{{}^{t}\mu(\alpha,z)}\eta(\alpha(z))\mu(\alpha, z)$ .

Now we can easily verify that $\det(Y(z))=\det(\xi(z))=\det(\eta(z))$ . Taking the
determinant of (3.4) and using (3.8), we find

(3.9) $\det(\mu(\alpha, z))=\det(a)\det(\lambda(\alpha, z))$ $(\alpha\in U(r, s))$ .
If $r=0$ or $s=0$, the group $U(r, s)$ is compact. In this case, we denote by

$\mathfrak{D}(r, s)$ the space consisting of a single point, say $z_{0}$ , and put $Y(z_{0})=1_{m}$ ; the
action of $U(r, s)$ on $\mathfrak{D}(r, s)$ is trivial.
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4. A family of abelian varieties.

Let $K$ be a ClVI-field, and $\Phi$ an element of $I_{K}$ which represents a class
of representations of $K$. We consider a structure $(A, \iota, C)$ such that: (i) $(A, \iota)$

is of type $(K, \Phi)$ ; (ii) $C$ is a polarization of $A$ ; and (iii) the involution of
End $(A)\otimes Q$ determined by $C$ sends $\iota(a)$ to $\iota(a^{\rho})$ . Take an isomorphism of $A$

onto a complex torus $C^{n}/D$ with a lattice $D$ in $C^{n}$ so that $\Phi(a)$ corresponds
to $\iota(a)$ , where we use $\Phi$ for a matrix representation in the given class. Then
$K$ acts on $QD$ through $\Phi$ , and hence there is an isomorphism $p$ of $K_{m}^{1}$ onto
$QD$ such that $p(ax)=\Phi(a)p(x)$ for $a\in K$ and $\chi\in K_{m}^{1}$ , where $m=2n/[K:Q]$ .
Put $\delta JY\mathfrak{c}=p^{-1}(D)$ . Then $\mathfrak{M}$ is a lattice in $K_{m}^{1}$ . Let $E(x, y)$ be the Riemann
(alternating) form of a basic divisor in $C$. As shown in [7], there is an
element $T$ of $GL_{m}(K)$ such that ${}^{t}T^{o}=-T$ and

$E(p(x), p(y))=Tr_{K/Q}(xT\cdot {}^{t}y^{\rho})$ $((x, y)\in K_{m}^{1}\times K_{m}^{1})$ .

In this situation, we say that $(A, \iota, C)$ is of $tyPe(K, \Phi, T, \mathfrak{M})$ , or simply of
type $(K, \Phi, T)$ if only the isogeny-class is the question. Let $[K:Q]=2g$ and
take $g$ injections $\tau_{1},$

$\cdots$ , $\tau_{g}$ of $K$ into $C$ which form a CM-type of $K$ ; put
$\Phi=\sum_{\nu=1}^{g}(r_{v}\tau_{\nu}+s_{\nu}\tau_{\nu}\rho)$ with integers $r_{\nu}$ and $s_{\nu}$ . Then a structure of type $(K, \Phi, T)$

exists if and only if $-iT^{\tau_{\nu}}$ has signature $(r_{v}, s_{\nu})$ for every $\nu$ (see [7]); espe-
cially $r_{1}+s_{1}=\cdots=r_{g}+s_{g}=m$ , and hence $\Phi\in I_{K}^{0}$ . Suppose in particular $\Phi$ is a
CM-type and $\Phi=\sum_{=1}^{g},\tau_{\nu}$ . Then $m=1$ and $T$ is an element of $K$ such that
$T^{\rho}=-T$ and $-iT^{\tau_{\nu}}>0$ for all $\nu$ . If $m>1$ , the structures of a given type can
be parametrized by the points of a symmetric domain $\mathfrak{D}$, as proved in [7].

Let us now recall this explicit parametrization.
With a fixed element $T$ of $GL_{m}(K)$ such that ${}^{t}T^{\rho}=-T$ , define a group

$G_{Q}$ by

(4.1) $G_{Q}=\{\alpha\in GL_{m}(K)|\alpha T\cdot{}^{t}\alpha^{\rho}=T\}$ .
Assuming the signature of $-i\tau_{\nu}^{-}$ to be $(r_{\nu}, s_{\nu})$ , take an element $Q_{\nu}$ of $GL_{m}(\overline{Q})$

so that

(4.2) $-iT^{\tau_{v}}=Q_{\nu}^{\rho}J_{r_{y},s_{\nu}}\cdot {}^{t}Q_{\nu}$ .
Then $G_{Q}$ can be embedded into $\Pi^{g}’=1U(r_{\nu}, s_{\nu})$ by the map

(4.3) $\alpha-(Q_{1}^{-1}a^{\tau_{1}\rho}Q_{1}, \cdots Q_{g^{-1}}\alpha^{\tau_{g\rho}}Q_{g})$ .

We let $G_{Q}$ act on the domain

(4.4) $\mathfrak{D}=\mathfrak{D}(r_{1}, s_{1})\times\cdots\times \mathfrak{D}(r_{g}, s_{g})$

through the map (4.3). Notice that $r_{\nu}s_{\nu}=0$ may happen for some $\nu$ . For
$\alpha\in G_{Q}$ and $z=(z_{1}, \cdots , z_{g})\in \mathfrak{D}$ with $z_{\nu}\in \mathfrak{D}(r_{\nu}, s_{\nu})$ , we put $\lambda_{\nu}(\alpha, z)=\lambda(Q_{\nu^{-1}}\alpha^{\tau_{v}\rho}Q_{\nu}, z_{\nu})$ ,
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$\mu_{\nu}(\alpha, z)=\mu(Q_{\nu}^{-1}\alpha^{\tau_{\nu}\rho}Q_{\nu}, z_{\nu})$ ,

$Y_{\nu}(z)=Y(z_{\nu})=\left\{\begin{array}{ll} & (r_{\nu}s_{\nu}>0),\\1_{m} & (r_{\nu}s_{\nu}=0).\end{array}\right.$

Each point $z$ of $\mathfrak{D}$ determines a structure of type $(K, \Phi, T, \mathfrak{R}\neg \mathfrak{c})$ as follows.
First put

$Y_{\nu}(z)\cdot {}^{t}Q_{\nu}^{\rho}=\left\{\begin{array}{lll}u_{1}^{\nu} & \cdots & u_{m}^{\nu}\\\overline{v}_{1}^{\nu} & \cdots & \overline{v}_{m}^{\nu}\end{array}\right\}$ $(\nu=1, \cdots g)$

with $u_{k}^{\nu}\in C^{r_{v}}$ and $v_{k}^{\nu}\in C^{s_{\nu}}$ , and define $\mathfrak{x}_{k}(z)\in C^{mg}$ by

$\iota \mathfrak{x}_{k}(z)=({}^{t}u_{k}^{1},{}^{t}v_{k}^{1},$ $\cdots$ ${}^{t}u\not\in,$ $\iota_{v\S)}$ .

Put $n=mg$ , and define an n-dimensional diagonal representation $\Phi$ of $K$ by

$\Phi(a)=diag[a^{\tau_{1}}1_{r_{1}}, a^{\tau_{1}\rho}1_{s_{1}}, \cdots , a^{\tau_{g}}1_{r_{g}}, a^{\tau_{g}\rho}1_{s_{g}}]$ $(a\in K)$ .

For $a=(a_{1}, \cdots , a_{m})\in K_{m}^{1}$ and $z\in \mathfrak{D}$, put

$p_{z}(a)=p(a, z)=\Sigma_{k=1}^{m}\Phi(a_{k})\mathfrak{x}_{k}(z)$ .

Then $p_{z}$ can be extended to an R-linear isomorphism of $(K\otimes_{Q}R)_{m}^{1}$ onto $C^{n}$ .
Therefore, if $\mathfrak{M}$ is a lattice in $K_{m}^{1}$ , $C^{n}/p_{z}(\mathfrak{M})$ is a complex torus. Define an
R-valued alternating form $E_{z}$ on $C^{n}$ by

$E_{z}(p_{z}(a), p_{z}(b))=Tr_{K/Q}(aT\cdot {}^{t}b^{\rho})$ $(a, b\in K_{m}^{1})$ .
This defines a Riemann form on $C^{n}$ , so that the torus has a structure of
abelian variety; the action of $\Phi(a)$ defines an endomorphism. In this way we
obtain a structure $(A_{z}, \iota_{z}, C_{z})$ of type $(K, \Phi, T, \mathfrak{M})$ for each $z\in \mathfrak{D}$ . Conversely,
every structure of type $(K, \Phi, T, \Psi\dot{\iota})$ can be obtained in this fashion. For
details, see [7].

We now define an embedding $\epsilon$ of $\mathfrak{D}$ into the Siegel upper space

$\mathfrak{H}_{n}=\{z\in C_{n}^{n}|{}^{t}z=z, {\rm Im}(z)>0\}$ .
First take a basis $\{h_{1}, \cdots , h_{2n}\}$ of $K_{m}^{1}$ over $Q$ so that

(4.5) $(Tr_{K/0}(h_{i}T\cdot {}^{t}h_{j}^{\rho}))_{i.j=1\ldots.,2n}=\left\{\begin{array}{ll}0 & -1_{n}\\1_{n} & 0\end{array}\right\}$ ,

and define the period matrix $(\omega_{1}(z), \omega_{2}(z))$ by

(4.6) $\omega_{1}(z)=(p_{z}(h_{1})\cdots p_{z}(h_{n}))$ , $\omega_{2}(z)=(p_{z}(h_{n+1})\cdots p_{z}(h_{2n}))$ .
As is well known, $\omega_{2}(z)$ is invertible, and $\omega_{2}(z)^{-1}\omega_{1}(z)\in \mathfrak{H}_{n}$ . Thus we obtain
an embedding
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(4.7) $\epsilon$ : $\mathfrak{D}\rightarrow \mathfrak{H}_{n}$ , $\epsilon(z)=\omega_{2}(z)^{-1}\omega_{1}(z)$ $(z\in \mathfrak{D})$ .
This is holomorphic, since $\mathfrak{x}_{k}(z)$ is holomorphic in z. Every $\beta=\left(\begin{array}{ll}A & B\\C & D\end{array}\right)\in Sp(n, R)$

acts on $\mathfrak{H}_{n}$ as usual under the rule $\beta(Z)=(AZ+B)(CZ+D)^{-1}$ for $Z\in \mathfrak{H}_{n}$ . Now,
for every $\alpha\in G_{Q}$ , dePne an element $\alpha^{*}=(a_{ij})$ of $GL_{2n}(Q)$ by $h_{i}a=\Sigma_{j=1}^{2n}a_{ij}h_{j}$ .
Obviously $\alpha^{*}\in Sp(n, Q)$ . Moreover we have

(4.8) $\epsilon\circ a=\alpha^{*}\circ\epsilon$ .
To show this, we Prst observe that, for $\alpha\in G_{Q}$ ,

