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Abstract. This paper considers a class of continuous functions constructed as
a series of iterates of the “tent map” multiplied by variable signs. This class includes
Takagi’s nowhere-differentiable function, and contains the functions studied by Hata
and Yamaguti [Japan J. Appl. Math., 1 (1984), 183–199] and Kono [Acta Math.
Hungar., 49 (1987), 315–324] as a proper subclass. A complete description is given
of the differentiability properties of the functions in this class, and several statements
are proved concerning their uniform and local moduli of continuity. The results are
applied to generation of random functions.

1. Introduction.

Various authors [3], [7], [8], [11], [13], [17] have studied continuous functions
of the form

f(x) =
∞∑

n=1

cnφ(n)(x), 0 ≤ x ≤ 1, (1)

where {cn} is a sequence of real numbers; φ(1) := φ is the “tent map” defined by

φ(x) :=

{
2x, 0 ≤ x ≤ 1/2,

2− 2x, 1/2 ≤ x ≤ 1;

and inductively, φ(n) := φ ◦ φ(n−1) for n ≥ 2.
For example, taking cn = bn, where 1/2 ≤ b < 1, one obtains “fractal” func-

tions analogous to the Weierstrass nowhere-differentiable but continuous function;
see Ledrappier [13]. The borderline case b = 1/2 yields the Takagi function [17];
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see Figure 1(a). Other choices of cn were considered by Faber [3], Kahane [8] and
others, usually to demonstrate the existence of functions having a given modulus
of continuity. Hata and Yamaguti [7] studied the functions (1) in full generality,
and showed that (1) defines a continuous (and then a uniformly continuous) func-
tion if and only if {cn} ∈ `1. The first complete treatment of the differentiability
properties and the modulus of continuity of these functions was given by Kono
[11].

Observe, however, that f defined by (1) is always symmetric with respect to
x = 1/2. To introduce more flexibility, this paper considers the functions

f(x) =
∞∑

n=1

cnrn−1(x)φ(n)(x), 0 ≤ x ≤ 1, (2)

where for n ∈ Z+, rn is a function from [0, 1] to {−1, 1} which is constant on
each open subinterval ((j − 1)/2n, j/2n), j = 1, 2, . . . , 2n. Assume without loss of
generality that cn ≥ 0, n ∈ N . To ensure that (2) defines a continuous function,
assume furthermore that {cn} ∈ `1. (Observe that the summands in (2) are
continuous, since the discontinuities of rn−1 coincide with zeros of φ(n).)

Readers with a background in wavelet analysis will no doubt recognize (2) as
a special kind of Schauder series. In fact, 2−(m+2)/2φ(m+1)χ[k/2m,(k+1)/2m] is the
Schauder-Ciesielski function of index 2m + k (see [16]). Thus, for fixed m, the
Schauder functions of index 2m + k (k = 0, 1, . . . , 2m − 1) all occur with the same
amplitude in (2), but the multiplication by rm(x) gives each Schauder function
(or “tent”) its own orientation (up or down), independently of the others. This
means that on the one hand, the local properties of the graph of f will be fairly
uniform throughout the domain, whereas on the other hand, the graph of f can
have a wide variety of general shapes.

Some particular non-symmetric functions of the form (2) which have occurred
in the literature are specified below. First, define the system of Rademacher
functions {Xn}n∈N by

Xn(x) :=

{
1, if [2nx] is even,

−1, if [2nx] is odd,

for x ∈ R, where [2nx] denotes the greatest integer less than or equal to 2nx. It
is clear that rn(x) may be assumed to be of the form

r0(x) ≡ R0, rn(x) = Rn(X1(x), . . . , Xn(x)), n ∈ N , (3)
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Figure 1. (a) the Takagi function; (b) the Gray Takagi function; (c) Kawamura’s T 3;
(d) a smooth function (see Section 4).

where R0 ∈ {−1, 1} is constant, and for n ≥ 1, Rn is a function from {−1, 1}n to
{−1, 1}.

Example 1.1. Taking cn = 2−n, r0(x) ≡ 1, and rn(x) = Xn(x) for n ∈ N

we obtain the function shown in Figure 1(b). Kobayashi [10] named it the Gray
Takagi function because of its relationship to Gray codes. (See the last remark in
Section 6.)

Example 1.2. Let cn = 2−n, r0(x) ≡ 1, and rn(x) = X1(x)X2(x) · · ·Xn(x)
for n ∈ N . This yields the function T 3 of Kawamura [9], which she used to study
a family of self-similar sets in the plane. (See Figure 1(c).)

The objective of this paper is to study the differentiability properties and the
modulus of continuity of the functions (2). In particular, it will be shown that
the results of Kono [11] remain valid for this larger class of functions. The local
modulus of continuity is explored in somewhat greater depth. The methods used
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are largely Kono’s, and include the use of probabilistic techniques and the repre-
sentation of φ in terms of the Rademacher system {Xn}. However, the general
setting considered here presents several new challenges, and some of the proofs
require some fundamentally new ideas. Note finally that related results on differ-
entiability of Schauder series were proved by Pál and Schipp [16], but their results
do not contain ours.

The paper is organized as follows. Section 2 introduces the expression of f(x)
in terms of Rademacher series. Section 3 deals with the differentiability of f ; as
in Kono’s setting there are three different cases, depending on the tail behavior of
the sequence {cn}. Section 4 investigates the question of smoothness in the sense
of Zygmund [18]. While f defined by (1) is smooth if and only if f(x) = ax(1−x)
for some a ∈ R (see [11, Theorem 3]), the larger class (2) contains a variety of
smooth functions, such as the one shown in Figure 1(d). However, it seems difficult
to give a complete characterization.

