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1. Introduction.

The purpose of this paper is to characterize the set of pointwise multipliers
on bmoyg(R™), which is the function space defined using the mean oscillation and
a growth function ¢.

Janson [2] has characterized pointwise multipliers on bmog(T™) on the n-
dimensional torus 7". We extend his result to the case of the n-dimensional
Euclidean space R™.

To define bmogsz(R™), let I(a, r) be the cube {xeR"; |x;—a;|=r/2, i=1, 2,

.-, n} whose edges have length » and are parallel to the coordinate axes. For
a cube I, we denote by |I| the Lebesgue measure of I, by M(f, I) or f, the

mean value of a function f on [, i.e. ]II“SIf(x)dx, and by MO(f, I) the mean
oscillation of £ on I, i.e. 1117 | fG)—f,ldx.
We now define

bmop (BN ={f = L") 3 sup SO 10T
where ¢ is assumed to be a positive non-decreasing function on R,=(0, c0). Such
a function is called a growth function. If two growth functions ¢; and ¢, are
equivalent (¢,~¢,) i.e. there is a constant C>0 such that C'¢,(*) < @(r)=Cée.(r),
then bmog (R™)=bmog,(R™).

A function g on R™ is called a pointwise multiplier on bmogs(R™), if the
pointwise multiplication fg belongs to bmog(R™) for all f belonging to bmogsz(R™).

Janson’s characterization is the following. If ¢ is a growth function and
¢(r)/r is almost decreasing, then a function g is a pointwise multiplier on
bmog(T™ if and only if g belongs to bmoyz(T)NL*(T") where ¢(r)=

<o},

o(r) / Slgb(t)t'ldt. (A positive function A(t) is said to be almost decreasing if there
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is a constant A such that A()Z AR if t=t))
However the case of R™ is more complicated, and we must introduce a new

function space similar to bmog as follows. Let w(x, ») be a positive function on
R*XR,. We define

MO(f, I(a, 7))
w(a, r)

bmow(RM={f € LR ; |f|530,= Sup. <o}

With a growth function ¢(r), we always associate the function wy(x, #), defined
by

2+1xl

we(x, r)=¢(r)/(1gi¢(t)5?’ +S ¢(z‘)%).

Then our main result is the following.

1

THEOREM 1. Suppose ¢(r)/r is almost decreasing. Then a function g is a
pointwise multiplier on bmog(R™) if and only if g belongs to bm0w¢(R“)f\L°°(R").
We consider bmog(R™) with the norm
MO(f, I(a, 7))
é(r)

Usually (see Janson [2]), bmog(R™) is denoted by BMO4(R™) equipped with the
seminorm

1 lomog=1 MCF, 10, 1)1+ sup

MO(f, I(a, r
“f”BMOqs:IS(EB) (f¢(r§ ) .
Then BMO4(R™ modulo constants is a Banach space, but bmog(R") is itself a
Banach space modulo null-functions. To consider pointwise multipliers, the space
bmog(R™) is a more suitable one than BMO4(R™).

If we consider subspaces bmog(R*)N\L?(R"), we obtain a similar result as
follows.

THEOREM 2. Suppose ¢(r)/r is almost decreasing.
(i) Let 1=p<oo. Then a function g is a pointwise multiplier from
bmog(R")NLP(R™) to bmog(R™) if and only if g&bmoyz(RMNL=(R™), where ¢(r)

40T, B0

(i) A function g is a pointwise multiplier from bmog(R*)NL=(R"™) to
bmog(R™) if and only if g&bmog(R")NL=(R").

In these cases, g is a pointwise multiplier from bmog(R*)N\L?(R™) into itself
(I=p=o0).