(4.9) $Y_{\nu}(z)\cdot {}^{t}Q_{\nu}^{\rho}\cdot{}^{t}\alpha^{\tau_{\nu}}=\Lambda_{\nu}^{f}(a, z)Y_{\nu}(\alpha(z))\cdot {}^{t}Q_{\nu}^{\rho}$ ,

where

$\Lambda_{\nu}^{\prime}(\alpha, z)=\left\{\begin{array}{ll}diag[{}^{t}\lambda_{\nu}(\alpha, z),{}^{t}\mu_{\nu}(\alpha, z)^{o}] & (r_{\nu}s_{\nu}>0),\\{}^{t}(Q_{\nu}^{-1}\alpha^{\tau_{\nu}\rho}Q_{\nu})^{\rho} & (r_{\nu}s_{\nu}=0).\end{array}\right.$

Define $\Lambda(\alpha, z)$ and $\Lambda_{\nu}(\alpha, z)$ by

(4.10) $\Lambda(\alpha, z)=diag[\Lambda_{1}(\alpha, z), ’ \Lambda_{g}(a, z)]$ ,

(4.10) $\Lambda_{\nu}(\alpha, z)=\left\{\begin{array}{ll}diag[\lambda_{\nu}(\alpha, z), \mu_{\nu}(\alpha, z)] & (r_{\nu}s_{\nu}>0),\\(Q_{\nu}^{-1}a^{\tau_{\nu}\rho}Q_{\nu})^{\rho} & (s_{\nu}=0),\\Q_{\nu}^{-1}\alpha^{\tau_{\nu}\rho}Q_{\nu} & (r_{\nu}=0).\end{array}\right.$

Then (4.9) implies that

(4.11) $p(xa, z)={}^{t}\Lambda(a, z)p(x, \alpha(z))$ $(x\in K_{m}^{1}, z\in \mathfrak{D})$ .
Therefore we have

$(\omega_{1}(z), \omega_{2}(z))\cdot{}^{t}\alpha^{*}={}^{t}\Lambda(\alpha, z)(\omega_{1}(\alpha(z)), \omega_{2}(\alpha(z)))$ ,

which proves (4.8). At the same time we see that

(4.12) ${}^{t}\omega_{2}(\alpha(z))\Lambda(\alpha, z)\cdot{}^{t}\omega_{2}(z)^{-1}=C\cdot\epsilon(z)+D$ if $\alpha^{*}=\left(\begin{array}{ll}A & B\\C & D\end{array}\right)$ .

Let $\eta$ : $GL_{n}(C)\rightarrow GL_{p}(C)$ be a rational representation. Given a $C_{q}^{p}$-valued

function $f$ on $\mathfrak{H}_{n}$ , an element $\beta=\left(\begin{array}{ll}A & B\\C & D\end{array}\right)$ of $Sp(n, Q)$ , and $k\in Z$, define a
$C_{q}^{p}$-valued function $ f|_{\eta\cdot k}\beta$ by

$(f|_{\eta\cdot k}\beta)(Z)=\det(CZ+D)^{-k}\eta(CZ+D)^{-1}f(\beta(Z))$ $(Z\in \mathfrak{H}_{n})$ ,

and also a function $f^{\epsilon}$ on $\mathfrak{D}$ by

(4.13) $f^{\epsilon}(z)=\det(\omega_{2}(z))^{-k}\eta({}^{t}\omega_{2}(z)^{-1})f(\epsilon(z))$ $(z\in \mathfrak{B})$ .
For every $\alpha\in G_{Q}$ , we have, by (4.11),
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$f^{\epsilon}(\alpha(z))=det(\Lambda(\alpha, z))^{k}\eta(\Lambda(\alpha, z))(f|_{\eta,k}\alpha^{*})5(z)$ .

Now define a congruence subgroup $\Gamma_{N}$ of $G_{Q}$ by

(4.14) $\Gamma_{N}=\{\gamma\in G_{Q}|\det(\gamma)=1, \mathfrak{m}\gamma=\mathfrak{m}, \mathfrak{m}(1-\gamma)\subset N\mathfrak{m}\}$ ,

where $N$ is a positive integer and $\mathfrak{m}=\sum_{j=1}^{2n}Zh_{j}$ . The map $\alpha-,\alpha^{*}$ sends $\Gamma_{N}$

into the group

(4.15) $\Delta_{N}=\{\beta\in Sp(n, Z)|\beta\equiv 1_{2n}(mod N)\}$ .

Therefore, if $f|_{\eta}k\beta=f$ for all $\beta\in\Delta_{N}$ , then $f^{\overline{c}}$ satisfies

(4.16) $f^{\epsilon}(\gamma(z))=\det(\Lambda(\gamma, z))^{k}\eta(\Lambda(\gamma, z))f^{\epsilon}(z)$ for all $\gamma\in\Gamma_{N}$ .
The members of our family with complex multiplication can be obtained

as follows (cf. Miyake [5]). Let

(4.17) $Y=M_{n_{1}}(L_{1})\oplus\cdots\oplus M_{n_{t}}(L_{t})$

with CM-fields $L_{i}$ containing $K$, and let $\delta$ be a positive involution of $Y$ .
Suppose $m=\sum_{i=1}^{t}n_{i}[L_{i} : K]$ and there is a K-linear injection $h$ of $Y$ into
$M_{m}(K)$ such that $h(x^{o^{\leftrightarrow}})=T\cdot {}^{t}h(x)^{\rho}T^{-1}$ for all $x\in Y$ . Put

(4.18) $Y[\delta]=\{c\in Y|cc^{\delta}=1\}$ .
Then $h(Y[\delta])$ is contained in $G_{Q}$ and has a unique common fixed point $z_{0}$ on
$\mathfrak{D}$ . There is a Q-linear injection $\Xi_{\nu}$ of $Y$ into $M_{m}(C)$ , for each $\nu$ , such that
$\Xi_{\nu}(c)={}^{t}\Lambda_{v}(h(c), z_{0})$ for every $c\in Y[\delta]$ . Moreover, there is a CM-type $\Psi_{i}$ of
$L_{i}$ such that $\Psi_{i}=\sum_{\nu=1}^{g}\Psi_{i\nu}$ and $n_{i}tr(\Psi_{i\nu}(a))=tr(\Xi_{\nu}(a))$ for every $a\in L_{i}$ . If
$(A_{i}, \iota_{i})$ is of type $(L_{i}, \Psi_{i})$ , the member $A_{z_{0}}$ is isogenous to $A_{1}^{n_{1}}\times\cdots\times A_{t}^{n_{t}}$ .
Conversely, let $(L_{i}, \Psi_{i})$ be CM-types such that $K\subset L_{i}$ , and let $(A_{i}, \iota_{i})$ be of
type $(L_{i}, \Psi_{i})$ , Suppose the sum of the restrictions of $n_{1}\Psi_{1},$ $\cdots$ , $n_{t}\Psi_{t}$ to $K$ is
$\Phi$ . Then $A=A_{1}^{n_{1}}\times\cdots\times A_{t}^{n_{t}}$ has a polarization which defines an involution of
End $(A)\otimes Q$ whose restriction to the image of $K$ corresponds to $\rho$ . As shown
in [7], $A$ can be obtained as a member of a family of our type with suitable
$T$ and $\mathfrak{M}$ . We state here two facts about such special members as lemmas.

LEMMA 4.1. Let $\Phi_{1},$ $\cdots$ , $\Phi_{m}$ be CM-types of $K$, and let $(A_{i}, \iota_{i})$ be of type
$(K, \Phi_{i})$ . If $\Phi=\sum_{i=1}^{m}\Phi_{i}$ , the above family (without changing $T$ or $\mathfrak{M}$) contains a
member isogenous to $A_{1}\times\cdots\times A_{m}$ .

PROOF. We can easily find (by induction on $m$ , for example) elements
$\zeta_{1},$ $\cdots$ , $\zeta_{m}$ of $K$ such that $T$ is equivalent to $diag[\zeta_{1}, \cdots , \zeta_{m}]$ and ${\rm Im}(\zeta_{i}^{\tau})>0$ for
$\tau$ belonging to $\Phi_{i}$ , for every $i$ . Then there is a structure ( $A_{i}^{f},$ $\iota_{i}^{f}$ , C\’i) of type
$(K, \Phi_{i}, \zeta_{i})$ (see [15] or [7]), and $A_{1}^{\prime}\times\cdots\times A_{t}^{\prime}$ is isogenous to a member of our
family.

LEMMA 4.2. SuppOse the member $A_{z}$ is isogenous to a Product of abelian
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varieties belonging to CM-types. Then the coordinates of $\omega_{1}(z)$ and $\omega_{2}(z)$ are
algebraic.

PROOF. Observe that the action of $G_{Q}$ on $\mathfrak{D}$ is Q-rational. As explained
above, $z$ is obtained as a unique fixed point of $Y[\delta]$ . Therefore the coordi-
nates of $z$ are algebraic, so that the vector $p_{z}(a)$ is algebraic for every
$a\in K_{m}^{1}$ , which proves our lemma.

5. Proof of Theorem 1.2.

The notation being as in Theorem 1.2, put $\Phi=\Phi_{1}+\cdots+\Phi_{m}$ , and consider
the family of \S 4 with this $\Phi$ and any choice of $T$ and $\mathfrak{M}$ . If $\sum_{\vee=1}^{g}r_{\nu}s_{\nu}=0$,
we have $\Phi_{1}=\cdots=\Phi_{m}$ . In this case, Theorem 1.2 follows from Proposition 1.4.
Therefore we may assume that $\mathfrak{D}$ is a domain of positive dimension.

Suppose first that either $\Gamma_{N}\backslash \mathfrak{D}$ is compact or $mg>2$ . We denote then
by $\mathfrak{A}_{0}(\Gamma_{N})$ the field of all $\Gamma_{N}$-invariant meromorphic functions on $\mathfrak{D}$ , and by
$\mathfrak{A}_{0}$ the union of $\mathfrak{A}_{0}(\Gamma_{N})$ for all positive integers $N$. If $\Gamma_{N}\backslash \mathfrak{D}$ is not compact
and $mg=2,$ $\Gamma_{N}$ is conjugate to a congruence subgroup of $SL_{2}(Z)$ ; so we can
similarly define $\mathfrak{A}_{0}(\Gamma_{N})$ and $\mathfrak{A}_{0}$ under the usual cusp-condition. In either case,
we can speak of canonical models, due to Miyake [5] (cf. also [8], [11]).

Therefore Q-rational elements of $\mathfrak{A}_{0}$ are meaningful. We denote by $\mathfrak{A}_{0}(\overline{Q})$

the subfield of $\mathfrak{A}_{0}$ consisting of all Q-rational elements. We note that if $f$ is
a Q-rational Siegel modular function on $\mathfrak{H}_{n}$ and $ f\circ\epsilon$ is meaningful, then $ f\circ\epsilon$

$\in \mathfrak{A}_{0}(\overline{Q})$ .
Let $P(Z)$ be a $C_{n}^{n}$ -valued meromorphic function on $\mathfrak{H}_{n}$ such that

(5.1) $P(\beta(Z))=(CZ+D)P(Z)$ for every $\beta=\left(\begin{array}{ll}* & *\\C & D\end{array}\right)\in\Delta_{M}$

with a positive integer $M$. We can find such a $P$ which is “ Q-rational “,
holomorphic at $\epsilon(z)$ , and with $\det(P(\epsilon(z)))\neq 0$ , for any given point $z$ of $\mathfrak{D}$ , as
proved in [13, Proposition 1.2]. Take a generator $b$ of $K$ over $Q$ such that

$bb^{\rho}=1$ ; Put $\alpha=b1_{m},$ $\alpha^{*}=\left(\begin{array}{ll}* & *\\C & D\end{array}\right)$ , and

$V(Z)=P(Z)^{-1}(CZ+D)^{-1}P(\alpha^{*}(Z))$ $(Z\in \mathfrak{H}_{n})$ ,

$U(z)=V(\epsilon(z))$ $(z\in \mathfrak{D})$ .

