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1. Introduction.

The purpose of this paper is to characterize the set of pointwise multipliers
on $bmo_{\phi}(R^{n})$ , which is the function space defined using the mean oscillation and
a growth function $\phi$ .

Janson [2] has characterized pointwise multipliers on $bmo_{\phi}(T^{n})$ on the n-
dimensional torus $T^{n}$ . We extend his result to the case of the n-dimensional
Euclidean space $R^{n}$ .

To define $bmo_{\phi}(R^{n})$ , let $I(a, r)$ be the cube { $x\in R^{n}$ ; $|x_{i}-a_{i}|\leqq r/2,$ $i=1,2$ ,
.. , $n$ } whose edges have length $r$ and are parallel to the coordinate axes. For
a cube $I$, we denote by $|I|$ the Lebesgue measure of $I$ , by $M(f, I)$ or $f_{I}$ the

mean value of a function $f$ on $I,$ $i$ . $e$ . $|I|^{-1} \int_{I}f(x)dx$, and by $MO(f, I)$ the mean

oscillation of $f$ on $I,$ $i.e$ . $|I|^{-1}!_{I}|f(x)-f_{I}|dx$ .
We now define

$bmo_{\phi}(R^{n})=\{f\in L_{1oc}^{1}(R^{n})$ ; $\sup_{I(a,r)}\frac{MO(f,I(a,r))}{\phi(r)}<+\infty\}$ ,

where $\phi$ is assumed to be a positive non-decreasing function on $R_{+}=(0, \infty)$ . Such
a function is called a growth function. If two growth functions $\phi_{1}$ and $\phi_{2}$ are
equivalent $(\phi_{1}\sim\phi_{2})i.e$ . there is a constant $C>0$ such that $C^{-1}\phi_{1}(r)\leqq\phi_{2}(r)\leqq C\phi_{1}(r)$ ,

then $bmo_{\phi_{1}}(R^{n})=bmo_{\phi_{2}}(R^{n})$ .
A function $g$ on $R^{n}$ is called a pointwise multiplier on $bmo_{\phi}(R^{n})$ , if the

pointwise multiplication $fg$ belongs to $bmo_{\phi}(R^{n})$ for all $f$ belonging to $bmo_{\phi}(R^{n})$ .
Janson’s characterization is the following. If $\phi$ is a growth function and

$\phi(r)/r$ is almost decreasing, then a function $g$ is a pointwise multiplier on
$bmo_{\phi}(T^{n})$ if and only if $g$ belongs to $bmo_{\psi}(T^{n})\cap L^{\infty}(T^{n})$ where $\psi(r)=$

$\phi(r)/\int_{r}^{1}\phi(t)t^{-1}dt$ . (A positive function $h(t)$ is said to be almost decreasing if there
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is a constant $A$ such that $h(t)\leqq Ah(t’)$ if $t\geqq t’.$ )

However the case of $R^{n}$ is more complicated, and we must introduce a new
function space similar to $bmo_{\phi}$ as follows. Let $w(x, r)$ be a positive function on
$R^{n}\cross R_{+}$ . We define

$bmo_{w}(R^{n})=\{f\in L_{1oc}^{1}(R^{n})$ ; $\Vert f\Vert_{BM0_{w}}=\sup_{I(a.r)}\frac{MO(f,I(a,r))}{w(a,r)}<+\infty\}$ .

With a growth function $\phi(r)$ , we always associate the function $w_{\phi}(x, r)$ , defined
by

$w_{\phi}(x, r)= \phi(r)/(|\int_{r}^{1}\phi(t)\frac{dt}{t}|+\int_{1}^{2+|x|}\phi(t)\frac{dt}{t})$ .

Then our main result is the following.

THEOREM 1. SuppOse $\phi(r)/r$ is almost decreasing. Then a function $g$ is a
$p\alpha ntwise$ multiplier on $bmo_{\phi}(R^{n})$ if and only if $g$ belongs to $bmo_{w_{\phi}}(R^{n})\cap L^{\infty}(R^{n})$ .

We consider $bmo_{\phi}(R^{n})$ with the norm

$\Vert f\Vert_{bmo_{\phi}}=|M(f, I(0,1))|+\sup_{I(a,r)}\frac{MO(f,I(a,r))}{\phi(r)}$ .

Usually (see Janson [2]), $bmo_{\phi}(R^{n})$ is denoted by $BMO_{\phi}(R^{n})$ equipped with the
seminorm

$\Vert f\Vert_{BM0_{\phi}}=\sup_{I(a.r)}\frac{MO(f,I(a,r))}{\phi(r)}$ .

Then $BMO_{\phi}(R^{n})$ modulo constants is a Banach space, but $bmo_{\phi}(R^{n})$ is itself a
Banach space modulo null-functions. To consider pointwise multipliers, the space
$bmo_{\phi}(R^{n})$ is a more suitable one than $BMO_{\phi}(R^{n})$ .

If we consider subspaces $bmo_{\phi}(R^{n})\cap L^{p}(R^{n})$ , we obtain a similar result as
follows.

