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Introduction.

A surjective holomorphic maPping $f$ : $Marrow S$ of comPact complex manifolds
is called an elliptic fiber space if any general fiber of $f$ is a smooth elliptic
curve. In this paper, chiefly in case dim $M=3$ , we study the graded algebra
$\oplus_{t}{}_{\geqq 0}H^{0}(M, iK_{M})$ , which is called the canonical ring of $M$. In particular we will
prove that this is finitely generated (see (3.5) below).

As we outlined in [F4], we proceed as follows. \S 1 is devoted to a theory

of Zariski decomposition in higher dimensions (cf. [Z], [F1]). In \S 2 we present
a canonical bundle formula of Kodaira-Ueno type for elliptic fiber spaces (cf.

[Kol], [U1]). In \S 3, combining these two theories, we prove the main theorem
with the help of a result in [F5] concerning “fractionally logarithmic” canonical
rings of surfaces.

In the Appendix we consider the case of manifolds of general type from
the view point of Zariski decomposition.

NOTATION, CONVENTION AND TERMINOLOGY. Basically we emplOy the custOm-
ary notation in algebraic geometry. Manifold means a non-singular complete
projective variety defined over the complex number field $C$ . A surjective
morphism $f$ : $Marrow S$ is called a fiber space if any general fiber of $f$ is connected.
The canonical bundle of a manifold $X$ is denoted by $K_{X}$ . $\omega_{X}$ denotes the
dualizing sheaf $O_{X}[K_{X}]$ . Line bundles and invertible sheaves are identified in
the natural way. But tensor Products of line bundles are denoted additively,
while we $write\otimes for$ invertible sheaves. Thus, for example, if $\mathcal{F}$ is a coherent
sheaf and if $L$ is a line bundle, $\mathcal{F}[2L]$ denotes $\mathcal{F}\otimes X\otimes \mathcal{L}$ , where $\mathcal{L}$ is the
invertible sheaf corresponding to $L$ . Given a morphism $g:Varrow W$ of varieties
and a line bundle $L$ on $W,$ $g^{*}L$ is often denoted by $L_{W}$ . Similar notation is
used for other cases in which $g^{*}$ is defined.

\S 1. Zariski decomposition in higher dimension.

(1.1) For the sake of simplicity we shall work in the category of projective
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varieties defined over the complex number field $C$ . A Q-divisor on a manifold
( $=non$-singular variety) $M$ is a formal linear combination $D=\Sigma_{i}\mu_{i}D_{i}$ of prime
divisors $D_{i}$ on $M$ with coefficients $\mu_{i}$ being rational numbers. $D$ is said to be

effective if each $\mu_{i}\geqq 0$ . A Q-bundle on $M$ is an element of $Pic(M)\otimes Q$ . A Q-
divisor $D$ defines naturally a Q-bundle, which is denoted by $[D]$ or sometimes
just by $D$ by abuse of notation.

Intersection numbers of Q-bundles are defined naturally and they are rational
numbers. A Q-bundle $L$ is said to be nef (or numerically semipositive) if
$LC\geqq 0$ for any curve $C$ in $M$.

(1.2) Let $L$ be a Q-bundle on $M$. An effective Q-divisor $E$ on $M$ is said
to clutch $L$ if $F-E$ is effective for any effective Q-divisor $F$ such that $L-F$

is nef. Given a surjective morphism $f:Varrow M$, we sometimes say that $E$ clutches
$L$ on $V$ if $f^{*}E$ clutches $f^{*}L$ . The following assertion is obvious by definition.

(1.3.1) If $E_{1}$ and $E_{2}$ clutch $L$ , then ${\rm Max}(E_{1}, E_{2})$ clutches $L$ .

(1.3.2) If $E_{1}$ clutches $L$ and if $E_{2}$ clutches $L-E_{1}$ , then $E_{1}+E_{2}$ clutches $L$ .

(1.4) LEMMA. Let $f$ : $M’arrow M$ be a surjective morphism and suPpose that
$f^{*}E$ clutches $f^{*}L$ . Then $E$ clutches $L$ .

PROOF. If $L-F$ is nef, then so is $f^{*}L-f^{*}\prime F$. Hence $f^{*}F-f^{*}E=f^{*}(F-E)$

is effective. So $F-E$ is effective.

(1.5) LEMMA. Let $f$ : $Marrow V$ be a surjective morphism onto a variety $V$ , let
$X$ be an effective Q-divisor on $M$, let $Y=\{Y_{1}, \cdots , Y_{r}\}$ be a family of finite
number of pnyne divisors on $M$ and let $Z$ be an irreducible component of
$f(Supp(X))\subset V$ . Assume one of the following two condiiions:
1) $\dim Z\leqq\dim V-2$ .
2) dim $Z=\dim V-1$ , every general fiber of $f$ is connected and there is a Prime
divisor $D$ on $M$ not contained in Supp(X) such that $f(D)=Z$ .

Then there is an open dense subset $U$ of $Z$ such that, for every $u\in U$ , there
exists a curve $C$ with the following proPenies: i) $f(C)=u$ . ii) $XC<0$ . iii) $C$ is
not contained in more than one member of $Y$.

PROOF. Cases 1) and 2) are treated similarly. Clearly we may assume that
every component of $X$ is a member of $Y$. We use the induction on $n=\dim M$.
Note that dim $M>\dim V$ in case 2).

When $n=2$ , the assertion follows from the index theorem in case 1). In
case 2), $V$ is a curve and $Z$ is a point on it. So the assertion is well-known
and easy to prove.

Next we consider the case in which $Z$ is a point. Take a general hyper-
plane section $A$ of $M$. Since $A$ is general, we may assume that the restrictions
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of $Y_{i}$ and $Y_{j}$ to $A$ have no common component for every $i\neq j$ . Let $Y_{A}$ be the
family of components of the restrictions to $A$ of members of $Y$ . Applying the
induction hypothesis to $f_{A}$ : $Aarrow f(A),$ $X_{A}$ and $Y_{A}$ , we find a curve $C$ in $f^{-1}(Z)$

such that $XC<0$ and $C$ is not contained in more than one member of $Y_{A}$ . This
curve $C$ has the desired property with respect to $f,$ $X$ and $Y$ .