We see easily that the entries of $V$ are $\Delta_{N}$ -invariant for some $N$. Moreover,
they are Q-rational by [13, Proposition 1.4]; hence the entries of $U$ belong to
$\mathfrak{A}_{0}(\overline{Q})$ . By (4.12), we have

(5.2) $\iota_{\omega_{2}(z)\Phi(b)\cdot{}^{t}\omega_{2}(z)^{-1}=C\cdot\epsilon(z)+D}$

and hence $P(\epsilon(z))^{-1}\cdot{}^{t}\omega_{2}(z)\Phi(b)\cdot{}^{t}\omega_{2}(z)^{-1}P(\epsilon(z))=U(z)^{-1}$ . Since $K$ is generated by
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$b$ , we see that
$a\leftrightarrow P(\epsilon(z))^{-1}\cdot{}^{t}\omega_{2}(z)\Phi(a)\cdot c\omega_{2}(z)^{-1}P(\epsilon(z))$

is an $\mathfrak{A}_{0}(\overline{Q})$-rational representation of $K$, so that there is an element $Y$ of
$GL_{n}(\mathfrak{A}_{0}(\overline{Q}))$ such that

$P(\epsilon(z))^{-1}\cdot{}^{t}\omega_{2}(z)\Phi(a)\cdot{}^{t}\omega_{2}(z)^{-1}P(\epsilon(z))=Y^{-1}\Phi(a)Y$

for every $a\in K$ In view of our definition of $\Phi$ in the diagonal form, we
have

(5.3) ${}^{t}\omega_{2}(z)^{-1}P(\epsilon(z))=diag[R_{1}, S_{1}, \cdots , R_{g}, S_{g}]Y$

with square matrices $R_{\nu}$ and $S_{\nu}$ of size $r_{\nu}$ and $s_{\nu}$, whose entries are mero-
morphic functions on $\mathfrak{D}$ . From (4.16), we see that

(5.4) $R_{\nu}(\gamma(z))=\left\{\begin{array}{ll}\lambda_{\nu}(\gamma, z)R_{\nu}(z) & (r_{\nu}s_{\nu}>0),\\(Q_{\nu}^{-1}\gamma^{\tau_{v}\rho}Q_{\nu})^{\rho}R_{\nu}(z) & (s_{\nu}=0),\end{array}\right.$

(5.4) $S_{\nu}(\gamma(z))=\left\{\begin{array}{ll}\mu_{\nu}(\gamma, z)S_{\nu}(z) & (r_{\nu}s_{\nu}>0),\\Q_{\nu}^{-1}\gamma^{\tau_{\nu}\rho}Q_{\nu}S_{\nu}(z) & (r_{\nu}=0),\end{array}\right.$

if $\gamma\in\Gamma_{N^{\prime}}$ for sufficiently large $N^{\prime}$ .
Let us now consider the special member at the fixed point $z_{0}$ of $h(Y[\delta])$

as in \S 4. For simplicity, we take $t=n_{1}=1$ and drop the subscript 1; thus
the member at $z_{0}$ defines a structure $(A, \iota)$ of type $(L, \Psi)$ and $[L:K]=m$ .
(This is sufficient for our proof of Theorem 1.2. The following argument
with obvious modifications applies to the general case.) Put $W=\epsilon(z_{0})$ . Then
$C^{n}/(WZ^{n}+Z^{n})$ is isogenous to $A$ . Now take the projective embedding

(5.5) $\Theta$ : $C^{n}/(WZ^{n}+Z^{n})\rightarrow A_{0}$

of the torus onto an abelian variety $A_{0}$ by classical theta functions as defined
in $[13, (1.5_{b})]$ . Then $A_{0}$ is isogenous to $A$ , and by [13, Theorem 1.1], is
defined over $\overline{Q}$ . Define an isomorphism

(5.5) $\Theta^{f}$ : $C^{n}/[\omega_{1}(z_{0})Z^{n}+\omega_{2}(z_{0})Z^{n}]\rightarrow A_{0}$

by $\Theta^{\prime}(x)=\Theta(\omega_{2}(z_{0})^{-1}x)$ . Let $x_{1},$
$\cdots$ , $x_{n}$ be the coordinate functions on $C^{n}$ . By

[13, Theorem 1.5], there are Q-rational l-forms $\xi_{1},$ $\cdots$ , $\xi_{n}$ on $A_{0}$ such that

(5.6) $\left\{\begin{array}{l}\xi_{1}\\\vdots\\\xi_{n}\end{array}\right\}\cdot\Theta^{f}=\pi\cdot {}^{t}P(\epsilon(z_{0}))\omega_{2}(z_{0})^{-1}\left\{\begin{array}{ll}d & X_{1}\\ & \vdots\\ d & \chi_{n}\end{array}\right\}$ .

We have a direct sum decomposition of $C^{n}$ into subspaces $V_{\nu},$ $V_{\nu}^{f}$ such that
$\Phi(a)$ acts as $a^{\tau_{\nu}}$ on $V_{\nu}$ and as $ a^{-}\nu$ on $V_{\nu}^{\prime}$ . Let $x_{1}^{\nu},$ $\cdots$ , $x_{r_{\nu}}^{\nu}$ and $y_{1}^{\nu},$ $\cdots$ , $yS$. be
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the coordinate functions on $V_{\nu}$ and $V_{\nu}^{\prime}$ , respectively, which are renamings of
some of $x_{1},$

$\cdots$ , $x_{n}$ . Multiplying (5.6) with a Q-rational matrix ${}^{t}Y(z_{0})^{-1}$ , we
find that

(5.7) $\pi\cdot {}^{t}R_{\nu}(z_{0})\left\{\begin{array}{ll}d & X_{1}^{\nu}\\ & \vdots\\ d & x_{r}^{\nu}\end{array}\right\}$ and $\pi\cdot {}^{t}S_{\nu}(z_{0})\left\{\begin{array}{ll}d & y_{1}^{\nu}\\ & \vdots\\ d & y_{s}^{\nu}\end{array}\right\}$ $(r=r_{\nu}, s=s_{\nu})$

correspond to Q-rational l-forms on $A_{0}$ .
Define diagonal representations $\Psi_{\nu}^{+}$ and $\Psi_{\nu}^{-}$ of $L$ by

$\Psi_{\nu}^{+}=diag[\psi_{\nu 1}, \psi_{\nu r}]$ , $\Psi_{\nu}^{-}=diag[\psi_{\nu 1}^{f}, \cdots \psi_{\nu s}^{\prime}]$

with injections $\psi_{\nu j}$ and $\psi_{\nu j}^{\prime}$ of $L$ into $C$ belonging to $\Psi$ which give $\tau_{\nu}$ and
$\tau_{\nu}\rho$ on $K$, respectively. Then $r=r_{\nu}$ , $s=s_{\nu}$, and $\Psi=\sum_{y=1}^{g}(\Psi_{\nu}^{+}+\Psi_{\nu}^{-})$ . Take a
generator $c$ of $L$ over $Q$ such that $cc^{\rho}=1$ . As explained in \S 4, $c\rightarrow\Lambda_{\nu}(h(c), z_{0})$

is essentially $diag[\Psi_{\nu}^{+}(c), \Psi_{\nu}^{-}(c)]$ ; moreover, (if $r_{\nu}s_{\nu}>0,$) $\Psi_{\nu}^{+}(c)$ corresponds to
$\lambda_{\nu}(h(c), z_{0})$ and $\Psi_{\nu}^{-}(c)$ to $\mu_{\nu}(h(c), z_{0})$ . Therefore we can find invertible Q-rational
matrices $C_{\nu}$ and $C_{\nu}^{f}$ such that

(5.8) $C_{\nu}^{-1}\Psi_{\nu}^{+}(c)C_{\nu}=\left\{\begin{array}{ll}\lambda_{\nu}(h(c), z_{0}) & (r_{\nu}s_{\nu}>0),\\(Q_{\nu}^{-1}h(c)^{\tau_{\nu}\rho}Q_{\nu})^{\rho} & (s_{\nu}=0),\end{array}\right.$

(5.8) $C_{\nu^{-1}}^{\prime}\Psi_{\nu}^{-}(c)C_{\nu}^{f}=\left\{\begin{array}{ll}\mu_{\nu}(h(c), z_{0}) & (r_{\nu}s_{\nu}>0),\\Q_{\nu}^{-1}h(c)^{\tau_{v}\rho}Q_{\nu} & (r_{\nu}=0).\end{array}\right.$

Since ${}^{t}\lambda_{\nu}(h(c), z_{0})$ or $(Q_{\nu}^{-1}h(c)^{\tau_{\nu}\rho}Q_{\nu})^{\rho}$ represents $\iota(c)$ on the subspace $V_{\nu}$ , if we
put

$\left\{\begin{array}{ll}d & u_{1}^{\nu}\\ & \vdots\\ d & u_{r}^{\nu}\end{array}\right\}={}^{t}C_{\nu}^{-1}\left\{\begin{array}{ll}d & x_{1}^{\nu}\\ & \vdots\\ d & x_{r}^{\nu}\end{array}\right\}$ $(r=r_{\nu})$ ,

then $du_{j}^{\nu}\circ\iota(c)=c^{\psi_{\nu j}}du_{j}^{\nu}$ . By Lemma 4.2, $du_{j}^{\nu}$, considered a l-form on $A_{0}$ , has
algebraic periods. By Proposition 1.1, $\pi\cdot p(\psi_{\nu j}, \Psi)du_{j}$ is Q-rational, and hence

(5.9) $diag[P(\psi_{\nu 1}, \Psi), \cdots p(\psi_{\nu r}, \Psi)]^{-1}C_{\nu}R_{\nu}(z_{0})\in GL_{r}(\overline{Q})$ ,

and similarly

(5.9) $diag[p(\psi_{\nu 1}^{\prime}, \Psi), \cdots p(\psi_{\nu s}^{\prime}, \Psi)]^{-1}C_{\nu}^{\prime}S_{\nu}(z_{0})\in GL_{s}(\overline{Q})$ .
Put $f_{\nu}(z)=\det(R_{\nu}(z))$ and $g_{\nu}(z)=\det(S_{\nu}(z))$ . Then we obtain

(5.10) $f_{\nu}(z_{0})\sim q_{K}(\tau_{\nu}, \Psi)$ , $g_{\nu}(z_{0})\sim q_{K}(\tau_{\nu}\rho, \Psi)$ .

