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Abstract. We shall consider linear independence measures for the values of
the functions Da(z) and Ea(z) given below, which can be regarded as q-analogues
of Euler’s divergent series and the usual exponential series. For the q-exponential
function Eq(z), our main result (Theorem 1) asserts the linear independence (over
any number field) of the values 1 and Eq(αj) (j = 1, . . . , m) together with its mea-

sure having the exponent µ = O(m), which sharpens the known exponent µ = O(m2)
obtained by a certain refined version of Siegel’s lemma (cf. [1]). Let p be a prime num-
ber. Then Theorem 1 further implies the linear independence of the p-adic numbersQ∞

n=1(1 + kpn), (k = 0, 1, . . . , p − 1), over Q with its measure having the expo-
nent µ < 2p. Our proof is based on a modification of Maier’s method which allows
to construct explicit Padé type approximations (of the second kind) for certain q-
hypergeometric series.

1. Introduction.

In the sequel we will investigate linear independence properties of the following
q-series

Db,q(z) =
∞∑

n=0

(b)nzn, Eb,q(z) =
∞∑

n=0

1
(b)n

zn,

where (b)0 = 1 and (b)n = (1−b)(1−bq) · · · (1−bqn−1), n ∈ Z+. By N and Z+ we
denote the sets of non-negative and positive integers, respectively. In particular,
we are interested in the functions Dq(z) = Dq,q(z) and Eq(z) = Eq,q(z) which may
be regarded as q-analogues of Euler’s divergent series D(z) =

∑∞
n=0 n!zn and the

usual exponential series, respectively. Let p ∈ {∞} ∪ P , where P denotes the set
of prime numbers. If |q|p < 1, then |z|p < 1 determines the disk of convergence for
the series Db(z) = Db,q(z) and Eb(z) = Eb,q(z) but both series can be continued
to meromorphic functions over the whole Cp having the possible poles at q−N .
Here and in the sequel the notation qJ = {qn | n ∈ J} will be used for any J ⊆ Z.
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Let K be a fixed number field of degree κ = [K : Q], v a place of K

and | |v the associated absolute value on the completion Kv with a local degree
κv = [Kv : Qv]. Take any q ∈ K satisfying |q|v < 1. Let K∗ = K \ {0}, and f(t)
denote each of the functions Eq(t) and Dt(a), where a ∈ K∗ \ q−N and choose
any m numbers α1, . . . , αm ∈ K∗ satisfying the assumptions

αi /∈ q−N , αi /∈ αjq
Z for all i 6= j.

Further, let k = t(k0, k1, . . . , km) ∈ Km+1 \ {0} be arbitrary. Then we shall
establish lower bound estimates of the form

|k0 + k1f(α1) + · · ·+ kmf(αm)|v >
c

Hµκ/κv+d(log H)−1/2 , (1)

having a least possible exponent µ = µq > 0, where H = max(H(k), H0) and c, d

and H0 are certain positive constants. Here the notation H(k) will be defined at
the beginning of the next section.

In the following we give an overview of the existing linear independence results,
which will be stated under certain simplified settings on q ∈ K for brevity. Let
I denote an imaginary quadratic number field and ZK the ring of integers in K.
Then if K = I, the above mentioned condition reads as 1/q ∈ ZK . First we
recall some pioneering results of qualitative nature. The irrationality of Eq(α),
α ∈ K∗ = Q∗, was already proved in 1947 by Lototsky [10]. In the 1980th Stihl
and Wallisser [16] derived a dimension estimate

dimK KEq(α1) + · · ·+ KEq(αm) ≥ 2m/7,

where K = I and αj = αj , α ∈ K∗. Finally Bézivin’s [5] considerations gave
the linear independence of the numbres 1, Eq(α1), . . . , Eq(αm), K = I, in the
archimedean case, see Andre [2] for a far more general situation. For reviewing
quantitative aspects we first take the case of the q-exponential function f(t) =
Eq(t). Bundschuh [6] considered the case m = 1, K = I, v = ∞ and proved
(1) with µ = 4/3. In [13] the case m = 2, k0 = 0 was considered while implying
the value µ =

√
7 + 2, and further µ = 2.055 in particular if α2 = −α1. In the

situation m = 2 with α2 = −α1 Bundschuh and Väänänen [7] obtained µ = 8, and
in particular took α1 = 1 and α2 = −1 to achieve µ = 4.8901. The case m ∈ Z+