Finally we consider the case dim $Z>0$ . Let $U$ be the set of points $u$ on $Z$

such that there exists a subvariety $W$ of $V$ with the following properties $a$) $-d$):

a) dim $W=\dim V-\dim Z$ and dim $f^{-1}(W)=n-\dim$ Z. b) $u$ is an isolated point
of $Z\cap W$ . c) $f^{-1}(W)$ is smooth at any point in $f^{-1}(u)$ . d) For every $i\neq j$ , the
restrictions of $Y_{i}$ and $Y_{j}$ to $f^{-1}(W)$ have no common component.

Now, letting $T$ be a non-singular model of $f^{-1}(W)$ and applying the preceding
argument to $Tarrow W$ , we find a curve $C$ in $f^{-1}(u)$ with the desired property.

On the other hand, taking general hyperplane sections on $V(\dim Z)$-times
successively, we find many subvarieties $W$ as above and many points $u$ on $W\cap Z$ .
So $U$ is open and dense in $Z$ . Thus we complete the proof.

(1.6) COROLLARY. Let $\pi$ : $M’arrow M$ be a birational morphism and suPpose that
the stnct transform $E’$ of an effective Q-divisor $E$ on $M$ clutches $\pi^{*}L$ . Then $E$

clutches $L$ both on $M’$ and $M$.

PROOF. Set $E^{*}= \pi^{*}E=E’+\sum\delta_{i}D_{i}$ where each $D_{i}$ is a prime divisor on $M’$

such that $co\dim(\pi(D_{i}))\geqq 2$ . Suppose that $\pi^{*}L-F$ is nef for some effective Q-
divisor $F$ on $M’$ . By assumption $F’=F-E’$ is effective. Write $F’=R+ \sum\mu_{i}D_{i}$ ,
where the components of $R$ are other than $D_{i}’ s$ . Assume that $\mu_{i}<\delta_{i}$ for some
$i$ . Set $X=\Sigma(\delta_{i}-\mu_{i})D_{i}$ , where the sum is taken over those $i’ s$ with $\delta_{i}>\mu_{i}$ .
Applying (1.5) we find a curve $C$ such that $XC<0,$ $\pi(C)$ is a point, $RC\geqq 0$ and
$D_{i}C\geqq 0$ for any $i$ with $\delta_{i}\leqq\mu_{i}$ . Then, since $\pi^{*}L\cdot C=E^{*}C=0$, we have
$0 \leqq(\pi^{*}L-F)C=(E^{*}-F)C=-(F’-\sum\delta_{i}D_{i})C\leqq XC<0$ . From this contradiction we
infer that $F-E^{*}=R+ \sum(\mu_{i}-\delta_{i})D_{i}$ is effective. Thus $E^{*}$ clutches $\pi^{*}L$ . Finally,
applying (1.4), we complete the proof.

(1.7) DEFINITION. An effective Q-divisor $E$ on $M$ is said to be numerically

fixed by a Q-bundle $L$ on $M$ if $\pi^{*}E$ clutches $\pi^{*}L$ for any birational morphism
$\pi;M’arrow M$.

(1.8) PROPOSITION. Let $E$ be an effective Q-divisor on $M$ and suPpose that
$E$ is numerically fixed by a line bundle $L$ on M. Then $\overline{E}$ is contained in the
fixed part of $|L|$ , where $\overline{E}$ is the smallest (usual) diuisor such that $\overline{E}-E$ is
effective.

PROOF. By virtue of Hironaka’s theory there is a birational morphism
$\pi;M’arrow M$ such that $Bs|\pi^{*}L-F|=\emptyset$ for the fixed part $F$ of $\pi^{*}|L|$ . Then
$F-\pi^{*}E$ is effective since $\pi^{*}E$ clutches $\pi^{*}L$ . Therefore $\pi_{*}F-E$ is effective and



22 T. $p_{UJITA}$

hence so is $\pi_{*}F-\overline{E}$ . Since $\pi_{*}F$ is the fixed part of $|L|$ , this proves the
assertion.

(1.9) COROLLARY. In the above silualion, the graded algebra $G(M, L)$

$=\oplus_{t}{}_{\geqq 0}H^{0}(M, tL)$ is isomorphic to $\oplus_{t}{}_{\geqq 0}H^{0}(M, tL-t\overline{E})$ .

(1.10) PROPOSITION. Lel $f$ : $Marrow S$ be a surjective morphism onto another
manifold $S$ such that any general fiber is connected. Lel $X$ be an effective Q-
divisor on $M$ such that dim $f(X)<\dim$ S. SuppOse that, for every irreducible
component $Z$ of $f(X)$ with dimZ $=\dim S-1$ , there is a prime divisor $D$ on $M$

such that $f(D)=Z$ and $D\not\subset Supp(X)$ . Then $X$ is numerically fixed by $X+f^{*}L$

for any Q-bundle $L$ on $S$ .

PROOF. For any birational morphism $\pi$ : $M’arrow M,$ $\pi^{*}X$ has the same property
as $X$ with respect to $f’=f\cdot\pi$ : $M’arrow S$ . Therefore it suffices to show that $X$

clutches $X+f^{*}L$ .
Suppose that $\pi^{*}\backslash L+X-F$ is nef for some effective Q-divisor $F$. Let

$Z_{1},$ $Z_{2},$ $\cdots$ , $Z_{r}$ be components of $f(X)$ of codimension one in $S$ and write
$X=X_{1}+X_{2}+\cdots+X_{r}+X’$ , where the components of $X_{j}$ are those mapped onto
$Z_{j}$ and codim $f(X’)\geqq 2$ . Write similarly $F=F_{0}+F_{1}+\cdots+F_{r}+F’$ , where the com-
ponents of $F_{0}$ are not mapped into $f(X)$ . First we claim that $F_{j}-X_{j}$ is effec-
tive for each $j=1,$ $\cdots$ , $r$ . Indeed, otherwise, $F_{J}-X_{j}=Y-\Delta$ for some effective
Q-divisors $Y,$ $\Delta$ without common components. In view of $(1.5_{j}2)$ , we find a
curve $C$ lying over a general point $u$ on $Z_{j}$ such that $\Delta C<0,$ $YC\geqq 0,$ $F_{0}C\geqq 0$ .
Since $F_{i}C=X_{i}C=0$ for $i\neq j$ , we have $(\pi^{*}L+X-F)C=(\Delta-Y-F_{0})C<0$ , con-
tradicting the semipositivity. Thus we prove the claim.