The modulus of continuity of f is studied in Sections 5 and 6. First, Theorem
5.1 gives the uniform modulus of continuity. Using the law of the iterated loga-
rithm, it is then shown (in Theorem 5.2) that the local modulus of continuity is
strictly sharper at almost every point in [0, 1]. This is done by extending a method
of Gamkrelidze [5]. It is noted that Kono’s original proof of this theorem contained
a critical mistake (see Remark 5.4); thus, the proof given here also confirms the
correctness of Kono’s theorem.

While Theorem 5.2 gives the almost-everywhere modulus of continuity of f ,
Section 6 investigates behavior on the exceptional set. Under suitable restrictions,
we demonstrate two different kinds of behavior of f on reasonably large sets; that
is, on sets of strictly positive Hausdorff dimension. The proofs use two singular
measures (including the well-known binomial measure), and exploit a connection
with Gray codes. This section is new in the sense that Kono [11] did not study
the exceptional set.

The results of the paper are applied in Section 7 to generation of random
functions having specified differentiability or continuity properties. This method
may be useful for simulating certain physical, biological or financial processes
whose sample paths possess a known differentiability structure.

2. Representation by Rademacher series.

We need some notation and facts from [11]. Let x and h be real numbers
such that 0 ≤ x < x + h < 1, and write

x =
∞∑

k=1

2−kεk, x + h =
∞∑

k=1

2−kε′k,



Continuous functions with uniform local structure 241

where εk, ε′k ∈ {0, 1}, and we make the convention that εk = 0 (resp. ε′k = 0)
eventually when x (resp. x + h) is dyadic rational. Note that

Xk(x) = 1− 2εk, Xk(x + h) = 1− 2ε′k (k ∈ N).

Let p := p(h) be the unique integer such that

2−p−1 < h ≤ 2−p, (4)

and let

k0 := k0(x, h) := max{k : ε1 = ε′1, . . . , εk = ε′k}

(or k0 = 0 if ε1 6= ε′1). The following facts are easy to verify:

(a) 0 ≤ k0 ≤ p;
(b) εk0+1 = 0 and ε′k0+1 = 1;
(c) If k0 + 2 ≤ p, then ε′k = 0 and εk = 1 for k0 + 2 ≤ k ≤ p.

Now we can write

f(x + h)− f(x) =
∞∑

n=1

cn

[
rn−1(x + h)φ(n)(x + h)− rn−1(x)φ(n)(x)

]

=
k0∑

n=1

+
p∑

n=k0+1

+
∞∑

n=p+1

=: Σ1 + Σ2 + Σ3. (5)

Since rn−1(t)φ(n)(t) is linear on [x, x + h] with derivative 2nrn−1(x)Xn(x) for
n = 1, . . . , k0, it is immediate from (2) that

Σ1 = h

k0∑
n=1

anrn−1(x)Xn(x), (6)

where we put

an := 2ncn.

In all cases considered in this paper, the magnitude of f(x+h)−f(x) is controlled
by the term Σ1, and suitable estimates are required for the magnitudes of Σ2 and
Σ3. In the case of Σ3 this is easy, since
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|Σ3| ≤
∞∑

n=p+1

2cn ≤ 2
∞∑

n=p+1

2−n · sup
n>p

an ≤ 4h sup
n>p

an. (7)

In order to be able to deal with Σ2 we use Kono’s expressions (see [11])

φ(x) =
1
2
−X1(x)

∞∑

k=2

2−kXk(x) =
∞∑

k=2

2−k{1−X1(x)Xk(x)},

and

φ(n)(x) =
∞∑

k=n+1

2n−k−1{1−Xn(x)Xk(x)}. (8)

Define

Un,k(x, h) := rn−1(x + h){1−Xn(x + h)Xk(x + h)}
− rn−1(x){1−Xn(x)Xk(x)}.

Substituting (8) into (5) yields

Σ2 =
p∑

n=k0+1

an

∞∑

k=p+1

2−k−1Un,k(x, h),

as the terms with n < k ≤ p cancel. Therefore (since |Un,k(x, h)| ≤ 4),

|Σ2| ≤ 4h

p∑

n=k0+1

an. (9)

Finally, note that if x and x + h belong to the same (closed) dyadic interval of
length 2−p: j/2p ≤ x < x + h ≤ (j + 1)/2p, we simply have

f(x + h)− f(x) = h

p∑
n=1

anrn−1(x)Xn(x) + Σ3. (10)
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3. Differentiability.

The first main result is a generalization of [11, Theorem 2].

Theorem 3.1. Let f be defined by (2).

(i) If {an} ∈ `2, then f is absolutely continuous with derivative

f ′(x) =
∞∑

n=1

anrn−1(x)Xn(x) a.s. (11)

(ii) If {an} 6∈ `2 but limn→∞ an = 0, then f is nondifferentiable at almost every
point of [0, 1], but f is differentiable on an uncountably large set, and the
range of f ′ is R.

(iii) If lim supn→∞ an > 0, then f is nowhere differentiable.

Remark 3.2. Curiously, a quite analogous result has been observed before
in a very different setting: Lax [12] showed that Pólya’s space-filling curve, which
maps the unit interval onto a solid right triangle, is either differentiable almost
everywhere; nondifferentiable almost everywhere but differentiable on an uncount-
ably large set; or nowhere differentiable; depending on the size of the smaller acute
angle of the triangle. There does not, however, appear to be a direct relationship
between our functions and the Pólya curve.

