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§0. Introduction.

Let 4 be a congruence subgroup of Siegel modular group Sp (2, Z) acting on
the Siegel upper half space &, of degree 2. Singularity and uniformizability of
the Satake compactification of the factor space &,//4 are studied by several
authors (cf. for example, Igusa and Christian [1]). In this paper, we shall
study the uniformizability at the zero dimensional cusps.

Let ¢ be the maximal parabolic subgroup of Sp(2, R) corresponding to a
zero dimensional boundary component. For a symmetrizable hyperbolic generalized
Cartan matrix ¢ of rank 3, we shall construct a discrete subgroup P(C) of @,
and show that the Satake compactification of the quotient space &,/P(C) is
non-singular by using Looijenga’s theory ([4)).

The author wishes to express his deepest appreciation to Professor T. Ibuki-
yvama and Professor T. Yamazaki who gave him unceasing encouragement and
valuable comments.

§1. Generalized Cartan matrix and its Weyl group V.
We shall review some fundamental definition and facts about generalized
Cartan matrices and their Weyl groups (see [4]).

DEFINITION. An nXn matrix C=(Cy;) is called a generalized Cartan matrix
(G.C.M.) of rank n if (i) C;;eZ, C;;=2, (ii) C;;=0 ({#7) and (iii) C;;=0 if and
Only if Cji'—_o.

DEFINITION. The matrix ¢ is said to be classical if ¢ is the Cartan matrix
of some semi-simple Lie algebra over C.

DEFINITION. The matrix € is said to be euclidean if (i) it is indecomposable,
(il) detc=0 and (iii) C»=(C;;); j»x is classical for all %.
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DEFINITION. The matrix C is said to be hyperbolic if (i) it is indecomposable,

(ii) ¢ is neither classical nor euclidean and (iii) C, is classical or euclidean for
all k.

DEFINITION. The matrix ¢ is said to be symmetrizable if there exists a
diagonal matrix D=diag(d,, ---, d4), 4,;€Q, d;>0 (=1, ---, n) such that €D is
symmetric. '

Let V be an n dimensional real vector space with bases «; (j=1, ---, n) and
V* the dual space of V. Let C be a G.C.M. of rank n. We define elements
aj (=1, -, n) of V* by

<aiy a;>:C1] Z.r ].:1; ) n

where ¢, denotes the dual pairing of V and V*. The elements a; (=1, ---, n)
and «; (y=1, -+, n) are called roots and coroots, respectively. Fundamental
reflection s;&GL(V) with a root «; is defined by

s{E)=E—<¢, ajda;, EE€V.

DEFINITION. The subgroup of GL(V') generated by s, ---, s, is called the
Weyl group of € and denoted by W.

If ¢ is symmetrizable, and if we identify GL(V) with the matrix representa-
tion with respect to the bases «y, -+, a,, then we have

twicDyw=cD, wel,

where D is a diagonal matrix mentioned above.
We put
C={eV |, a;>>0 : Weyl chamber,

I=\J wC : Tits cone,

wew
I: the interior of I R

Q:=Za,+ -+ +Za,: root lattice,
W=wxQ,

Q=V+v~1IcVQC.

The groups W and W acts properly discontinuously on I and £, respectively.
Here the lattice Q acts on £ as real displacements.
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§2. Symmetrizable hyperbolic G.C.M. of rank 3.

LEMMA 2.1. Let C=(Cyj)i, j=1,2,s be a G.C.M. of rank 3. The matrix C is
symmetrizable if and only if C1CsCs1=CCs:Cys. If C is indecomposable and
symmetrizable, C is hyperbolic if and only if

det c,=0 k=1,2,3
and
c12c21+C23C32+C31613—C12C23C31_—-4>0 .

ProoF. Let D=diag(d,, d,, d;). The matrix ¢D is symmetric if and only
if C;;d;—C;d;=0 (7, =1, 2, 3). This system of linear equations with respect to
d,, d, and d; has a non-zero solution if and only if C;,CpsCs;=C,,Cs:Ci5. To
prove the latter part, we have only to notice the following equality

det C:8+ C12C23C31—{—C21C32C13—2C12021—-C23C32—-C31C13

and recall the fact (cf. [5]) that a G.C.M. is classical or euclidean if and only
if it is positive semi-definite. Q.E.D.