Next we claim that $F’-X’$ is effective. Indeed, otherwise, $F’-X’=F’’-X’’$

for some effective Q-divisors $F’’,$ $X’’$ without common components and $X’’\neq 0$ .
Using (1.5; 1), we find a curve $C$ lying over a point in $f(X’’)$ such that $X’’C<0$ ,
$F’’C\geqq 0,$ $(F_{J}-X_{j})C\geqq 0$ for each $j$ and $F_{0}C\geqq 0$ . Then we have $(\pi^{*}L+X-F)C$

$=(X’-F’’)C-F_{0}C-\Sigma_{j=1}^{r}(F_{j}-X_{j})C<0$ , contradicting the semipositivity. There-
fore $F’-X’$ is effective, and hence so is $F-X$. Thus we show that $X$ clutches
$X+\pi^{*}L$ .

(1.11) PROPOSITION. Let $f$ : $Marrow S$ be a surjective morPhism of manifolds
and suppOse that an effective Q-divisor $E$ on $S$ is numerically fixed by a Q-bundle
$L$ on S. Then $f^{*}E$ is numerically fixed $b\gamma f^{*}L$ .

This fact will be proved in several steps below. First we recall the follow-
ing result.

(1.12) THEOREM (Hironaka [H3]). Lel $f$ : $Marrow S$ be any surjective morPhism
of manifolds. Then there exists a flat morphism $g:Varrow T$ from a variely $V$ onto
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a manifold $T$ togelher wilh biralional morphisms $\nu;Varrow M$ and $\pi$ : $Tarrow S$ such lhat
$\pi\cdot g=f\cdot\nu$ .

Such a mapping $g$ will be called (Hironaka’s) flat model of $f$ . Actually, $\pi$

can be taken to be a succession of blowing-ups of non-singular centers.

(1.13) LEMMA. Let $f$ : $Marrow S$ be a fiber space of manifolds and let $g:Varrow T$

be a flat model of it. Let $L$ be a Q-bundle on $S$ and lel $F$ be an effective $Q-$

divisor on $M$ such that $f^{*}L-F$ is $nef$. Then there exists an effective Q-divisor
$D$ on $T$ such that $g^{*}D=\nu^{*}F$.

REMARK. It follows that $\pi^{*}L-D$ is nef, because $g^{*}(\pi^{*}L-D)=\nu^{*}(f^{*}L-F)$ .

PROOF OF THE LEMMA. We claim that dim $g(\nu^{*}F)<\dim T$. Indeed, other-
wise, $\nu^{*}F\cdot C>0$ for some curve $C$ contained in a general fiber of $g$ . Then
$(f^{*}L-F)_{V}\cdot C=-\nu^{*}F\cdot C<0$ , contradicting the semipositivity of $f^{*}L-F$ . Thus
we prove the claim.

Now we take the smallest effective Q-divisor $D$ on $T$ such that $X=g^{*}D$

$-\nu^{*}F$ is effective. If $X\neq 0$ , we take a non-singular model $W$ of $V$ . Applying
(1.5) to $Warrow T$ , we find a curve $C$ contained in a fiber of $g$ such that $XC<0$ .
Then $\nu^{*}F\cdot C>0$ , which yields a contradiction as above. Thus we see $X=0$ ,

which proves the lemma.

(1.14) COROLLARY. Let things be as in (1.11) and supp0se in addition that
any general fiber of $f$ is connected. Then $f^{*}E$ clutches $f^{*}L$ .

PROOF. Suppose that $f^{*}L-F$ is nef for some effective Q-divisor $F$ on $M$.
Take a flat model $g:Varrow T$ of $f$ as in (1.12). Then, by (1.13), $v^{*}F=g^{*}D$ for
some effective Q-divisor $D$ on $T$ . Since $\pi^{*}L-D$ is nef, $D-\pi^{*}E$ is effective.
Therefore $g^{*}(D-\pi^{*}E)=\nu^{*}(F-f^{*}E)$ is effective, and hence so is $F-f^{*}E$ .

(1.15) LEMMA. Let things be as in (1.11) and if $S$ is biralional to the
quotient space $M/G$ where $G$ is a finite group acling holomorphically on $M$, then
$f^{*}E$ clutches $f^{*}L$ .

PROOF. Assuming that $f^{*}L-F$ is nef for some effective Q-divisor $F$ on $M$,

we will show that $F-f^{*}E$ is effective. Taking positive multiples if necessary,
we may assume that $L$ is a usual line bundle and $F,$ $E$ are usual divisors. Let
$B$ be the ideal theoretical intersection $\bigcap_{\sigma\in G}\sigma^{*}F$ in $M$. By virtue of Hironaka’s
theory (cf. [H2]) we can Pnd a G-equivariant birational morphism $\pi$ : $M’arrow M$

such that $\pi^{*}B=D$ is an effective Cartier divisor on a manifold $M’$ . We claim
that $\pi^{*}f^{*}L-D$ is nef on $M’$ .

Indeed, if we write $\pi^{*}F=F’+D$ , then we have $\bigcap_{\sigma\in G}\sigma^{*}F’=\emptyset$ by const-
ruction. So, for any curve $C$ in $M’$ , we have $\sigma^{*}F’\{C\}\geqq 0$ for some $\sigma\in G$ . On
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the other hand, $0\leqq\sigma^{*}\pi^{*}(f^{*}L-F)\{C\}=\pi^{*}f^{*}L\cdot C-\sigma^{*}(F’+D)\cdot C$ . Hence
\langle $\pi^{*}f^{*}L-D$ ) $C\geqq 0$ because $\sigma^{*}D=D$ .

