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1. Introduction.

We argue a property on presentations of the fundamental group of the 3-
sphere $S^{3}$ associated with Heegaard diagrams. Few years ago, Prof. T. Homma
and M. Ochiai made many examples of homology 3-spheres of Heegaard genus
2 by an electronic computer and picked up simply connected ones among them.
In the process, they found an interesting fact that in case of 3-sphere, one of
two relators of the presentation is included completely in the other one as a
subword. Using this property, they showed splendidly the triviality of the group.
In this paper, we show that this fact is true in certain sense for the general

case of Heegaard genus $n$ . Our proof is based on Suzuki’s result [4].

2. Statement of a result.

To state our result precisely, we need some definitions about presentations
of groups. Let $\langle a_{1}, \cdots , a_{n} ; r_{1}, \cdots , r_{m}\rangle$ denote a presentation of a finitely gen-
erated group with generators $a_{1},$

$\cdots$ , $a_{n}$ and relators $r_{1},$
$\cdots$ , $r_{m}$ . It will be noticed

that the relator $r_{i}$ is a word in the alphabet $a_{1},$ $\cdots$ , $a_{n}$ .
DEFINITION 1. (Simple transformation): We call the following transforma-

tions of relators of a presentation simple transformations, cf. [2]. Let $b_{q}(q=$

$0,1,$ $\cdots$ , k) denote a letter in the alphabet $a_{1},$
$\cdots$ , $a_{n}$ , that is, an element of the

set $\{a_{1}, \cdots , a_{n}, a_{1}^{-1}, \cdots , a_{n}^{-1}\}$ .
$S_{1})$ (Cyclic reduction); If a relator $r_{i}$ is of the form $(b_{1}\cdots b_{j})b_{0}b_{0}^{-1}(b_{j+1}\cdots b_{k})$

or $b_{0}(b_{1}\cdots b_{k})b_{0}^{-1}$ , we say that the relator $r_{i}^{\prime}=b_{1}\cdots b_{k}$ is obtained from $r_{i}$ by a
cyclic reduction. Replace $r_{i}$ by $r_{i}^{\prime}$ . (cf. Note 1.)

$S_{2})$ (Cyclic Permutation); Replace a relator $r_{i}=b_{1}\cdots b_{k}$ by the cyclically
permuted one $r_{i}^{\prime}=b_{2}\cdots b_{k}b_{1}$ .
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$S_{3})$ (Inversion); Replace a relator $r_{i}=b_{1}\cdots b_{k}$ by the inverted one $r_{i}^{-1}=$

$b_{k}^{-1}\cdots b_{1}^{-1}$ .
$S_{4})$ (Substitution); $Iftherearetworelatorsr_{i},$ $r_{j}(i\neq j)suchthatr_{i}=w_{1}r_{j}w_{2}$ ,

where $w_{1}$ and $w_{2}$ are words in the alphabet $a_{1},$
$\cdots$ , $a_{n}$ , then we have a new

relator $r_{i}^{\prime}=w_{1}w_{2}$ . Replace $r_{i}$ by $r_{i}^{\prime}$ .
NOTE 1. In the case of $r_{i}=(b_{1}\cdots b_{j})b_{0}b_{0}^{-1}(b_{j+1}\cdots b_{k}),$ $S_{1}$ ) is called a free reduc-

tion. In this case we say that $r_{i}$ is obtained from $r_{i}^{\prime}$ by a free expansion. A
cyclic reduction can be obtained by a free reduction and $S_{2}$) but a cyclic reduc-
tion itself is natural and convenient for a transformation of a relator.

We use a notation $\{r_{i}|i=1, \cdots , m\}\searrow\{r_{i}^{\prime}|i=1, \cdots, m\}$ if a set $\{r_{i}|i=1, \cdots , m\}$

of relators can be transformed to another one $\{r_{i}^{\prime}|i=1, \cdots , m\}$ by finite applica-
tions of simple transformations.

DEFINITION 2. A presentation $\langle a_{1}, \cdots , a_{n} ; r_{1}, \cdots , r_{n}\rangle$ is said to be simPly
trivial if $\{r_{i}|i=1, \cdots , n\}\searrow\{a_{i}|i=1, \cdots , n\}$ .

A relator $r_{i}$ is called to be reduced if it is not possible to apply any cyclic
reduction to $r_{i}$ .

DEFINITION 3. (Simple equivalence of presentations): Two presentations
$\langle a_{1}, \cdots , a_{n} ; r_{1}, \cdots , r_{m}\rangle$ and $\langle a_{1}, \cdots , a_{n} ; r_{1}^{\prime}, \cdots , r_{m}^{\prime}\rangle$ are said to be simply equi-
valent if there exists a presentation $\langle a_{1}, \cdots , a_{n} ; r_{1}^{*}, \cdots , r_{m}^{*}\rangle$ such that each $r_{t}^{*}$

is reduced, $i=1,$ $\cdots$ , $m$ , and both $\{r_{i}|i=1, \cdots , m\}$ and $\{r_{i}^{\prime}|i=1, \cdots , m\}$ can be
transformed to $\{r_{i}^{*}|i=1, \cdots, m\}$ by finite applications of simple transformations
of type $S_{1}$), $S_{2}$ ) and $S_{3}$).

Now, we can state our result as follows;
THEOREM. For a presentation $\langle a_{1}, \cdots , a_{n} ; r_{1}, \cdots , r_{n}\rangle$ of $\Pi_{1}(S^{3})$ associated

with a Heegaard diagram of genus $n$ , there exists a simply equivalent presenta-
tion $\langle a_{1}, \cdots , a_{n} ; r_{1}^{\prime}, \cdots , r_{n}^{\prime}\rangle$ which is simPly $t$ rivial.

NOTE 2. In general, the required simply trivial presentation \langle $a_{1},$
$\cdots$ , $a_{n}$ ;

$r_{1}^{\prime},$ $\cdots$ , $ r_{n}^{\prime}\rangle$ can be derived from $\langle a_{1}, \cdots , a_{n} ; r_{1}, \cdots , r_{n}\rangle$ by finite applications of
free expansion. So, the $\langle a_{1}, \cdots , a_{n} ; r_{1}^{\prime}, \cdots , r_{n}^{\prime}\rangle$ is not always a presentation
associated with a Heegaard diagram for $S^{3}$ .