If we define the Banach space UBM-BMO4(R") by

{feli(R"); ||f”UBM-BMo¢:”f“BMo¢+aS€l£ M(f, I(a, 1))<+o0},

then we have the following theorem similar to the torus case.
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THEOREM 3. Suppose ¢(r)/r is almost decreasing. Then a function g is a
pointwise multiplier from UBM-BMO4(R™) to bmog(R™) if and only if g&
bmoy(R*)N\L=(R™), where ¢ is as in Theorem 2. In this case, g is a pointwise
multiplier on UBM-BMO4(R™).

It is known that UBM-BMO,(R") is the dual space of the local Hardy space
h*(R™), introduced by D. Goldberg [1]. Hence by duality we have, as in the
torus case [2], the following:

COROLLARY 4. A function g is a pointwise multiplier from h'(R™) to itself,
2

if and only if g<bmoy RINL=BY, where gpir)=1/\" idt.

min(1,7)

Our [Theorem 1 answers a problem, which is implicitly stated in Johnson [3].
Stegenga [5] also treated the one dimensional torus case with ¢=1, and applied
it to the boundedness problem of Toeplitz operators on the Hardy space H(T).
Applications of this paper will be treated in future.

Sections 2 and 3 are for the preliminaries and lemmas. In section 4 we
give the proofs of Theorems 1, 2 and 3, and in section 5 we give some sufficient
conditions for pointwise multipliers, and examples. The letter C will always
denote a constant and does not necessarily denote the same one.

We note that the almost-decreasingness of ¢(f)/¢t combined with the non-
decreasingness of ¢(¢) implies that ¢(¢) is equivalent to a nondecreasing concave
function. We have learned this from J. Peetre.

We would like to express our thanks to the referee. He gave us a proof of
Lemma 3.4 simpler than ours, valid for 1=p=<oco, by which we could improve
the case p=oo in Theorem 2.

2. Preliminaries.

First, we state some simple lemmas without proofs. (See for example Spanne
[4].) We write

olf, )= sup MO(f, I(a, ).

aERM, tsT

LEMMA 2.1 MO(f, =2 ilgf][]‘lgllf(x)—cldx .

LEMMA 2.2. If |F(x)—F(y)|=Clx—yl, then MO(F(f), N=2CMO(f, I).

LEMMA 2.3. Suppose that I(a’, v')CI(a, r). Then
| M(f, I(a’, 7)) —M(f, I(a, r>>l_s_cngﬂ]%‘t>‘dz,

In the sequel, we always assume that ¢({) denotes a positive non-decreasing
function and that ¢()/¢t is almost decreasing. For each ¢, we define strictly
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positive functions @*(r) and D.(r):

[gwrmar e=n
O*(r)=1

Sjgb(z‘)/tdt 0<r<2),

qui(t)/tdt 0<r=1)
Dy (r)=; :

Slgb(t)/tdt 1<r).

Then, by a slight modification of the proof of the theorem 2 (a) in Spanne [4,
p. 601], we see that @*() and QD.(») belong to bmosz(R,). One can easily see
that f(|x|)=bmos(R™) if f(r)ebmoyg(R,). Hence we have:

LEMMA 2.4. O*(|x|), D4l x|)sbmog(R™).

Next we state some other properties of the functions @*() and @,(r).

LEMMA 2.5. (i) For any k>0, there exists a constant C,>0 such that
CPorO¥(kr) S 0*(r)=C,Q*(r/k)  for all r>0.

(ii) For any k>0, there is a constant C,>0 such that
Cil® (k) =@ . ("N=C,Du(r/k) for all v>0.

(iiiy There is a constant C>0, depending only on the dimension n, such that
r‘"gordi*(z‘)t”“ldtzc@*(r/Z) for all ¥>0.

(iv) There 1s a constant C>0 such that

_(m dt &(r)
1 < (3 >
| r So 20 <C o0 for all r=2.
PrROOF. (i) Since @*(r) is non decreasing, it is clear for 0<£<1. So we
assume ~>1. If r<kr=<2, then @*(kr)=0*x). If r=<2<kr, then Q*(kr)<
O*2k)=C,0*(2)=C,D*(r). And if 2=<r=kr, then, since @)/t is almost de-
creasing, we get
% o kr @_t_ T é_t T Ejl
oren=| o005 =\ stnT= Argw]

1/k
=C,0*(r).