We can apply the whole procedure to a point of $\mathfrak{D}$ corresponding to a
member of a somewhat different type. In fact, take CM-types $\Phi_{1},$ $\cdots$ , $\Phi_{m}$ of
$K$ so that $\Phi=\Phi_{1}+\cdots+\Phi_{m}$ . Let $(A_{i}, \iota_{i})$ be of type $(K, \Phi_{t})$ . Lemma 4.1 guar-
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antees a member of our family isogenous to $A_{1}\times\cdots\times A_{t}$ . Let $v$ be a point of
$\mathfrak{D}$ corresponding to this member. Since $v$ can be replaced by any point in
the set $\{\alpha(v)|\alpha\in G_{Q}\}$ which is dense in $\mathfrak{D}$, we may assume that the functions
of (5.3) are all holomorphic at $v$ and $det(P(\epsilon(v)))\neq 0$ . For each injection $\tau$ of
$K$ into $C$, put $q(\tau)=\Pi_{i=1}^{m}p(\tau, \Phi_{i})$ . Repeating the above reasoning with the
direct sum of $m$ copies of $K$ in place of $L$ , we find that $f_{\nu}(v)\sim q(\tau_{\nu})$ and
$g_{\nu}(v)\sim q(\tau_{\nu}\rho)$ .

Suppose $r_{\nu}s_{\nu}>0$ . By virtue of $(5.4_{a\cdot b})$ and (3.9), we see that $f_{\nu}/g_{\nu}\in \mathfrak{A}_{0}$ ,

and $q(\tau_{\nu})^{-1}q(\tau_{\nu}\rho)(f_{\nu}/g_{\nu})(v)\in\overline{Q}$ . Now $v$ can be replaced by $\alpha(v)$ with $\alpha\in G_{Q}$ if
the functions of (5.3) as well as $(P\circ\epsilon)^{-1}$ are holomorphic at $\alpha(v)$ . Since such
points $\alpha(v)$ form a dense subset of $\mathfrak{D}$, we see that $q(\tau_{\nu})^{-1}q(\tau_{\nu}\rho)f_{\nu}/g_{\nu}\in \mathfrak{A}_{0}(\overline{Q})$ .
Now $q(\tau_{\nu})/q(\tau_{\nu}\rho)$ depends only on $\Phi_{1},$ $\cdots$ , $\Phi_{m}$ and $\tau_{\nu}$ . On the other hand,
$f_{\nu}/g_{\nu}$ depends only on $\nu,$

$\Phi,$ $T$ , and $\mathfrak{M}$. Therefore $q(\tau_{\nu})/q(\tau_{\nu}\rho)$ depends only
on $\Phi$ and $\tau_{\nu}$ , which proves the first assertion of Theorem 1.2 in the case
$r_{\nu}s_{\nu}>0$ . Moreover, we have $q(\tau_{\nu})^{-1}q(\tau_{\nu}\rho)(f_{\nu}/g_{v})(z_{0})\in\overline{Q}$ , and hence

$q(\tau_{\nu})/q(\tau_{\nu}\rho)\sim f_{\nu}(z_{0})/g_{\nu}(z_{0})\sim q_{K}(\tau_{\nu}, \Psi)/q_{K}(\tau_{\nu}\rho, \Psi)$ ,

which is the second assertion. If $s_{\nu}=0$, we see from $(5.4_{a})$ that $f_{\nu}\in \mathfrak{A}_{0}$ , and
conclude that $q(\tau_{\nu})^{-1}f_{\nu}\in \mathfrak{A}_{0}(\overline{Q})$ by the same reasoning as above. Therefore the
above conclusions hold with $g_{\nu}=1$ and $q(\tau_{\nu}\rho)=q_{K}(\tau_{\nu}\rho, \Psi)=1$ . The case $r_{\nu}=0$

can be treated in a similar way. This completes the proof.

6. The derivatives of the elements of $\mathfrak{A}_{0}(\overline{Q})$ .
The functions $R_{\nu}$ and $S_{\nu}$ obtained in \S 5 are (meromorphic) automorphic

forms on $\mathfrak{D}$ with arithmetic properties $(5.9_{ab})$ . Let us now study the rela-
tionship between $R_{\nu},$ $S_{\nu}$ , and the derivatives of the elements of $\mathfrak{A}_{0}(\overline{Q})$ ; namely,
we prove:

THEOREM 6.1. Supp0se $r_{\nu}s_{\nu}>0$ and let $z_{jk}^{\nu}$ be the $(j, k)$-entry of the variable
$z_{\nu}$ on $\mathfrak{D}(r_{\nu}, s_{\nu})$ ; define for $f\in \mathfrak{A}_{0}(\overline{Q})$ a matrix-valued meromorphic function $\Delta_{\nu}f$

on $\mathfrak{D}$ by

(6.1) $\Delta_{\nu}f=(\partial f/\partial z_{jk}^{\nu})$ $(1\leqq j\leqq r_{\nu}, 1\leqq k\leqq s_{\nu})$ .
Then there is a matrix $W$ with entries in $\mathfrak{A}_{0}(\overline{Q})$ such that $\pi^{-1}\Delta_{\nu}f=R_{\nu}W\cdot {}^{t}S_{\nu}$ .

REMARK. (1) Our assertion with $\mathfrak{A}_{0}$ instead of $\mathfrak{A}_{0}(\overline{Q})$ is obvious from (3.7)

and $(5.4_{ab})$ .
(2) Combining $(5.9_{ab})$ with the theorem, we obtain a description of the

value of $\Delta_{\nu}f$ at a CM-point $z_{0}$ in terms of $p(\psi_{\nu j}, \Psi)$ , similar to (0.2).

PROOF. Let $\kappa=\Sigma_{\nu=1}^{g}r_{\nu}s_{\nu}$ . We can find Q-rational Siegel modular functions
$\mathfrak{f}_{1},$ $\cdots$ , $\mathfrak{f}_{\kappa}$ on $\mathfrak{H}_{n}$ so that $\mathfrak{f}_{1}\circ\epsilon,$ $\cdots$ , $\mathfrak{f}_{\kappa}\circ\epsilon$ are algebraically independent. Put
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$ k_{j}=\mathfrak{f}_{J}\circ\epsilon$ . Then $\partial/\partial h_{1},$ $\cdots$ , $\partial/\partial h_{\kappa}$ are well-defined derivations of $\mathfrak{U}_{0}(\overline{Q})$ and

$\Delta_{\nu}f=\sum_{j\approx 1}^{\kappa}(\partial f/\partial h_{j})\Delta_{\nu}h_{j}$ .
Therefore it is suffcient to prove our theorem in the case where $ f=\mathfrak{f}\circ\epsilon$ with
a $\overline{Q}$-rational Siegel modular function $\mathfrak{f}$ To simplify the notation, we put
$r_{1}=r,$ $s_{1}=s$ and $\tau_{1}=\tau$, and prove our assertion for $\nu=1$ . We may put $T$ in
the form $T=diag[\zeta_{1}, \cdots , \zeta_{m}]$ with $\zeta_{\lambda}\in K$ such that $i\zeta_{\lambda}^{\tau}<0$ for $\lambda\leqq r$ and $i\zeta_{\lambda}^{\tau}>0$

for $\lambda>r$ . Take real numbers $q_{1},$
$\cdots$ , $q_{m}$ so that $q_{\lambda}^{2}=-i\zeta_{\lambda}^{r}$ for $\lambda\leqq r$ and $q_{\lambda}^{2}=i\zeta_{\lambda}^{\tau}$

for $\lambda>r$ . Then we can take $Q=diag[q_{1}, \cdots , q_{m}]$ as the matrix $Q_{1}$ of (4.2).

For each $\lambda$ , choose bases $\{a_{\lambda 1}, \cdots , a_{\lambda g}\}$ and $\{a_{\lambda 1}^{f}, \cdots , a_{\lambda g}^{\prime}\}$ of $K_{0}$ over $Q\zeta so$

that

(6.2) $Tr_{R_{0}/Q}(\zeta_{\lambda}^{2}a_{\lambda j}a_{\lambda k}^{\prime})=\delta_{jk}/2$ .

Let $\{e_{1}, \cdots , e_{m}\}$ be the standard basis of $K_{m}^{1}$ , and let $h_{\lambda j}=a_{\lambda j}e_{\lambda}$ and $h_{\lambda j}^{f}=$

$\zeta_{\lambda}a_{\lambda_{J}}^{\prime}e_{\lambda}$ . Then the elements

$h_{11},$ $\cdots$ $h_{1g},$ $\cdots$ $h_{m1},$ $\cdots$ $h_{mg},$ $h_{11}^{\prime},$ $\cdots$ $h_{1g}^{\prime},$ $\cdots$ $h_{m1}^{\prime},$ $\cdots$ $h_{mg}^{\prime}$

can be taken as $h_{1},$ $\cdots$ , $h_{2mg}$ of (4.5). Focusing our attention on the first $m$

rows of matrices, we have

$\omega_{1}(z)=({}^{t}z_{1}bb*$ $z_{1}c*c)$ , $\omega_{2}(z)=\left(\begin{array}{ll}b^{\prime} & z_{1}c^{\prime}\\-{}^{t}z_{1}b^{\prime}* & -c^{\prime}*\end{array}\right)$

with $b,$ $b^{\prime}\in C_{rg}^{r}$ and $c,$ $c^{\prime}\in C_{sg}^{s}$ . Consider the functions on $\mathfrak{D}$ as functions in
$z_{1}$ , keeping the variables $z_{2},$

$\cdots$ , $z_{g}$ constant; thus $df=\sum_{j=1}^{r}\sum_{k=1}^{s}(\partial f/\partial z_{jk}^{1})dz_{jk}^{1}$

$=tr(\Delta_{1}f\cdot {}^{t}dz_{1})$ . Since $d\epsilon=\omega_{2}^{-1}(d\omega_{1}-d\omega_{2}\epsilon)$ , we have

$\omega_{2}d\epsilon\cdot c\omega_{2}=d\omega_{1}\cdot{}^{t}\omega_{2}-d\omega_{2}\cdot\omega_{1}\iota$

$=({}^{t}dz_{1}(b\cdot {}^{t}b^{f}+b^{f}\cdot {}^{t}b)0$

$0$

$\{dz_{1}(c\cdot {}^{t}c^{\prime}-c^{f}\cdot {}^{t}c)^{t}z_{1}$

$-dz_{1}(c.\cdot {}^{t}c^{f}+c^{f}\cdot {}^{t}c){}^{t}dz_{1}(b{}^{t}b-b\cdot {}^{t}b^{f})z$

$0**)$ .

This must be symmetric. The entries of $b,$ $c,$
$b^{\prime},$ $c^{f}$ can be given in terms of

$q_{\lambda}a_{\lambda j}^{r}$ and $q_{\lambda}\zeta_{\lambda}^{\tau}a_{\lambda j}^{\prime\tau}$ . By virtue of (6.2), we find that

$\omega_{2}d\epsilon\cdot t\omega_{2}=-i\left\{\begin{array}{lll}0 & dz_{1} & 0\\{}^{t}dz_{1} & 0 & 0\\0 & 0 & 0\end{array}\right\}$ .
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For a Q-rational Siegel modular function $\mathfrak{f}$ on $\mathfrak{H}_{n}$ , define a $C_{n}^{n}$ -valued function
$\Delta \mathfrak{f}$ on $\mathfrak{H}_{n}$ by

$\Delta_{\lceil}^{\vee}=(\frac{1+\delta_{jk}}{2}\frac{\partial \mathfrak{f}}{\partial Z_{jk}})$ $(Z=(Z_{jk})\in \mathfrak{H}_{n})$ .