Next example will illustlate the assertion of Theorem more clearly.
EXAMPLE 1. A presentation $\langle a_{1}, a_{2}, a_{3}, a_{4} ; r_{1}, r_{2}, r_{3}, r_{4}\rangle$ , where $r_{1}=a_{4}a_{3}a_{2}a_{1}^{3}$ ,

$r_{2}=a_{2}a_{1}a_{2},$ $r_{3}=a_{3}a_{2}a_{1}^{2}a_{3}$ and $r_{4}=a_{4}a_{3}a_{2}a_{1}a_{2}^{-1}a_{3}^{-1}a_{1}$ , is not simply trivial. But
there exists a simply equivalent presentation $\langle a_{1}, a_{2}, a_{3}, a_{4} ; r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}, r_{4}^{\prime}\rangle$ , where
$r_{1}^{\prime}=a_{4}a_{3}a_{2}a_{1}^{2}a_{3}a_{3}^{-1}a_{1},$ $r_{2}^{\prime}=r_{2},$ $r_{3}^{\prime}=r_{3}$ and $r_{4}^{\prime}=a_{4}a_{3}a_{2}a_{1}^{2}a_{3}a_{3}^{-1}a_{1}^{-1}a_{2}^{-1}a_{3}^{-1}a_{1}$ , which is
simply trivial.

Before ending this section, we touch on our plan for the following sections,
briefly. After establishing a Heegaard diagram for a 3-manifold $M$ in Section 3,
we formulate the associated presentation of the fundamental group $\Pi_{1}(M)$ in
Section 4. In Section 5 we discuss such the presentations for the 3-sphere and
prove key lemmata, and in Section 6 we prove our Theorem.
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3. Heegaard splittings, diagrams and sewings.

We sketch the definitions of Heegaard splittings, diagrams and sewings and
the relationships among them. (To know them in detail, see [1].) Let $T$ denote
a solid torus of genus $n$ and $T_{i}(i=1,2)$ denote a copy of $T$ . Suppose that $M$

is a connected orientable closed 3-manifold. A triplet $(M;M_{1}, M_{2})$ is called a
Heegaard sPlitting of $M$ with genus $n$ if $M_{1}$ and $M_{2}$ are homeomorphic to $T$

satisfying $M=M_{1}\cup M_{2}$ and $M_{1}\cap M_{2}=\partial M_{1}\cap\partial M_{2}=\partial M_{1}=\partial M_{2}=F$, the Heegaard sur-
face.

Let $D_{1}$ (respectively $D_{2}$) be a comPlete system of meridian disks of $M_{1}$ (resp.
$M_{2})$ , that is, $D_{1}$ (resp. $D_{2}$) consists of $n$ mutually disjoint proper disks in $M_{1}$

(resp. $M_{2}$) such that $M_{1}$ (resp. $M_{2}$) cut open along $D_{1}$ (resp. $D_{2}$) is a 3-ball. We
say that $C_{1}=\partial D_{1}$ (resp. $C_{2}=\partial D_{2}$) is a complete system of meridian curves of $F=$

$\partial M_{1}$ for $M_{1}$ (resp. $F=\partial M_{2}$ for $M_{2}$). Then we call a triplet $(F;C_{1}, C_{2})$ a Heegaard
diagram of genus $n$ for $M$. Conversely, suppose that C\’i and $C_{2}^{\prime}$ are two com-
plete system of curves on $F$, that is, C\’i (resp. $C_{2}^{\prime}$ ) consists of $n$ mutually disjoint
simple closed curves such that $F$ cut open along C\’i (resp. $C_{2}^{\prime}$ ) is a $2n$ -punctured
2-sphere. Then there are self-homeomorphisms $h_{1}$ and $h_{2}$ on $F$ such that $h_{1}(C_{1})$

$=C_{1}^{\prime}$ and $h_{2}(C_{2})=C_{2}^{\prime}$ . And we have an orientable closed 3-manifold $M^{\prime}$ by attach-
ing $M_{1}$ and $M_{2}$ to both sides of $F$ using $h_{1}$ and $h_{2}$ respectively, ( $M^{\prime}$ is distinct
from $M$ in general). ( $F$ ; C\’i, $C_{2}^{\prime}$ ) is a Heegaard diagram for $M^{\prime}$ and $(M^{\prime} ; M_{1}^{\prime}, M_{2}^{\prime})$

is a Heegaard splitting of $M^{\prime}$ , where $M_{1}^{\prime}$ (resp. $M_{2}^{\prime}$ ) is the image of $M_{1}$ (resp.
$M_{2})$ in $M^{\prime}$ by the attaching.

By the definition, for a Heegaard splitting $(M;M_{1}, M_{2})$ , there are two homeo-
morphism $f_{i}$ : $T_{i}\rightarrow M_{i}(i=1,2)$ . A sewing space $T_{1}\bigcup_{\phi}T_{2}$ by the sewing map
$\phi=f_{1}^{-1}f_{2}|\partial T_{2}$ : $\partial T_{2}\rightarrow\partial T_{1}$ is homeomorphic to $M$. In fact, $f_{1}\cup f_{2}$ : $T_{1}U_{\phi}T_{2}\rightarrow M$

is a homeomorphism between triplets $(T_{1}U_{\phi}T_{2} ; T_{1}, T_{2})$ and $(M;M_{1}, M_{2})$ . We
may assume that $\phi$ is orientation-preserving, (if necessary, exchange $f_{1}$ for $f_{1}r$ ,

where $r:T_{1}\rightarrow T_{1}$ is an orientation-reversing homeomorphism). Conversely, for
an orientation-preserving homeomorphism $\phi$ : $\partial T_{2}=\partial T\rightarrow\partial T=\partial T_{1}$ , the sewing
space $T_{1}\bigcup_{\phi}T_{2}$ has a natural Heegaard splitting $(T_{1}\bigcup_{\phi}T_{2} ; T_{1}, T_{2})$ . A map $\phi$

is called a Heegaard sewing.
We may identify a triplet with another triplet if they are homeomorphic as

triplets. Hence hereafter, we prefer to use a Heegaard sewing $\phi$ , splitting
$(T_{1}U_{\phi}T_{2} ; T_{1}, T_{2})$ and diagram $(\partial T;C_{0}, \phi(C_{0}))$ for the technical reason. Here, $C_{0}$

is a standard complete system of meridian curves on $\partial T(=\partial T_{1}=\partial T_{2})$ as shown
in Fig. 2.
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4. A presentation $\Pi_{1}(\phi)$ associated with a Heegaard diagram.