Therefore we get O@*(kr)<C,@*() for all »>0. And hence @*(r)<C,P*(r/k)
for all »>0.
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(ii) In a way similar to the case (i) we get (ii).
(iii) Since @*(t) is non-decreasing, we have

r‘"ST@*(t)t"‘ldtgr'"Sr Oy dt
0 r/2

2n"(1—2""0*(r/2).
(iv) Since

O Zmax {(1) log 1, (1) log 2) > 5 $(D) log (e*+1),

and

12 < 22 (1_ 12 >:2£( e -};t >’
log (e*+t) = log (e®+1) log (e®+41t) dt\ log (e®+1)

we have

_LST dt - 8 [ e+t ]T 8 e?+r
rlo @*@) = o(L)r Llog(e®+1) lo = ¢(1)r log (e*+r)

<C/log r, as r=2.

Hence we have the desired inequality, since

(r) log r:S:¢(r)flt—th:¢<t)d7t=d>*(r> as r=2.
g.e.d.

REMARK 2.1. By this lemma there is a constant C>0 such that

2+1zl

@D @+ 0oz 2| [0 s+ g0

1

SC(Du(r)+D*)+P*( x1)) .

Finally in this section, we note one more fact (Spanne [4, p. 601]).
LEMMA 2.6. If S;¢(t)t‘1dt<+oo, then

olf, 1= ess supl £()— £ =C] 60T/ lwoy

for any fE€bmog(R™).

3. Lemmas.
To prove the theorems, we show a few lemmas in this section.
LEMMA 3.1. There is a constant C>0 such that

| M(f, I(a, )] SCIlf lomog(Ps(r)+P*(r)+D*(] al))
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for any febmoy(R™) and for any cube I(a, 7).
Proor. Case 1: r=1, |a|=r. Since I(a,r), I(0, 1)CI0, r+2|al|), by
Lemma 2.3 and Lemma 2.5 (i), we have

|M(f, I(a, r)—M(f, I, 1))]
=|M(f, Ia, r)—M(f, IO, r+2la)| + | M(f, 10, ))—M(f, 100, r+2|a]))]

2(r+2tal) 2(r+2lal)

dt dt
=cf of, 5 +C| ol 05

r 1

6l
1

=2¢]" otr, 0% 2200 fllowo | 600 %

:ZcilfllBMo¢@*(6| al)éc/”f”BMO¢¢*(] al).

Case 2: 1=r, |a|=r. Since I(a, r), I(0, 1)CI0, r+2|a]), in a way similar
to the case 1, we have

[M(f, I(a, r))—M(f, 10, D) ZC| f a0y P*(r) .

Case 3: r=1, 1=|a|. Since I(a, r), I(0, 1)CIO, r+2|al), by
and (i), we have

| M(f, I(a, r)—M(f, 10, 1))]

A

2(r+21al) dt 2(r+2lal) dt
[ o 0T+l o, 0%

6l
1

1 dt al dt
=c|'otr, n5+20] " otr, 05

<Cl fllowog) 602 +2C1 fllonog] 90 %
<C'1 s (@ulr)+ P¥(| ).
Case 4: r=1, |a]|=1. Since I(a, r), 1(0, 1)CI(0, 3), by we get
|M(f: I(a; r))—M(f: I(O; 1))[
<IM(f, Ia, W)= M(f, 10, 3)|+1M(f, 10, 1)—M(f, 10, )]
=c{*ots, 05 +C] ots, D Z2CH oo, ] 30