The following lemmas are needed in the proofs of parts (i) and (ii) of Theorem
3.1, respectively.

Lemma 3.3. For every n ∈ N and x ∈ [0, 1],

∫ x

0

anrn−1(t)Xn(t) dt = cnrn−1(x)φ(n)(x).

Proof. Let j be the largest integer such that x ≥ j/2n−1. Then

∫ j/2n−1

0

anrn−1(t)Xn(t) dt = 0

and, since rn−1(t) is constant on j/2n−1 < t < (j + 1)/2n−1,

∫ x

j/2n−1
anrn−1(t)Xn(t) dt = rn−1(x)

∫ x

j/2n−1
anXn(t) dt = cnrn−1(x)φ(n)(x).
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The lemma follows. ¤

Lemma 3.4. Assume limn→∞ an = 0 and
∑∞

n=1 an = ∞. Then for every
real number L, there exists a point x ∈ [0, 1] such that

(*) the binary expansion of x contains neither a string of four or more consec-
utive 1’s nor a string of four or more consecutive 0’s,

and

∞∑
n=1

anrn−1(x)Xn(x) = L.

Proof. For notational simplicity, we write rn, Xn rather than rn(x),
Xn(x). For i = 0, 1, 2, and n ∈ N , define

t(i)n =

{−1 if n ≡ i (mod 3)

1 otherwise,

and

s(i)
n :=

3n∑

k=1

akt
(i)
k .

Since

s(0)
n + s(1)

n + s(2)
n =

3n∑

k=1

ak →∞,

it follows that lim supn→∞ s
(i)
n = ∞ for at least one i; say this holds for i = 0.

Observe that for any sequence {δk} ∈ {−1, 1}N ,

δk = 1 whenever k ≡ 1 or 2 (mod 3)

⇒ lim sup
n→∞

3n∑

k=1

akδk ≥ lim sup
n→∞

3n∑

k=1

akt
(0)
k = ∞. (12)

The proof now proceeds inductively. Let m ≥ 0, and assume X1, . . . , X3m have
been constructed without violating (*). (This condition is void if m = 0.) Let
Am :=

∑3m
k=1 akrk−1Xk, and choose X3m+1, X3m+2 and X3m+3 so that
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r3mX3m+1 = r3m+1X3m+2 =

{
1 if Am ≤ L

−1 if Am > L,
(13)

and

X3m+3 = −X3m+2.

The last condition ensures that the sequence X1, . . . , X3m+3 still satisfies (*).
Thus, by induction, this method yields a point x whose binary expansion is as
required. The convergence to L follows since an → 0, so Am+1−Am → 0, and Am

and Am+1 lie on opposite sides of L infinitely often in view of (12) and (13). ¤

Proof of Theorem 3.1. (i) Assume {an} ∈ `2. Note that X1, X2, . . . are
independent, identically distributed random variables with respect to Lebesgue
measure on [0, 1], with mean 0 and variance 1. The same is true for the sequence
r0X1, r1X2, . . . , since rn−1(x) depends only on X1(x), . . . , Xn−1(x). Thus, the
series

∑
anXn(x) and

∑
anrn−1(x)Xn(x) both converge almost surely (see, for

instance, Theorem 4.2.4 in [14]). In particular,

lim
h↓0

p∑

n=k0+1

anXn(x) = 0 a.s.

since k0 →∞ as h ↓ 0. Using (9), it follows that for h > 0,

|Σ2| ≤ 4h

(
−

p∑

n=k0+1

anXn(x) + 2ak0+1

)
= o(h) a.s.

Similarly, Σ3 = o(h) by (7). Hence,

lim
h↓0

f(x + h)− f(x)
h

=
∞∑

n=1

anrn−1(x)Xn(x) a.s.

by (6). The left derivative follows by applying the above argument to the function
f̃(x) := f(1− x), which is also of the type (2). Thus we have (11).

We now show that

f(x) =
∫ x

0

f ′(t) dt, (14)
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and therefore f is absolutely continuous. Let

ζk(t) := akrk−1(t)Xk(t).

Since the random variables {ζk} are independent with mean zero,

∫ 1

0

( n∑

k=N

ζk(t)
)2

dt =
n∑

k=N

∫ 1

0

ζk(t)2dt =
n∑

k=N

a2
k.

Fatou’s lemma therefore implies that

∫ 1

0

( ∞∑

k=N

ζk(t)
)2

dt ≤
∞∑

k=N

a2
k → 0, as N →∞.

But then,

∫ x

0

∣∣∣∣
∞∑

k=N

ζk(t)
∣∣∣∣dt → 0 as N →∞,

by the Schwarz inequality. This, along with (11) and Lemma 3.3, yields (14).
(ii) Next, assume that {an} 6∈ `2 but an → 0. Fix x =

∑∞
k=1 2−kεk, and put

xm =
m∑

k=1

2−kεk, hm = 2−m (m ∈ N). (15)

A necessary condition for f to be differentiable at x is that

Pm :=
f(xm + hm)− f(xm)

hm
(16)

have a finite limit as m →∞. However, since x and xm have their first m binary
digits in common, (10) yields

f(xm + hm)− f(xm) = hm

m∑
n=1

anrn−1(x)Xn(x). (17)

Since {an} 6∈ `2, the law of the iterated logarithm [6] therefore implies that
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lim sup
m→∞

Pm = ∞ and lim inf
m→∞

Pm = −∞ a.s.