Now, for a given Heegaard sewing $\phi$ or Heegaard diagram $(\partial T;C_{0}, \phi(C_{0}))$ ,
we give a method of calculating a presentation $\Pi_{1}(\phi)$ of the fundamental group
$\Pi_{1}(T_{1}U_{\phi}T_{2})$ . Take a fixed point $p\in\partial T$ and a Pxed system $\{a_{i}, b_{i}|i=1, \cdots , n\}$

of $l$-based curves on $\partial T$ as shown in Fig. l.(a). We use the same notation $a_{i}$

(or $b_{i}$ ) to indicate the homotopy class of $a_{i}$ (or $b_{i}$ ) for convenience sake.
$\{a_{i}, b_{i}|i=1, \cdots , n\}$ makes a set of generators for $\Pi_{1}(\partial T, p)$ . Let $R$ be a
retraction of $T$ onto a bouquet $B=|\bigcup_{i=1}^{n}a_{i}|$ , and let $\sigma$ be an arc from $P$ to $\phi(p)$ .

$\underline{R}$

$|\bigcup_{i=1}^{n}$ a $i|$

$T_{2}\supset\partial T_{2}=\partial T$ $\partial T=\partial T_{1}\subset T_{1}$ bouquet

Fig. 1. (a) Fig. 1. (b)

DEFINITION 4. A presentation $\Pi_{1}(\phi)$ of $\Pi_{1}(T_{1}U_{\phi}T_{2}, p)$ associated with a
Heegaard sewing $\phi$ is $\langle a_{1}, \cdots , a_{n} ; r_{1}, \cdots , r_{n}\rangle$ such that each $r_{i}$ is a word
$r_{i}(a_{1}, \cdots , a_{n})$ determined by $[R(\sigma\cdot\phi(b_{i})\cdot\sigma^{-1})]\in\Pi_{1}(B, p)=\langle a_{1}, \cdots , a_{n}\rangle$ , where
$[]$ denotes a homotopy class and indicates a composition of curves, (cf.
Fig. $1.(b))$ .

In fact, we can easily check that $\Pi_{1}(\phi)$ is a presentation of $\Pi_{1}(T_{1}\bigcup_{\phi}T_{2}, p)$

by van Kampen’s theorem. Since $\Pi_{1}(B, p)$ is a free group $\langle a_{1}, \cdots , a_{n}\rangle$ , a word
$r_{i}(a_{1}, \cdots , a_{n})$ is uniquely determined up to free reduction. By this fact and next
Lemma 1, $\Pi_{1}(\phi)$ is well-defined for $\phi$ up to simple equivalence.

REMARK 1. Since $\Pi_{1}(B, p)=\langle a_{1}, \cdots , a_{n}\rangle$ is isomorphic to $\langle a_{1},$
$\cdots,$ $a_{n},$

$b_{1}$ ,

$\ldots,$
$b_{n}$ ; $\prod_{i=1}^{n}(b_{\ell}^{-1}a_{i}^{-1}b_{i}a_{i}),$ $b_{1},$ $\cdots$ , $ b_{n}\rangle$ $=\Pi_{1}(\partial T, p)/N(b_{1}, \cdots , b_{n})$ , where $N()$ means a

normal closure, the relator $r_{i}$ can be obtained as follows: Let $\overline{r}_{i}(a_{1},$ $\cdots$ , $a_{n}$ ,
$b_{1},$ $\cdots$ , $b_{n}$ ) be a word determined by $[\sigma\cdot\phi(b_{i})\cdot\sigma^{-1}]\in\Pi_{1}(\partial T, p)$ , then $r_{i}=$

$\overline{r}_{i}(a_{1}, \cdots a_{n}, 1, \cdots 1)$ .
REMARK 2. Let $C_{0}=\{c_{1}, \cdots , c_{n}\}$ be the standard complete system of meri-

dian curves on $\partial T$ as shown in Fig. 2. By reading signed geometric intersec-
tions $C_{0}\cap\phi(c_{i})$ along $\phi(c_{i})$ , we have aword $\overline{r}_{i}(c_{1}, \cdots , c_{n})$ . Put $r_{i}^{\prime}=\overline{r}_{i}(a_{1}, \cdots , a_{n})$
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.
Fig. 2.

by replacing $c_{j}$ by $a_{j}$ , then $\langle a_{1}, \cdots , a_{n} ; r_{1}^{\prime}, \cdots , r_{n}^{\prime}\rangle$ is called a presentation of
$\Pi_{1}(T_{1}\bigcup_{\phi}T_{2}, p)$ associated with a Heegaard diagram $(\partial T;C_{0}, \phi(C_{0}))$ . This defini-
tion coincides with Definition 4 up to simple equivalence, because each $c_{i}$ is
isotopic to $b_{i}$ , (cf. Proof of Lemma 2, below).

LEMMA 1. ApresentatiOn $\Pi_{1}(\phi)$ does not depends on the choice of an arc
$\sigma$ up to simple equivalence.

PROOF. Let $\sigma^{\prime}$ be another arc from $p$ to $\phi(p)$ , then the corresponding rela-
tor $r_{i}^{\prime}$ is presented by a homotopy class

$r_{i}^{\prime}=[R(\sigma^{\prime}\cdot\phi(b_{i})\cdot\sigma^{\prime-1})]=[R(\sigma^{\prime}\cdot\sigma^{-1}\cdot\sigma\cdot\phi(b_{i})\cdot\sigma^{-1}\cdot\sigma\cdot\sigma^{\prime-1})]$

$=[R(\sigma^{\prime}\cdot\sigma^{-1})][R(\sigma\cdot\phi(b_{i})\cdot\sigma^{-1})][R(\sigma\cdot\sigma^{\prime-1})]$

$=[R(\sigma^{\prime}\cdot\sigma^{-1})]r_{i}[R(\sigma^{\prime}\cdot\sigma^{-1})]^{-1}$ ,

therefore, $r_{i}^{\prime}$ and $\gamma_{i}$ have the same reduced form.
LEMMA 2. If $\phi$ is isotopic to $\phi^{\prime},$ $\Pi_{1}(\phi)$ is simPly equivalent to $\Pi_{1}(\phi^{\prime})$ .
PROOF. Since $\phi(b_{i})$ is freely homotopic to $\phi^{\prime}(b_{i})$ , the difference between

$[R(\sigma\cdot\phi(b_{i})\cdot\sigma^{-1})]$ and $[R(\sigma^{\prime}\cdot\phi^{\prime}(b_{i})\cdot\sigma^{\prime-1})]$ is an inner-automorphism of $\Pi_{1}(B, p)$

which can be removed by cyclic reductions.