By the lemma we can find every symmetrizable hyperbolic G.C.M. of rank
3. The corresponding Dynkin diagrams are the following :

C,=Cl: o——oF=20 , ¢}: 0—o0=>o0 , C}: o—o&=o0 ,

6'2:Cé : A >
=

C;=Ci: oE==20F =0 , (i: o= 0==o0 , Ci: o=o&=o ,
Ci: o= 0==0 , (}: o&=o=o , (: o&=o==o ;

(¢ (o] o
wes PN AN 4N
o—0 o——0
o

~

o—o
O ()
Cy=C}: // , C%: /\ , Ci: ,
° ° Oz==0 Oz===0

Ci=Ci: 0==0F=0 , C}: o=—=0==0 , Ci: o==0&=o0 ,
Ci: 0&=—=o0&Z=20 , C{: o&==o0==0 , (}: o&—=o&=o ,
C;=C}: o==30F=0 , (C}: o==0=>0 it o=o0&=o0
Ci: o&==oFE=0 , (j: o&==o==0 , (i o&==o&=o0 -

-
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o

(o)
s=Ch , : A\ ,
o o
Cy=Ch: /\ y C§e /\ )

o==o o==o

C1o=Ci:0==0=30 , (C,j:0=20&=0, C;i: 0&=0=0 , (C;}: o&=o0o&o0 ,

I

C,=Cl:0=0=0, Ci:o=0&=0 - Cii: o=0=0 >

o (o]
(/)122611%: /x ’ (:13: / \ ’
(o] o
Cu=Cij: /\ , Ci5: /\
O—0 oO———O0

Notice that the Weyl group of C] coincides with that of C,. We give the
corresponding matrices {C,}, for later use.

2 -1 2 -1 =2

2 —2
), Co={—2 2 —2),

—2 2 —2 -1 2 -2 2

2 —2 —1 /2—2—2 /2 —1 \
c=|—2 2 —2), C=l—2 2 —2), CG:&—z 2.—2),
<—1 —2 2 \—2 —2 2 -2 2
)2 —1 \ 2 —1 -2 2 —1 —2\
Co=| -3 2 —2), Co=|—2 2 —2>, cgﬁ(—s 2 —3),
( —2 2 (—2 -1 2 -2 -1 2

2 —1 2 —1 /2 —1 —1
cw:(—z 2 —1), cn_( 3 2 —1), c,__(—z 2 —2),
-3 2 -3 2 -1 -1 2
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2 —1 —1
613: ""3 2 "—3 .
-1 -1 2

Throughout this paper, ¢ stands for a symmetrizable hyperbolic G.C.M. of
rank 3, and D a diagonal matrix with the properties mentioned in §1. If C is
symmetric, we put D=F (the unit matrix).

For each C, put

V==, +&0, 50,V | &1, &e E)(CD) &y, &,, £5)<0}.
LEMMA 2.2. Notations being as above, we have
ccv..

Proor. We first note that the sign of ¢D is (4, 4+, —) and so the domain
V. is a disjoint union of two convex cones in V. Since C is a cone in V bounded
by three planes <§, a,;>=0 (=1, 2, 3), we have only to show that the intersection
of any two planes in question is contained in V.. Let &= ,a,+&a,+Ea,€V
satisfies
<, ay1>=Cué1+Cus+Ciés#0,

(&, a3)=C1s61FCosfoCs6:=0,
<&, a3 > =C1s614Co365+C38:,=0.

Since these equalities imply

£.=<¢, ai> Coo 2 /detc,
we have
(51; Ez, 53)(CD)t(51; ‘52, Es):ZCﬁdiEi&
=<§, aprdié
:<E, a1>2d1detcl/detc-
This proves the lemma. Q.E.D.

COROLLARY 2.3. The cone I is a connected component of V_.

Proor. We consider the situation CCV_ modulo the multiplicative group
R*. Recall that €D is the W-invariant indefinite form, then we know that the
closure of C/R* in V_/R* is a fundamental domain of the triangle group W
acting on the Klein model of the hyperbolic space (V_/R*, CD). Q.E.D.
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§3. Representation of W into GL(2, R).

o 27

LEMMA 3.1. For each C, there exists a 3X3 real matrix A such that
D='AHA, and with respect to the bases e,, e;, es of V defined by (e, e, e5)=

{ay, as, az)A™Y, the cone I is represented by

Set

[={E=ue,+we,+ve, €V | u>0, wi—un<0}.

PROOF. Since both the symmetric matrices ¢D and H have the same signa-
ture (+, +, —), there exists a matrix A such that CD=*AHA. If we change
the sign of A, if necessary, we conclude by Lemma 2.2 and [Corollary 2.3| that
the cone I is represented as in the lemma. Q.E.D.