Hence, f is nondifferentiable almost everywhere.
Next, let L ∈ R be given, and choose x ∈ [0, 1] satisfying the conclusion of

Lemma 3.4. Then h > 0 implies p− k0 ≤ 4, so by (9)

|Σ2| ≤ 4h

p∑
n=p−3

an = o(h),

since an → 0. Thus, (6) and (7) yield

lim
h↓0

f(x + h)− f(x)
h

= L.

The left derivative follows again by considering the function f̃(x) = f(1−x), since
1− x also satisfies property (*) in Lemma 3.4. Thus, f ′(x) = L.

(iii) Finally, assume lim supn→∞ an > 0. Fix x =
∑∞

k=1 2−kεk. Define xm

and hm by (15), and Pm by (16). From (17) it is clear that

|Pm+1 − Pm| = am+1,

and hence {Pm} does not converge. Therefore, f is not differentiable at x. This
completes the proof of (iii), and of the theorem. ¤

Remark 3.5. The above proof shows that the range of f ′ is R also if {an} ∈
`2\`1. When {an} ∈ `1, however, the range of f ′ can be much more complicated.
For example, if an = βn where 0 < β < 1/2, the range of f ′ is the set {∑∞

n=1 ξnβn :
ξn ∈ {−1, 1} for n ∈ N}, a Cantor set of Hausdorff dimension − log 2/ log β.

4. Smoothness.

In this section, say a continuous function f defined on (0, 1) is smooth if

f(x + h) + f(x− h)− 2f(x) = o(h) (18)

for all x ∈ (0, 1). This concept of smoothness is due to Zygmund [18]. Kono [11,
Theorem 3] showed that f defined by (1) is smooth if and only if f(x) = ax(1−x)
for some constant a; or equivalently, if cn = a4−n, n ∈ N .

In the setting of this paper there are more possibilities (see the examples
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below). The closest the author has come to a characterization of smooth functions
is the following:

Theorem 4.1. Let f be defined by (2), and let Rn (n ∈ Z+) be as in (3).

(i) If f is smooth, then

al+1Rl(η1, . . . , ηl) =
1
2

∞∑

k=0

al+k+2

[
Rl+k+1(η1, . . . , ηl,−1, 1, . . . , 1︸ ︷︷ ︸

k

)

+ Rl+k+1(η1, . . . , ηl, 1,−1, . . . ,−1︸ ︷︷ ︸
k

)
]

(19)

for every l ∈ Z+ and η1, . . . , ηl ∈ {−1, 1}. (Here, Rl(η1, . . . , ηl) is to be read
as R0 if l = 0.)

(ii) If {an} ∈ `1 and (19) holds, then f is smooth.

Remark 4.2. The author does not know whether there exist solutions to
(19) with {an} 6∈ `1.

Proof of Theorem 4.1.

(i) Suppose f is smooth. Then f is differentiable on a set of cardinality of the
continuum (see [18]). Hence limn→∞ an = 0 by Theorem 3.1.

Fix m ∈ N , and consider a point x =
∑m

k=1 2−kεk with εm = 1. Let p > m,
and 2−p−1 < h < 2−p. We have k0(x, h) = p, and k0(x− h, h) = m− 1. Applying
(10) to both differences we obtain

f(x + h)− f(x) = h

[ m−1∑
n=1

anrn−1(x)Xn(x)− amrm−1(x)

+
p∑

n=m+1

anrn−1(x)
]

+ o(h)

and

f(x)− f(x− h) = h

[ m−1∑
n=1

anrn−1(x)Xn(x) + amrm−1(x)

−
p∑

n=m+1

anrn−1(x− h)
]

+ o(h),
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and therefore,

f(x + h) + f(x− h)− 2f(x)

= h

[ p∑
n=m+1

an{rn−1(x) + rn−1(x− h)} − 2amrm−1(x)
]

+ o(h). (20)

This expression can be seen to be correct also if h = 2−p. Now from (3),

rm−1(x) = Rm−1(X1(x), . . . , Xm−1(x)),

rn−1(x) = Rn−1(X1(x), . . . , Xm−1(x),−1, 1, . . . , 1︸ ︷︷ ︸
n−m−1

), n ≥ m + 1,

rn−1(x− h) = Rn−1(X1(x), . . . , Xm−1(x), 1,−1, . . . ,−1︸ ︷︷ ︸
n−m−1

), n ≥ m + 1.

Substituting these expressions into (20), using the definition (18) of smoothness,
and re-indexing yields (19).

(ii) Conversely, if (19) holds, then (18) is certainly satisfied at any dyadic
rational point x. If moreover {an} ∈ `1, then (18) holds for nondyadic points as
well, since for such points, both k0(x, h) and k0(x−h, h) tend to ∞ as h ↓ 0; thus,
Σ2 = o(h) in the expansion of both f(x + h) − f(x) and f(x) − f(x − h). The
terms contributed by Σ1 will cancel, as they did in the dyadic case. ¤

Examples of functions satisfying (19) can be created from the “basic function”
H(x) := x(1−x). For example, 2n copies of the graph of H can be placed side by
side (every second one reflected in the x-axis) to create a wave-like pattern. Such
a pattern may then be superimposed, appropriately scaled, on the graph of φ(m)

(m ≤ n− 1) to create further examples. These ideas are now made precise.

Example 4.3. Choose N ∈ N , and take cn = 0 for n ≤ N , and cn =
4N+1−n for n > N . Take rn = XN for n ≥ N . It is easy to verify (19). The graph
of f is a piecewise quadratic curve resembling a “quadratic sine wave”.