(in full generality) of (1) was obtained by Väänänen [17] upon giving µ = O(m3),
while Väänänen and Zudilin [18] proved a Baker-Type estimate implying µ =
12m2. Note that in some papers the above mentioned results are given in terms of
the function Ed,d(z) with |d|v > 1. But one may in fact travel between the cases
|q|v > 1 and |q|v < 1 by the relation
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E1/q,1/q(t)Eq,q(qt) = 1. (2)

Take now the case of q-divergent analogue f(t) = Dt(a), where a few is known.
The situation K = Q and m = 1 is considered in [12] while giving µ = log H. For
general K and m = 1, [13] gives µ =

√
2 + 1. Note also that most of the above

mentioned results are in fact valid for a considerable extended class of functions.
In this paper we study the cases f(t) = Ea(t) and f(t) = Dt(a) in the most

general situation of arbitrary m ∈ Z+. In both the cases we can show µ < 2m+2
thus improving the earlier results on the q-exponential case, if m ≥ 2 (except the
situation m = 2, where k0 = 0 or α1 = −α2 = 1), while in the q-divergent case
f(t) = Dt(a) our result seems to be new, if m ≥ 2. Let p be a prime number and
define the following sets of p-adic numbers

∞∏
n=1

(1 + kpn), k = 0, 1, . . . , p− 1,

∞∑
n=1

n∏

i=1

(1 + kpi)pn, k = 0, 1, . . . , p− 1,

and real numbers

∞∏
n=1

(1 + kp−n), k = 0, 1, . . . , p− 1,

∞∑
n=1

n∏

i=1

(1 + kp−i)p−n, k = 0, 1, . . . , p− 1.

Then, in each of the four sets of p numbers above we can prove the linear inde-
pendence of the p numbers over Q with a measure having an exponent µ < 2p.

We next review the relevant methodology. The results in [17] and [18] are
based on approximations constructed by Thue-Siegel lemma and an optimization
process upon using the iterations of a corresponding q-difference equation. The
exponent µ = O(m2) seems to be an optimal bound as far as applying the known
variants of Siegel-Shidlovskii’s theory, due to Amou et al. [1]. On the other hand,
the linear independence question about the q-exponential case has resisted the
attacks from the methods of explicit (rational) Padé approximations. Namely,
there are numerous works (which we mention, however, only a few) applying, say,
Mahler’s, Maier’s and Skolem’s methods [8], [9], [14], [15], [16] for studying arith-
metic properties of other instances in a class of q-hypergeometric series. Stihl [15]
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applied Maier’s [11] method in constructing explicit simultaneous Padé approxi-
mations (of the second kind) to a general q-hypergeometric series at m distinct
points α1, . . . , αm ∈ C. In [15] also an optimization process on a free (non di-
agonal) parameter λ (see the appendix) is crucial. Maier-Stihl method has been
refined by Katsurada [9] to include higher derivatives and has subsequently been
applied (in several works) to the cases of non-archimedean and arbitrary algebraic
number fields, see e.g. [14]. Thus we tress, that even the explicit Padé approxi-
mations are well-known (see, [14], [15]) for the q-exponential series, they have not
so far yielded linear independence results.

Our strategy is to attack a slightly different case, namely, we shall modify
Maier-Stihl method so as to construct simultaneous Padé type approximations (of
the second kind) for the functions Dαi(t) with m distinct αi’s. For that purpose
we need to prove a new summation formula (in Lemma 1), which is crucial in
the construction, and then we combine this with the known results from q-series.
Our approximations are diagonal Padé type containing a free parameter ν, and
an optimization process consequently becomes available similarly to the case of
Stihl’s method.

2. Linear independence results.

If the finite place v of K lies over the prime p, we write v|p, for an infinite
place v of K we write v|∞. We normalize the absolute value | |v of K so that

|p|v = p−1, if v|p,

|x|v = |x|, if v|∞,

where | | denotes the ordinary absolute value in Q. Further, the notation

‖α‖v = |α|κv/κ
v , κv = [Kv : Qv],

will be used in the sequel. The height H(α) of α is defined by the formula

H(α) =
∏
v

‖α‖∗v, ‖α‖∗v = max{1, ‖α‖v}

and the height H(α) of the vector α = t(α1, . . . , αm) ∈ Km is given by

H(α) =
∏
v

‖α‖∗v, ‖α‖∗v = max
i=1,...,m

{1, ‖αi‖v}.



On q-analoques of divergent and exponential series 295

Further, for any place v of K, and q ∈ K∗, ‖q‖v 6= 1, we define the characteristic
λ by

λ = λq =
log H(q)
log ‖q‖v

.

To state our results we denote

µ = µq =
u0

u0 + λqs0
,

where

s0 = m2 + m + m
√

m2 + m,

u0 = m2 + m + (m + 1)
√

m2 + m.