5. $\Pi_{1}(\phi)$ for $T_{1}\cup_{\phi}T_{2}\approx S^{3}$ .
We discuss a presentation $\Pi_{1}(\phi)$ of $\Pi_{1}(T_{1}\bigcup_{\phi}T_{2}, p)$ in the case that $T_{1}\cup_{\phi}T_{2}$

is homeomorphic to $S^{3}$ . By Suzuki [4], the isotopy class group of all orientation-
preserving self-homeomorphisms on $T$ has a finite set of generators which is
$\mathfrak{G}_{n}=\{[\rho], [\rho_{12}], [\omega_{1}], [\tau_{1}], [\theta_{12}], [\xi_{12}]\}$ for $n>2,$ $\mathfrak{G}_{2}=\{[\rho], [\omega_{1}], [\tau_{1}], [\theta_{12}], [\xi_{12}]\}$

for $n=2$ or $\mathfrak{G}_{1}=\{[\omega_{1}], [\tau_{1}]\}$ for $n=1$ , where $[f]$ is an isotopy class of $f$ and
$\rho,$ $\rho_{12},$ $\omega_{1},$ $\tau_{1},$

$\theta_{12},$ $\xi_{12}$ are self-homeomorphisms on $T$ defined in [4]. Let $\dot{\mathfrak{G}}_{n}^{\pm}$ de-
note a set $\{\dot{\rho},\dot{\rho}^{-1},\dot{\rho}_{12},\dot{\rho}_{12}^{-1},\dot{\omega}_{1},\dot{\omega}_{1}^{-1},\dot{\tau}_{1},\dot{\tau}_{1}^{-1},\dot{\theta}_{12},\dot{\theta}_{12}^{-1},\dot{\xi}_{12},\dot{\xi}_{12}^{-1}\}$ for $n>2$ (similarly

for $n=2,1$ ), where $\dot{\rho}=\rho|\partial T,\dot{\rho}_{12}=\rho_{12}|\partial T$ and so on. Suppose that $\phi_{0}$ is a standard
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Heegaard sewing for $S^{8}$ which maps a standard meridian curve system to a
standard longitudinal curve system, (cf. $\phi_{0}$ is $\mu_{1}\cdots\mu_{n}$ in [4]).

Next proposition is due to Suzuki [4],

PROPOSITION 1. For each homeomorphism $f$ of Q5 $n\pm\cup\{\phi_{0}\}$ , the induced $\Pi_{1^{-}}$

isomorphism $f_{\#}$ ; $\Pi_{1}(\partial T, p)\rightarrow\Pi_{1}(\partial T, p)$ is given as the following table, where
$\{a_{1}, \cdots , a_{n}, b_{1}, \cdots , b_{n}\}$ is a set of generators $for\Pi_{1}(\partial T, p)$ defined as Fig. $1.(a)$

and the trivial case of $f_{\#}(a_{l})=a_{i}$ or $f_{\#}(b_{j})=b_{j}$ is omitted from the table;
1) Cyclic transformation of handles $\dot{\rho}=f,$ $f^{-1}$

$\dot{\rho}_{\#}$ : $\left\{\begin{array}{ll}a_{i}\rightarrow a_{i+1} & i=1, \cdots , n (mod n)\\b_{i}\rightarrow b_{l+1} & i=1, \cdots , n (mod n)\end{array}\right.$

$\dot{\rho}_{\#}^{-1}$ : $\left\{\begin{array}{ll}a_{i}\rightarrow a_{i- 1} & i=1, \cdots , n (mod n)\\b_{l}\rightarrow b_{i-1} & i=1, \cdots , n (mod n)\end{array}\right.$

2) Interchanging knobs $\dot{\rho}_{12}=f,$ $f^{-1}$

$\dot{\rho}_{12\#}$ : $\left\{\begin{array}{l}a_{1}\rightarrow(b_{1}^{-1}a_{1}^{-1}b_{1}a_{1})a_{2}(b_{1}^{-1}a_{1}^{-1}b_{1}a_{1})^{-1}\\a_{2}\rightarrow a_{1}\\b_{1}\rightarrow(b_{1}^{-1}a_{1}^{-1}b_{1}a_{1})b_{2}(b_{1}^{-1}a_{1}^{-1}b_{1}a_{1})^{-1}\\b_{2}\rightarrow b_{1}\end{array}\right.$

$a_{1}\rightarrow a_{2}$

$a_{2}\rightarrow(a_{2}^{-1}b_{2}^{-1}a_{2}b_{2})a_{1}(a_{2}^{-1}b_{2}^{-1}a_{2}b_{2})^{-1}$

$\dot{\rho}_{12\#}^{-1}$ :
$|_{b_{2}}^{b_{1}}\rightarrow b_{2}\rightarrow(a_{2}^{-1}b_{2}^{-1}a_{2}b_{2})b_{1}(a_{2}^{-1}b_{2}^{-1}a_{2}b_{2})^{-1}$

3) Twisting a knob $\dot{\omega}_{1}=f,$ $f^{-1}$

$\dot{\omega}_{1\#}$ : $\left\{\begin{array}{l}a_{1}\rightarrow a_{1}^{-1}b_{1}^{-1}a_{1}^{-1}b_{1}a_{1}\\b_{1}\rightarrow a_{1}^{-1}b_{1}^{-1}a_{1}\end{array}\right.$

$\left\{\begin{array}{l}a_{1}\rightarrow b_{1}^{-1}a_{1}^{-1}b_{1}\\b_{1}\rightarrow b_{1}^{-1}a_{1}^{-1}b_{1}^{-1}a_{1}b_{1}\end{array}\right.$

4) Twisting a handle $\dot{\tau}_{1}=f,$ $f^{-1}$

$\dot{\tau}_{1\#}$ : $\{a_{1}\rightarrow b_{1}^{-1}a_{1}$

$\dot{\tau}_{1\#}^{-1}$ ; $\{a_{1}\rightarrow b_{1}a_{1}$

5) Sliding a handle $\dot{\theta}_{12},$ $\xi_{12}=f,$ $\Gamma^{1}$
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$\dot{\theta}_{12\#}$ : $\left\{\begin{array}{l}a_{1}\rightarrow a_{1}b_{2}^{-1}a_{2}^{-1}b_{2}\\b_{2}\rightarrow a_{2}b_{2}a_{1}^{-1}b_{1}a_{1}b_{2}^{-1}a_{2}^{-1}b_{2}\end{array}\right.$

$\dot{\theta}_{12\#}^{-1}$ : $\left\{\begin{array}{l}a_{1}\rightarrow b_{1}a_{1}b_{2}^{-1}a_{2}b_{2}a_{1}^{-1}b_{1}^{-1}a_{1}\\b_{2}\rightarrow b_{2}a_{1}^{-1}b_{1}^{-1}a_{1}\end{array}\right.$

$\xi_{12\#}$ : $\left\{\begin{array}{l}a_{1}\rightarrow b_{1}a_{1}b_{2}^{-1}a_{2}^{-1}b_{2}^{-1}a_{2}b_{2}a_{1}^{-1}b_{1}^{-1}a_{1}\\a_{2}-a_{2}b_{2}a_{1}^{-1}b_{1}^{-1}a_{1}b_{2}^{-1}\end{array}\right.$