The matrix A is by no means uniquely determined. To fix an idea, for each
matrix C=C,, we choose and fix matrices D and A as follows:

1 —1 11 -1 —1
A= 1 -1, A=|-1 1], 4= 1 -1 1],

—1 1 —2

—1 -2 1/vV2 —/2
A4:< 1 —1 1], A= 1 —1 —1|, A= VI VT,

-3 -2 —+/2

1/vV3 —v3 1 —1 1 1 -1 1
A7:< V3 =3, A=|-1 1], 4=(-1 1],

—V3 2 3

1NZ  —3v2/2—v/3 322443
Am—( VZT  VZ)2 VT2 |,

—1/v2 3V2/2—v3 —=3v/2/2++3

1446 —3—+6 9+3vV6 1 3/2++/6/2
Anzé 3 3 3 |, Ap=l-1 1 ~12 |,

—1++v6 3—vV6 —9+3v6 —1 —3/2+46/2
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—2¢/2 =3W3+42) V3I+V2Z
An=3| 2V3 V3 V3 |,
—24/2 3W3—-v2) —W3-42)

1 1
D1:D2:D3:D4—_—D5:E, D6_< 2 ), D7—( 3 ) s
2 3

1 1 1
Dy= 2 , De= 3 , D= 2 ’
1 6

D11: 3 ) D12: 2 ’ D= 3
9 1 1

Here A, and D, are matrices satisfying C,D,=*A,HA,.

In the sequel we shall fix the bases e¢;, e, ¢; of V. The matrix representa-
tion of the fundamental reflection s; under these bases is denoted by S;.

Let S(2, R) and S(2, C) be the sets of 2X2 symmetric matrices over R and
C, respectively. The group GL(2, R) acts on S(2, R) and S(2, C) by

g: Z v—> gZ'g.
Let p be the isomorphism V—S(2, R) defined by

U w
ue,+we,+ve; —> ( )
w v

Notice that the cone I is transformed by p onto the set of all positive definite

matrices which will be denoted by S*2, R). The isomorphism p induces the

symmetric tensor representation p* of GL(2, R) into GL(V), i.e.
p*gX=p'g(p)'g, &€V, geGLE, R).

REMARK 3.2. For geGL(2, R), the transformation p*(g)eGL(V) is a reflec-
tion if and only if trg=0 and detg=—1.
This is easily proved if we notice that p* is given by

a’ 2ab b?
a b
p*: <c d> —> |ac bctad bd].
¢t 2cd d?
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PROPOSITION 3.3. Notations being as above, we have

1 agj —alj
S,=o* —— ,
e (\/d"(as;’ —azj))
where A=(a;;).

PROOF. Let s; be the matrix representation of s; with respect to the bases
ay, 0, &;. Then we have

Sj:E—ajtath )

.

where 9,=%(0, -, 1, -, 0) and E is the unit matrix. Thus we have:
S;=As;A™!
=FE—A06;'0,)CA™*
=E—Ad;'0,D**AH
a1\(—as; 2az; —ayy)
=FE —| ay; d;
asj
1+ayjas;/d; —2a4;0:5/d; at;/d;
=| a,a5;/d; 1—2a3;/d; a1;a.5/d;
as;/d; —2a,;a;5;/d; 1-+ay;a5;/d;
On the other hand, CD='*AHA and C;;=2 implies

1
E(aéj—aljasj)zl.
J

These and the representation of p* given above prove the proposition.
Q.E.D.
Put

a. ——a.
Séf:#( 2’ ) (i=1,2,3).

We shall denote by W* the subgroup of GL(2, R) generated by three reflections
S*, S¥ and S%, and by W¥ the group W* for ¢=C,. Notice that the homomor-
phism p* gives the isomorphism between W* and W.

§4. Arithmetic triangle groups in SL(2, R).

In the previous section, we defined the reflection group W*CGL(2, R) for C.
In this section we shall study the group W*=<{W* —1>N\SL(2, R), where
{a, B, --> denotes the group generated by «, 8, ---. Put
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W¥=<W* —1>NSL(2, R), 1<y<13.