Now we fix a place v of K throughout the following.

Theorem 1. Let m ∈ Z+ be arbitrary, a, q, α1, . . . , αm ∈ K∗, and |q|v < 1.
Denote by f(t) each of the functions Dt(a), Eq(t) and

∏∞
n=0(1− tqn), and assume

a /∈ q−N , αi /∈ q−N , αi /∈ αjq
Z for all i 6= j, (3)

−
(

1 +
1

m +
√

m2 + m

)
< λq ≤ −1. (4)

Then the numbers 1, f(α1), . . . , f(αm) belonging to Kv are linearly independent
over K. Further, there exist positive constants c, d,H0 depending on a and αi

such that

∣∣k0 + k1f(α1) + · · ·+ kmf(αm)
∣∣
v

>
c

Hµκ/κv+d(log H)−1/2 (5)

for all k = t(k0, k1, . . . , km) ∈ Km+1 \ {0} with H = max(H(k),H0).

Corollary 1. Let b, d, α1, . . . , αm ∈ K∗, |d|v > 1. Put f(t) = Eb,d(t) and
assume

b /∈ d−N , bαi /∈ dN , αi /∈ αjd
Z for all i 6= j, (6)

−
(

1 +
1

m +
√

m2 + m

)
< λ1/d ≤ −1. (7)
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Then the assertions of Theorem 1 are also valid for the function f(t).

Define now

ρ(a, b) =
(

1 +
1
b

) ∞∑
n=0

(−1)nq(
n+1

2 )anb−n

(−aq)n
.

Here we note that the function ρ(a, b) satisfies an important reciprocity theorem

ρ(a, b)− ρ(b, a) =
(

1
b
− 1

a

)
(aq/b)∞(bq/a)∞(q)∞

(−aq)∞(−bq)∞
, a, b /∈ −qZ−

developed by Ramanujan, see [4].

Corollary 2. Let a, q, α1, . . . , αm ∈ K∗, |q|v < 1 and suppose that q

satisfies (4). Put f(t) = ρ(a, t) and assume

a /∈ −q−N , αj /∈ −qN , αj /∈ αiq
Z for all i 6= j. (8)

Then the assertions of Theorem 1 are also valid for the function f(t).

Here we note that λq ≤ −1 always holds for |q|v < 1, and the following cases
in particular assert λq = −1:

1. K = I, v is the infinite place of K, and 1/q ∈ ZK ;
2. K = Q, v = p ∈ P , and q = pl, l ∈ Z+;
3. q is a negative power of a PV-number, for example in K = Q(

√
5), q1 =

(1 +
√

5)/2, q = ql
1, l ∈ Z−, where Z− denotes the set of negative integers.

Now, if we take the value λ = −1, then we have

µ = m + 1 +
√

m2 + m < 2m + 2 (9)

and in general we have µ = O(m), too. Hence, our Theorem 1 improves the results
of [1], [17] and [18] for the q-exponential function, where the exponent µ in (5)
takes respectively the forms O(m2), O(m3) and 12m2.

3. Padé type approximations of the second kind.

To prove Theorem 1 we start by constructing explicit simultaneous Padé type
approximations (of the second kind) for the series
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D−βj (z) =
∞∑

k=0

(−βj)kzk, j = 1, . . . , m.

In our construction some properties of the q-factorial polynomials

(x)n =
n−1∏

h=0

(1− xqh), n ∈ N , (10)

will be needed. First we write

(x)n =
n∑

k=0

s(n, k)xk, n ∈ N , (11)

and set s(n, k) = 0, when k < 0 or n < k.

Lemma 1. For any n ∈ N we have

n∑

k=0

s(n, k)(−x)n−k = q(
n
2)xn. (12)

Proof. From the definition (10) we see that

(x)n = (1− xqn−1)(x)n−1

for all n ∈ Z+, and thus the coefficients s(n, k) satisfy the recurrence

s(n, k) = s(n− 1, k)− qn−1s(n− 1, k − 1) (13)

for all n ∈ Z+, 0 ≤ k ≤ n. Then, using (13), we get

n+1∑

k=0

s(n + 1, k)(−x)n+1−k

= −qn
n∑

k=0

s(n, k)(−x)n−k + (1 + x)
n∑

k=0

s(n, k)(−xq)n−k

= −qnq(
n
2)xn + (1 + x)q(

n
2)(xq)n = q(

n+1
2 )xn+1. (14)

Thus, by induction, (12) is valid for all n ∈ N . ¤
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In the sequel we shall use q-binomial coefficients defined by

[n

k

]
=

(q)n

(q)k(q)n−k

and also the following q-factorials

(b, a; q)n =
n∏

h=1

(b− aqh−1)

generalizing the earlier notation (a)n = (1, a; q)n. The next well-known expansion
of q-factorials (b, a; q)n is called the (finite) q-binomial theorem.