$\xi_{12\#}^{-1}$ ; $\left\{\begin{array}{l}a_{1}\rightarrow a_{1}b_{2}^{-1}a_{2}^{-1}b_{2}a_{2}b_{2}\\a_{2}\rightarrow b_{2}^{-1}a_{2}b_{2}a_{1}^{-1}b_{1}a_{1}b_{2}^{-1}a_{2}^{-1}b_{2}a_{2}\end{array}\right.$

6) Standard sewing map for $S^{3}\phi_{0}=f$

$\phi_{0\#}$ : $\left\{\begin{array}{ll}a i\rightarrow a_{i}^{-1}b_{i} a i & i=1, \cdots , n\\b_{t}\rightarrow a_{i}^{-1} & i=1, \cdots n\end{array}\right.$

Next corollary is derived from Proposition 1 by elavorate observations of
the above table. The retraction $R:\partial T\rightarrow B$ induces the $\Pi_{1}$ -homeomorphism
$R_{\#}$ ; $\Pi_{1}(\partial T, p)\rightarrow\Pi_{1}(B, p)$ presented by $R_{\#}(a_{i})=a_{i}$ and $R_{\#}(b_{i})=1,$ $i=1,$ $\cdots$ , $n$ ,
where 1 means the unit of $\Pi_{1}(B, p)$ .

COROLLARY 1. (1) For any homeomorphism $f\in\dot{\mathfrak{G}}_{n}^{\pm}$ , the following Properties
hold:

(a) $\{f_{\#}(b_{i})|i=1, \cdots , n\}\searrow\{b_{i}|i=1, \cdots , n\}$ .
(b) $\{R_{\#}f_{\#}(a_{i})|i=1, \cdots , n\}\searrow\{a_{i}|i=1, \cdots , n\}$ .
(c) $R_{\#}f_{\#}(b_{i})$ is transformed to 1 by free reductions for each $i=1,$ $\cdots$ , $n$ .

(2) $\langle a_{1}, \cdots , a_{n} ; R_{\#}\phi_{0\#}(b_{1}), \cdots , R_{\#}\phi_{0\#}(b_{n})\rangle=\langle a_{1}, \cdots , a_{n} ; a_{1}^{-1}, \cdots , a_{\overline{n}}^{1}\rangle$ is simply
trivial.

Let $\psi$ be a Heegaard sewing of genus $n$ with $\psi(P)=P$ and $\psi_{\#}$ be the induced
$\Pi_{1}$-isomorphism. It will be noticed that for each $\psi_{\#}(a_{i})$ (or $\psi_{\#}(b_{i})$ ), $i=1,$ $\cdots$ , $n$ ,
there are infinitely many words in the alphabet $a_{1},$

$\cdots$ , $a_{n},$ $b_{1},$ $\cdots$ , $b_{n}$ , which
represent $\psi_{\#}(a_{i})$ (or $\psi_{\#}(b_{i})$ ). If $2n$ representative words $r_{1}^{\prime},$ $\cdots$ , $r_{n}^{\prime}$ , $r_{1}^{\prime\prime},$ $\cdots$ , $r_{n}^{\prime\prime}$ for
$\psi_{\#}(a_{1}),$ $\cdots$ , $\psi_{\#}(a_{n}),$ $\psi_{\#}(b_{1}),$ $\cdots$ , $\psi_{\#}(b_{n})$ are given, a representative word for $\psi_{\#}(w)$

is uniquely determined for any word $w$ in the alphabet $a_{1},$
$\cdots$ , $a_{n},$ $b_{1},$ $\cdots$ , $b_{n}$ .

Then we have the presentation $\langle a_{1}, \cdots , a_{n} ; R_{\#}\psi_{\#}(b_{1}), \cdots , R_{\#}\psi_{\#}(b_{n})\rangle$ as $\Pi_{1}(\psi)$

by Remark 1 for we may choose the constant map as an arc $\sigma$ in the definition
of $\Pi_{1}(\psi)$ . Hereafter, in case of a Heegaard sewing $\psi$ of genus $n$ with $\psi(P)=P$ ,
we assume that $2n$ certain representative words for $\psi_{\#}(a_{1}),$ $\cdots$ , $d_{\#}(a_{n}),$ $\psi_{\#}(b_{1})$ ,

, $\psi_{\#}(b_{n})$ are given, and by $\Pi_{1}(\psi_{\#})$ we denote the corresponding presentation
$\langle a_{1}, \cdots , a_{n} ; R_{\#}\psi_{\#}(b_{1}), \cdots , R_{\#}\psi_{\#}(b_{n})\rangle$ . We write these representative words for
$\psi_{\#}(a_{1}),$ $\cdots$ , $\psi_{\#}(a_{n}),$ $\psi_{\#}(b_{1}),$ $\cdots$ , $\psi_{\#}(b_{n})$ explicitely only if necessary. Let $\psi_{1},$

$\cdots,$
$\psi_{k}$

be $k$ Heegaard sewing of genus $n$ with $p$ fixed. Since $(\psi_{1}\cdots\psi_{k})_{\#}=\psi_{1\#}\cdots\psi_{k\#}$ ,
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$2n$ representative words for $(\psi_{1}\cdots\psi_{k})_{\#}(a_{i})$ and $(\psi_{1}\cdots\psi_{k})_{\#}(b_{i}),$ $i=1,$ $\cdots$ , $n$ , are
uniquely determined by those of $\psi_{J\#}(a_{1}),$

$\cdots,$ $\psi_{j\#}(a_{n}),$ $\psi_{J\#}(b_{1}),$ $\psi_{j\#}(b_{n}),$ $j=1,$ $\cdots,$
$k$ .

We denote the corresponding presentation $\Pi_{1}((\psi_{1}\cdots\psi_{k})_{\#})$ by $\Pi_{1}(\psi_{1\#}\cdots\psi_{k\#})$ .
Using Corollary 1, we can show next key lemmata.
LEMMA 3. Let $\psi$ be a Heegaard sewing of genus $n$ with $\psi(p)=p$ . Suppose

that for any homeomorPhism $f\in\dot{\mathfrak{G}}_{n}^{\pm},$ $2n$ representative words for $f_{\#}(a_{i})$ and $f_{\#}(b_{i})$ ,
$i=1,$ $\cdots$ , $n$ , are given by the table of Proposition1. Then $\{R_{\#}\psi_{\#}f_{\#}(b_{i})|i=1, \cdots, n\}$

$\searrow\{R_{\#}\psi_{\#}(b_{i})|i=1, \cdots , n\}$ holds for any choice of $2n$ representative words for
$\psi_{\#}(a_{i})$ and $\psi_{\#}(b_{i}),$ $i=1,$ $\cdots$ , $n$ .