THEOREM 2. SuppOse $\phi(r)/r$ is almost decreasing.
(i) Let $\iota\leqq p<\infty$ . Then a function $g$ is a pointwise multipljer from

$bmo_{\phi}(R^{n})\cap L^{p}(R^{n})$ to $bmo_{\phi}(R^{n})$ if and only if $g\in bmo_{\psi}(R^{n})\cap L^{\infty}(R^{n})$ , where $\psi(r)$

$= \phi(r)/\int_{\min(1.r)}^{2}\phi(t)t^{-1}dt$ .
(ii) A function $g$ is a $p\alpha ntwise$ multiplier from $bmo_{\phi}(R^{n})\cap L^{\infty}(R^{n})$ to

$bmo_{\phi}(R^{n})$ if and only if $g\in bmo_{\phi}(R^{n})\cap L^{\infty}(R^{n})$ .
In these cases, $g$ is a pointwise multiplier from $bmo_{\phi}(R^{n})\cap L^{p}(R^{n})$ into itself

$(1\leqq p\leqq\infty)$ .
If we define the Banach space $UBM- BMO_{\phi}(R^{n})$ by

$\{f\in L_{1oc}^{1}(R^{n}) ; \Vert f\Vert_{UBM- BM0_{\phi}}=\Vert f\Vert_{BM0_{\phi}}+\sup_{a\in R^{n}}M(f, I(a, 1))<+\infty\}$ ,

then we have the following theorem similar to the torus case.
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THEOREM 3. Suppose $\phi(r)/r$ is almost decreasing. Then a function $g$ is a
$p\alpha ntwise$ multiplier from $UBM- BMO_{\phi}(R^{n})$ to $bmo_{\phi}(R^{n})$ if and only if $g\in$

$bmo_{\phi}(R^{n})\cap L^{\infty}(R^{n})$ , where $\psi$ is as in Theorem 2. In this case, $g$ is a pointwise
multiPlier on $UBM- BMO_{\phi}(R^{n})$ .

It is known that $UBM- BMO_{1}(R^{n})$ is the dual space of the local Hardy space
$h^{1}(R^{n})$ , introduced by D. Goldberg [1]. Hence by duality we have, as in the
torus case [2], the following:

COROLLARY 4. A function $g$ is a $p\alpha ntwise$ multiPlier from $h^{1}(R^{n})$ to itself,

if and only if $g\in bmo_{\psi}(R^{n})\cap L^{\infty}(R^{n})$ , where $\psi(r)=1/\int_{\min(1.r)}^{2}t^{-1}dt$ .
Our Theorem 1 answers a problem, which is implicitly stated in Johnson [3].

Stegenga [5] also treated the one dimensional torus case with $\phi\equiv 1$ , and applied
it to the boundedness problem of Toeplitz operators on the Hardy space $H^{1}(T)$ .
Applications of this paper will be treated in future.

Sections 2 and 3 are for the preliminaries and lemmas. In section 4 we
give the proofs of Theorems 1, 2 and 3, and in section 5 we give some sufficient
conditions for pointwise multipliers, and examples. The letter $C$ will always
denote a constant and does not necessarily denote the same one.

We note that the almost-decreasingness of $\phi(r)/t$ combined with the non-
decreasingness of $\phi(t)$ implies that $\phi(t)$ is equivalent to a nondecreasing concave
function. We have learned this from J. Peetre.

We would like to express our thanks to the referee. He gave us a proof of
Lemma 3.4 simpler than ours, valid for $1\leqq p\leqq\infty$ , by which we could improve
the case $p=\infty$ in Theorem 2.

2. Preliminaries.

First, we state some simple lemmas without proofs. (See for example Spanne
[4].) We write

$\rho(f, r)=\sup_{a\in R^{n}.t\leqq r}MO(f, I(a, t))$ .

LEMMA 2.1. $MO(f, I) \leqq 2\inf_{c}|I|^{-1}\int_{I}|f(x)-c|dx$ .

LEMMA 2.2. If $|F(x)-F(y)|\leqq C|x-y|$ , then $MO(F(f), I)\leqq 2CMO(f, I)$ .
LEMMA 2.3. SuPpose that $I(a^{f}, r’)\subset I(a, r)$ . Then

$|M(f, I(a’, r’))-M(f, I(a, r))| \leqq C\int_{r}^{2r}\frac{\rho(f,t)}{t}dt$ .

In the sequel, we always assume that $\phi(t)$ denotes a positive non-decreasing
function and that $\phi(t)/t$ is almost decreasing. For each $\phi$ , we define strictly
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positive functions $\Phi^{*}(r)$ and $\Phi_{*}(r)$ :

$\Phi^{*}(r)=\{\begin{array}{l}\int_{1}^{r}\phi(t)/tdt (2\leqq r)\int_{1}^{2}\phi(t)/tdt (0<r<2),\end{array}$

$\Phi_{*}(r)=\{\begin{array}{l}\int_{r}^{2}\phi(t)/tdt (0<r\leqq 1)\int_{1}^{2}\phi(t)/tdt (1 <r).\end{array}$

Then, by a slight modification of the proof of the theorem 2 (a) in Spanne [4,

p. 601], we see that $\Phi^{*}(r)$ and $\Phi_{*}(r)$ belong to $bmo_{\phi}(R_{+})$ . One can easily see
that $f(|x|)\in bmo_{\phi}(R^{n})$ if $f(r)\in bmo_{\phi}(R_{+})$ . Hence we have:

LEMMA 2.4. $\Phi^{*}(|x|)$ , $\Phi_{*}(|x|)\in bmo_{\phi}(R^{n})$ .