PROPOSITION 4.1. If we regard the group W¥ as a subgroup of PSL(2, R)
operating on the upper half plane H={r=C|Imt>0}, then the group W¥ is a
triangle group and the signature is given by the orders of S:S: S.Ss and S;S;:
sign(WH=(2, 3, o), sign(W¥)=(3, 3, ), sign(W§=(2, oo, o), sign(W}=
(3, 00, 00), sign(W¥)=(co, 00, o), sign(W¥=(2, 4, ), sign(WH=(2, 6, ),
sign(W¥)=(4, 4, o), sign(W¥)=(6, 6, o), sign(W¥)=(2, 4, 6), sign(W¥)=(2, 6, 6),
sign(W¥)=(3, 4, 4) and sign(W¥)=(3, 6, 6).

ProoF. The subgroup W* of W* is the set of even products of the generators
S%, S* and S* of W*. Since S*, S¥ and S* are of order two, the group W* is
generated by three elements StS¥, S¥S*% and S¥S*. The order of S¥S¥ is equal
to that of S;S; and is obtained by the Dynkin diagram. Q.E.D.

COROLLARY 4.2 (Takeuchi [7]). The groups W¥ (v=1, ---, 13) are arithmetic
triangle groups, and {W¥%, -, W¥ and {W¥, ---, W} are complete members, up
to conjugacy, of commensurability classes of type I and II (classification in [T]).

PROPOSITION 4.3 (cf. [7]). The groups W¥ (v=1, ---,5) are congruence
subgroups of SL(2, Z): W*=SL(2, Z), W¥=the unique subgroup of SL(2, Z)
of index 2, WE=Iy2), W=I,3), W¥=I'(2). The groups W¥ (v=6, ---,9) are
commensurable with SL(2, Z).

Here we used the familiar notations:

ro={(; Z)eSL@, 2)|a=d=1, b=c=0 mod p},

mp):{(f :;)eSL(Z, Z)jczo mod p}.

PrOOF. Notice that a real matrix of the form

(¢ _ba), a*+be=1

operates on the upper half plane H with Poincaré metric as an isometric reflec-

tion which fixes a geodesic curve c¢|r|2>—2aRer=b. Thus the element S} fixes

a curve /;: as;|t|*—2a,;Rer=—a,;. The triangle T in H which is bounded by

l; (=1, 2, 3) gives a fundamental domain of W*. If we draw a picture of T,

the statement of the proposition is obtained immediately. Q.E.D.
Let B be an indefinite quaternion algebra over @ defined by

B=Q+Qa+QB+Q2af,
a*==6, af+pa=0,



252 M. YosHIDA

and © a maximal order defined by

o=2+2 8 1 7(3 4+ 2+ 80Y 1 2(Z+ B+ S5,

and ¢ a representation of B given by

x0+'\/-6—.xl '\/€(x2+\/AgX3)
X =xotxa+ x5+ 10 —> .

V?(x2_¢%_X3) xo—\/Fxl
We define a Fuchsian group

I'(q, 0)={¢(x)eSL2, R) | x€0, N(x)=1},
Where N(x) is the reduced norm of x&B.

PROPOSITION 4.4 (cf. [7]). The groups Wk, W and W are extensions of
the group I'(1, ©) with indices 4, 2 and 2 respectively. The group Wi is a sub-
group of WX of index 2.

PROOF. Put
_( A —1N2) R_(l/z 3/2+«/€/2)
Noiyvz —1vz) T 32—V =12
. _(—«/@/2 —(«/3+«/7)/2> . _(—1 )
W3 =V2)2 V32 o 1)’
. _( V3 T ) . (—3/2 -—1/2—\/@2)
“\ovz —v3) T 122 3/2 '

Then we have
WT0:<S*:RD S§:R2y S§:R3>,

W>1k1:<s>f:R6y S>|2<:_R3; S>8'<:_R2>)
WT2:<S*:R4, S>§:R1, S§:R2>,
W¥=<S*¥=R;, S¥=R,, S¥=R,>.

Fundamental domains of W} (v=10, ---, 13) are geodesic triangles bounded by
three of the curves /; (=1, ---, 6) which is fixed by R;:
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6 ls 6

This picture of fundamental domains implies that W, .-, W are commensura-
ble and deduces the following inclusion relations of index two:

WHCWrC Wy,  WicWy
and
W1%2<W1ﬂf, Wf§> .
Put R,=R;R,R, and let [, be the curve fixed by R,. By direct computation
one can see that
R,R,, R;R,, R;R,, R.R,I'(1, 0).