PROOF. Suppose that $f_{\#}(b_{i})$ is presented as a word $r_{i}(a_{1}, \cdots , a_{n}, b_{1}, \cdots , b_{n})$

in the alphabet $a_{1},$
$\cdots$ , $a_{n},$ $b_{1},$ $\cdots$ , $b_{n}$ . According to $R_{\#}\psi_{\#}f_{\#}(b_{i})=r_{i}(R_{\#}\psi_{\#}(a_{1}),$ $\cdots$ ,

$R_{\#}\psi_{\#}(a_{n}),$ $R_{\#}\psi_{\#}(b_{1}),$ $\cdots$ , $R_{\#}\psi_{\#}(b_{n}))$ and (a) of Corollary 1.(1), we have $\{R_{\#}\psi_{\#}f_{\#}(b_{i})|$

$i=1,$ $\cdots$ , $n$ } $\searrow\{R_{\#}\psi_{\#}(b_{i})|i=1, \cdots , n\}$ because of the commutativity of simple
transformations and homomorphisms.

LEMMA 4. Let $\psi$ be a Heegaard sewing of genus $n$ with $\psi(p)=p$ . If $\Pi_{1}(\psi_{\#})$

$=\langle a_{1}, \cdots , a_{n} ; R_{\#}\psi_{\#}(b_{1}), \cdots , R_{\#}\psi_{\#}(b_{n})\rangle$ is simply trivial, $\Pi_{1}(f_{\#}\psi_{\#})$ is also simply
trivial for any homeomorPhism $f\in\dot{\mathfrak{G}}_{n}^{\pm}$ , where $2n$ rePresentative words for $f_{\#}(a_{\ell})$

and $f_{\#}(b_{i}),$ $i=1,$ $\cdots$ , $n$ , are given by the table of Proposition1.
PROOF. The set of relators of $\Pi_{1}(f_{\#}\psi_{\#})$ is $\{R_{\#}f_{\#}\psi_{\#}(b_{i})|i=1, \cdots , n\}$ . Let

$r_{i}(a_{1}, \cdots , a_{n}, b_{1}, \cdots , b_{n})$ be the given representative word for $\psi_{\#}(b_{i})$ in the alpha-
bet $a_{1},$

$\cdots$ , $a_{n},$ $b_{1},$ $\cdots$ , $b_{n}$ , where $i=1,$ $\cdots$ , $n$ . Because of $R_{\#}f_{\#}\psi_{\#}(b_{i})=r_{i}(R_{\#}f_{\#}(a_{1})$ ,
... , $R_{\#}f_{\#}(a_{n}),$ $R_{\#}f_{\#}(b_{1}),$ $\cdots$ , $R_{\#}f_{*}(b_{n}))$ and (c) of Corollary 1.(1), $R_{\#}f_{\#}\psi_{\#}(b_{i})$ is
transformed to $r_{i}(R_{\#}f_{\#}(a_{1}), \cdots , R_{\#}f_{\#}(a_{n}), 1, \cdots , 1)$ by free reductions. Since
$R_{\#}\psi_{\#}(b_{i})=r_{i}(a_{1}, \cdots , a_{n}, 1, \cdots , 1)$ for each $i=1,$ $\cdots$ , $n,$ $\{r_{i}(a_{1}, \cdots , a_{n}, 1, \cdots , 1)$ $|$

$i=1,$ $\cdots$ , $n$ } is the set of relators for $\Pi_{1}(\psi_{\#})$ . Since $\Pi_{1}(\psi_{\#})$ is simply trivial
from our assumption, it holds that $\{R_{\#}f_{\#}\psi_{\#}(b_{i})|i=1, \cdots , n\}\searrow\{R_{\#}f_{\#}(a_{i})|i=1$ ,
. . , $n$ }. Therefore, by (b) of Corollary 1.(1), we can conclude that $\Pi_{1}(f_{\#}\psi_{\#})$ is
also simply trivial.

The following is due to Waldhausen [5] and Suzuki [4].

PROPOSITION 2. A sewing space $T_{1}U_{\phi}T_{2}$ by a Heegaard sewing $\phi$ of genus
$n$ is homeomorphic to $S^{3}$ if and only if $\phi$ is isotopic to a compOsed homeomor-
phism $f_{k}$ $f_{1}\phi_{0}g_{1}\cdots g_{m}$ , where $f_{i},$ $g_{j}\in\dot{\mathfrak{G}}_{n}^{\pm}$ .

PROOF. The sufficiency of the condition is obvious because two homeomor-
phisms $f=f_{k}$ $f_{1}$ and $g=g_{1}\cdots g_{m}$ can be extended to self-homeomorphisms on
$T$ respectively. We show the necessity of it. Suppose that $h^{\prime}$ : $T_{1}U_{\phi_{0}}T_{2}\rightarrow S^{3}$

and $h^{\prime\prime}$ : $T_{1}\bigcup_{\phi}T_{2}\rightarrow S^{3}$ are homeomorphisms, then $(S^{3} ; h^{\prime}(T_{1}), h^{\prime}(T_{2}))$ and
$(S^{3} ; h^{\prime\prime}(T_{1}), h^{\prime\prime}(T_{2}))$ are Heegaard splittings of $S^{3}$ with genus $n$ . By the unique-
ness of Heegaard splittings of $S^{3}$ due to Waldhausen [5], there is a homeo-
morphism $h:S^{3}\rightarrow S^{3}$ such that $hh^{\prime\prime}(T_{i})=h^{\prime}(T_{i}),$ $i=1,2$ . A homeomorphism $\overline{h}=$

$h^{\prime- 1}hh$ ‘’ : $T_{1}\bigcup_{\phi}T_{2}\rightarrow T_{1}\bigcup_{\phi_{0}}T_{2}$ satisfies $\overline{h}(T_{i})=T_{i}(i=1,2)$ and so $\phi=(\overline{h}^{-1}|\partial T_{1})$
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$\phi_{0}(\overline{h}|\partial T_{2})$ . We may assume that $\overline{h}$ is orientation-preserving (if not, change $h^{\prime}$ ),

that is, $\overline{h}^{-1}|T_{1}$ : $T_{1}\rightarrow T_{1}$ and $\overline{h}|T_{2}$ : $T_{2}\rightarrow T_{2}$ is orientation-preserving. By Suzuki
[4], $\overline{h}^{-1}|\partial T_{1}$ and $\overline{h}|\partial T_{2}$ are isotopic to composed homeomorphisms $f_{k}$ $f_{1}$ and
$g_{1}\cdots g_{m}$ respectively, where $f_{i},$ $g_{j}\in\dot{\mathfrak{G}}_{n}^{\pm}$ .