Now, we take a flat model $g:Varrow T$ of $f’=f\cdot\pi:M’arrow S$ . Since $g$ is finite,
$G$ acts holomorphically on the normalization $\tilde{V}$ of $V$ . Let $W$ be a G-equivariant
desingularization of $V$ . The pull-back of $D$ to $V$ is G-invariant, hence it is the
pull-back of an effective divisor $D’$ on $T$ . Similarly as in (1.13), $L-D’$ is nef
on $T$ . Then, by assumption, $D’-E$ is effective on $T$ . Similarly as in (1.14),

this implies that $F-f^{*}E$ is effective. Thus we prove the lemma.

(1.16) LEMMA. Let things be as in (1.11) and suPpose in addition that the
extension of function fields $K(M)/K(S)$ is finite and Galois. Then $f*E$ clutches
$f*L$ .

PROOF. Let $g:Varrow T$ be a flat model of $f$ as in (1.12). Since $g$ is finite,
$G=Ga1(K(M)/K(S))$ acts holomorphically on the normalization $\hat{V}$ of $V$ . Let
$Warrow\tilde{V}$ be a G-equivariant desingularization. Then, applying (1.15) to $Warrow T$ ,

we infer that $E$ clutches $L$ on $W$ . So (1.4) proves our assertion.

(1.17) PROOF OF (1.11). Step 1, the case where dim $M=\dim S$ . It suffices
to show that $f^{*}E$ clutches $f^{*}L$ for any such $f$. As is well-known, there is a
surjective morphism $\pi;M’arrow M$ such that the extension of function fields
$K(M’)/K(S)$ is finite and Galois. Applying (1.16) to $M’arrow S$ , we infer that $E$

clutches $L$ on $M’$ . Applying (1.4) to $\pi$ , we see that $f^{*}E$ clutches $f^{*}L$ .
Step 2, general case. Let $W=s_{pec}(f_{*}\mathcal{O}_{M})$ . Then $f$ factors through

$W,$ $p:Warrow S$ is a finite morphism and any general fiber of $g:Marrow W$ is con-
nected. Let $W’$ be a non-singular model of $W$ and let $M’$ be a non-singular
model of the grapb of the rational mapping $Marrow W\cdotsarrow W’$ . Then, by Step 1,
$E$ is numerically fixed by $L$ on $W’$ . Next, applying (1.14) to $f’$ : $M’arrow W’$ , we
infer that $E$ clutches $L$ on $M’$ , so does it on $M$ by (1.4). This argument works
on any birational model of $M$. Hence $f*E$ is numerically fixed by $f*L$ .

$q.e.d$ .
(1.18) DEFINITION. We say that a Q-bundle $L$ on a manifold $M$ admits a

Zariski decomposition if there exist a birational morphism $\pi:M’arrow M$ and an
effective Q-divisor $N$ on $M’$ such that $N$ is numerically fixed by $\pi^{*}L$ and
$H=\pi^{*}L-E$ is nef. $N$ (resp. $H$ ) is called the negative (resp. semipositive) part
of $L$ .

(1.19) If exists, Zariski decomposition is unique up to birational equivalence
in the following sense. Suppose that we have two decompositions $\pi_{1}^{*}L=N_{1}+H_{1}$

and $\pi_{2}^{*}L=N_{2}+H_{2}$ on two birational models $M_{1}$ and $M_{2}$ of $M$. Then, on any
manifold $M’$ which dominates both $M_{1}$ and $M_{2}$ , we have $(N_{1})_{M’}=(N_{2})_{M’}$ and
\langle $H_{1})_{M’}=(H_{2})_{M’}$ . This is almost clear by definition.
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(1.20) REMARK. Any pseudo-effective Q-bundle $L$ on an algebraic surface
$S$ admits a decomposition $L=N+H$ such that
1) $N= \sum\mu {}_{i}C_{i}$ is an effective Q-divisor and the matrix $\{(C_{i}C_{j})\}$ of intersection
numbers is negative definite (unless $N=0$).

2) $H$ is nef and $HC_{i}=0$ for every component $C_{i}$ of $N$.
This was called classically the Zariski decomposition of $L$ . Now, it is easy

to see that the above conditions imply that $N$ is numerically fixed by $L$ . There-
fore, the classical one is a Zariski decomposition in the new sense too. Thus,
our definition can be viewed as a higher dimensional version of the classical
one.

(1.21) PROBLEM. Does any effective divisor admit a Zariski decomposition ?

To be more optimistic, one might suppose that a Q-bundle $L$ admits a
Zariski decomposition if and only if $L$ is pseudo-effective, $i.e.,$ $tL+A$ is rep-
resented by an effective Q-divisor for any $t\geqq 0$ and any ample Q-bundle $A$ .

(1.22) LEMMA. SuPpose that an effective Q-divisor $E$ is numerically fixed by
a Q-bundle L. Then $L-E$ admits a Zariski decomposition if and only if so does
L. Moreover, if so, the $semipo\alpha tive$ parts of them are the same.

PROOF. Obvious by definition. Recall (1.3.2).

(1.23) PROPOSITION. Let $L=N+H$ be a Zariski decomposition on $M$ of a
Q-bundle L. Then, for any effective Q-divisor $F$ on $M$ such that $Supp(F)$

$\subset Supp(N),$ $F$ is numerically fixed by $F+H$. So, $F+H$ admits a Zariski decom-
$po\alpha tion$ .

PROOF. Suppose that there is an effective Q-divisor $X$ on a manifold $M’$

with a birational morphism $\pi$ : $M’arrow M$ such that $F’+H’-X$ is nef, where
denotes $\pi^{*}$ . Take a large integer $t$ such that $tN-F$ is effective. Since
$tN’+tH’=(tN’-F’)+X+(F’+tH’-X)$ is clutched by $tN’$ while $F’+tH’-X$ is
nef, we infer that $(tN^{f}-F’+X)-tN’=X-F’$ is effective. Thus we see that
$F$ is numerically fixed by $F+H$.