Example 4.4. Choose K ∈ Z+ and N ≥ 2. Put cn = 0 for n ≤ K + N ,
n 6= K + 1; cK+1 = 1; and cn = 2N+14K−n for n > K + N . Now choose
r0, . . . , rK+N−1 arbitrarily, and put

rn = −rKXK+1XK+N , n ≥ K + N.

Again (19) is easily checked. This gives the “quadratic sine wave” from Example
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4.3 traveling up and down the graph of rKφ(K+1). The simplest example, with
K = 0 and N = 2, yields the “bell-shaped” curve given by

f(x) =





8x2, x ≤ 1/4

8x(1− x)− 1, 1/4 ≤ x ≤ 3/4

8(1− x)2, x ≥ 3/4.

Similarly, the graph in Figure 1(d) is obtained by taking K = 1, N = 3, r0 ≡ 1,
and r1 = X1.

The author does not know whether there exist other examples of functions
satisfying (19).

5. The uniform and local moduli of continuity.

This section investigates the continuity properties of f . Note first that, if
{an} ∈ `1, then f is Lipschitz continuous. This follows from Theorem 3.1, since
{an} ∈ `1 implies {an} ∈ `2, and so (14) and (11) imply

|f(x + h)− f(x)| =
∣∣∣∣
∫ x+h

x

∞∑
n=1

anrn−1(t)Xn(t)dt

∣∣∣∣ ≤
( ∞∑

n=1

an

)
|h|.

The theorems below generalize Theorems 4 and 5 of [11], respectively. In
this section and the next, assume f is defined by (2), and let σu and σl denote
nonincreasing continuous functions satisfying

σu(2−p) =
p∑

n=1

an, σl(2−p) =
( p∑

n=1

a2
n

)1/2

(p = 1, 2, . . . ).

Theorem 5.1 (The uniform modulus of continuity). If {an} ∈ `∞\`1, then

lim sup
|x−y|↓0

f(x)− f(y)
(x− y)σu(|x− y|) = 1, and lim inf

|x−y|↓0
f(x)− f(y)

(x− y)σu(|x− y|) = −1.

While the above theorem illustrates “worst-case” behavior, the next theo-
rem shows that at a “typical” point, the function f exhibits a stronger form of
continuity.

Theorem 5.2 (The local modulus of continuity). If {an} ∈ `∞\`2, then
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lim sup
h→0

f(x + h)− f(x)
hσl(|h|)

√
2 log log σl(|h|)

= 1 a.s.,

and the corresponding lim inf equals −1 a.s.

Proof of Theorem 5.1. Assume an ≤ K. Then for all x and h,

|f(x + h)− f(x)| ≤
p∑

n=1

an|h|+ 2
∞∑

n=p+1

cn,

where p is defined as in (4). The first term on the right is equal to |h|σu(2−p), and
the second term is bounded above by 4K|h|. Since {an} 6∈ `1, it follows that

−1 ≤ lim inf
|x−y|↓0

f(x)− f(y)
(x− y)σu(|x− y|) ≤ lim sup

|x−y|↓0

f(x)− f(y)
(x− y)σu(|x− y|) ≤ 1.

Conversely, given m ∈ N , it is always possible to construct a point xm =∑m
k=1 2−kεk such that rn−1(xm)Xn(xm) = 1 for n = 1, . . . , m. Put hm = 2−(m+1).

Then

f(xm + hm)− f(xm) = hmσu(hm) + O(hm),

and letting m →∞ yields the lim sup in the statement of the theorem. The lim inf
follows similarly. ¤

The idea of the proof of Theorem 5.2 is to apply the law of the iterated
logarithm to the sum Σ1 in (5). The following lemma is needed to ensure that Σ2

remains small compared to Σ1. Define the notation

bn := a2
n, sn :=

n∑

j=1

bj (n ∈ N).

Lemma 5.3. Under the hypotheses of Theorem 5.2, we have
(a) sk0/sp → 1 a.s.; and
(b) s

−1/2
p

∑p
n=k0+1 an → 0 a.s.

Proof. Without loss of generality, assume an ≤ 1 for all n. We adapt a
method of Gamkrelidze [5], who considered the case an ≡ 1.

For any fixed x, k0 is smallest when h = 2−p, so it is sufficient to consider
this special case. Thus, we have
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P(k0 = p− j) = 2−j , 1 ≤ j < p; P(k0 = 0) = 21−p,

and therefore,

E(sp − sk0)
2 =

p−1∑

j=1

2−j(sp − sp−j)2 + 21−ps2
p ≤ 2

p∑

j=1

2−j(sp − sp−j)2. (21)

Now fix ε > 0. By Chebyshev’s inequality and (21),

∞∑
p=1

P
(

sp − sk0

sp
≥ ε

)
≤

∞∑
p=1

E(sp − sk0)
2

ε2s2
p

≤ 2
ε2

∞∑

j=1

2−j
∞∑

p=j

(
sp − sp−j

sp

)2

. (22)

Let

pk := inf{p : sp > k}, k ∈ Z+.

Then, for each j < pk − 1,

pk+1−1∑

n=pk−j+1

bn ≤ j +
pk+1−1∑
n=pk+1

bn ≤ j + 1.

For k ≥ 1, this yields the estimate

pk+1−1∑
p=pk

(
sp − sp−j

sp

)2

≤ k−2

pk+1−1∑
p=pk

( p∑

n=p−j+1

bn

)2

≤ k−2

( pk+1−1∑
p=pk

p∑

n=p−j+1

bn

)2

≤ k−2

(
j

pk+1−1∑

n=pk−j+1

bn

)2

≤ k−2j2(j + 1)2,

since each bn occurs at most j times in the double sum above. The case k = 0
must be handled separately in a similar manner. We obtain
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∞∑

p=j

(
sp − sp−j

sp

)2

=
∞∑

k=0

pk+1−1∑
p=pk

(
sp − sp−j

sp

)2

≤ 4
(

b−2
p0

+
∞∑

k=1

k−2

)
j4.