Lemma 2 ([3, p. 490, Corollary 10.2.2(c)]). For any n ∈ N we have

(b, a; q)n =
n∑

k=0

[n

k

]
q(

k
2)bn−k(−a)k. (15)

Note that by Lemma 2 we get an explicit expression for the coefficients s(n, k),
namely

s(n, k) = (−1)k
[n

k

]
q(

k
2). (16)

The following application of the q-binomial theorem (15) is a cornerstone of Maier-
Stihl method.

Lemma 3 ([15]). Let β = t(β1, . . . , βm) be given and define σi,l = σi,l(β) by

m∏
t=1

(βt, w; q−1)l =
ml∑

i=0

σi,lw
i. (17)

Then

ml∑

i=0

σi,lw
i = 0 (18)

if and only if w = βjq
k with j ∈ {1, . . . , m}; k ∈ {0, . . . , l − 1}. Moreover the

equality
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σi,l = (−1)iq−m(l
2)Σml−i, (19)

holds with

Σh = Σh(β) =
∑

i1+···+im=h

[
l

i1

]
· · ·

[
l

im

]
q(

i1
2 )+···+(im

2 )βi1
1 · · ·βim

m . (20)

Proof. All we need to note is that from Lemma 2 we get the expansion

(β,w; q−1)l = (−1)lq−(l
2)(w, β; q)l

= (−1)lq−(l
2)

l∑

i=0

[
l

i

]
q(

i
2)wl−i(−β)i. ¤

In order to construct our approximations we now define the following (poly-
nomial) coefficients

bl,ν,h(z) = (−1)ml−hq(
ml+ν

2 )−(ml+ν−h
2 )(z)ml+ν−hΣh, (21)

bl,ν,H = qm(l
2)

∑
ml−i+f=H

0≤f≤i+ν≤ml+ν

q(
ml+ν

2 )−(i+ν
2 )s(i + ν, f)σi, (22)

al,ν,j,N = −
∑

H+n=N

bl,ν,H(−βj)n, (23)

sl,ν,j,k = qkν(−βjq
l)k

m∏
t=1

(βt, βjq
k+1; q)l. (24)

Theorem 2. For any l, ν ∈ N , j = 1, . . . , m set

Bl,ν(z) =
ml∑

h=0

bl,ν,h(z)zh, (25)

Al,ν,j(z) =
ml+ν−1∑

N=0

al,ν,j,NzN ,

Sl,ν,j(z) =
∞∑

k=0

sl,ν,j,kzk,

Ll,ν,j(z) = z(m+1)l+νq(
ml+ν

2 )+m(l
2)+νl(−βj)lβ

ν
j Sl,ν,j(z). (26)
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Then we have the relations

Bl,ν(z) =
ml+ν∑

H=0

bl,ν,HzH (27)

and

Bl,ν(z)D−βj (z) + Al,ν,j(z) = Ll,ν,j(z). (28)

Furthermore the properties

degz Bl,ν(z) = ml + ν, degz Al,ν,j(z) ≤ ml + ν − 1, (29)

ord
z=0

Ll,ν,j(z) = (m + 1)l + ν (30)

show that (28) gives a diagonal type Padé approximation (of the second kind) with
the free parameter ν.

Proof. First, by using (19) and (11), we rewrite the polynomial in (25) as
follows

Bl,ν(z) = qm(l
2)

ml∑

i=0

zml−iq(
ml+ν

2 )−(i+ν
2 )(z)i+νσi

= qm(l
2)

ml+ν∑

H=0

zH
∑

ml−i+f=H
0≤f≤i+ν≤ml+ν

q(
ml+ν

2 )−(i+ν
2 )s(i + ν, f)σi

=
ml+ν∑

H=0

bl,ν,HzH ,

which proves (27).
We next study the expansion of the product

Bl,ν(z)D−βj (z) =
∞∑

N=0

rNzN , (31)

where

rN =
∑

H+n=N

bl,ν,H(−βj)n.
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Set N = ml + ν + a, where a ∈ N . First we consider the case 0 ≤ a ≤ l − 1. It
follows for the summation indices in (22) and (23) that n = i+ ν− f + a and thus

rN = qm(l
2)

ml∑

i=0

i+ν∑

f=0

q(
ml+ν

2 )−(i+ν
2 )s(i + ν, f)σi(−βj)i+ν−f+a

= qm(l
2)

ml∑

i=0

σi(−βj)aq(
ml+ν

2 )−(i+ν
2 )

i+ν∑

f=0

s(i + ν, f)(−βjq
a)i+ν−f . (32)