The area of the fundamental domain of the group {R.R,, R;R; R:R, R.,R,
which is equal to the twice of the area of the polygon bounded by [, I, /; and
I, is, by Gauss-Bonnet formula, 27/3. On the other hand since the indefinite
quaternion algebra B over @ ramifies only at 2 and 3, it is known that
sign(I'(1, ©))=(2, 2, 3, 3) and the area of H modulo I'(1, ©®) is equal to 2x/3.
This implies <R.R;, R;Rs, RsR,, R:R>=1"(1, ©), the inclusion relations of index
two: I'(1, o)c W I'(Q, ©)C W and so I'(Q, O)=WxNW%. These prove the
proposition. Q.E.D.

§5. Representation of W in a parabolic subgroup of Sp(2, R).
The siegel upper half space &, of degree 2 is the domain

S2, R)++—1S*(2, R)

in S(2, C), and the real symplectic group Sp(2, R) of degree 2 is the group

€ pesanlC e “X)-5

We consider a maximal parabolic subgroup

@ :{X:(é1 g)eSp(Z, R)|c=0}
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of Sp(2, R) corresponding to a zero dimensional boundary component P. We have
the following exact sequence :

t
0—>S(Z, R)— P —GLEZ, R)—>1.

Notice that ¢ is the semi-direct product GL(2, R)XxS(2, R).

Let € be a symmetrizable hyperbolic G.C. M. of rank 3. For the root lattice
Q=Za,+Za,+Za,CV of C, we denote by Q* the lattice p(Q) of S(2, R) and
Q3 the lattice Q* for ¢=CJ]. The semi-direct product W*x Q* is a discrete
subgroup of @, which we shall denote by W*, and W#/ the group W* for c=cC..
By the isomorphism p:V—S(2, R), the action of the group W on V+4+/ —ilis
equivalent to that of W* on &,

Notice that the lattice Q¥  is isogenus to the lattice Q}F!, and that for any
non-zero real number a, the group W*x aQ* is conjugate in & to the group
Wr=W+*Kx Q.

For the order © of the quaternion algebra B, we define a lattice I'(2, ®) of
Sp(2, R) by

re, o):K{(zEg g((g)e@m, R) ) a, b, ¢, deo,

(Z 27)(1 1>(Z 2’):<1 1)}‘K‘1,

where a—a’ is the canonical involution of B and

1 0 0 0

Jo 1 0 o0
K=o 0 o 1]

0 0 —10

PROPOSITION 5.1. The groups W¥, - W, Wix~/2Q¥, Wix+/3Q¥,
Wi and W3 are commensurable with Sp2, Z)N®, and WEXA3QY, Wkx
V6 Q¥, Wix~6QY and WX~ 2 Q¥ are commensurable with I'(2, O)NP.

PrROOF. As we noticed above, the group W*i is commensurable with the
group W*. Thus we assume that j=1. By definition, we have

3 1
QL: E Z aZj )
Jj=1
\Q3;

where (a;;)=A,, and so,

Qr=32(2 ).

j=1 azj 613,

We identify the linear space S(2, R) and the image of the inclusion homomor-



Discrete reflection groups 255

phism ¢:S(2, R)—»®. Since we have
Sp(2, Z)NS(2, R)=S(2, Z),
the assertion for the groups W, .., W¥ is clear. We want to know the lattice

I'2, o)nS(2, R). Put j:(__l 1). Then by the definition of I'(2, ®) and @,

we have
#a)  b)J?
I'e, oyne= a, b, deo,
.0 Je(d)
ba’+ab’=0, ad’:da’zl},
and so,

I'2, o©)NS2, R)={p®b)J* | b+b'=0, bs0o}
—V 6 (x3+V6x) V61,

{( V6 x, \/<_6’(x2—\/€x3))

For v=10, ---, 13, we can calculate and check that a suitable multiple of the

lattice Q¥ is contained in I'(2, ®)NS(2, R). Q.E.D.

For some C, we shall give an example of an arithmetic subgroup 4 of
Sp(2, R) such that the group W* is conjugate in @ to the group AN®. Put

x1a+x2‘8+x3aﬁ60} .

A,=Sp2, Z),

A,=the subgroup of Sp(2, Z) generated by the principal
congruence subgroup I' (2) and W¥,

% * * %k
f={xespe 2y | x=|0 * * Omodal,
o * 9
* %
* * * *
A=xespe, z) | x=|0 * : g mod 3!,
| 0
X *

X=F mod 2, diagonal of}

AsZ{X:<A B>€Sp(2’ %) ’ *AC and ‘BD=0 mod 4

C D

This group is denoted by I'(2, 4) in and A4(2,2) in [1]. Then we have

A,NP=W* y=1,2 3 4,
and
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ANP=W¥x20Q%¥ .