(1.24) PROPOSITION. Let $f$ : $Marrow S$ be a surjective $morp/\dot{u}sm$ of manifolds,
let $L$ be a Q-bundle on $S$ and let $R$ be an effective Q-divisor on $M$ such that
dim $f(R)\leqq\dim$ S–2. Then $L^{*}=f*L+R$ admits a Zariski decomposition if and
only if so does L. Moreover, the semipOsjtjve part of $L^{*}$ is (birationally) the
pull-back of that of $L$ .

PROOF. By (1.10), $R$ is numerically fixed by $L^{*}$ . So, by virtue of (1.22),

we may assume that $R=0$ .
Suppose first that $L$ admits a Zariski decomposition. We have a birational
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morphism $\pi$ : $S’arrow S$ and an effective Q-divisor $N$ on $S’$ such that $N$ is numeri-
cally fixed by $\pi^{*}L$ and $H=\pi^{*}L-N$ is nef. Let $f’$ : $M’arrow S’$ be a birational
model of $f$ with $\nu;M’arrow M$ being a birational morphism such that $f\cdot v=\pi\cdot f’$ .
Then, by (1.11), $N_{M’}$ is numerically fixed by $L_{M’}$ while $L_{M’}-N_{M’}=H_{M’}$ is nef.
So $L_{M’}=N_{M’}+H_{M’}$ gives a Zariski decomposition of $f^{*}L$ . Thus we prove the
assertion.

It remains to prove the “only if” part. Suppose that $L^{*}=f^{*}L$ admits a
Zariski decomposition. Replacing $M$ by a suitable birational model if necessary,
we may assume that there is an effective Q-divisor $N^{*}$ on $M$ such that $H^{*}$

$=L^{*}-N^{*}$ is nef and $N^{*}$ is numerically fixed by $L^{*}$ . We proceed in severaI
steps as in the case of (1.11).

Step 1, the case in which $K(M)/K(S)$ is Pnite and Galois. Let $g:Varrow T$ be
a flat model of $f$ as in (1.12). Since $g$ is a finite morphism, $G=Ga1(K(M)/K(S))$

acts holomorphically on the normalization $\hat{V}$ of $V$ . Let $W$ be a G-equivariant
desingularization of V. $L_{W}$ is G-invariant because it comes from $T$. So, by

the uniqueness of Zariski decomposition, we infer that $N_{W}^{*}$ is G-invariant
because it is the negative part of $L_{W}$ . Hence $N_{VV}^{*}\sim=D\sim$ for some effective Q-

divisor $D$ on $T$. Using (1.4), we infer that $D$ is numerically fixed by $L_{T}$ .
Since $H=L_{T}-D$ is nef, $L_{T}=D+H$ is a Zariski decomposition of $L$ .

Step 2, the case in which dim $M=\dim S$ . There is a surjective morphism
$\psi:M’arrow M$ such that $K(M’)/K(S)$ is finite and Galois. $L_{M’}=L_{M’}^{*}$ admits a Zariski
decomposition by the “if” part. So, by Step1, $L$ admits a Zariski decomposition.

Step 3, the case in which every general Pber of $f$ is connected. Let
$g:Varrow T$ be a flat model of $f$. By (1.13), there is an effective Q-divisor $D$ on
$T$ such that $D_{V}=N_{V}^{*}$ . Then, as in Step 1, $L_{T}=D+(L_{T}-D)$ gives a Zariski
decomposition of $L$ .

Step 4, general case. Considering the Stein factorization of $f$ similarly as
in (1.17), we find a birational model $f’$ : $M’arrow S’$ of $f$ such that $f’$ factors
through a manifold $W’$ with dim $W’=\dim S’$ and every fiber of $M’arrow W’$ is connected.
$L_{M’}=L_{M’}^{*}$ admits a Zariski decomposition by the “if” part. Then so does $L_{W’}$

by Step 3, and hence so does $L_{S’}$ by Step 2. This completes the proof because
$S’$ is birational to $S$ .

(1.25) COROLLARY. Let $M,$ $M’$ be manifolds birationally equivalent to each
other and let $K,$ $K’$ be the canonical bundles of them. Then $K’$ admits a Zariski
decomp0siti0n if and only if so does $K$.

PROOF. By Hironaka’s theory it suffices to consider the case in which we
have a birational morphism $\pi$ : $M’arrow M$. Let $R$ be the ramification locus of $\pi$ .
Then $K’=\pi^{*}K+R$ and codim $\pi(R)\geqq 2$ . So (1.24) applies.
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\S 2. Canonical bundle formula for elliptic fiber spaces.

(2.1) Let $f$ : $Marrow S$ be an elliptic fiber space with dim M$=n$ . Let $\Sigma$ be the
maximal subset of $S$ such that $f$ is smooth over $U=S-\Sigma$ . Of course, the
ideal-theoretic fiber $M_{x}=f^{-1}(x)$ over $x\in S$ is singular if and only if $x\in\Sigma$ . So
$\Sigma$ is called the singular locus of $f$.

The local system $\cup {}_{x\in U}H^{1}(M_{x} ; Z)$ induces a group homomorphism
$\Phi$ : $G=\pi_{1}(U)arrow SL(2;Z)$ . On the other hand, we have a multivalued holomorphic
function $T:Uarrow H=\{\tau\in C|{\rm Im}(\tau)>0\}$ such that $M_{x}$ is isomorphic to the complex
torus $C/(Z+ZT(x))$ for every $x\in U$ . $T$ gives a holomorphic mapping $T;\hat{U}arrow H$

on the universal covering $\tilde{U}$ of U. $G$ acts on $U$ as the covering transformation
group and we have $T(\gamma x)=\Phi(\gamma)T(x)$ for every $\gamma\in G$ , where the action of
$SL(2;Z)$ on $H$ is the standard linear projective transformation.

Let $j$ be the elliptic modular function on $H$. Then $J=j\cdot T$ turns out to be
single-valued on $U$ , and can be extended to a meromorphic function on S.
Regarding $J$ as a meromorphic mapping $Sarrow P^{1}$ , we call $J$ the J-invariant of $f$.

(2.2) In order to describe the canonical bundle of $M$, we make a brief
review of the theory of Kodaira and Ueno. For details and proofs, see [Kol],

[Ko2], [U1].