Here the inner f -sum is evaluated by Lemma 1, and then the resulting expression
can be computed by Lemma 3, which gives

rml+ν+a = qm(l
2)+(ml+ν

2 )(−βj)a

ml∑

i=0

σi(βjq
a)i+ν

= qm(l
2)+(ml+ν

2 )+aν(−βj)aβν
j

m∏
t=1

(βt, βjq
a; q−1)l = 0 (33)

for any 0 ≤ a ≤ l − 1.
Next we consider the case a = l + k, k ∈ N . Then

rN = r(m+1)l+ν+k

= qm(l
2)+(ml+ν

2 )+(l+k)ν(−βj)l+kβν
j

m∏
t=1

(βt, βjq
k+1; q)l. (34)

Consequently (33) and (34) imply the assertions (26) and (28). ¤

4. Determinant.

We define

∆l,ν(z) =

∣∣∣∣∣∣∣∣∣∣

−Bl,ν(z) −Bl,ν+1(z) · · · −Bl,ν+m(z)

Al,ν,1(z) Al,ν+1,1(z) · · · Al,ν+m,1(z)
...

...
. . .

...
Al,ν,m(z) Al,ν+1,m(z) · · · Al,ν+m,m(z)

∣∣∣∣∣∣∣∣∣∣

(35)

and denote
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Ei = m(m + 1)l + mν − i +
(

m + 1
2

)
, i = 0, . . . ,m,

Hi = mν − i + m2

(
l

2

)
+

(
m + 1

2

)
+

ν+m∑

h=ν,h 6=i

(
ml + h

2

)
, i = 0, . . . ,m.

Our determinant argument proceeds in a slightly different way from Stihl’s [15],
and it is significant that the explicit evaluation of ∆l,ν(z) above is in fact possible.
In contrast with our case, Stihl showed the nonvanishing of the corresponding
determinant by extracting its dominant order as l → +∞.

Lemma 4. If

βi /∈ −q−N , βi /∈ βjq
Z for all i 6= j, (36)

then for any l, ν ∈ N we have

∆l,ν(z) = (−1)m+1(z)νzEmqHm ·
m∏

j=1

(−βj)l

m∏

j=1

m∏
t=1

(βt, βjq; q)l

∏

1≤i<j≤m

(βj − βi). (37)

Further,

∆l,ν(a) 6= 0, (38)

for all a ∈ C∗
p \ q−N .

Proof. First we get

Bl,ν(0) = bl,ν,0(0) = (0)ml+νΣ0 = 1,

which gives

ord
z=0

Bl,ν(z) = 0 (39)

for all l, ν ∈ N . Next we have

Sl,ν,j(0) = sl,ν,j,0 =
m∏

t=1

(βt, βjq; q)l 6= 0
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by the assumption (36) and thus

ord
z=0

Sl,ν,j(z) = 0 (40)

for all l, ν ∈ N , j = 1, . . . , m. Now we apply (28) to modify the determinant in
(35), getting

∆l,ν(z) =

∣∣∣∣∣∣∣∣∣∣

−Bl,ν(z) −Bl,ν+1(z) · · · −Bl,ν+m(z)

Ll,ν,1(z) Ll,ν+1,1(z) · · · Ll,ν+m,1(z)
...

...
. . .

...
Ll,ν,m(z) Ll,ν+1,m(z) · · · Ll,ν+m,m(z)

∣∣∣∣∣∣∣∣∣∣

. (41)

Then the right side of (41) is expanded with respect to the first row

∆l,ν(z) = −Bl,ν(z)zE0qH0

m∏

j=1

(−βj)lF0(z) + · · ·+

− (−1)mBl,ν+m(z)zEmqHm

m∏

j=1

(−βj)lFm(z), (42)

where Fi(z), i = 0, 1, . . . ,m are defined by eliminating the common factors from
the corresponding minors. Noting that

E0 > · · · > Em (43)

we will consider the order at z = 0 of the last minor

Fm(z) =

∣∣∣∣∣∣∣

Sl,ν,1(z) β1Sl,ν+1,1(z) · · · βm−1
1 Sl,ν+m−1,1(z)

...
...

. . .
...

Sl,ν,m(z) βmSl,ν+1,m(z) · · · βm−1
m Sl,ν+m−1,m(z)

∣∣∣∣∣∣∣
.

We have

Fm(0) =
m∏

j=1

m∏
t=1

(βt, βjq; q)l

∣∣∣∣∣∣∣

1 β1 · · · βm−1
1

...
...