éc’”fHBMoqg@*(T) .
Summing up the above cases, we obtain

|M(f, I(a, )| = IM(f, 10, 1)) +CIf I zroy(Dxlr)+P*1)+D*(lal))
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SO f lomog(Pu(r)+P*()+0*(| al)) .
g.e.d.
REMARK 3.1. The estimate in is sharp. In fact, consider the
functions @*(|x|) and Qu(|x—al). Then [P*(|xDlomogs |Pxllx—a)llomoy<C,
independently of a=R", since D,(r)<¢(2)max(log (2/r), log2). If 4|a|=r, us-
ing {x; |x|=r/4}CI(a, ) we get

M@*(|x)), I(a, Mz I(a, 17| ox(xldx

i1
:Clr‘"S:/4@*(t)t"'1dt
=Co0*(r/8)2C0* ) 2Co0%( al),
by using (i) and (iii). If r<4|al|, by @)
M@ x]), I(a, ZCM(0%( xD), (e, 1-))=C.0%(a])

=C0%(7)=C0*0),

since @*(|x|)=C,0*(|a|) on I(a, r/4n)) by (i). Next we consider
@.(|x—al). Since P«(r) is non-increasing and {x; |x—a|<r/2}CI(a, r), we
have

M@y x—al), I(a, Mz Ia, NI?| &ullz—alysx

1z-ai1lr/2

ZC04(4) ZC'Pulr)
by using (ii).
LEMMA 3.2. Suppose 1=p=co. There is a constant C>0 such that

|M(f, I(a, ¥ SC fllzrog+1 fll22)Ps(r)

for any f<bmog(R*)NLP(R™), and for any cube I(a, 7).
Proor. If 1=r, we have by Holder’s inequality

M, T, I=(1117] 1 £ @100 11 SO
If 0<r<1, since I(a, r)CI(a, 1), by we have
MU, Ia, IS MU, Ia, M=M(f, Ia, )| +1M(f, Ia, 1)]
<c['otr, 0%107, Ia, 1)

<Clf laxos @)+ £ 1o
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=C'fllzros+ 111l o) Px(r) .
g.e.d.

REMARK 3.2. Let f(x)=0x(|x—a|)—®P«(1). Then, since P4()=d(2)X
max (log 2/7, log 2), |fll»=Cp (1=p<), | flzmo,=C, independently of a. As
in Remark 3.1, we have M(f, I(a, ))=C®4(r) for r=1.

LEMMA 3.3.  Suppose feb7710¢(R") and g L*(R"™). Then, fg belongs to
bmog(R™) if and only if

F(f, g)= Sup |M(f, I(a, r))|MO(g, I(a, r))/¢(r)<+oco.

In this case,
F(f, g)éHngBMo¢+2“g”oo”f”BM0¢-

ProOOF. For any cube I=I(a, r), by elementary calculation (see for example
Stegenga [5, p. 582]), we have

|MO(fg, D—|f:IMO(g, I)| =2|lgll-MO(f, I),
and therefore

MO(fg, 1) _ |f:MO(g, I
s g0 | =2lelelflaxo,

This implies the assertion by the definition of bmog(R™). g.e.d.

LEMMA 3.4. Suppose 1= p=<oco. If gisa pointwise multiplier from bmos(R")
NL?(R™) to bmoy(R™), then it follows that g L=(R").

Proor. First of all, since bmog(R*)N\L?(R") is a Banach space, equipped
with the norm | f| BM0¢+|I fl.» and bmo¢(R”) is also a Banach space, we have
by the closed graph theorem that

g lomos =CU flBao s+ 1l L)
for all febmoy(R*)NLP(R™).

For any cube I=I(a, ) with <1, we define a function hebmo¢(R”)f\LP(R”)
as follows:

0 r<lx—al
h(x):{
exp ((D«(| x—a|))—exp (Px(r)) |x—a|<r.