Next we state some other properties of the functions $\Phi^{*}(r)$ and $\Phi_{*}(r)$ .

LEMMA 2.5. (i) For any $k>0$ , there exists a constant $C_{k}>0$ such that

$C_{k}^{-1}\Phi^{*}(kr)\leqq\Phi^{*}(r)\leqq C_{k}\Phi^{*}(r/k)$ for all $r>0$ .

(ii) For any $k>0$ , there is a constant $C_{k}>0$ such that

$C_{k}^{-1}\Phi_{*}(kr)\geqq\Phi_{*}(r)\geqq C_{k}\Phi_{*}(r/k)$ for all $r>0$ .

(iii) There is a constant $C>0$ , depending only on the dimenszon $n$ , such that

$r^{-n} \int_{0}^{r}\Phi^{*}(t)t^{n- 1}dt\geqq C\Phi^{*}(r/2)$ for all $r>0$ .

(iv) There is a constant $C>0$ such that

$r^{-1} \int_{0}^{r}\frac{dt}{\Phi^{*}(t)}\leqq C\frac{\phi(r)}{\Phi^{*}(r)}$ for all $r\geqq 2$ .

PROOF. (i) Since $\Phi^{*}(r)$ is non decreasing, it is clear for $0<k\leqq 1$ . So we
assume $k>1$ . If $r\leqq kr\leqq 2$ , then $\Phi^{*}(kr)=\Phi^{*}(r)$ . If $r\leqq 2\leqq kr$ , then $\Phi^{*}(kr)\leqq$

$\Phi^{*}(2k)\leqq C_{k}\Phi^{*}(2)=C_{k}\Phi^{*}(r)$ . And if $2\leqq r\leqq kr$ , then, since $\phi(t)/t$ is almost de-
creasing, we get

$\Phi^{*}(kr)=\int_{1}^{kr}\phi(t)\frac{dt}{t}=\int_{1/k}^{r}\phi(kt)\frac{dt}{t}\leqq\int_{1/k}^{r}Ak\phi(t)\frac{dt}{t}$

$\leqq C_{k}\Phi^{*}(r)$ .
Therefore we get $\Phi^{*}(kr)\leqq C_{k}\Phi^{*}(r)$ for all $r>0$ . And hence $\Phi^{*}(r)\leqq C_{k}\Phi^{*}(r/k)$

for all $r>0$ .
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(ii) In a way similar to the case (i) we get (ii).
(iii) Since $\Phi^{*}(t)$ is non-decreasing, we have

$r^{-n} \int_{0}^{r}\Phi^{*}(t)t^{n-1}dt\geqq r^{-n}\int_{r/2}^{r}\Phi^{*}(t)t^{n-1}dt$

$\geqq n^{-1}(1-2^{-n})\Phi^{*}(r/2)$ .
(iv) Since

$\Phi^{*}(t)\geqq\max$ { $\phi(1)$ log $t,$ $\phi(1)$ log $2$ } $> \frac{1}{4}\phi(1)$ log $(e^{2}+t)$ ,

and

$\frac{1}{\log(e^{2}+t)}\leqq\frac{2}{\log(e^{2}+t)}(1-\frac{1}{\log(e^{2}+t)})=2\frac{d}{dt}(\frac{e^{2}+t}{\log(e^{2}+t)})$ ,

we have

$\frac{1}{r}\int_{0}^{r}\frac{dt}{\Phi^{*}(t)}\leqq\frac{8}{\phi(1)r}[\frac{e^{2}+t}{\log(e^{2}+t)}]_{0}^{r}<\frac{8e^{2}+r}{\phi(1)r\log(e^{2}+r)}$

$<C/\log r$, as $r\geqq 2$ .
Hence we have the desired inequality, since

$\phi(r)$ log $r= \int_{1}^{r}\phi(r)\frac{dt}{t}\geqq\int_{1}^{r}\phi(t)\frac{dt}{t}=\Phi^{*}(r)$ as $r\geqq 2$ .
$q.e.d$ .

REMARK 2.1. By this lemma there is a constant $C>0$ such that

(2.1) $C^{-1}( \Phi_{*}(r)+\Phi^{*}(r)+\Phi^{*}(|x|))\leqq|\int_{r}^{1}\phi(t)\frac{dt}{t}|+\int_{1}^{2+\rceil x1}\phi(t)\frac{dt}{t}$

$\leqq C(\Phi_{*}(r)+\Phi^{*}(r)+\Phi^{*}(|x|))$ .
Finally in this section, we note one more fact (Spanne [4, p. 601]).