. . .
...

1 βm · · · βm−1
m

∣∣∣∣∣∣∣
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=
m∏

j=1

m∏
t=1

(βt, βjq; q)l

∏

1≤i<j≤m

(βj − βi) 6= 0 (44)

by the assumptions in (36). Thus

ord
z=0

Fm(z) = 0 (45)

for all l, ν ∈ Z+, and consequently

ord
z=0

∆l,ν(z) = Em = m(m + 1)l + mν +
(

m

2

)
. (46)

Further, we note that

deg ∆l,ν(z) ≤ m(m + 1)l + (m + 1)ν +
(

m

2

)
. (47)

Next, from (21) we see that the polynomials Bν+j,l(z), j = 0, 1, . . . , m, have a
common factor (z)ν , which implies by the order (46) and by the degree estimate
(47) that

∆l,ν(z) = c1z
Em(z)ν (48)

for some constant c1, which may be evaluated by considering

∆l,ν(z)
zEm

(49)

at z = 0. Using the expansion (42) we get

c1 =
∆l,ν(z)
zEm

∣∣∣∣
z=0

= (−1)m+1Bl,ν+m(0)qHm

m∏

j=1

(−βj)lFm(0)

= (−1)m+1qHm

m∏

j=1

(−βj)l

m∏

j=1

m∏
t=1

(βt, βjq; q)l

∏

1≤i<j≤m

(βj − βi). (50)

¤
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5. Estimates.

Lemma 5. For all l, ν ∈ N and j = 1, . . . , m we have

Bl,ν(z), Al,ν,j(z) ∈ K[z, q], (51)

degq Bl,ν(z) ≤ m2 + m

2
l2 + mlν +

ν2

2
, (52)

degq Al,ν,j(z) ≤ m2 + m

2
l2 + mlν +

ν2

2
. (53)

Proof. It is well-known that
[

n
k

] ∈ Z[q] and this shows (51). Further, the
q-binomial coefficients have the property that (cf. [3, p. 490, Corollary 10.2.2(d)])

degq

[n

k

]
= k(n− k), 0 ≤ k ≤ n. (54)

Thus

degq s(i + ν, f) = degq

[
i + ν

f

]
q(

f
2) = f(i + ν − f) + f2/2 (55)

and

degq Σh = degq

{ ∑

i1+···+im=h

[
l

i1

]
· · ·

[
l

im

]
q(

i1
2 )+···+(im

2 )
}

≤ max
i1+···+im=h

{
i1(l − i1) + · · ·+ im(l − im) + i21/2 + · · ·+ i2m/2

}

≤ hl − h2/(2m). (56)

By (19) and (22) we have

degq bl,ν,H ≤ degq





∑
ml−i+f=H

0≤f≤i+ν≤ml+ν

q(
ml+ν

2 )−(i+ν
2 )s(i + ν, f)Σml−i





≤ max
ml−i+f=H

0≤f≤i+ν≤ml+ν

{
(ml + ν)2/2− (i + ν)2/2 + f(i + ν − f)

+ f2/2 + (ml − i)l − (ml − i)2/(2m)
}
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= max
max{0,H−ml}≤f≤H

{
(ml + ν)2/2− (ml + f + ν −H)2/2

+ f(ν + ml −H) + f2/2 + (H − f)l − (H − f)2/(2m)
}

= max
max{0,H−ml}≤f≤H

{
(ml + ν)2/2− (ml + ν −H)2/2

+ (H − f)l − (H − f)2/(2m)
}

≤
{

(ml + ν)2/2− (ml + ν −H)2/2 + H(l −H/(2m)), if 0 ≤ H ≤ ml;

(ml + ν)2/2− (ml + ν −H)2/2 + ml2/2, if ml ≤ H ≤ ml + ν;
(57)

and hence the above maximum is bounded as

≤ ml2/2 + (ml + ν)H −H2/2, for 0 ≤ H ≤ ml + ν. (58)

Thus

degq bl,ν,H ≤ (ml + ν)2/2 + ml2/2, for 0 ≤ H ≤ ml + ν, (59)

which gives (52). Consider then

degq al,ν,j,N = degq

{ N∑

H=0

bl,ν,H(−βj)N−H

}

≤ max
0≤H≤N

{
(ml + ν)H −H2/2 + ml2/2 + (N −H)2/2

}

≤ max
0≤H≤N

{
N2/2 + (ml + ν −N)H + ml2/2

}

≤ −N2/2 + (ml + ν)N + ml2/2

≤ m2 + m

2
l2 + mlν +

ν2

2
, for 0 ≤ N ≤ ml + ν. (60)

which proves (53). ¤

Put

Θj = D−βj (a), Bl,ν = Bl,ν(a), Al,ν,j = Al,ν,j(a), Ll,ν,j = Ll,ν,j(a)

for brevity, and define δ(w) to be 1 and 0 according to w|∞ or w - ∞. Then by
using Lemma 5, (24), (26) and (28) we get the following approximation forms for
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Θj (j = 1, . . . , m) with the asymptotic bounds.