6. Proof of Theorem.

Let $\phi$ be a sewing map such that $T_{1}\bigcup_{\phi}T_{2}$ is homeomorphic to $S^{3}$ . Because
of the last of Section 3 and Remark 2, we may assume that $\langle a_{1}, \cdots, a_{n} ; r_{1}, \cdots, r_{n}\rangle$

is $\Pi_{1}(\phi)$ . By Proposition 2 and Lemma 2, $\Pi_{1}(\phi)$ is simply equivalent to
$\Pi_{1}(f_{k\#}\cdots f_{1\#}\phi_{0\#}g_{1\#}\cdots g_{m\#})$ , where $f_{i},$ $g_{j}\in\dot{\mathfrak{G}}_{n}^{\pm}$ . By Lemma 3, the set of relators
of $\Pi_{1}(f_{k\#}\cdots f_{1\#}\phi_{0\#}g_{1\#}\cdots g_{m\#})$ is transformed to that of $\Pi_{1}(f_{k\#} f_{1\#}\phi_{0\#})$ by
simple transformations. By Corollary 1.(2) and Lemma 4, $\Pi_{1}(f_{k\#} f_{1\#}\phi_{0\#})$ is
simply trivial. Therefore Theorem is proved.

7. Supplemental Remark.

Our Theorem is a kind of existence theorem. It is natural to think of the
possibility of making it algorithmic. For example, we may ask if it is possible
to omit the permission of free expansions at first step according to “up to simple
equivalence”. One natural way is to make the notion of ”simply trivial” stronger
by ordering the application of simple transformations as follows;

DEFINITION 5. A presentation $\langle a_{1}, \cdots , a_{n} ; r_{1}, \cdots , r_{n}\rangle$ is said to be strongly
simply trivial if $\{r_{i}|i=1, \cdots , n\}$ can be transformed to $\{a_{\ell}|i=1, \cdots , n\}$ by apply-
ing a finite sequence of simple transformations which satisfies the condition
that $S_{1}$ ) must always be applied before the other three simple transformations
$S_{2}),$ $S_{3}$) and $S_{4}$) being done if it is applicable.

EXAMPLE 2. (1) A presentation $\langle a_{1}, a_{2} ; a_{1}a_{2}a_{2}^{-1}a_{1}a_{2}, a_{2}a_{1}a_{2}^{-1}a_{1}^{2}a_{2}\rangle$ is strongly
simply trivial.

(2) The presentation $\langle a_{1}, a_{2}, a_{3}, a_{4} ; r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}, r_{4}^{\prime}\rangle$ of Example 1 is simply
trivial but not strongly simply trivial.

At first, we have attacked the following questions.
QUESTION 1. Is any presentation associated with a Heegaard diagram for

$S^{3}$ strongly simply trivial?
A weak form of the above question is the following;
QUESTION 2. Is any presentation associated with a Heegaard diagram for

$S^{3}$ simply trivial?
As noticed before, $\Pi_{1}(\phi)=\langle a_{1}, \cdots , a_{n} ; r_{1}, \cdots , r_{n}\rangle$ is not uniquely determined

for a Heegaard sewing $\phi$ but its reduced form $\langle a_{1}, \cdots , a_{n} ; \tilde{\gamma}_{1}\cdots , \overline{r}_{n}\rangle$ , where
each $\tilde{\gamma}_{i}$ is obtained from $r_{i}$ by cyclic reductions, is unique for $\phi$ up to $S_{2}$) and $S_{3}$).

Next question is stronger than Question 2 and weaker than Question 1.
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QUESTION 3. Is the reduced form $\tilde{\Pi}_{1}(\phi)$ for any Heegaard sewing $\phi$ simply
trivial if $T_{1}U_{\phi}T_{2}$ is homeomorphic to $S^{3}$ ?

Unfortunately, these are false in case of genus $n>2$ . In case of genus 2,
which is the original case of T. Homma and M. Ochiai’s discovery, it is open
yet in the sense of the above Question 1 although we expect “yes”.

A counter example in the case $n=3$ is the following;
EXAMPLE 3. A Heegaard sewing $\phi$ is a composed homeomorphism on $\partial T$

of genus 3 dePned as $\phi=f\phi_{0}g$ , where $f$ and $g$ are the composed homeomorphisms
of $\dot{\mathfrak{G}}_{3}^{\pm}$ given as follows:

$f=(\dot{\rho}\dot{\rho}_{12\dot{\rho}^{-1}\dot{\rho}_{12}^{-1}\dot{\rho}^{-1}\dot{\theta}_{12}^{-1}\xi_{12}^{-1}\dot{\theta}_{12}\xi_{12\dot{\rho}\dot{\rho}_{12}\dot{\rho}\dot{\rho}_{12}\dot{\rho}^{-1}\dot{\rho}_{12}^{-1}\dot{\rho}^{-1}}}^{-1}$

$\dot{\theta}_{12}^{-1}\xi_{12}^{-1}\dot{\theta}_{12}\dot{\xi}_{12}\dot{\rho}\dot{\rho}_{12}\dot{\rho}^{-1}\dot{\theta}_{12}^{-1}\dot{\xi}_{12}^{-1}\dot{\theta}_{12}\xi_{12^{\dot{T}_{1\dot{\rho}\dot{p}_{12}^{-1}\dot{\rho}^{-1}}^{-5}}}\dot{\theta}_{12}^{-1}$

$\dot{\xi}_{12}^{-1}\dot{\theta}_{12}\dot{\xi}_{12}^{2}\dot{\theta}_{12}\dot{\rho}\dot{\rho}_{12}\dot{\rho}^{-1}\dot{\tau}_{1}^{-2}\dot{\theta}_{12}^{-1}\xi_{12}^{-1}\dot{\theta}_{12}\xi_{12}\dot{\theta}_{12}\dot{\xi}_{12}^{-1}\dot{\theta}_{12}^{-1}$

$\xi_{12}\dot{\theta}_{12}\dot{\rho}\dot{\rho}_{12}^{-1}\dot{\rho}^{-1}\dot{\theta}_{12}^{-1}\dot{\xi}_{12}^{-2}\dot{\theta}_{12}^{-1}\dot{\xi}_{12}\dot{\theta}_{12}\dot{\rho}\dot{\rho}_{12}\dot{\rho}^{-1}\dot{\tau}_{1}^{-1}\dot{\theta}_{12}^{-1}\xi_{12}^{-1}$