LEMMA 2.6. If $\int_{0}^{1}\phi(t)t^{-1}dt<+\infty$ , then

$\omega(f, r)=es\underline{s}\sup_{y|x|\leqq r}|f(x)-f(y)|\leqq C\int_{0}^{r}\phi(t)\frac{dt}{t}\Vert f\Vert_{BM0_{\phi}}$ ,

for any $f\in bmo_{\phi}(R^{n})$ .

3. Lemmas.

To prove the theorems, we show a few lemmas in this section.

LEMMA 3.1. There is a constant $C>0$ such that

$|M(f, I(a, r))|\leqq C\Vert f\Vert_{bmo_{\phi}}(\Phi_{*}(r)+\Phi^{*}(r)+\Phi^{*}(|a|))$
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for any $f\in bmo_{\phi}(R^{n})$ and for any cube $I(a, r)$ .
PROOF. Case 1: $r\geqq 1$ , $|a|\geqq r$ . Since $I(a, r),$ $I(O, 1)\subset I(O, r+2|a|)$ , by

Lemma 2.3 and Lemma 2.5 (i), we have

$|M(f, I(a, r))-M(f, I(O, 1))|$

$\leqq|M(f, I(a, r))-M(f, I(O, r+2|a|))|+|M(f, I(O, 1))-M(f, I(O, r+2|a|))|$

$\leqq C\int_{r}^{2(r+2\}a1)}\rho(f, t)\frac{dt}{t}+C\int_{1}^{2(r+21a1)}\rho(f, t)\frac{dt}{t}$

$\leqq 2C\int_{1}^{6|a|}\rho(f, t)\frac{dt}{t}\leqq 2C\Vert f\Vert_{BM0_{\phi}}\int_{1}^{6Ia1}\phi(t)\frac{dt}{t}$

$=2C\Vert f\Vert_{BM0_{\phi}}\Phi^{*}(6|a|)\leqq C’\Vert f\Vert_{BM0_{\phi}}\Phi^{*}(|a|)$ .
Case 2: $1\leqq r,$ $|a|\leqq r$ . Since I$(a, r),$ $I(O, 1)\subset I(O, r+2|a|)$ , in a way similar

to the case 1, we have

$|M(f, I(a, r))-M(f, I(O, 1))|\leqq C\Vert f\Vert_{BM0_{\phi}}\Phi^{*}(r)$ .
Case 3: $r\leqq 1,1\leqq|a|$ . Since $I(a, r),$ $I(O, 1)\subset I(O, r+2|a|)$ , by Lemma 2.3

and Lemma 2.5 (i), we have

$|M(f, I(a, r))-M(f, I(O, 1))|$

$\leqq C\int_{r}^{2(r+2|a|)}\rho(f, t)\frac{dt}{t}+C\int_{1}^{2(r+2|a|)}\rho(f, t)\frac{dt}{t}$

$\leqq C\int_{r}^{1}\rho(f, t)\frac{dt}{t}+2C\int_{1}^{61a1}\rho(f, t)\frac{dt}{t}$

$\leqq C\Vert f\Vert_{BM0_{\phi}}\int_{r}^{1}\phi(i)\frac{dt}{t}+2C\Vert f\Vert_{BM0_{\phi}}\int_{1}^{6|a|}\phi(t)\frac{dt}{t}$

$\leqq C’\Vert f\Vert_{BM0_{\phi}}(\Phi_{*}(r)+\Phi^{*}(|a|))$ .
Case 4: $r\leqq 1,$ $|a|\leqq 1$ . Since $I(a, r),$ $I(O, 1)\subset I(O, 3)$ , by Lemma 2.3 we get

$|M(f, I(a, r))-M(f, I(O, 1))|$

$\leqq|M(f, I(a, r))-M(f, I(O, 3))|+|M(f, I(O, 1))-M(f, I(O, 3))|$

$\leqq C\int_{r}^{6}\rho(f, t)\frac{dt}{t}+C\int_{1}^{6}\rho(f, t)\frac{dt}{t}\leqq 2C\Vert f\Vert_{BM0_{\phi}}\int_{r}^{6}\phi(t)\frac{dt}{t}$

$\leqq C’\Vert f\Vert_{BM0_{\phi}}\Phi_{*}(r)$ .
Summing up the above cases, we obtain

$|M(f, I(a, r))|\leqq|M(f, I(O, 1))|+C\Vert f\Vert_{BM0_{\phi}}(\Phi_{*}(r)+\Phi^{*}(r)+\Phi^{*}(|a|))$
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$\leqq C’||f\Vert_{bmo_{\phi}}(\Phi_{*}(r)+\Phi^{*}(r)+\Phi^{*}(|a|))$ .
$q.e.d$ .