For the sake of simplicity we assume that $J$ is a holomorphic mapping.
This is harmless for many applications, because this assumption is satisfied by

a suitable birational model of $f$. Viewed as a meromorphic function on $S,$ $J$

yields a meromorphic section of $J^{*}O(-1)$ , which is denoted by $J$ by abuse of
notation.

(2.3) Let $\tilde{G}$ be the semi-direct product of $G$ and $Z\oplus Z$ with respect to the
action of $G$ on $Z\oplus Z$ given by $\Phi$ . Then, there is a standard action of $\tilde{G}$ on
$\hat{U}\cross C$ with the following properties:
a) The action is properly discontinuous and free of fixed points. So the quo-
tient space $W$ is non-singular.
b) There is a natural morphism $g:Warrow U$ such that the mapping $\tilde{U}\cross Carrow\tilde{U}arrow U$

factors through $g$ .
c) $g$ is locally isomorphic to $f_{U}$ . Namely, for every $x\in U$ , there exists a
neighborhood $V$ of $x$ such that $f^{-1}(V)$ and $g^{-1}(V)$ are isomorphic to each other
as fiber spaces over $V$ .
d) $g$ has a global section.

Roughly speaking, $W$ is the union of Albanese varieties of fibers of $f$ over
$U$ . By construction one sees also that $f_{*}(\omega_{M}^{\otimes m})$ is canonically isomorphic to
$g*(\omega_{W}^{\Theta m})$ over $U$ for any positive integer $m$ .
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(2.4) Let $\Delta(z)=(2\pi)^{12}\exp(2\pi iz)\{\Sigma_{n=1}^{\infty}(1-\exp(2\pi in))\}^{24}$ be the cusp form on $H$

of weight six. Given any small open set $V$ in $U$ and holomorphic $(n-1)$-forms
$\omega_{1},$

$\cdots$ , $\omega_{12}$ on $V$ , we set $-(\omega_{1}\underline{\sim}, \cdots , \omega_{12})=\Delta(\hat{T}(y))(\otimes_{j=1}^{12}(g^{*}\omega_{j}\wedge d\zeta))$ , where $\zeta$ is the
fiber coordinate of $\tilde{U}\cross Carrow\hat{U}$ . This is a 12-tuple holomorphic n-form on
$\pi^{-1}(V)\cross C$ , where $\pi$ is the covering map $0arrow U$ . Note that $\tilde{G}$ acts on $\pi^{-1}(V)\cross C$

and the quotient is $g^{-1}(V)$ . By construction and by the properties of the cusp
form $\Delta$ , one sees that $-’\approx(\omega_{1}, \cdots , \omega_{12})$ is G-invariant, and hence gives $--(\omega_{1}, \cdots , \omega_{12})$

$\in H^{0}(g^{-1}(V), \omega_{W}^{\otimes 12})\simeq H^{0}(f^{-1}(V), \omega_{M}^{\otimes 12})$ . This assignment $(\omega_{1}, \cdots , \omega_{12})arrow\Xi(\omega_{1}, \cdots\omega_{12})$

yields a section $--$ of $\mathcal{H}_{om}(\omega\ovalbox{\tt\small REJECT}^{12}, f_{*}(\omega_{u^{12}}^{\emptyset}))\simeq f_{*}(\omega a_{/S}^{12})$ defined globally on $U$ . In
the sequel we are interested in the problem whether and how $--extends$ to the
whole space $S$ .

(2.5) Consider first the case in which $n=2$ . So $S$ is a curve and $\Sigma$ is a
finite set. For the moment, until (2.9), we assume that $f$ is minimal, that means,
there is no exceptional curve contained in a Pber of $f$. As we shall see later,
the general case can be easily reduced to such a case.

(2.6) The types of singular fibers of minimal elliptic surfaces were classified
by Kodaira [Kol]. For each type we define a number $\mu$ by the following table
below.

$\overline{|^{\frac{Type1I}{\mu|1-m^{-1}}|_{1/2|1/65/6|}^{I^{*}|IIII*|}\frac{III}{1/4}|\frac{III^{*}}{3/4}|\frac{IV}{1/3}|\frac{IV^{*}}{2/3}|}|}$

The meaning of $\mu$ will be clarified later. $m$ is called the multiplicity of
fibers of type $mIb$ . For other types we set $m=1$ . Multiple fiber means a fiber
of type $mIb$ with $m>1$ .

The J-invariant has a pole at $x\in S$ if and only if $M_{x}=f^{-1}(x)$ is of type
$mIb$ . The order of the pole is $b$ .

The local monodromy $\Phi_{x}$ of $\Phi$ at $x$ is determined up to conjugacy by the
type of $M_{l}$ . Conversely, the type of $M_{x}$ is determined by $\Phi_{x}$ except that $\Phi_{x}$

does not depend on $m$ in case of type $mIb$ .
(2.7) In [U1], Ueno has solved our extension problem of $--in$ case $m=1$ .

His result is summarized as follows.
If $M_{x}$ is not of type $mIb--$ extends to a holomorphic section $-=$ of $\mathcal{P}_{12}$

$=f^{*}(\omega_{M/S}^{\otimes 12})$ over $x$ . Moreover, if $dt$ is a local base of $\omega_{S}$ at $x$ , the divisor of
zeros of the 12-tuple holomorphic 2-form $-\cdot=(dt^{\otimes 12})$ in a neighborhood of $M_{x}$ is
$12\mu M_{x}$ . Note that $12\mu$ is a positive integer.

If $M_{x}$ is of type $1Ib$ , then $\Xi$ extends to a section $-=$ of $\mathcal{P}_{12}$ over $x$ and the
divisor of zeros of $-\cdot(dt^{\otimes 12})=$ is $bM_{x}$ .