Lemma 6. Let a, q, β1, . . . , βm ∈ K∗, |q|v < 1, |a|v < 1 and set ν = bτ lc,
τ ≥ 0, where bxc denotes the greatest integer not exceeding x. Then for all l, ν ∈ N

and j = 1, . . . , m we have approximation forms

Bl,νΘj + Al,ν,j = Ll,ν,j (61)

satisfying

max(‖Bl,ν‖w, ‖Al,ν,j‖w) ≤ 2δ(w)O(l)‖q‖∗w((m2+m)/2+mτ+τ2/2)l2 (62)

for any place w of K, and

‖Ll,ν,j‖v ≤ 2O(l)‖q‖((m2+m)/2+(m+1)τ+τ2/2)l2

v . (63)

The implied O-constant here (and in the next section) depend on a and βj.

6. Proof of Theorem 1.

We now quote a general result from [1] which we shall apply to establish the
linear independence results in Theorem 1. Assume that we have a sequence of
(binary) approximation forms

Ln,T = Bn,T Θ + An,T (64)

for Θ = t(Θ1, . . . , Θm) ∈ Km
v , where Bn,T ∈ K, An,T = t(An,T,1, . . . , An,T,m) ∈

Km and Ln,T = t(Ln,T,1, . . . , Ln,T,m). Let

max{‖Bn,T ‖∗w, ‖An,T ‖∗w} ≤ Pw(n, T ) (65)

for any place w of K,

‖Ln,T ‖v ≤ Rv(n, T ), (66)

and let ρ1, ρ2 with ρ1 < ρ2 and c2 be positive constants independent of n such
that
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∆n,T =

∣∣∣∣∣∣∣∣∣∣

−Bn,T −Bn,T+1 · · · −Bn,T+m

An,T,1 An,T+1,1 · · · An,T+m,1

...
...

. . .
...

An,T,m An,T+1,m · · · An,T+m,m

∣∣∣∣∣∣∣∣∣∣

6= 0 (67)

with some integer T ∈ [ρ1n, ρ2n −m] for all n ≥ c2. (Here and in the sequel ci’s
denote positive constants independent of n.)

Now we suppose that the assumptions (65)–(66) are valid with

∏
w

Pw(n, τn) ≤ cn
3H(q)s(τ)n2

, c3 ≥ 1, (68)

and

Rv(n, τn) ≤ cn
4‖q‖v

u(τ)n2

, c4 ≥ 1, (69)

for all ρ1 ≤ τ ≤ ρ2. In (68) and (69) we further suppose that s(τ) and u(τ) are
bounded positive valued functions on the interval ρ1 ≤ τ ≤ ρ2 satisfying

u(τ) + λs(τ) ≥ c5 (70)

with some c5 > 0. Moreover we put

µ(τ) =
u(τ)

u(τ) + λs(τ)
, µ = supρ1≤τ≤ρ2

µ(τ).

Theorem A ([1]). If the above assumptions (65)–(70) are valid, then there
exist positive constants c, d and H0 depending on the numbers Θ1, . . . , Θm and
ρ1, ρ2, c2, c3, c4 and c5 such that

|k0 + k1Θ1 + · · ·+ kmΘm|v >
c

Hµκ/κvHd(log H)−1/2 (71)

for all k = t(k0, k1, . . . , km) ∈ Km+1 \ {0} with H = max{H(k),H0}.

Proofs of Theorem 1 and corollaries. First we note that the series
Db(z) defines an analytic function in the unit disk |z|p < 1. Then using the
q-difference equation
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bzDb(qz) = (z − 1)Db(z) + 1 (72)

we get a meromorphic continuation to the whole Cp except the poles at q−N . Put
now f(t) = Dt(a) and β = −α. If |a|v ≥ 1, then by using (72) repeatedly we may
return to apply the estimates in Lemma 6. Thus it follows from Lemmas 4 and 6
that Theorem A can be applied with any constants ρ > 0 and 1 > ω > 0, upon
taking

[ρ1, ρ2] = [ρ, ρ + ω], (73)

if l is sufficiently large, say l ≥ (m + 1)/ω. Now

s(τ) = (m2 + m)/2 + mτ + τ2/2,

u(τ) = (m2 + m)/2 + (m + 1)τ + τ2/2,

and the function s(τ)/u(τ), τ ≥ 0, attains its minimum at

τ0 =
√

m2 + m.