REMARK 3.1. The estimate in Lemma 3.1 is sharp. In fact, consider the
functions $\Phi^{*}(|x|)$ and $\Phi_{*}(|x-a|)$ . Then $\Vert\Phi^{*}(|x|)\Vert_{bmo_{\phi}},$ $\Vert\Phi_{*}(|x-a|)\Vert_{bmo_{\phi}}<C$,
independently of $a\in R^{n}$ , since $\Phi_{*}(r)\leqq\phi(2)\max$ ( $\log(2/r)$ , log 2). If $4|a|\leqq r$ , us-
ing $\{x;|x|\leqq r/4\}\subset I(a, r)$ we get

$M( \Phi^{*}(|x|), I(a, r))\geqq|I(a, r)|^{-1}\int_{|x|\leq r/4}\Phi^{*}(|x|)dx$

$=C_{1}r^{-n} \int_{0}^{r/4}\Phi^{*}(t)t^{n-1}dt$

$\geqq C_{2}\Phi^{*}(r/8)\geqq C_{8}\Phi^{*}(r)\geqq C_{3}\Phi^{*}(|a|)$ ,

by using Lemma 2.5 (i) and (iii). If $r<4|a|$ , by Lemma 2.5 (i)

$M(\Phi^{*}(|x|), I(a, r))\geqq C_{1}M(\Phi^{*}(|x|),$ $I(a,$ $\frac{r}{4n}))\geqq C_{2}\Phi^{*}(|a|)$

$\geqq C_{2}\Phi^{*}(\frac{r}{4})\geqq C_{3}\Phi^{*}(r)$ ,

since $\Phi^{*}(|x|)\geqq C_{4}\Phi^{*}(|a|)$ on $I(a, r/(4n))$ by Lemma 2.5 (i). Next we consider
$\Phi_{*}(|x-a|)$ . Since $\Phi_{*}(r)$ is non-increasing and $\{x;|x-a|<r/2\}\subset I(a, r)$ , we
have

$M( \Phi_{*}(|x-a|), I(a, r))\geqq|I(a, r)|^{-1}\int_{|x-a|<r/2}\Phi_{*}(|x-a|)dx$

$\geqq C\Phi_{*}(\frac{r}{2})\geqq C’\Phi_{*}(r)$

by using Lemma 2.5 (ii).

LEMMA 3.2. SuPpose $1\leqq p\leqq\infty$ . There is a constant $C>0$ such that

$|M(f, I(a, r))|\leqq C(\Vert f\Vert_{BM0_{\phi}}+\Vert f\Vert_{L}p)\Phi_{*}(r)$

for any $f\in bmo_{\phi}(R^{n})\cap L^{p}(R^{n})$ , and for any cube $I(a, r)$ .
PROOF. If $1\leqq r$ , we have by H\"older’s inequality

$|M(f, I(a, r))| \leqq(|I|^{-1}\int_{I}|f(x)|^{p}dx)^{1/p}\leqq\Vert f\Vert_{L^{p}}\leqq C\Phi_{*}(r)\Vert f\Vert_{L^{p}}$ .

If $0<r<1$ , since $I(a, r)\subset I(a, 1)$ , by Lemma 2.3 we have

$|M(f, I(a, r))|\leqq|M(f, I(a, r))-M(f, I(a, 1))|+|M(f, I(a, 1))|$

$\leqq C\int_{r}^{2}\rho(f, t)\frac{dt}{t}+|M(f, I(a, 1))|$

$\leqq C\Vert f\Vert_{BM0_{\phi}}\Phi_{*}(r)+\Vert f\Vert_{L^{p}}$
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$\leqq C’(\Vert f\Vert_{BMO_{\phi}}+\Vert f\Vert_{L^{p}})\Phi_{*}(r)$ .
$q.e.d$ .

REMARK 3.2. Let $f(x)=\Phi_{*}(|x-a|)-\Phi_{*}(1)$ . Then, since $\Phi_{*}(r)\leqq\phi(2)\cross$

max ( $\log 2/r$, log 2), $\Vert f\Vert_{L^{p}}\leqq C_{p}(1\leqq p<\infty),$ $\Vert f\Vert_{BM0_{\phi}}\leqq C$, independently of $a$ . As
in Remark 3.1, we have $M(f, I(a, r))\geqq C\Phi_{*}(r)$ for $r\leqq 1$ .

LEMMA 3.3. Suppose $f\in bmo_{\phi}(R^{n})$ and $g\in L^{\infty}(R^{n})$ . Then, $fg$ belongs to
$bmo_{\phi}(R^{n})$ if and only if

$F(f, g)= \sup_{I(a.r)}|M(f, I(a, r))|MO(g, I(a, r))/\phi(r)<+\infty$ .

In this case,
$F(f, g)\leqq\Vert fg\Vert_{BMO_{\phi}}+2\Vert g\Vert_{\infty}\Vert f\Vert_{BM0_{\phi}}$ .

PROOF. For any cube $I=I(a, r)$ , by elementary calculation (see for example
Stegenga [5, p. 582]), we have

$|MO(fg, I)-|f_{I}|MO(g, I)|\leqq 2\Vert g\Vert_{\infty}MO(f, I)$ ,

and therefore

$| \frac{MO(fg,I)}{\phi(r)}\frac{|f_{I}|MO(g,I)}{\phi(r)}|\leqq 2\Vert g\Vert_{\infty}\Vert f\Vert_{BM0_{\phi}}$ .