Thus, the series in (22) converges, and the Borel-Cantelli lemma implies that

sp − sk0

sp
→ 0 a.s.,

which is equivalent to (a). To prove (b), note that in view of the Schwarz inequality,
it suffices to show that

(p− k0)(sp − sk0)
sp

→ 0 a.s.

This can be done in essentially the same way as the proof of part (a). ¤

Proof of Theorem 5.2. Assume first that h > 0. Then Σ3 = O(h) by
(7), and Lemma 5.3(b) implies that

Σ2

h
√

sp
→ 0 a.s. (23)

Since the random variables rn−1(x)Xn(x) are independent with mean 0 and vari-
ance 1, the law of the iterated logarithm (LIL) implies

lim sup
k0→∞

Σ1

h
√

2sk0 log log sk0

= 1 a.s.

Using part (a) of Lemma 5.3 we obtain the statement of the theorem for the case
h ↓ 0. The corresponding result for h ↑ 0 follows by considering the function
f̃(x) := f(1− x). Thus, the proof is complete. ¤

Remark 5.4. It is noted here that Kono’s proof of Theorem 5.2 (for the
functions (1)) contains a gap. Kono claims that (with the notation of Section 2)

∞∑

k=p+1

2−k(1− εk − ε′k) ≥ 0, (24)

an inequality which in his proof is of critical importance for dealing with the term
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Σ2. However, if h = 2−p and εp+1 = εp+2 = 1, it is easy to see that the inequality
fails. In fact, the left hand side of (24) can be arbitrarily close to −h. The
proof given above confirms that the statement of Kono’s theorem was nonetheless
correct.

Remark 5.5. The boundedness condition in Theorems 5.1 and 5.2 is suffi-
cient but not necessary. For example, straightforward calculations show that the
conclusions of both theorems hold if an = nβ for some β > 0. It is not clear,
however, to what extent the boundedness condition can be weakened.

Remark 5.6. With no additional effort, we can obtain the following gener-
alization of Gamkrelidze’s first theorem [5, Theorem 1]. Let an ≡ 1, so

f(x) =
∞∑

n=1

2−nrn−1(x)Xn(x).

Then

lim
h↓0

λ

{
x ∈ (0, 1) :

f(x + h)− f(x)
h
√

log2(1/h)
< y

}
=

1√
2π

∫ y

−∞
e−u2/2du,

for every y ∈ R, where λ denotes Lebesgue measure on [0, 1]. To see this, simply
apply the Central Limit Theorem to Σ1 in (5), and observe that the terms Σ2 and
Σ3 are controlled by (23) and (7), respectively.

6. More on the local modulus of continuity.

While Theorem 5.2 gives the almost-everywhere modulus of continuity of f , it
is interesting to consider what happens on the exceptional set. The following two
theorems specify behavior on a reasonably “large” set, that is, on a set of strictly
positive Hausdorff dimension.

Theorem 6.1. Assume rn is constant for each n. Let δ ∈ (−1, 1) be given.
Under the hypotheses of Theorem 5.2,

lim sup
h→0

f(x + h)− f(x)− δhτ(|h|)
hσl(|h|)

√
2(1− δ2) log log σl(|h|)

= 1,

and the corresponding lim inf equals −1, for all x in a set of strictly positive
Hausdorff dimension. Here, τ is the continuous function satisfying τ(2−p) =∑p

n=1 rn−1an for p = 0, 1, 2, . . . , and extended to (0, 1) by linear interpolation.
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Theorem 6.2. Consider the Takagi function

T (x) :=
∞∑

n=1

2−nφ(n)(x).

Let A > 0 be given. Then

lim sup
h→0

T (x + h)− T (x)
hσl(|h|)

√
2 log log σl(|h|)

= A,

and the corresponding lim inf equals −A, for all x in a set of strictly positive
Hausdorff dimension.

The proofs of these theorems use two singular measures of positive dimension.
Recall that for a probability measure µ on [0, 1] equipped with the Borel sigma
algebra B([0, 1]), the Hausdorff dimension of µ is defined by

dimH(µ) = inf{dimH E : E ∈ B([0, 1]) and µ(E) = 1},

where dimH E denotes the Hausdorff dimension of the set E. (See Falconer [4] for
a definition and properties of Hausdorff dimension.)

Define the intervals I := I0,0 := [0, 1], and

In,j :=
[

j

2n
,
j + 1
2n

)
, j = 0, 1, . . . , 2n − 2; In,2n−1 :=

[
2n − 1

2n
, 1

]

for n ∈ N . For 0 < α < 1, denote by µα the unique probability measure on I

determined by the conditions

µα(In+1,2j) = αµα(In,j), µα(In+1,2j+1) = (1− α)µα(In,j)

for n = 0, 1, 2, . . . and j = 0, 1, . . . , 2n − 1. The measure µα is called a binomial
measure; it has been used in applications ranging from digital sum problems in
number theory [15] to the mathematical theory of gambling [2]. Note that µα

coincides with Lebesgue measure when α = 1/2, but is singular otherwise. The
dimension of µα, due to Besicovitch, is given by

dimH(µα) = −α log2 α− (1− α) log2(1− α) (25)
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(see [4, Proposition 10.4]).