Hence the optimal value of

µ = max
ρ≤τ≤ρ+ω

u(τ)
u(τ) + λs(τ)

= max{µ(ρ), µ(ρ + ω)}

will be obtained if

s(ρ0)/u(ρ0) = s(ρ0 + ω)/u(ρ0 + ω), ρ0 ≤ τ0 ≤ ρ0 + ω. (74)

The unique positive solution of (74) is

ρ0 =
√

4m2 + 4m + ω2 − ω

2
.

Now, we may choose ω > 0 arbitrary small and consequently we may put µ = µ(τ0)
which at the same time gives the exact values of s0 = s(τ0) and u0 = u(τ0). Hence
(5) is valid for the function Dt(a).

Next we start from the identity

(U)m+1 − (U)m = −U(U)mqm, (75)
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which by telescoping gives

(U)∞ = 1− U

∞∑
m=0

(U)mqm. (76)

On the other hand the series

Eq(z) =
∞∑

n=0

1
(q)n

zn, Êq(z) =
∞∑

n=0

q(
n
2)

(q)n
zn

satisfy the q-difference equations

Eq(qz) = (1− z)Eq(z), Êq(z) = (1 + z)Êq(qz). (77)

By using (77) one gets the well-known Euler formulae

Eq(z) =
1

(z)∞
, Êq(z) = (−z)∞. (78)

Hence, by (76) and (78) we have

Eq(z) =
1

1− zDz(q)
, (79)

and thus (5) is valid for the function f(t) = Eq(t), too. From (78) we get

Êq(t)Eq(−t) = 1 (80)

which implies

E1/q,1/q(t)Eq,q(qt) = 1

and proves (2).
Finally we note that both the functions

∞∑
n=0

q(
n
2)αn

(qz)n
zn, 1 + αzD−α(qz)
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are unique analytic solutions of the q-difference equation

αzG(qz) = (1− qz)G(z)− (1− qz), G(0) = 1. (81)

Hence we have the relation

∞∑
n=0

q(
n
2)αn

(qz)n
zn = 1 + αzD−α,q(qz), (82)

and this implies

∞∑
n=0

tn

(b; d)n
= 1− t

b
Dbt,1/d(1/b) (83)

from which Theorem 1 yields Corollary 1. Together (72) and (82) give

∞∑
n=0

q(
n
2)αn

(qz)n
zn = (1− z)D−α,q(z). (84)

Thus we get a connecting relation between D−α,q(z) and Ramanujan’s reciprocity
function ρ(a, b) (cf. [4]), namely

ρ(a, b) =
(1 + a)(1 + b)

b
D−q/b,q(−a). (85)

¤

7. Appendix.

Let P (x) and Q(x) be polynomials and define a q-hypergeometric series

F (z) =
∞∑

n=0

∏n−1
k=0 P (qk)∏n−1
k=0 Q(qk)

zn.

Stihl [15] constructed the following simultaneous Padé approximations (of the
second kind) for the series F (z).

Theorem B ([15]). Let l,m, λ ∈ N , d = max{deg P (x), deg Q(x)}, ρ =
bl/dc+ ml + λ− 1 and choose m numbers α1, . . . , αm. Put σi,l = σi,l(α) and
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Al,λ(z) =
ml∑

i=0

zml−iσi,l

∏i+ρ−ml−1
k=0 Q(qk)∏i+λ−1

k=0 P (qk)
.

Then

Al,λ(z)F (αtz)−Bt,l,λ(z) = Rt,l,λ(z),

where

deg Bt,l,λ(z) ≤ ml + λ− 1,

Rt,l,λ(z) =
∞∑

k=ρ+1

rt,kzk.

Acknowledgments. The author is indebted to the anonymous referee for
improving the English of the paper.
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98–110.

[17] K. Väänänen, On linear independence of the values of generalized Heine series, Math.

Ann., 325 (2003), 123–136.

[18] K. Väänänen and W. Zudilin, Baker-Type estimates for linear forms in the values of

q-series, Can. Math. Bull., 48 (2005), 147–160.

Tapani Matala-aho

Matemaattisten tieteiden laitos

PL 3000, 90014 Oulun Yliopisto

Finland

E-mail: tma@cc.oulu.fi

http://dx.doi.org/10.1007/s00208-002-0372-y
http://dx.doi.org/10.1007/BF01463871
http://dx.doi.org/10.1007/s00025-006-0240-2