$\dot{\theta}_{12}\dot{\xi}_{12}\dot{\theta}_{12}\dot{\rho})(\dot{\theta}_{12}^{-1}\xi_{12}^{-1}\dot{\theta}_{12}^{-1}\dot{\tau}_{1}^{2}\dot{\theta}_{12}^{-1}\xi_{12}\dot{\theta}_{12})$

$g=(\dot{\tau}_{1}\dot{\theta}_{12}^{-1}\dot{\xi}_{12}^{-1}\dot{\theta}_{121}\xi_{12}^{-1}\dot{\theta}_{12}^{-1}$

$\dot{\xi}_{12}\dot{\theta}_{12}\dot{\rho}\dot{\rho}_{12}^{-1}\dot{\rho}^{-1}\dot{\tau}_{1}^{-2}\dot{\theta}_{12}^{-1}\xi_{12}^{-1}\dot{\theta}_{12}\xi_{12}^{-1}\dot{\theta}_{12}^{-1}\dot{\xi}_{12}\dot{\theta}_{12}\dot{\rho}\dot{\rho}_{12}\dot{\rho}^{-1}$

$\dot{\theta}_{12}^{-1}\dot{\xi}_{12}^{-1}\dot{\theta}_{12}\dot{\xi}_{12}\dot{\theta}_{12}^{-1}\dot{\xi}_{12121}\dot{\theta}\dot{\tau}^{-6}\xi_{12}^{-1}\dot{\theta}_{12}\xi_{12}\dot{\theta}_{12}\dot{\rho}\dot{\rho}_{12}^{-1}\dot{\rho}^{-1}$

$\dot{\theta}_{12}^{-1}\dot{\xi}_{121}^{-1-2}\dot{\tau}\xi_{12}^{-2}\dot{\theta}_{12}^{-1}\xi_{12}\dot{\theta}_{12}\dot{\rho}\dot{\rho}_{12}\dot{\rho}^{-1}\dot{\theta}_{12}^{-1}\dot{\xi}_{12}^{-1}\dot{\theta}_{12}\dot{\xi}_{12}\dot{\theta}_{12}^{-1}$

$\dot{\xi}_{12}\dot{\theta}_{12}\dot{\tau}_{1}\dot{\rho})(\dot{\rho}^{-1}\dot{\omega}_{1}^{-1}\dot{\tau}_{1}^{2}\dot{\theta}_{12}^{-1}\dot{\xi}_{12}^{-1}\dot{\theta}_{12}\xi_{12}^{-1}\dot{\theta}_{12}^{-1}\dot{\xi}_{12}\dot{\theta}_{12}\dot{\rho}$

$\dot{\rho}_{12}^{-1}\dot{\rho}^{-1}\dot{\tau}_{1}^{-2}\dot{\theta}_{12}^{-1}\xi_{12}^{-1}\dot{\theta}_{12}\xi_{12}\dot{\theta}_{12}\dot{\rho}\dot{\rho}_{12}\dot{\rho}^{-1}\dot{\theta}_{12}^{-1}\dot{\xi}_{12}^{-1}\dot{\theta}_{12}\dot{\xi}_{12}\dot{\omega}_{1}\dot{\rho})$

and a corresponding Heegaard diagram $(\partial T;C_{0}, \phi(C_{0}))$ is as shown in Fig. 3 up
to isotopy. Then both $\tilde{\Pi}_{1}(\phi)$ and the presentation associated with the Heegaard
diagram of Fig. 3 coincide with $\langle a_{1}, a_{2}, a_{3} ; a_{1}a_{2}^{2}, a_{3}a_{1}^{-1}a_{3}a_{2}^{-1}a_{1}^{-3}, a_{3}a_{2}^{-1}a_{1}^{-1}a_{2}a_{1}^{-1}\rangle$

which is not simply trivial, though $T_{1}U_{\phi}T_{2}$ is homeomorphic to $S^{3}$ by Proposi-
tion 2 and so Fig. 3 is a Heegaard diagram for $S^{3}$ .

REMARK 3. (1) Such a counter example to our Questions was firstly found
by M. Ochiai in the case $n=5$ , though his aim is different from ours. Example
1 is also a counter example in the case $n=4$ made of Ochiai’s one by slight
modiPcations. Later, he attained his aim in case of genus 4 in [3], which is
again available for our aim in the case $n=4$ .

(2) Example 3 can be easily modiPed for $n>3$ by using connected sums
with a standard Heegaard diagram for $S^{3}$ of genus 1.

A Heegaard diagram $(\partial T;C_{1}, C_{2})$ has two presentations associated with it,

that is, one is obtained by reading the intersections $C_{1}\cap C_{2}$ along curves of $C_{2}$



Presentations of the fundamental group 157.

$(\partial T;C_{0}, \phi^{\prime}(C_{0}))$ where $C_{0}=\{c_{1}, c_{2}, c_{3}\},$ $\phi^{\prime}$ is isotopic to $\phi$

and $\phi^{\prime}(C_{0})=\{\phi^{\prime}(c_{1}), \phi^{\prime}(c_{2}), \phi^{\prime}(c_{3})\}$

Fig. 3.

$(\partial T;C_{1}, C_{2})$ where $C_{1}=\{{}_{1}C_{1},{}_{1}C_{2},{}_{1}C_{3},{}_{1}C_{4}\}$

$C_{2}=\{{}_{2}C_{1},{}_{2}C_{2},{}_{2}C_{3},{}_{2}C_{4}\}$

Fig. 4.



158 T. KANETO

and the dual one is got by reading them along those of $C_{1}$ . Next example is a
Heegaard diagram for $S^{3}$ of genus 4 such that both presentations associated
with it are counter examples to Question 2.

EXAMPLE 4. A Heegaard diagram $(\partial T;C_{1}, C_{2})$ is as shown in Fig. 4. Two
presentations associated with it are \langle $a_{1},$ $a_{2},$ $a_{3},$ $a_{4}$ ; $a_{4}^{3}a_{1}a_{2},$ $a_{1}a_{4}a_{1},$ $a_{3}a_{1}^{-1}a_{4}a_{1}a_{2}$ ,
$ a_{3}a_{4}^{-1}a_{3}a_{2}\rangle$ by reading along $C_{2}$ and \langle $a_{1},$ $a_{2},$ $a_{3},$ $a_{4}$ ; $a_{2}a_{3}a_{1}a_{3}^{-1}a_{2},$ $a_{3}a_{1}a_{4},$ $a_{4}a_{3}a_{4}$ ,
$ a_{1}^{2}a_{4}^{-1}a_{2}a_{3}a_{1}\rangle$ by reading along $C_{1}$ which are not simply trivial.

REMARK 4. Recently, $0$ . Morikawa has made such an example for genus
3 in his master thesis.
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