Proof of Theorem 6.1. Choose 0 < α < 1 so that 2α − 1 = δ. Observe
that under µα, the binary digits of a number x ∈ [0, 1] are independent, taking on
the values 0 and 1 with probabilities α and 1− α, respectively. Hence

E[Xn(x)] = δ, Var[Xn(x)] = 4α(1− α) = 1− δ2,

where E and Var denote expectation and variance operators with respect to µα.
The LIL applied to the random variables anrn−1{Xn(x)− δ} yields

lim sup
k→∞

∑k
n=1 akrk−1Xk(x)− δ

∑k
n=1 anrn−1

σl(2−k)
√

2(1− δ2) log log σl(2−k)
= 1 a.s. (µα).

Since Lemma 5.3 is still valid (and its proof easily modified), it follows as in the
proof of Theorem 5.2 that

lim sup
h→0

f(x + h)− f(x)− δhτ(|h|)
hσl(|h|)

√
2(1− δ2) log log σl(|h|)

= 1 a.s. (µα),

and similarly for the lim inf. This clearly implies the statement of the theorem,
since dimH(µα) > 0. ¤

The second singular measure is defined as follows. For 0 < α < 1, let µ̃α

denote the unique probability measure on I determined by the conditions

µ̃α(In+1,2j) =

{
αµ̃α(In,j), j even,

(1− α)µ̃α(In,j), j odd,

µ̃α(In+1,2j+1) =

{
(1− α)µ̃α(In,j), j even,

αµ̃α(In,j), j odd

for n = 0, 1, 2, . . . and j = 0, 1, . . . , 2n − 1. This measure was introduced by
Kobayashi [10] and studied further by Cristea and Prodinger [1], who named it
the Gray code measure. Again, µ̃α reduces to Lebesgue measure when α = 1/2,
but is singular otherwise.

It is precisely the connection of the Gray code measure to Gray codes which
allows us to prove Theorem 6.2. The Gray code is an encoding of the nonnegative
integers by sequences of 0’s and 1’s, with the property that representations of
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adjacent integers differ in exactly one position. Specifically, if the nonnegative
integer n is written as n =

∑∞
k=0 2kεk with εk ∈ {0, 1}, then the nth Gray code is

the infinite sequence

(. . . εk+1 ⊕ εk, . . . , ε2 ⊕ ε1, ε1 ⊕ ε0),

where ⊕ denotes addition modulo 2. The definition extends naturally to points in
[0, 1): if x =

∑∞
k=1 2−kεk, the Gray code expansion of x is the sequence

(ε1, ε1 ⊕ ε2, ε2 ⊕ ε3, . . . , εk ⊕ εk+1, . . . ).

The important point to observe is that, under µ̃α, the digits in the Gray code
expansion of a point x ∈ [0, 1) are independent, taking on 0 and 1 with probabilities
α and 1− α, respectively. With this in mind, one can show that

dimH(µ̃α) = −α log2 α− (1− α) log2(1− α).

The proof of (25), as given in [4, Proposition 10.4], can be copied with only
one change: the quantities n0(x|k) and n1(x|k) must denote the number of 0’s
(resp. 1’s) in the first k Gray code digits, rather than binary digits, of x.

While µ̃α makes the Gray code digits of x independent, it makes the binary
digits of x Markovian, with transition probabilities

p(x, y) =

{
α, x = y,

1− α, x 6= y,

for x, y ∈ {0, 1}. Thus, under µ̃α, the partial sums defined by

S0 := 0, Sn :=
n∑

j=1

Xj(x), n ∈ N

follow a correlated random walk; that is, a random walk which at each stage con-
tinues in its present direction with probability α, and reverses its direction with
probability 1−α. For such a random walk, the LIL takes the following form. (This
result is probably known, but since no reference is known to the author, a proof
is included for completeness.)

Proposition 6.3. We have
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lim sup
n→∞

Sn√
2n log log n

=
√

α

1− α
a.s. (µ̃α).

Proof. Without loss of generality, assume the process {Xn} starts at time 0
with X0 ≡ −1. (The initial condition clearly does not affect the long-run behavior.)
Define τ0 ≡ 0, and inductively,

τj := inf{n > τj−1 : Xn 6= Xn−1}, j = 1, 2, . . . .

Let Tj := τj − τj−1, j ∈ N . Then T1, T2, . . . are independent, each having a
geometric distribution with parameter 1− α, so

E(Tj) =
1

1− α
, Var(Tj) =

α

(1− α)2
,

where E and Var now denote expectation and variance with respect to µ̃α.
Next, let Zj := Sτ2j − Sτ2j−2 , j ∈ N . Then Zj = T2j − T2j−1, and hence

E(Zj) = 0, Var(Zj) =
2α

(1− α)2
(j ∈ N).

Thus, with bn := 2αn/(1− α)2, the LIL implies that

lim sup
j→∞

Sτ2j√
2bj log log bj

= 1 a.s. (µ̃α). (26)

Let u(n) :=
√

2n log log n. By the strong law of large numbers,

u(τ2j)
u(2j)

→ 1√
1− α

a.s. (µ̃α). (27)

Finally, note that {Sn} takes on its local maxima at the times τ2j − 1 (j ∈ N). It
follows from (26) and (27) that

lim sup
n→∞

Sn

u(n)
= lim sup

j→∞

Sτ2j

u(τ2j)
=

√
α

1− α
a.s. (µ̃α),

and the proof is complete. ¤
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Proof of Theorem 6.2. Observe that the statement of Lemma 5.3 is
valid even with respect to µ̃α. (The details of the proof are left to the interested
reader.) Hence, Proposition 6.3 and the discussion preceding it imply that

lim sup
h→0

T (x + h)− T (x)
hσl(|h|)

√
2 log log σl(|h|)

=
√

α

1− α
a.s. (µ̃α),

and similarly for the lim inf. Since dimH(µ̃α) > 0 and α can be chosen so that√
α/(1− α) = A, the theorem follows. ¤

Remark 6.4. Let T̃ denote the Gray Takagi function (see Example 1.1).
Kobayashi [10] showed that the measure µ̃α is related to T̃ by the formula

1
2

∂µ̃α([0, x])
∂α

∣∣∣∣
α=1/2

= T̃ (x), x ∈ [0, 1].