This implies the assertion by the definition of $bmo_{\phi}(R^{n})$ . $q$ . $e.d$ .

LEMMA 3.4. Suppose $1\leqq p\leqq\infty$ . If $g$ is a pointwise multipljer from $bmo_{\phi}(R^{n})$

$\cap L^{p}(R^{n})$ to $bmo_{\phi}(R^{n})$ , then it follows that $g\in L^{\infty}(R^{n})$ .
PROOF. First of all, since $bmo_{\phi}(R^{n})\cap L^{p}(R^{n})$ is a Banach space, equipped

with the norm $\Vert f\Vert_{BM0_{\phi}}+\Vert f\Vert_{L^{p}}$ , and $bmo_{\phi}(R^{n})$ is also a Banach space, we have
by the closed graph theorem that

$\Vert gf\Vert_{bmo_{\phi}}\leqq C(\Vert f\Vert_{BM0_{\phi}}+\Vert f\Vert_{L^{p}})$

for all $f\in bmo_{\phi}(R^{n})\cap L^{p}(R^{n})$ .
For any cube $I=I(a, r)$ with $r<1$ , we define a function $h\in bmo_{\phi}(R^{n})\cap L^{p}(R^{n})$

as follows:

$h(x)=\{\begin{array}{ll}0 r\leqq|x-a|\exp (i\Phi_{*}(|x-a|))-\exp(i\Phi_{*}(r)) |x-a|<r.\end{array}$

Then, by Lemma 2.2, we get $\Vert h\Vert_{BM0_{\phi}}\leqq C_{0}\Vert\Phi_{*}(|x|)\Vert_{BM0_{\phi}}$ . And, since supp $h\subset$

$I(a, 2)$ and $|h(x)|\leqq 2$ , we have $\Vert h\Vert_{L^{p}}\leqq C_{p}$ . Hence $\Vert gh\Vert_{bmo}\phi\leqq C(\Vert h\Vert_{BM0_{\phi}}+\Vert h\Vert_{L^{p}})$

$\leqq C_{1}$ , independently of $I$ . This gives

(3.1) $MO(gh, I(a, 4r))\leqq C_{1}\phi(4r)$ .

Let $C_{2}$ and $C_{3}$ be constants such that log $C_{2}=\pi/\phi(1),$ $1<C_{2}C_{3}<C_{2}$ , and let $L_{r}=$
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$\{x;r/C_{2}\leqq|x-a|\leqq r/(C_{2}C_{3})\}$ . If $x\in L_{r}$ , then, since $\phi(r)/r$ is almost decreasing,
we have

$(\phi(r)/(AC_{2}C_{3}))$ log $C_{2}C_{3}\leqq\phi(r/(C_{2}C_{3}))$ log $C_{2}C_{3} \leqq\int_{r/(C_{2}C_{3})}^{r}\phi(t)\frac{dt}{t}$

$\leqq\Phi_{*}(|x-a|)-\Phi_{*}(r)\leqq\int_{r/c_{2}}^{r}\phi(t)\frac{dt}{t}\leqq\phi(1)$ log $C_{2}=\pi$ .

So, the inequality $|e^{i\theta}-1|\geqq 2\theta/\pi(0\leqq\theta\leqq\pi)$ implies that $|h(x)|\geqq C_{4}\phi(r)$ for $x\in L_{r}$ .
Let $\sigma=M(gh, I(a, 4r))$ . Then we have, by considering the support of $h$ ,

$MO(gh, I(a, 4r))|I(a, 4r)|= \int_{I(a,4r)}|gh(x)-\sigma|dx$

$\geqq\int_{L_{r}}$ lgh $(x)- \sigma|dx+\int_{I(a.4r)\backslash I(a,2r)}|\sigma|dx$

$\geqq\int_{L_{r}}(|gh(x)-\sigma|+|\sigma|)dx\geqq\int_{L_{r}}|gh(x)|dx$

$\geqq C_{4}\phi(r)\int_{L_{T}}|g(x)|dx$ ,

and so

(3.2) $|L_{r}|^{-1} \int_{L_{r}}|g(x)|dx\leqq C_{5}MO(gh, I(a, 4r))/\phi^{(r})$

From (3.1) and (3.2) it follows that

$|L_{r}|^{-1} \int_{L_{\gamma}}|g(x)|dx\leqq C_{6}$ .

Letting $r$ tend to zero, we have

$|g(a)|\leqq C_{6}$ $a.e$ .
$q.e.d$ .

4. Proofs of the theorems.

PROOF OF THEOREM 1. Suppose that $g$ is a pointwise multiplier on $bmo_{\phi}(R^{n})$ .
Then $g\in L^{\infty}$ by Lemma 3.4. Since $gf\in bmo_{\phi}(R^{n})$ for all $f\in bmo_{\phi}(R^{n})$ , by Lemma
3.3 and the closed graph theorem we have

(4.1) $\sup_{I(a,r)}\frac{|f_{I}|MO(g,I)}{\phi(r)}<C\Vert f\Vert_{bmo_{\phi}}$ .