Then, by Lemma 2.2, we get llh]]BM0¢§COII<D*(]x})]]BM0¢. And, since supp hC
I(a, 2) and |h(x)| =2, we have [A]»=C,. Hence |ghllsmog=Clhlzxos+ 1Al
<C(,, independently of I. This gives

(3.1) MO(gh, I(a, 4r))=C.¢4r) .
Let C, and C, be constants such that log C,=x/¢(1), 1<C,C;<Cs, and let L,=
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{x;r/C=lx—a|=r/(CCy)}. If xe L, then, since ¢(r)/r is almost decreasing,
we have

($)/(AC,L)) log C.O=gr /(GO g GG=( g

7/ (CoC3) t

<0.(x—aD-0.n0 = g% =g l0gC=x.

So, the inequality |e*?—1|=260/r (060 <r) implies that | h(x)| =C,d(r) for x L,.
Let o=M(gh, I(a, 47)). Then we have, by considering the support of A,

MO(gh, I(a, 4r))|1(a, 4r)§:SI( \ )[gh(x)——oldx

szrlgh(x)—aidH—g o dx

I(a,4r\I(a,2r)

ZSLT(Igh(x)—ol + al)deSLr|gh(x)[dx

=Con)|, 1go)lax,
and so
3.2) IL,| -lgLri g(x)|dx=CsMO(gh, I(a, 4r)/ 6
' From [3I) and [3:2] it follows that
(Le172), lgn)ldr=Cs.

Letting » tend to zero, we have

qg.e.d.

4. Proofs of the theorems.

PROOF OF THEOREM 1. Suppose that g is a pointwise multiplier on bmog(R™).
Then ge L* by Lemma 3.4 Since gfsbmoy(R™) for all f=bmoyz(R™), by Lemmal
3.3 and the closed graph theorem we have

| fIMO(g, I)
(41) I?{EE)W <C“f“bmo¢ .
Hence, taking f(x)=®*(|x|) or @«(|x—al), we have by Remark 3.1
4.2) IS(ELIDT)(@*(VH—@*(?HL@*(]Gl))MO(g, D/¢(r)<—+oo,

and hence
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MO (g, I(a, 7))
I(a,r) w¢(a, 7’)

<Aoo,

by using Remark 2.1. Consequently g<=bmo, ¢(R")K\L°°(R”).
Conversely, suppose g€ bmo,, ¢(R“)f\ L=(R™. For any I=I(a, ) and any f&
bmog(R™), by we get

l/ "’;f(f)(g’ D) < Ol f lomag( @ur) + 0*(r)+ B%(| al)MOg, D/6(r)

MO, I) _ .,
gc'nfnbw—@(%—r)l Sl lomaglglanoy,-

Therefore fgebmoys(R™ by Lemma 3.3, which shows that g is a pointwise multi-
plier on bmog(R™. This proves [Theorem 1.

PROOF OF THEOREM 2. (i) Case 1=p<oo. Suppose that g is a pointwise
multiplier from bmog(R™)NL?P(R™) to bmog(R™). Then g is bounded by
3.4. Hence by Lemma 3.3

| f1IMO(g, I)

Sup, ——W—éC(IIfHBM%HIfHLp) .

Taking f(x)=@.(|x—a|)—®P4(1), we have by Remark 3.2
sup Du(r)MO(g, I)/p(r)<—+oo.
<1, aERT

r

According to g L*(R™), MO(g, N=2||gll-. Since @«(r) is constant and ¢(»)=
¢(1) for r=1, we have

>lsgre>kn®*(r)MO(g, I/ ¢(r)<+oo.

7

Thus g€ bmoy(R*)NL=(R™). Sufficiency can be proved in the same way as in
Theorem 1|, using Lemma 3.2 in place of Lemma 3.1l (ii) Case p=oc. (Necessity)
Since lebmog(R")NL=(R™), g must belong to bmogz(R™). By g is
bounded. (Sufficiency) We have, for any cube I,

| £11MO(g, /¢ < f1MO(g, I)/r)= | fllwllgllzaog -
So, since g is bounded, by we have gfebmog(R"™). This completes
the proof.