§6. Uniformizability of Satake compactification.

In this section, we shall show that Satake’s (partial) compactification of the
factor space &,/W* coincides with Looijenga’s (partial) compactification, and so
it is uniformizable.

Let z denote the projection: S*(2, R)—S*(2, R)/R*, where R* stands for the
multiplicative group of positive numbers. We introduce an isomorphism
0:5%2, R)/R*—H={r=C | Imt>0} by

T — 12
- ,T(” w) W Vur—w®
w v v v
We have
_ z|2 Rert
1 —_
a (T)_”(Rez' 1 >’

fart+by\_,a by/lz|®> Reryra b a b
7 <C‘L'—{-d)_7r (c d)(Rez' 1 )<c d) ’ (c d)GSL(Z’ B).
This implies that, by the isomorphism ¢, the action of W* on S*(2, R)/R* is

equivalent to that of W* on H, where the action of W*CSL(2, R) on H is the
linear fractional one: '

and

at+b
ct+d ’

(g 5)ESL(2, R).

Let ¢ be the set of every l-dimensional rational boundary component F of
&, such that PeF (the closure of F). Then the set F corresponds, in a one to
one way, to the set of every real line, defined over @, on 0S*(2, R)YCS(2, R),
and so, by the mapping oex, to the rational boundary Q\U {co} of H.

By the arguments above, we conclude that, for each matrix C, the set &
of W*-equivalence classes of F corresponds, in a one to one way, to the set &’
of W+-equivalence classes of Q\U {co}, i.e. the cusps of W*.

On the other hand, let S be the set of subsets {a;, a;} of the roots {a;, a., as}
such that the order of s;s;&GL(V) is infinite, i.e. two vertices in the Dynkin
diagram of C connected by

0==0 or 0=o0.

Looijenga’s (partial) compactification consists of &,/W*, 1-dimensional boundary
components corresponding to each elements of S and the 0-dimensional boundary
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component P.

We have shown in §4 that there exists a one to one correspondence between
the sets ¥’ and S. On the other hand, by the “minimality” of Satake’s com-
pactification (cf. [6]), there exists a birational morphism from Looijenga’s one
onto Satake’s one. Since both compactifications are obtained by adding one
dimensional analytic sets, the morphism is one to one. Thus Zariski main theo-
rem implies that Satake’s (partial) compactification of &,/W* is isomorphic to
Looijenga’s one. Since Looijenga’s (partial) compactification is always uniformi-
zable, we have the following theorem.

THEOREM. Let C be a symmetrizable hyperbolic generalized Cartan matrix
of rank 3 and W* the discrete subgroup of <@ defined in §5. Then Satake's
(partial) compactification of S,/W* is uniformizable. Every l-dimensional cusp
corresponds to one of the subdiagrams

o==o or 0==0

of the Dynkin diagram of C.
We conclude this paper by giving a conjecture.

CONJECTURE. For an arithmetic subgroup 4 of Sp(2, R), Satake compacti-
fication of &,/A is uniformizable at a 0-dimensional cusp P if and only if AN
is conjugate to the group W+ for some symmetrizable hyperbolic G.C.M. ¢ of
rank 3, where @ is the parabolic subgroup of Sp(2, R) corresponding to P.

Appendix.

Let 9 be an irreducible classical bounded symmetric domain, P a 0-dimen-
sional boundary component of 9 and ¢ the maximal parabolic subgroup of the
analytic automorphism group Aut(9) corresponding to P. It is known that the
group Aut(9) contains a (quasi-) reflection if and only if 9=B,={(z,, -, z,)
eC" | |z, -+ +|z,|2<1} (n=2), 9=6, or 9 is a bounded symmetric domain
L, (n=4) of type IV. Here the domain L, is defined as follows:

Li={(es, 202 | 1l o lzalt < kb - 42319 <1}

In the case 9=B,, we studied in [8] some relations between discrete subgroups
of @ and the G.C.M. of euclidean type. In the appendix we shall state the
theorem, for the domain 9=L,, corresponding to the theorem in §6, without
giving a proof. Detailed proof will be published elsewhere.

THEOREM. Let C be a symmetrizable hyperbolic G.C. M. of rank n. Then
the group W can be considered as a discrete subgroup of PCAut(L,). Satake's
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(partial) compactification of the factor space L,/ W is uniformizable. The set of
1-dimensional cusps corresponds bijectively to the set of euclidean subdiagrams of
the Dynkin diagram of C.
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