Hence, taking $f(x)=\Phi^{*}(|x|)$ or $\Phi_{*}(|x-a|)$ , we have by Remark 3. 1

(4.2) $\sup_{I(a,r)}(\Phi_{*}(r)+\Phi^{*}(r)+\Phi^{*}(|a|))MO(g, I)/\phi(r)<+\infty$ ,

and hence
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$\sup_{I(a.r)}\frac{MO(g,I(a,r))}{w_{\phi}(a,r)}<+\infty$ ,

by using Remark 2.1. Consequently $g\in bmo_{w_{\phi}}(R^{n})\cap L^{\infty}(R^{n})$ .
Conversely, suppose $g\in bmo_{w_{\phi}}(R^{n})\cap L^{\infty}(R^{n})$ . For any $I=I(a, r)$ and any $f\in$

$bmo_{\phi}(R^{n})$ , by Lemma 3.1 we get

$\frac{|f_{I}|MO(g,I)}{\phi(r)}\leqq C\Vert f\Vert_{bm_{\phi}}0(\Phi_{*}(r)+\Phi^{*}(r)+\Phi^{*}(|a|))MO(g, I)/\phi(r)$

$\leqq C’\Vert f\Vert_{bmo_{\phi}}\frac{MO(g,I)}{w_{\phi}(a,r)}\leqq C’\Vert f\Vert_{bmo_{\phi}}\Vert g\Vert_{BM0_{w_{\phi}}}$ .

Therefore $fg\in bmo_{\phi}(R^{n})$ by Lemma 3.3, which shows that $g$ is a pointwise multi-
plier on $bmo_{\phi}(R^{n})$ . This proves Theorem 1.

PROOF OF THEOREM 2. (i) Case $1\leqq l<\infty$ . Suppose that $g$ is a pointwise
multiplier from $bmo_{\phi}(R^{n})\cap L^{p}(R^{n})$ to $bmo_{\phi}(R^{n})$ . Then $g$ is bounded by Lemma
3.4. Hence by Lemma 3.3

$\sup_{I(a,r)}\frac{|f_{I}|MO(g,I)}{\phi(r)}\leqq C(\Vert f\Vert_{BM0_{\phi}}+\Vert f\Vert_{L^{p}})$ .

Taking $f(x)=\Phi_{*}(|x-a|)-\Phi_{*}(1)$ , we have by Remark 3.2

$\sup_{r\leqq 1.a\in R^{n}}\Phi_{*}(r)MO(g, I)/\phi(r)<+\infty$ .

According to $g\in L^{\infty}(R^{n}),$ $MO(g, I)\leqq 2\Vert g\Vert_{\infty}$ . Since $\Phi_{*}(r)$ is constant and $\phi(r)\geqq$

$\phi(1)$ for $r\geqq 1$ , we have

$\sup_{r>1,a\in R^{n}}\Phi_{*}(r)MO(g, I)/\phi(r)<+\infty$ .

Thus $g\in bmo_{\psi}(R^{n})\cap L^{\infty}(R^{n})$ . Sufficiency can be proved in the same way as in
Theorem 1, using Lemma 3.2 in place of Lemma 3.1. (ii) Case $p=\infty$ . (Necessity)

Since $1\in bmo_{\phi}(R^{n})\cap L^{\infty}(R^{n}),$ $g$ must belong to $bmo_{\phi}(R^{n})$ . By Lemma 3.4, $g$ is
bounded. (Sufficiency) We have, for any cube $I$ ,

$|f_{I}|MO(g, I)/\phi(r)\leqq\Vert f\Vert_{\infty}MO(g, I)/\phi(r)\leqq\Vert f\Vert_{\infty}\Vert g\Vert_{BM0_{\phi}}$ .
So, since $g$ is bounded, by Lemma 3.3 we have $gf\in bmo_{\phi}(R^{n})$ . This completes
the proof.

PROOF OF THEOREM 3. (Necessity) Clearly we have $bmo_{\phi}(R^{n})\cap L^{2}(R^{n})\subset$

$UBM- BMO_{\phi}(R^{n})$ . Hence by Theorem 2 we have the desired conclusion. (Suf-

ficiency) For all $r\geqq 1$ and all $a\in R^{n}$ , we get

(4.3) $|M(|f|, I(a, r))| \leqq 2^{n}[\sup_{b\in R^{n}}|M(f, I(b, 1))|+\sup_{b\in R^{n}}MO(f, I(b, 1))]$ .