Thus, $J_{-}^{=}$ gives a section of $\mathcal{P}_{12}\otimes J^{*}O(-1)$ off the multiple fibers. More-
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over, if there is no multiple fiber, $J_{-}^{=}$ yields isomorphisms $\mathcal{P}_{12}\simeq J^{*}O(1)\otimes\sum_{x}12\mu[x]$

and $f^{*}\mathcal{P}_{12}\simeq\omega_{M/S}^{\Theta 12}$ .
REMARK. Apparently, [U1] solves the problem only for “basic members”,

namely, in the case where $f$ admits a global section. However, his method is
completely local with respect to $S$ . On the other hand, if $M_{x}$ is not a multiple
fiber, $f$ admits a local section over a small neighborhood of $x$ . So his method
works in general.

(2.8) To study the case of multiple fibers, we use Kodaira’s theory [Ko2;

\S 4].
Suppose that $M_{x}$ is of type $mIb$ . Then, replacing $M_{x}$ by a fiber of type

$1Ib$ we obtain another elliptic surface $f^{*}:$ $M^{*}arrow S$ . From the converse view-
point, $M$ is obtained from $M^{*}$ by a standard process called “logarithmic trans-
formation”. From this explicit description of $M_{x}$ , it follows that any non-vanish-
ing holomorphic 2-form on a neighborhood of $M_{x}^{*}$ induces naturally a holomorphic
2-form on a neighborhood of $M_{x}$ , the divisor of zeros of which is $(1-m^{-1})M_{x}$

(recall that $m^{-1}M_{x}$ is a usual divisor).

In view of this theory we infer that $J_{-}^{m.m}=$ extends to a section of $\mathcal{P}_{12}^{\otimes m}$

$\otimes J^{*}\mathcal{O}(-m)$ over $x$ , the divisor of zeros of which is $12(m-1)M_{x}$ . So $\omega_{M/S}^{\otimes 12m}$

$\simeq f^{*}(\mathcal{P}_{12}^{\otimes m}\otimes J^{*}\mathcal{O}(-m))\otimes[12(m-1)M_{x}]\simeq f^{*}(\mathcal{P}_{12}^{\otimes m}\otimes J^{*}\mathcal{O}(-m)\otimes[12(m-1)x])$ over $x$ .
(2.9) Combining (2.7) and (2.8), we obtain the following

THEOREM. Let $f$ : $Marrow S$ be a minimal elliptic surface and let $m$ be a pOsitjve
integer such that $k=12m$ is divisible by the multiplicities of all the srngular fibers
of $f$. Then $(J\Xi)^{m}$ extends to a holomorphic section of $\mathcal{F}_{k}=f_{*}(\omega\Re_{/S}^{k})\otimes J^{*}\mathcal{O}(-m)$

and $gvves$ isomorphisms $\mathcal{F}_{k}\simeq O_{S}[\sum_{x\in\Sigma}k\mu_{x}x]$ and $\omega\Re_{/S}^{k}\simeq f^{*}(\mathcal{T}_{k}\otimes J^{*}O(m))$ .
Note that $\mathcal{F}_{k}$ is a usual invertible sheaf because $k\mu_{x}\in Z$ .
(2.10) If $f$ is not minimal, we blow down exceptional curves successively

and we finally obtain a minimal model $f’$ : $M’arrow S$ of $f$. Multiplicities and $\mu’ s$

of singular fibers are defined as those of $f$. Then, since $\mathcal{F}_{k}$ in (2.9) is a birational
invariant, we have $\mathcal{F}_{k}\simeq \mathcal{O}_{S}[\Sigma_{x\in\Sigma}k\mu_{x}x]$ as in (2.9). Moreover, $\omega_{M’ S}^{\Theta k}\simeq f^{*}(\mathcal{F}_{k}$

$\otimes J^{*}O(m))\otimes O_{M}[kR]$ , where $R$ is the ramification locus of the birational morphism
$Marrow M^{f}$ .

(2.11) Now we consider the case in which $n=\dim M$ is general.

DEFINITION. A point $x$ on the singular locus $\Sigma$ is said to be ordinary if
the following conditions are satisfied.
a) $\Sigma$ looks like a smooth divisor in a neighborhood of $x$ .
b) There exists a curve $Z$ in $S$ such that $Z$ meets $\Sigma$ at $x$ transversally and
that $f^{-1}(Z)$ is ideal-theoretically non-singular in a neighborhood of $M_{x}=f^{-1}(x)$ .
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Set $\Sigma_{2}=$ { $x\in\Sigma|x$ is not ordinary} and $U_{2}=S-\Sigma_{2}$ . By Bertini’s theorem we
infer that $\Sigma_{2}$ is Zariski closed in $S$ and $\dim\Sigma_{2}\leqq n-3$ .

(2.12) Let $Y$ be an irreducible component of $\Sigma$ with dim $Y=n-2$ . Any

general point $x$ on $Y$ is ordinary and $M_{x}$ is a singular fiber of the elliptic
surface $f^{-1}(Z)$ as in (2.11; b). The multiplicity and the local monodromy of
$M_{x}$ are independent of the choice of $x$ and $Z$ . So the type is determined, which
we define to be the type of $Y$ . In particular $\mu_{Y}$ and the multiplicity $m_{Y}$ are
well-defined.

(2.13) Let $m$ be a positive integer such that $k=12m$ is divisible by the
multiplicities of all the components of $\Sigma$ of dimension $n-2$ . Then $(J_{-}^{-})^{m}$ extends
to a section of $\mathcal{F}_{k}=f_{*}(\Omega_{M/S}^{\otimes k})\otimes J^{*}\mathcal{O}(-m)$ over $U_{2}$ and yields an isomorphism
$\mathcal{F}_{k}\simeq 0_{s}[\sum k\mu_{Y}Y]$ over $U_{2}$ .

Indeed, if $x$ is ordinary and is of multiplicity one, the extension problem
over $x$ is solved by Ueno’s method. To study the case $m_{Y}\geqq 2$ , we define the
notion of “logarithmic transformation” along a smooth divisor on $S$ in the
obvious way and aPply Kodaira’s method as in (2.8). Thus, the extension
problem is solved over $U_{2}$ .