Then $d\mathfrak{f}=tr(\Delta \mathfrak{f}\cdot dZ)$ , so that $d(\mathfrak{f}\circ\epsilon)=tr([(\Delta \mathfrak{f})\circ\epsilon]d\epsilon)$ . Put $X=\pi^{-1}P^{-1}\Delta f\cdot {}^{t}P^{-1}$ with
the function $P$ of (5.1). Then the entries of $X$ are Q-rational modular func-
tions on $\mathfrak{H}_{n}$ . Consider $R_{\nu},$ $S_{\nu}$ , and $Y$ of (5.3); put $V=Y\cdot(X\circ\epsilon)\cdot {}^{t}Y$ and $U=$

$diag[R_{1}, S_{1}, \cdots , R_{g}, S_{g}]$ . Then

$\pi^{-1}d(\mathfrak{f}\circ\epsilon)=tr(V\cdot {}^{t}U\omega_{2}d\epsilon\cdot{}^{t}\omega_{2}U)=-2i\cdot tr(R_{1}v_{12}\cdot {}^{t}S_{1}\cdot {}^{t}dz_{1})$ ,

where $v_{12}$ is the $(1, 2)$-block of $V$. Therefore $\pi^{-1}\Delta_{1}(\mathfrak{f}\circ\epsilon)=-2iR_{1}v_{12}\cdot {}^{t}S_{1}$ , which
completes the proof, since the entries of $v_{12}$ belong to $\mathfrak{A}_{0}(\overline{Q})$ .

7. The derivatives of automorphic forms on $\mathfrak{H}_{1}^{r}$ .
Let $F$ be a totally real algebraic number field of degree $g$ , and $B$ a

quaternion algebra over $F$. Let $\theta_{1},$ $\cdots$ , $\theta_{g}$ denote the injections of $F$ into $R$,
and suPpose that $B$ is unramified at $\theta_{1},$ $\cdots$ , $\theta_{r}$, and ramified at $\theta_{r+1},$ $\theta_{g}$ .
Then there is an R-linear isomorphism

(7.1) $B\otimes_{Q}R\cong M_{2}(R)^{r}\times H^{g-r}$

where $H$ denotes the Hamilton quaternions. Let $B^{+}$ denote the multiplicative
group of all elements $a$ of $B$ with totally positive reduced norm to $F$. We
Px an isomorphism (7.1) so that $B$ is embedded in $M_{2}(\overline{Q}\cap R)^{r}$ ; then $B^{+}$ can
be embedded into $GL_{2}^{+}(R)^{r}$, where

$GL_{2}^{+}(R)=\{a\in GL_{2}(R)|\det(\alpha)>0\}$ ,

and thus acts on the product $\mathfrak{H}_{1}^{r}$ of $r$ copies of the upPer half plane $\mathfrak{H}_{1}$ . With
an arbitrarily fixed lattice $\mathfrak{a}$ in $B$ and a positive integer $N$, let

(7.2) $E_{N}=\{\gamma\in B^{+}|\gamma\gamma^{\iota}=1, \gamma \mathfrak{a}=\mathfrak{a}, (\gamma-1)\mathfrak{a}\subset No\}$ ,

where $\gamma->\gamma^{c}$ is the main involution of $B$ . For $\alpha\in B$ , let $(\alpha_{1}, \cdots , \alpha_{r})$ denote

the image of $\alpha$ in $M_{2}(R)^{r}$ . Given $k=(k_{1}, \cdots , k_{r})\in Z^{r},$ $\alpha\in B^{+}$ with $\alpha_{\nu}=\left(\begin{array}{ll}a_{\nu} & b_{\nu}\\c_{\nu} & d_{\nu}\end{array}\right)$ ,

and a function $f$ on $\mathfrak{H}_{1}^{r}$, we define a function $ f|_{k}\alpha$ by

(7.3) $(f|_{k}\alpha)(z)=f(\alpha(z))\Pi_{\nu=1}^{r}(c_{\nu}z_{\nu}+d_{\nu})^{-k_{\nu}}$ .
We denote by $\mathcal{A}_{k}(E_{N})$ the set of all meromorphic functions $f$, meromorphic
even at cusps, such that $f|_{k}\gamma=f$ for all $\gamma\in E_{N}$ ; the cusp-condition is neces-
sary only when $B=M_{2}(Q)$ . Further we denote by $d_{k}$ the union of $d_{k}(E_{N})$

for all $N$. Let $F^{f}$ denote the field generated over $Q$ by $\Sigma_{\nu=1}^{r}a^{\theta_{\nu}}$ for all $a\in F$.
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The results of [10] and [11] enable us to speak of $(F_{ab}^{\prime})$-rational elements of
$d_{0}$ . More generally, if $\Lambda$ is a subfield of $C$ containing $F_{ab}^{\prime}$ , we can define
the Peld $A_{0}(\Lambda)$ consisting of $\Lambda$ -rational elements of $\leftrightarrow q_{0}$ .

Let $J$ be a totally imaginary quadratic extension of $F$ embeddable in $B$ ,

and $h$ an F-linear injection of $J$ into $B$ . Then $h(J^{\times})$ has a unique fixed point
$w=(w_{1}, \cdots , w_{r})$ on $\mathfrak{H}_{1}^{r}$ . Each $\theta_{\nu}$ can be extended to two injections of $J$ into
$C$. If $\nu\leqq r$, we can specify one of them, say $\xi_{\nu}$, by

(7.4) $h(a)_{\nu}\left\{\begin{array}{l}w_{\nu}\\1\end{array}\right\}=\left\{\begin{array}{l}w_{\nu}\\1\end{array}\right\}a^{\xi_{\nu}}$ for every $a\in J$ .

(Cf. [9, 2.6, 2.7].) Thus $(J, h)$ determines $(J, \Xi_{0})$ with $\Xi_{0}=\Sigma_{\nu=1}^{r}\xi_{\nu}$ ; this is a
CM-type if $r=g$ . Let $J^{f}$ denote the Peld generated over $Q$ by $tr(\Xi_{0}(b))$ for all
$b\in J$. The main theorems of [10] and [11] assert

(7.5) $f(w)\in J_{ab}^{\prime}$ if $f\in d_{0}(F_{ab}^{\prime})$ and $f$ is finite at $w$ .

Now the generalization of (0.2) can be stated as
THEOREM 7.1. The notation $J,$ $w$ , and $\xi_{1},$ $\cdots$ , $\xi_{r}$ being as above, take injections

$\xi_{r+1},$ $\cdots$ , $\xi_{g}$ of $J$ into $C$ which extend $\theta_{r+1},$ $\cdots$ , $\theta_{g}$ , and put $\Xi_{1}=\sum_{\nu=1}^{g}\xi_{\nu}$ and $\Xi_{2}=$

$\sum_{\nu=1}^{r}\xi_{\nu}+\sum_{\nu=r+1}^{g}\xi_{\nu}\rho$ . Let $f$ be an element of $\cup i_{0}(\overline{Q})$ holomorPhic at $w$ . Then, for
$1\leqq\nu_{1}<\cdots<\nu_{s}\leqq r$, we have

$(\partial^{s}f/\partial_{Z_{\nu_{1}}}\cdots\partial z_{\nu_{S}})(w)\sim\pi^{s}\Pi_{i=1}^{s}[p(\xi_{\nu_{i}}, \Xi_{1})p(\xi_{\nu_{i}}, \Xi_{2})]$ .

Notice that $p(\xi_{\nu}, \Xi_{1})p(\xi_{\nu}, \Xi_{2})$ for $\nu\leqq r$ depends only on $\xi_{1},$ $\cdots$ , $\xi_{r}$, and is
independent of the choice of $\xi_{r+1},$ $\cdots$ , $\xi_{g}$ , by virtue of Theorem 1.2. Before
proving the theorem, we make some observations. First note that $\partial f/\partial z_{\nu}\neq 0$

for every $\nu\leqq r$ if $f$ is a non-constant element of $d_{0}$ .
PROPOSITION 7.2. Let $q_{\mu}=(\partial u/\partial z_{\mu})^{-1}\partial v/\partial z_{\mu}$ with non-constant functions $u$ and

$v$ of $d_{0}(F_{ab}^{\prime})$ . Then $q_{\mu}\in d_{0}(\overline{Q})$ . Moreover, $q_{\mu}(w)\in J_{ab}^{\prime}F^{\theta_{\mu}}$ for the fixed Point $w$

of $h(J^{\times})$ as above, if $q_{\mu}$ is holomorphic at $w$ .
PROOF. Take a non-constant element $f$ of $\leftrightarrow q_{0}(F_{ab}^{\prime})$ . Given $w$ , we may

assume, changing $f$ for $ f\circ\beta$ with a suitable $\beta\in B^{+}$ , that $\partial f/\partial z_{\mu}(w)\neq 0$ for
every $\mu\leqq r$ . Take $a\in J$ so that $J=Q(a^{\rho}/a)$ ; put $\alpha=h(a),$ $c_{\lambda}=(a^{\rho}/a)^{\lambda}$ , and
$s_{\lambda}=f\circ a^{\lambda}$ for $\lambda=1,$ $\cdots$ , $r$ . Then

$\frac{\partial(s_{1},\cdot\cdot..\cdot,s_{r})}{\partial(z_{1},\cdot,z_{r})}(w)=\prod_{\mu=1}^{r}\frac{\partial f}{\partial z_{\mu}}(w)\cdot\det(c_{\lambda}^{\xi}\nu)\neq 0$ .

Therefore $s_{1},$
$\cdots$ , $s_{r}$ are algebraically independent, and hence $\partial/\partial s_{1},$ $\cdots$ , $\partial/\partial s_{\gamma}$

are well-defined derivations of $d_{0}(F_{ab}^{\prime})$ . Then $\partial u/\partial z_{\mu}=\sum_{\lambda}(\partial u/\partial s_{\lambda})(\partial s_{\lambda}/\partial z_{\mu})$ , so
that

$(\partial f/\partial z_{\mu})^{-1}(\partial u/\partial z_{\mu})(w)=\Sigma_{\lambda}(\partial u/\partial s_{\lambda})(w)c_{\lambda}^{\xi_{f^{f}}}\in J_{ab}^{f}J^{\xi}\mu=J_{ab}^{\prime}F^{\theta_{\mu}}$ ,
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if $u$ is finite at $w$ . Thus $q_{\mu}(w)\in J_{ab}^{f}F^{\theta\mu}$ whenever both $u$ and l) are finite at
$w$ and $(\partial u/\partial z_{\mu})(w)\neq 0$ . Since such points $w$ with the same $J$ and $\{\xi_{1}, \cdots , \xi_{r}\}$

form a dense subset of $\mathfrak{H}_{1}^{r}$ , we see the $q_{\mu}\in d_{0}(J_{ab}^{\prime}F^{g_{f^{\ell}}})$ , which implies our
assertions.