(To show this, let $j$ be the smallest integer satisfying $r\leqq 2^{j}$ and take the cube



Pointwise multiPljers 217

$I(a, 2^{j})$ , and then divide it into non-overlapping $2^{jn}$ cubes with side length 1.
Then by the definition we get the above inequality.) Hence we get

$\sup_{r\geq 1.a\in R^{n}}|M(f, I(a, r))|/\phi(r)\leqq C\Vert f\Vert_{UBM- BM0_{\phi}}$ . As in Case 4 in Lemma 3.1 we
get $|M(f, I(a, r))|\leqq C\Vert f\Vert_{UBM\cdot BM0_{\phi}}\Phi_{*}(r)$ . Therefore, since $g$ is bounded, we
have $gf\in bmo_{\phi}(R^{n})$ by Lemma 3.3. $q.e$ . $d$ .

REMARK 4.1. By (4.3), one can easily show that $\Vert f\Vert_{UBM- BM0_{\phi}}$ is equivalent
to

(4.4) $\sup_{0<r\leq 1.a\in R^{n}}|MO(f, I(a, r))|/\phi(r)+\sup_{r\geq 1.a\in R^{n}}|M(|f|, I(a, r))|/\phi(r)$ .

For the case $\phi(t)\equiv 1$ , Goldberg [1, Corollary 1] introduced $UBM- BMO_{1}(R^{n})$ , using
(4.4), by the symbol $bmo$ , and showed that it is the dual of the local Hardy
space $h^{1}(R^{n})$ .

5. Some sufficient conditions and examples.

As consequences of our theorems, we give some sufficient conditions for point-
wise multipliers, corresponding to those in the torus case, Stegenga [5, Corollary
2.8] and Janson [2, p. 196].

PROPOSITION 5.1. Suppose $g$ satisfies the following conditions:

(5.1) There is a constant $M_{1}>0$ such that

$|g(x-\vdash y)-g(x)|\leqq M_{1}\phi(|y|)/[\Phi_{*}(|y|)+(1-sgn\phi(0+))\Phi^{*}(|x|)]$

for all $x,$ $y\in R^{n}$ with $|y|\leqq 1$ , where $\phi(0+)=\lim_{r\downarrow 0}\phi(r)$ .

(5.2) There are constants $M_{2}>0$ and $B\in C$ such that

$|g(x)-B|\leqq M_{2}/\Phi^{*}(|x|)$ for all $x\in R^{n}$ .

Then, $g$ is a p0jntwise multipljer on $bmo_{\phi}(R^{n})$ .
PROOF. We omit the detailed proof. One has only to treat the four cases;

$\{r\leqq 1/\sqrt{n}, \phi(0+)=0\}$ , $\{r\leqq 1/\sqrt{}\overline{n}, \phi(0+)>0\}$ , $\{1/\sqrt{n}<r\leqq|a|/\sqrt{n}\}$ , and $\{r\geqq$

max $(1, |a|)/\sqrt{n}$}.
As a consequence we have the following corollary, whose proof we omit.

COROLLARY 5.2. If $g=g_{1}/g_{2}$ satisfies the following conditions:

(5.3) $g_{1}$ is bounded and there is a $C_{1}>0$ such that $|g_{1}(x)-g_{1}(y)|\leqq C_{1}|x-y|$ ,

$x,$ $y\in R^{n}$ ;

(5.4) There are $C_{2},$ $C_{3}>0$ such that $|g_{2}(x)|\geqq C_{2}\Phi^{*}(|x|)$ and $|g_{2}(x)-g_{2}(y)|\leqq$

$C_{3}|x-y|,$ $x,$ $y\in R^{n}$ .
Then, $g$ is a ponntwjse multipljer on $bmo_{\phi}(R^{n})$ .
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For pointwise multipliers from $bmo_{\phi}\cap L^{p}$ to $bmo_{\phi}$ , we have:

PROPOSITION 5.3. If $g$ is bounded and satisfies
(5.5) $|g(x+y)-g(x)|\leqq C\phi(|y|)/\Phi_{*}(|y|)$ , $x,$ $y\in R^{n},$ $|y|<1$ ,

then $g$ is a pdintwise multiplier from $bmo_{\phi}(R^{n})\cap L^{p}(R^{n})$ to $bmo_{\phi}(R^{n}),$ $(1\leqq p\leqq\infty)$ .

EXAMPLES. By Corollary 5.2

$\frac{1}{\Phi^{*}(|x|)}$ $\frac{\sin|x|}{\Phi^{*}(|x|)}$ $\frac{1}{1+|x|}$ $\frac{\sin\Phi^{*}(|x|)}{1+|x|}$

are pointwise multipliers on $bmo_{\phi}(R^{n})$ . And, for any $\phi$ , for which $\phi(t)/(t\Phi_{*}(t))$

is almost decreasing, put $\Psi_{*}(r)=\int_{r}^{2}\phi(t)/(t\Phi_{*}(t))dt$ for $0<r\leqq 1$ and $= \int_{1}^{2}\phi(t)/(t\Phi_{*}(t))dt$

for $1<r$ . Then, sin $\Psi_{*}(|x|)/\Phi^{*}(|x|)$ is a pointwise multiplier on $bmo_{\phi}(R^{n})$ .
This gives a pointwise multiplier, which is not continuous, as in [2, p. 196].
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