The same relationship holds between the Takagi function T (x) and the measure
µα; see Hata and Yamaguti [7, Theorem 4.6].

7. Application to random functions.

The above results can be used to generate random functions having speci-
fied differentiability properties or a specified modulus of continuity. First, it is
obvious that the functions Rn may be chosen completely at random: Given fixed
coefficients {cn}, all of the theorems in this paper (except those in Section 6)
hold for every realization of the Rn’s. For each fixed n, the signs Rn(η1, . . . , ηn)
may be chosen completely independently for all 2n vectors (η1, . . . , ηn) if a maxi-
mum degree of randomness is desired; or they may be chosen dependently if more
symmetry in the graph is desired. To introduce even more randomness, one may
choose the coefficients {cn} at random as well. The apparent limitation that all
functions of the form (2) vanish at 0 and 1 is easily overcome by adding a random
linear function Cx+D to f(x), where C and D are appropriate random variables.

Let {αn}n∈N be a sequence of nonnegative random variables defined on an
exterior probability space (Ω, F , P), and satisfying

∞∑
n=1

2−n E(αn) < ∞, (28)

where E denotes expectation with respect to P. Assume further that (Ω,F ,P)
is large enough to support a collection of {−1, 1}-valued random variables
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{R0} ∪ {Rn(η1, . . . , ηn) : n ∈ N , (η1, . . . , ηn) ∈ {−1, 1}n}, having any desired
joint distribution. Put

ρ0(x) ≡ R0, ρn(x) = Rn(X1(x), . . . , Xn(x)), n ∈ N .

Put γn := 2−nαn for n ∈ N , and define the random function

f(x) =
∞∑

n=1

γnρn−1(x)φ(n)(x), 0 ≤ x ≤ 1.

The assumption (28) implies that {γn} ∈ `1 almost surely, and hence f is a
continuous function with probability one. By imposing additional restrictions on
the distribution of the sequence {αn}, it is possible to control various aspects of
the graph of f . We focus here on differentiability and modulus of continuity. The
first result is a direct consequence of Theorem 3.1 and the Kolmogorov three series
theorem [14, Theorem 4.2.6].

Theorem 7.1.

(i) If
∑∞

n=1 E(α2
n) < ∞, then f is absolutely continuous almost surely, with

derivative

f ′(x) =
∞∑

n=1

αnρn−1(x)Xn(x) a.s. (λ× P).

(ii) If {αn} is independent, αn → 0 almost surely, and there exists a positive
constant c such that either

∞∑
n=1

P(αn ≥ c) = ∞, or
∞∑

n=1

E(α2
n;αn < c) = ∞,

then with probability one f is nondifferentiable at almost every point of [0, 1],
but f is differentiable on an uncountably large set, and the range of f ′ is R.

(iii) If lim supn→∞ αn > 0 almost surely, then f is nowhere differentiable with
probability one.

It is easy to give examples fulfilling the hypothesis of each statement. For
instance, the condition of (ii) is satisfied when αn is uniformly distributed on the
interval (0, n−1/2) for each n. The condition in (iii) clearly holds when the αn’s
are independent and identically distributed, with P(αn > 0) > 0.
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Similarly, the above scheme can be used to generate random functions having
a given modulus of continuity. The last two theorems illustrate this.

Theorem 7.2. If
∑∞

n=1 E(αn) < ∞, then f is Lipschitz continuous with
probability one.

Proof. Immediate, from the remark at the beginning of Section 5.

Theorem 7.3. Fix d ≥ 0, and let the sequence {αn} be independent, with
P(αn ≤ 2nd−1) = 1 and E(αn) = nd−1, for n ∈ N .

(i) If d > 0, then with probability one,

lim sup
|x−y|↓0

f(x)− f(y)
(x− y)(− log2 |x− y|)d

=
1
d
.

(ii) If d = 0, then with probability one,

lim sup
|x−y|↓0

f(x)− f(y)
(x− y) log(− log2 |x− y|) = 1.

Proof. Recall from the proof of Theorem 5.1 that

|f(x + h)− f(x)| ≤ |h|
p∑

n=1

αn + 2
∞∑

n=p+1

2−nαn. (29)

The second term is bounded above by 4
∑∞

n=p+1 2−nnd−1, which is asymptotically
of order 2−ppd−1, and therefore of the order of |h|pd−1. As for the first term, notice
that by the strong law of large numbers [14, Theorem 4.3.1],

α1 + · · ·+ αn

bn
→ 1 a.s.,

where

bn =
n∑

k=1

E(αk) ∼
{

nd/d if d > 0

log n if d = 0
as n →∞.

Thus the first term in (29) dominates the second with probability one as p →∞.
Since
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p ∼ log2(1/|h|) as h → 0,

the rest of the proof follows as in the proof of Theorem 5.1. ¤
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