The above proof tempts us to make the following
CONJECTURE 7.3. (i) $(\partial u/\partial z_{\mu})^{-1}(\partial v/\partial z_{\mu})\in d_{0}(F_{ab}^{f}F^{\theta_{l}\prime_{f}})$ if $u,$ $v\in \mathcal{A}_{0}(F_{ab}^{\prime})$ .
(ii) If $u$ is a non-constant function in $d_{0}(E_{N})\cap \mathcal{A}_{0}(F_{ab}^{\prime})$ , the divisor of

$\partial u/\partial z_{\mu}$ on a canonical model of $E_{N}\backslash \mathfrak{H}_{1}^{r}$ is rational over $F_{ab}^{\prime}F^{\theta\mu}$ .
We now prove Theorem 7.1 in the case $s=1,$ $i$ . $e.$ ,

(7.6) $\pi^{-1}(\partial f/\partial z_{\nu})(w)\sim p(\xi_{\nu}, \Xi_{1})p(\xi_{\nu}, \Xi_{2})$ for $\nu=1,$ $\cdots$ , $r$ .
In view of Proposition 7.2, it is sufficient to prove this for one particular $f$

in $d_{0}(Q)$ . Take a totally imaginary quadratic extension $K$ of $F$, not isomor-
phic to $J$, which splits $B$ . Identify $M_{2}(K)$ with $B\otimes_{F}K$. We can find an
element $T$ of $GL_{2}(K)$ such that ${}^{t}T^{\rho}=-T$ and

(7.7) $B=\{\alpha\in M_{2}(K)|\alpha^{\iota}T=T\cdot\alpha\}$ ,

where $\iota$ denotes the main involution of $M_{2}(K)$ . To show this, let $\gamma$ be the
involution of $M_{2}(K)$ which coincides with $\rho$ on $K$ and with the main involu-
tion on $B$ . Then $x^{\gamma i}=u\cdot x^{\rho}u^{-1}$ with a hermitian element $u$ of $GL_{2}(K)$ . Putting
$T=\zeta u$ with a pure imaginary element $\zeta$ of $K$, we obtain (7.7). We can easily
verify that $iT^{\tau_{\nu}}$ is indefinite or definite according as $\nu\leqq r$ or $\nu>r$ (cf. [9, 7.2],

[10, 6.2]). Define $G_{Q}$ of (4.1) with this $T$ . The group $\{a\in B|\alpha\alpha^{\zeta}=1\}$ is con-
tained in $G_{Q}$ , and there is a holomorphic isomorphism $j$ of $\mathfrak{H}_{1}^{r}$ onto $\mathfrak{D}_{1}^{r}$ which
makes the action of $\alpha$ on $\mathfrak{H}_{1}^{r}$ and on $\mathfrak{D}_{1}^{\gamma}$ compatible (cf. [9, (7.3.1)], [10, 6.6]).

Moreover we have $\mathfrak{A}_{0}(\overline{Q})\circ j=d_{0}(\overline{Q})$ , as our construction of canonical models
in [10] and [11] shows; we note that $j$ is given by fractional linear trans-
formations with algebraic coefficients.

Let $f\in \mathfrak{A}_{0}(\overline{Q})$ . If $w$ is the fixed point of $h(J^{\times})$ , we have, by Theorem 6.1,

(7.8) $[\partial(\mathfrak{f}\circ j)/\partial z_{1}](w)\sim\pi\cdot R_{1}(j(w))S_{1}(j(w))$ ,

since the derivatives of $j$ at $w$ are algebraic. Note that $m=2$ and $r_{1}=s_{1}=1$

in the present case. Now take injections $\tau_{1},$
$\cdots$ , $\tau_{g}$ of $K$ into $C$ so that

$\tau_{\nu}=\theta_{\nu}$ on $F$ and $-iT^{\tau_{v}}>0$ for $\nu>r$ . Then

$\Phi=\sum_{\nu\Leftarrow 1}^{r}(\tau_{\nu}+\tau_{\nu}\rho)+\Sigma_{\nu=r+1}^{g}2\tau_{\nu}$

in the present case. The point $j(w)$ of $\mathfrak{D}$ corresponds to an abelian variety
of tyPe $(L, \Psi)$ with $L=JK$ and a CM-type $\Psi=\sum_{\nu=1}^{g}(\alpha_{\nu}+\beta_{v})$ of $L$ defined by
the table
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(7.9)

as shown in [9, 6.5] and [1C, 6.8]. By (5.10) and Theorem 1.2, we have

$R_{1}(j(w))S_{1}(j(w))\sim p(\alpha_{1}, \Psi)p(\beta_{1}, \Psi)\sim p(\xi_{1}, \Xi_{1})p(\xi_{1}, \Xi_{2})$ ,

which combined with (7.8) proves (7.6).

Let us now prove the statement at the end of \S 1. Put $\Xi=\Xi_{1}+\Xi_{2}$ and
observe that $J^{f}=J^{\Xi}$ . By Proposition 7.2, the left-hand side of (7.6) is deter-
mined up to factors belonging to $J_{ab}^{\prime}F^{\theta_{\nu}}$ . Therefore we can put $P(\tau_{\nu}, \Xi)=$

$\pi^{-1}(\hat{o}f/\partial z_{\nu})(w)$ with non-constant $f\in\leftrightarrow q_{0}(F_{ab}^{\prime})$ for each $\nu\leqq r$, which has the
desired property of Conjecture 1.7. It should be noted that $(\partial f/\partial z_{\nu})(w)$ depends
on the choice of the algebra $B$ in which $J$ is embedded and also of the
isomorphism (7.1).

The existence of “ Q-rational forms of weight 1“ can be shown by
PROPOSITION 7.4. For each $\mu\leqq r$ , there is a non-zero element $t$ of $d_{k}$ such

that $\pi t^{2}=u\cdot\partial f/\partial z_{\mu}$ with $u$ and $f$ in $\mathcal{A}_{0}(\overline{Q})$ , where $k$ is determined by $\mu$ in an
obvious way.

PROOF. The notation being as in the proof of (7.6), we have proved
in \S 5 that $\delta R_{1}/S_{1}\in \mathfrak{A}_{0}(\overline{Q})$ with $\delta=q(\tau_{1}\rho)/q(\tau_{1})$ . As already remarked, we

have $j(z_{1}, \cdots , z_{\gamma})=((a_{1}z_{1}+b_{1})/(c_{1}z_{1}+d_{1}), \cdots)$ with $\left(\begin{array}{ll}a_{1} & b_{1}\\c_{1} & d_{1}\end{array}\right)$ in $SL_{2}(\overline{Q})$ . Then $t=$

$\delta^{1/2}(R_{1}\circ j)/(c_{1}z_{1}+d_{1})$ has the required property for $\mu=1$ , by virtue of Theorem
6.1.

Let $cd_{k}(\overline{Q})$ denote, for $k=(k_{1}, \cdots , k_{r})\in Z^{r}$ , the set of elements $\varphi$ of $d_{k}$

such that $\varphi^{2}=\pi^{-\{k\}}f\Pi_{\nu=1}^{\gamma}(\partial u/\partial z_{\nu})^{k_{\nu}}$ with a fixed non-constant element $u$ of
$\mathcal{A}_{0}(F_{ab}^{\prime})$ and an arbitrary $f$ of $\mathcal{A}_{0}(\overline{Q})$ , where $\{k\}=\sum_{\nu=1}^{r}k_{\nu}$ . Proposition 7.4
shows that $\mathcal{A}_{k}(\overline{Q})\neq\{0\}$ for every $k$ ; obviously $d_{k}(\overline{Q})$ is a one-dimensional
vector space over $d_{0}(\overline{Q})$ . By Proposition 7.2, $d_{k}(\overline{Q})$ does not depend on the
choice of $u$ . This implies in particular

PROPOSITION 7.5. If $v\in d_{k}(\overline{Q})$ and $a\in B^{+}$ , then $v|_{k}\alpha\in d_{k}(\overline{Q})$ .
For $k=(k_{1}, \cdots , k_{r})$ and $e=(e_{1}, \cdots , e_{r})$ in $Z^{r}$ with $e_{\nu}\geqq 0$, define a differential

operator $d_{k}^{e}$ of degree $\{e\}$ acting on the functions on $\mathfrak{H}_{1}^{r}$ by

$d_{k}^{e}=(2\pi i)^{-te\}}\prod_{\nu=1}^{r}(\frac{k_{v}+2e_{v}-2}{z_{\nu}-\overline{z}_{\nu}}+\frac{\partial}{\partial z_{\nu}})\cdots(\frac{k_{\nu}+2}{z_{\nu}-\overline{z}_{\nu}}+\frac{\partial}{\partial z_{\nu}})(\frac{k_{\nu}}{z_{\nu}-\overline{z}_{\nu}}+\frac{\partial}{\partial z_{\nu}})$ ,

where $\{e\}=\sum_{\nu=1}^{r}e_{\nu}$ ; we understand that $d_{k}^{0}$ is the identity operator (cf. [12,
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\S 1]).
THEOREM 7.6. Let $f\in\leftrightarrow q_{k}(\overline{Q})$ and $v\in\leftrightarrow q_{k+2e}(\overline{Q})$ with $e_{\nu}\geqq 0$ for all $\nu$ . SuPpose

that both $f$ and $v^{-1}$ are holomorphic at the fixed Point $w$ of $h(J^{\times})$ as above.
Then $(v^{-1}d_{k}^{e}f)(w)\in\overline{Q}$ .

This is a generalization of the main theorem I of [12] and can be proved
in exactly the same fashion.

COROLLARY 7.7. If $f\in d_{0}(\overline{Q})$ and $0<\nu_{1}<\cdots<\nu_{s}\leqq r$, then

$\pi^{-s}\partial^{s}f/\partial z_{\nu_{1}}\cdots\partial z_{\nu_{s}}\in \mathcal{A}_{k}(\overline{Q})$ ,

where $k$ is determined by $\nu_{1},$
$\cdots$ , $\nu_{s}$ in an obvious way.

This follows immediately from Theorem 7.6, and proves, combined with
(7.6), the general case of Theorem 7.1.

The above results concern the archimedean primes of $F$ unramiPed in $B$ .
Let us now prove an analogue of Proposition 7.4 for the remaining primes.
Let $\chi_{\nu}$ for $\nu=r+1,$ $\cdots$ , $g$ be injections of $B$ into $M_{2}(\overline{Q})$ such that $\chi_{\nu}(a)=a^{\theta_{\nu}}1_{2}$

for $a\in F$. We consider $M_{2}(C)$-valued meromorphic functions $\mathfrak{t}$ on $\mathfrak{H}_{1}^{\gamma}$ such
that

(7.10) $t(r(z))=x.(r)t(z)$ for every $\gamma\in E_{N}$

with some $N$. The existence of such $\mathfrak{t}$ can be shown as follows. Identifying
$B$ with a subalgebra of $M_{2}(K)$ , we can find an element $U_{\nu}$ of $GL_{2}(\overline{Q})$ such
that $U_{\nu}^{-1}\chi_{\nu}(a)U_{v}=(Q_{\nu}^{-1}a^{\tau_{D}\rho}Q_{\nu})^{\rho}$ for all $a\in B$ . Put $t=U_{\nu}R_{\nu}\circ j$ with the function
$R_{\nu}$ of (5.3) for a fixed $\nu>r$ . Then $(5.4_{a})$ implies (7.10). Moreover, for any
point $v$ of $\mathfrak{H}_{1}^{r}$, we can take $\mathfrak{t}$ so that { is holomorphic at $v$ and $\det(\mathfrak{t}(v))\neq 0$ .