Proor oF THEOREM 3. (Necessity) Clearly we have bmog(R")NLR™)C
UBM-BMO4R"™). Hence by we have the desired conclusion. (Suf-
ficiency) For all »=1 and all a=R™, we get

4.3) IM(lf1, I(a, )] éZ”[bSEl;QL [M(f, I(b, 1))l+bS€L£ MO(f, I(b, )]

(To show this, let 7 be the smallest integer satisfying <2’ and take the cube
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I(a, 2’), and then divide it into non-overlapping 2’* cubes with side length 1.
Then by the definition we get the above inequality.) Hence we get
SUpra1, acr™ | M(f, I(a, )| /¢()=Cl fllysu.smos Asin Case 4 in we
get |M(f, I(a, r))léCHfHUBM_BM%(D*(r). Therefore, since g is bounded, we
have gfebmosz(R™) by Lemma 3.3 g.e.d.

REMARK 4.1. By [4.3), one can easily show that | flyair.zxo ¢ is equivalent
to

(4.4) sup_ | MO(f, Ia, )1 /¢(n)+ _sup |M(If1, I(a, r)I/$(r).

0<r<1, aERM

For the case ¢(t)=1, Goldberg [1, Corollary 1] introduced UBM-BMO,(R"™), using
(4.4), by the symbol bmo, and showed that it is the dual of the local Hardy
space h'(R™).

5. Some sufficient conditions and examples.

As consequences of our theorems, we give some sufficient conditions for point-
wise multipliers, corresponding to those in the torus case, Stegenga [5, Corollary
2.8] and Janson [2, p. 196].

PROPOSITION 5.1. Suppose g satisfies the following conditions:
(5.1) There is a constant M,>0 such that
lg(x+3)—g(x)| =M1 1)/ [P« ¥ )41 —sgn $(0+)D*(| x )]
for all x, yeR™ with |y| <1, where ¢(0+)=lfi£1(} o).

(5.2) There are constants M,>0 and BeC such that
lg(x)—B|=M,/0*(| x]|) for all x€R"™.

Then, g is a pointwise multiplier on bmoyg(R™).

ProOF. We omit the detailed proof. One has only to treat the four cases;
{r=1/+/n, ¢0+)=0}, {r=1/+/n, ¢00+)>0}, {1/v/n<r=lal/+/n}, and {r=
max (1, |al)/+/n}.

As a consequence we have the following corollary, whose proof we omit.

COROLLARY 5.2. If g=g./g, satisfies the following conditions:

(5.3) g1 is bounded and there is a C,>0 such that |g,(x)—g:(M|=Cilx—y],
x, YER";

(5.4) There are C, Cs>0 such that |g.(x)|=C@*(|x|) and |g(x)—g:(y)| =
C3|x_yl? X, yERn'

Then, g is a pointwise multiplier on bmog(R™).
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For pointwise multipliers from bmog N\ L? to bmog, we have:

PROPOSITION 5.3. [If g is bounded and satisfies

(5.5) lg(x+9)—g)|=Co(Iy /DI,  x, yeR", |yI<1,
then g is a pointwise multiplier from bmog(R*)N\LP(R™) to bmog(R™), (1= p=o00).

ExAaMPLES. By (Corollary 5.2
1 sin | x| 1 sin @*(| x|)
o*(|x|)”  O*(x])”  I1+|x| 1+ x]

are pointwise multipliers on bmos(R™). And, for any ¢, for which @(t)/(tD«(t))

is almost decreasing, put llf*(r)zg o)/t D(2))dt for 0<r=1 and :S o)/ (D) dt

for

2 2
T 1

1<r. Then, sin¥(|x])/@*(|x|) is a pointwise multiplier on bmos(R™).

This gives a pointwise multiplier, which is not continuous, as in [2, p. 196].

(1]
£2]

[3]
[4]
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