To define the Q-rationality of $t$ , we consider the fixed point $w$ of $h(J^{\times})$

as before, and define $\xi_{\nu},$ $\Xi_{1}$ and $\Xi_{2}$ as in Theorem 7.1. $Then^{\tau}there$ is an
element $D_{\nu}$ of $GL_{2}(\overline{Q})$ such that

(7.11) $D_{\nu}\chi_{\nu}(h(x))D_{\nu}^{-1}=diag[x^{\xi_{v}\rho}, \chi_{\nu}^{\xi}]$ for all $x\in J$ .
Put $q_{\nu}=[p(\xi_{\nu}, \Xi_{1})/p(\xi_{\nu}\rho, \Xi_{2})]^{1/2}$ . We now consider the following property
of $\mathfrak{t}$ .
(7.12) $diag[q_{v}, q_{\nu}^{-1}]D_{\nu}\mathfrak{t}(w)\in M_{2}(\overline{Q})$ .

Observe that this property does not depend on the choice of $D_{\nu}$ .
PROPOSITION 7.8. For each $\nu>r$, there exists an $M_{2}(C)$ -valued meromorphic

function $\mathfrak{t}$ on $\mathfrak{H}_{1}^{r}$ whose determinan $f$ is not identically equal to $0$, and which
satisfies (7.10) for some $N$ and (7.12) at every fixed Point $w$ of the above type
where { is holomorphic.

PROOF. The notation being as in the proof of (7.6), put $z_{0}=j(w)$ with
the fixed point $w$ of $h(J^{\times})$ . Define $\Psi=\sum_{1}^{g},=(a_{\nu}+\beta_{\nu})$ by (7.9). Since
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$D_{\nu}U_{\nu}(Q_{\nu}^{-1}h(x)^{\tau_{v}\rho}Q_{\nu})^{\rho}U_{\nu}^{-1}D_{\nu}^{-1}=diag[x^{\xi_{\nu}\rho}, x^{\xi_{\nu}}]$ for $x\in J$ ,

we can take $D_{\nu}U_{\nu}$ as $C_{\nu}$ of $(5.8_{a})$ ; hence we have, by $(5.9_{a})$ ,

$diag[p(\beta_{\nu}, \Psi), p(\alpha_{\nu}, \Psi)]^{-1}D_{\nu}U_{\nu}R_{\nu}(z_{0})\in GL_{2}(\overline{Q})$ .
By Theorem 1.2, (if $\nu>r,$) we have

$p(\alpha_{\nu}, \Psi)/p(\beta_{\nu}, \Psi)\sim p(\xi_{\nu}, \Xi_{1})/p(\xi_{\nu}\rho, \Xi_{2})$ ,

$p(a_{\nu}, \Psi)p(\beta_{\nu}, \Psi)\sim p(\tau_{\nu}, \Phi_{1})p(\tau_{\nu}, \Phi_{2})$ ,

where $\Phi_{1}=\sum_{\nu=1}^{g}\tau_{\nu}$ and $\Phi_{2}=\sum_{\nu=1}^{r}\tau_{\nu}\rho+\sum_{\nu=r+1}^{g}\tau_{\nu}$ . Therefore, if we put $b=$

$[p(\tau_{\nu}, \Phi_{1})p(\tau_{\nu}, \Phi_{2})]^{1/2}$ and $\mathfrak{t}=b^{-1}U_{\nu}R_{\nu}\circ j$, then $\mathfrak{t}$ satisfies (7.12) at $w$ . Let $w^{*}$ be
the fixed point of $h^{*}(J^{*\times})$ with some other $h^{*}$ and $J^{*}$ . Since $b$ and $U$ are
independent of $h$ and $J,$ $\mathfrak{t}$ satisfies (7.12) at $w^{*}$ , whenever the functions of
(5.3) as well as $(P\circ\epsilon)^{-1}$ are holomorphic at $j(w^{*})$ . Now we can find a func-
tion $\mathfrak{t}^{*}$ which satisfies (7.12) at $w^{*}$ and such that $det(\mathfrak{t}^{*}(w^{*}))\neq 0$ . Both $\mathfrak{t}$ and
$\mathfrak{t}^{*}$ satisfy (7.12) at the points in a dense subset $S$ of $\mathfrak{H}_{1}^{r}$ . Put $\mathfrak{f}=\}^{*-1}$ {. We
see that the entries of $\mathfrak{f}$ belong to $d_{0}$ and take algebraic values on $S$ , and
hence belong to $d_{0}(\overline{Q})$ . Since $f$ is holomorphic at $w^{*}$ if and only if $\mathfrak{f}$ is
holomorphic at $w^{*}$ , we see that { satisfies (7.12) at $w^{*}$ whenever $\mathfrak{t}$ is holo-
morphic at $w^{*}$ . This completes the proof.

One can prove the analogues of the above theorems for the derivatives
of the functions $\mathfrak{t}$ satisfying (7.10) and (7.12). Also, the field $\overline{Q}$ can be
replaced by smaller fields depending on the weight. We have not pursued
these points to their full extent in order not to obscure the ideas and $to_{a}^{r}keep$

the paper short. In fact, almost all of the results in this section can be
generalized (at least) to the group

$\{\alpha\in GL_{n}(B)|{}^{t}\alpha^{\iota}\alpha\in F\}$

acting on $\mathfrak{H}_{n}^{\gamma}$ , which was treated in [10] and [11]. It should be noted that
$(5.9_{ab}),$ $(7.12)$ , or their generalizations can be utilized for defining the arith-
meticity of automorphic forms, especially in the case of compact quotient.

As a final remark, we give here a paraphrase of Proposition 2.1 in terms
of modular forms. Let $f$ be a (meromorphic) Hilbert modular form of weight
$k,$ $i$ . $e.$ , an element of $\subset\beta_{k}$ with $B=M_{2}(F)$ , and let $q$ be an element of $F$ such
that $q^{\theta_{v}}>0$ or $<0$ according as $\nu\leqq r$ or $>r$ . Put

(7.13) $u(z)=f(q^{\theta_{1}}z, \cdots q^{\theta_{r}}z, q^{\theta_{r+1}}\overline{z}, \cdots q^{\theta_{g}}\overline{z})$ $(z\in \mathfrak{H}_{1})$ ,

and suppose $ k_{1}=\cdots=k_{r}=-k_{r+1}=\cdots=-k_{g}=\lambda$ . Let $v(z)$ be a (meromorphic)
modular form of weight $\lambda(2r-g)$ with respect to a congruence subgroup of
$SL_{2}(Z)$ . Observe that
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$(u/v)(\gamma(z))=(u/v)(z)[(cz+d)/(c\overline{z}+d)]^{\lambda(g- r)}$

for $r=\left(\begin{array}{ll}* & *\\c & d\end{array}\right)$ in a congruence subgroup of $SL_{2}(Z)$ .

PROPOSITION 7.9. Let $z_{0}$ be a point of $\mathfrak{H}_{1}$ which generates an imaginary
quadratic field $K$, and suppose both $f$ and $v$ are Q-rational. Then $(u/v)(z_{0})\in\overline{Q}$ .

PROOF. Put $L=FK$ and define a CM-type $\Psi=\Sigma_{\nu=1}^{g}a_{\nu}$ so that $\sigma_{\nu}=\theta_{\nu}$ on
$F,$ $z_{0}^{\sigma_{\nu}}=z_{0}$ or $\overline{z}_{0}$ according as $\nu\leqq r$ or $>r$ . Then

$u(z_{0})\sim\Pi_{\nu=1}^{r}p(\sigma_{\nu}, \Psi)^{\lambda}\cdot\Pi_{\nu=r+1}^{g}p(a_{\nu}, \Psi)^{-\lambda}\sim v(z_{0})$

by Proposition 2.1.

8. The non-vanishing of $H^{1}(\Gamma\backslash \mathfrak{D}_{r}, R)$ .

Let $\mathfrak{S}$ be an irreducible bounded symmetric domain, and $\Gamma$ a fixed-point-
free discontinuous group of holomorphic automorphisms of $\mathfrak{S}$ such that $\Gamma\backslash \mathfrak{S}$

is compact. It was shown by Matsushima [4] that the first cohomology
group of $\Gamma\backslash \mathfrak{S}$ over $R$ vanishes unless $\mathfrak{S}$ is isomorphic to

(8.1) $\mathfrak{D}_{r}=\mathfrak{D}(r, 1)=\{(z_{1}, \cdots z_{r})\in C^{r}|\Sigma_{k=1}^{r}|z_{k}|^{2}<1\}$ .

The purpose of this section is to show that the last condition is actually
meaningful. In other words, for each $r$, we can produce an example of $\Gamma$

acting on $\mathfrak{D}_{r}$ such that there is a holomorphic closed l-form on $\Gamma\backslash \mathfrak{D}_{r}$ whose
cohomology class is not $0$ . The paper [3] by Kazhdan and a forthcoming
work [1, Ch. VIII] by Wallach should be mentioned as previous investigations
on this topic. Our result can be stated as

THEOREM 8.1. Let $K,$ $T$, and $\tau_{1},$
$\cdots$ , $\tau_{g}$ be as in \S 4. Define $G_{Q}$ by (4.1)

and a subgroup $\Gamma_{1}$ of $G_{Q}$ by (4.14) with $N=1$ and with an arbitrary lattice $\mathfrak{m}$

of $K_{m}^{1}$ . Let $(r_{\nu}, s_{\nu})$ be the signature of $-iT^{\tau_{\nu}}$ . SuPpose $s_{1}=1$ and $s_{2}=\cdots=s_{g}=0$

(so that $\mathfrak{D}=\mathfrak{D}_{m-1}$). Then there is a subgroup $\Gamma$ of $\Gamma_{1}$ of finite index such that
$\Gamma\backslash \mathfrak{D}$ has a closed holomorphic l-form whose cohomology class is not $0$ . Moreover,
we can find $m-1$ such l-forms $\xi_{1},$ $\cdots$ , $\xi_{m-1}$ so that $\xi_{1}\wedge\cdots$ A $\xi_{m-1}\neq 0$ .

This applies to both compact and non-compact quotients. Notice that,
under the assumption on $s_{\nu}$ in the theorem, $\Gamma\backslash \mathfrak{D}$ is compact if $g>1$ ; it is
not compact if $g=1$ and $r_{1}>1$ .

To prove our theorem, we introduce the classical theta function

$\theta(u, Z;a, b)=\Sigma_{x\in z^{n}}e((1/2)\cdot{}^{t}(x+a)Z(x+a)+{}^{t}(x+a)(u+b))$

$(u\in C^{n}, Z\in \mathfrak{H}_{n}, a\in R^{n}, b\in R^{n})$ ,

where $e(v)=e^{2\pi iv}$ . It is well known that, for every $\gamma=\left(\begin{array}{ll}* & *\\C & D\end{array}\right)\in\Delta_{2}$ , one has



Periods of abelian varieties 589

(8.2) $\theta({}^{t}(CZ+D)^{-1}u, \gamma(Z);a,$ $b$)

$=\lambda_{\gamma}e(({}^{t}ab-{}^{t}a^{\prime}b^{\prime})/2)\det(CZ+D)^{1/2}e((1/2)\cdot {}^{t}u(CZ+D)^{-1}Cu)\theta(u, Z;a^{\prime}, b^{f})$ ,

where $({}^{t}a^{\prime},{}^{t}b^{\prime})=({}^{t}a,{}^{t}b)\gamma$, and $\lambda_{\gamma}$ is a fourth root of unity depending only on
$\gamma$ . With fixed $a_{1},$

$\cdots$ , $a_{n}$ in $Q^{n}$ , define an $M_{n}(C)$-valued function $V$ on $\mathfrak{H}_{n}$ by
$V(Z)=(v_{jk}(Z))$ , $v_{jk}(Z)=(\partial\theta/\partial_{\mathcal{U}_{j}})(0, Z;a_{k}, 0)$ .

We see from (8.2) that

$V(\gamma(Z))=\lambda_{\gamma}\det(CZ+D)^{1/2}\cdot(CZ+D)V(Z)$ for every $\gamma=\left(\begin{array}{ll}* & *\\C & D\end{array}\right)\in\Delta_{N}$ ,

where $N$ is a suitably large even positive integer depending on $a_{1},$ $\cdots$ , $a_{n}$ .
Moreover, as shown in [13, Proposition 1.2], given a point $Z_{0}$ of $\mathfrak{H}_{n}$ , we can
choose $a_{1},$

$\cdots$ , $a_{n}$ so that $\det(V(Z_{0}))\neq 0$ . Now define a function $V^{\epsilon}$ on $\mathfrak{D}$ by

$V^{\epsilon}(z)=\det(\omega_{2}(z))^{-1/2}\cdot{}^{t}\omega_{2}(z)^{-1}V(\epsilon(z))$ $(z\in \mathfrak{D})$

with any choice of $\det(\omega_{2}(z))^{-1/2}$, where $\epsilon$ and $\omega_{2}$ are as in \S 4. By (4.16),
$(4.10_{ab})$ , and (3.9), we have

(8.3) $V^{\epsilon}(\alpha(z))=t(\alpha)\Pi_{\nu}^{\prime}\det(\mu_{\nu}(\alpha, z))\cdot\Lambda(\alpha, z)V^{\epsilon}(z)$ for $\alpha\in\Gamma_{N}$

with a fourth root of unity $t(\alpha)$ , where $\Pi_{\nu}^{\prime}$ is the product over all $\nu$ such
that $r_{v}s_{\nu}\neq 0$ . Obviously $t$ is a character of $\Gamma_{N}$ . Choose the $a_{j}$ so that
$\det(V^{\epsilon})$ does not vanish identically on $\mathfrak{D}$ .

Now assume that $r_{1}=m-1,$ $s_{1}=1$ , and $s_{2}=\cdots=s_{g}=0$ . Then $\mathfrak{D}=\mathfrak{D}_{m-1}$ . If
$R$ is the first $m-1$ rows of $V^{\epsilon},$ $(8.3)$ implies that

(8.4) $R(\alpha(z))=t(\alpha)\mu_{1}(\alpha, z)\lambda_{1}(\alpha, z)R(z)$ for $\alpha\in\Gamma_{N}$ .
Take an arbitrary non-vanishing column of $R(z)$ and call it $q(z)$, and its
components $q_{1},$

$\cdots$ , $q_{m-1}$ . Let $z_{1},$
$\cdots$ , $z_{m-1}$ be the components of the variable

point $z$ on $\mathfrak{D}$ . Define a l-form $\xi$ on $\mathfrak{D}$ by

(8.5) $\xi=\Sigma_{k=1}^{m-1}q_{k}(z)dz_{k}={}^{t}q(z)dz$ .
From (8.4) and (3.7), we see that $\xi\circ\alpha=t(\alpha)\xi$ for all $\alpha\in\Gamma_{N}$ . Therefore if
$\Gamma=Ker(t)$ , then $[\Gamma_{N} : \Gamma]\leqq 4$ , and $\xi$ defines a non-vanishing holomorphic l-form
on $\Gamma\backslash \mathfrak{D}$ . Since $R$ has rank $m-1$ , we can choose $m-1$ columns of $R(z)$ which
produce l-forms $\xi_{1},$ $\cdots$ , $\xi_{m-1}$ such that $\xi_{1}\Lambda\cdots\wedge\xi_{m-1}\neq 0$ .

If $\Gamma\backslash \mathfrak{D}$ is compact, $\xi$ is closed and the cohomology class of $\xi$ is auto-
matically non-vanishing; our proof is completed in that case. In the non-
compact case, a further reasoning is necessary. As mentioned above, if
$\mathfrak{D}=\mathfrak{D}_{m-1}$ , the non-compact quotient occurs only when $g=1$ . We are naturally
interested only in the case $m>2$ . First, to show that $\xi$ is closed, we use the
unbounded domain
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$\mathfrak{Z}=\{(w, z)\in C^{m-2}\times C|i({}^{t}\overline{w}Sw+\overline{z}-z)>0\}$ ,

which is isomorphic to $\mathfrak{D}_{m-1}$ and was introduced in [14]. Here $S$ is a diagonal
skew-hermitian element of $GL_{m- 2}(K)$ determined by $T$ . We defined in [14,

\S 3] an embedding $\epsilon^{f}$ of $\mathfrak{Z}$ into $\mathfrak{H}_{m}$ similar to $\epsilon$ ; so we can define everything
with respect to $\mathfrak{Z}$ and $\epsilon^{\prime}$ instead of $\mathfrak{D}$ and $\epsilon$ . The function on $\mathfrak{Z}$ correspond-
ing to $V^{\epsilon}$ is defined by

(8.6) $X(w, z)=^{t}\chi(w, z)^{-1}V(\epsilon^{\prime}(w, z))$ $((w, z)\in \mathfrak{Z})$

with $\chi$ of [14, (3.12)] (cf. (3.19) and Proposition 3.2 of [14]). Then $q$ corre-
sponds to the first $m-1$ elements of a suitable column of $X(w, z)$ , which can
be given as

$\left\{\begin{array}{l}X_{1}\\\vdots\\ x_{m}\end{array}\right\}=^{t}x(w, z)^{-1}\left\{\begin{array}{l}\epsilon^{f}y_{1}\circ\\\vdots\\ y_{m^{o}}\epsilon^{f}\end{array}\right\}$ , $y_{k}=(\partial\theta/\partial u_{k})(0, Z;a, 0)$

with a suitable $a\in Q^{m}$ . Thus $\xi$ corresponds to a l-form $\eta=\sum_{k=1}^{m-2}x_{k}dw_{k}+x_{m-1}dz$

on $\mathfrak{Z}$ . Using the explicit form of $\chi$ in [14, (3.12)], we find

$x_{k}=y_{k}\circ\epsilon^{\prime}-(s_{k}w_{k}/2)y_{m- 1}\circ\epsilon^{f}-(\delta s_{k}w_{k}/2)y_{m}\circ\epsilon^{f}$ if $k<m-1$ ,

$x_{m-1}=(y_{m- 1}\circ\epsilon^{f}-\delta y_{m^{\circ}}\epsilon^{f})/2$ ,

where $s_{k}$ is the k-th diagonal element of $S$ and $\delta$ is a generator of $K$ used
in [14, \S 3]. Now [14, (3.7)] shows that

$d\epsilon^{\prime}(w, z)=[{}^{t}dw0$ $d_{Z}.wSdw-\delta^{-t}{}^{t}wSdwdw$ $-\delta^{2}(dz+{}^{t}wSd_{\mathcal{U}^{f}})-\delta\delta {}^{t}wSdw)$ .

Combining this with the well known relation
$(\partial^{2}\theta/\partial u_{j}\partial u_{k})(u, Z;a, b)=2\pi i(1+\delta_{fk})(\partial\theta/\partial Z_{jk})(u, Z;a, b)$ ,

we can show by a direct calculation that $\partial x_{m- 1}/\partial w_{k}=\partial x_{k}/\partial z$ and $\partial x_{J}/\partial w_{k}=$

$\partial x_{k}/\partial w_{j}$ if $j<m-1$ and $k<m-1$ , which proves the desired closedness.
To show the non-vanishing of the cohomology-class, we go back to $\mathfrak{D}$

and take $T$ in the diagonal form $T=diag[\zeta_{1}, \cdots , \zeta_{m}]$ . Since the equivalence
class of $T$ can be determined by its signature and the class of $\det(T)$ modulo
$N_{K/Q}(K^{\times})$ , we can choose $\zeta_{1},$ $\cdots$ , $\zeta_{m}$ so that $\zeta_{m- 1}\zeta_{m}>0$ and $\zeta_{m-1}\zeta_{m}\not\in\Lambda_{K/Q}^{\Gamma}(K^{\times})$ .
(We are naturally assuming $m>2.$ ) Put

$G_{Q}^{\prime}=\{\alpha\in GL_{2}(K)|aT^{\prime}\cdot{}^{t}\alpha=T^{f}\}$ , $T^{f}=diag[\zeta_{m- 1}, \zeta_{m}]$ .

Then $G_{Q}^{\prime}$ acts on the disc $\mathfrak{D}_{1}$ . Moreover, $\alpha-*diag[1_{m-1}, \alpha]$ gives an injection

of $G_{Q}^{\prime}$ into $G_{Q}$ , which is compatible with the embedding $z\rightarrow\left(\begin{array}{l}0\\z\end{array}\right)$ of $\mathfrak{D}_{1}$ into
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$\mathfrak{D}_{m-1}$ . Take a congruence subgroup $\Gamma^{\prime}$ of $G_{Q}^{\prime}$ so that $\Gamma^{\prime}$ is mapped into $\Gamma_{N}$ .
Then $\Gamma^{f}$ has a subgroup of finite index $\Gamma^{ff}$ which is mapped into $\Gamma$ . We
can construct the above $\xi$ of (8.5) so that its pull-back to $\mathfrak{D}_{1}$ , say $\xi^{f}$ , is not
$0$ . Our choice of $T^{f}$ implies that $\Gamma^{\prime\prime}\backslash \mathfrak{D}_{1}$ is compact, so that there is an

element $\gamma$ of $\Gamma^{\prime\prime}$ and a point $w$ of $\mathfrak{D}_{1}$ such that $\int_{w}^{\gamma(w)}\xi^{\prime}\neq 0$ . This shows the

non-vanishing of the cohomology-class of $\xi$ on $\Gamma\backslash \mathfrak{D}$, and completes the proof.
Instead of taking the first $m-1$ columns, we can consider the $m$ columns

$W_{\nu}$ of $V^{\epsilon}$ corresponding to the v-th diagonal block $\Lambda_{\nu}(a, z)$ of $\Lambda(\alpha, z)$ for
$\nu>1$ , when $g>1$ . Then

$W_{\nu}(\alpha(z))=t(\alpha)\mu_{1}(\alpha, z)\Lambda_{\nu}(a)W_{\nu}(z)$ for $a\in\Gamma_{N}$ ,

where $\Lambda_{\nu}(\alpha)=(Q_{\nu}^{-1}\alpha^{\tau_{\nu}\rho}Q_{\nu})^{\rho}$. Obviously $\Lambda_{\nu}$ is an injection of $G_{Q}$ into $U(m)$ .
Thus $W_{\nu}$ gives a rather interesting type of automorphic form.
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