We have also the following alternate proof of the above fact when $S$ is
projectively algebraic. Clearly $\mathcal{F}_{k}$ is torsion free, and is invertible on $U_{2}$ . So
we have an invertible sheaf $\mathcal{L}$ on $S$ such that $\mathcal{L}\simeq \mathcal{F}_{k}$ on $U_{2}$ . $X$ is the reflexive
hull of $\mathcal{F}_{k}$ . We will show that $(J\Xi)^{m}$ extends to a section of $X$ on $S$ . We
use the induction on $n$ since this is true when $n=2$ . Take a sufficiently ample
general hyperplane section $H$ of $S$ . Then $H^{1}(S, \mathcal{L}[-H])=0$ and hence
$H^{0}(S, \mathcal{L})arrow H^{0}(H, \mathcal{L}_{H})$ is bijective. Applying the induction hypothesis to the
elliptic fiber space $f^{-1}(H)arrow H$, we obtain a section of $\mathcal{L}_{H}$ . The corresponding
section of $\mathcal{L}$ is obviously the desired extension. We have also $\mathcal{L}\simeq O_{S}[\sum k\mu_{Y}Y]$ .

(2.14) Now we study $\omega_{M/S}$ . Since $\mathcal{F}_{k}\simeq \mathcal{L}$ on $U_{2}$ , a holomorphic section of
$\mathcal{L}$ gives a meromorphic section of $\omega_{M/S}^{\otimes k}\otimes f^{*}J^{*}O(-m)$ whose poles are contained
in $f^{-1}(\Sigma_{2})$ . Hence $\mathcal{L}\simeq f_{*}(\omega_{M’ S}^{\otimes k}\otimes \mathcal{O}_{M}[X])\otimes J^{*}O(-m)$ for some effective divisor $X$

on $M$ such that $f(X)\subset\Sigma_{2}$ . Then we have a natural homomorphism $f^{*}(\mathcal{L}\otimes J^{*}O(m))$

$arrow\omega_{M/S}^{\otimes k}[X]$ . So $\omega_{M}^{\otimes k},s\simeq f^{*}(\mathcal{L}\otimes J^{*}\mathcal{O}(m))\otimes \mathcal{O}_{M}[E-X]$ for some effective divisor $E$

on $M$.
To study $E$ further, take $(n-2)$ general hyperplane sections of $S$ and let

$Z$ be the intersection of them. Then $f^{-1}(Z)arrow Z$ is an elliptic surface by
Bertini’s theorem. Restricted to $f^{-1}(Z)$ , the above morphism reduces to the one
in (2.10). So $E\cap f^{-1}(Z)$ is a union of finite number of proper transforms of
exceptional curves contained in fibers. From this observation we infer that
dim $f(E)\leqq n-2$ . Moreover, by virtue of (1.10), $E$ is numerically fixed by $f^{*}L+E$

for any Q-bundle $L$ on $S$ .
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(2.15) Putting things together we obtain the following

THEOREM. Let $f:Marrow S$ be an elliptjc fiber space with $n=\dim M$ such that
the J-invariant $J:Sarrow P^{1}$ is holomorphic. Let $m$ be a posttive integer such that
$k=12m$ is divistble by the multiplicities of all the comp0nents $Y$ of the singular
locus $\Sigma$ of $f$ with dimY $=n-2$ . Then $\omega\Re^{k}\simeq f^{*}(\omega 8^{k}\otimes J^{*}O(m)\mathfrak{U}_{S}[\sum_{Y}k\mu_{Y}Y])$

$\mathfrak{U}_{M}[E-X]$ for some effective divisors $E,$ $X$ on $M$ such that $f(X)\subset\Sigma_{2}$ and that
$E$ is numerically fixed by $f^{*}L+E$ for any Q-bundle $L$ on $S$.

REMARK. $X=0$ if and only if $f_{*}(\omega_{M/S}^{\otimes k})$ is invertible. So we would like to
ask the following

(2.16) QUESTION. Does there exist a birational model $f’$ of $f$ such that
$X’=0$ for $f’$ ? (X’ corresponds to $X$ for $f.$ )

The answer is Yes if $f$ admits a meromorphic section (cf. [U1]).

(2.17) Most arguments in this section should work for non-algebraic elliptic
fiber spaces too.

\S 3. Zariski decomposition of canonical bundles of elliptic 3-folds.

(3.1) DEFINITION. A Q-bundle $H$ is said to be semiample if there exists a
positive integer $m$ such that $mH$ is a usual line bundle with Bsl $mH|=\emptyset$ .

(3.2) THEOREM. Let $f$ : $Marrow S$ be an elliptic threefold such that $\kappa(M)\geqq 0$ .
Then the canonical bundle of $M$ admits a Zariski decomposition and the semiposi-
tive part of it is semiample.

To prove this, we recall the following result.

(3.3) THEOREM (cf. [F5]). Let $D$ be a reduced effective Q-divisor on a smooth
surface $S$ such that $K_{S}+D$ is Pseudo-effective. Then the semipositive part of
$K_{S}+D$ is semiample.

(3.4) PROOF OF (3.2). Let $g:Varrow T$ be a flat model of $f$ as in (1.12) and
let $W$ be a non-singular model of $V$ . Replacing $T$ if necessary we may assume
that the J-invariant of the elliptic threefold $h:Warrow T$ is a holomorphic mapping
$J:Tarrow P^{1}$ . APplying (2.15) to $h$ , we obtain $\omega_{W}^{\otimes m}=h^{*}(\omega_{T}^{\otimes m}\otimes J^{*}O(m/12)$

$\otimes O_{T}[\sum m\mu_{Y}Y])\otimes O_{M}[E-X]$ for some effective divisors $E,$ $X$ on $W$ as described
in (2.15). So, $mK_{W}=mh^{*}(K_{T}+D)+E-X$ for some reduced effective Q-divisor
$D$ on $T$. Now we claim that $H^{0}(W, tmK_{W})arrow H^{0}(W, tmh^{*}(K_{T}+D)+fE)$ is bijective
for every positive integer $t$ .

Indeed, the injectivity is obvious. To show the surjectivity, let
$\psi\in H^{0}(W, tmK_{W}+tX)$ . $\psi$ is identified with a meromorphic tm-ple 3-form on $W$

whose poles are at most $tX$. Since $\nu;Warrow M$ is birational, $\psi$ is a pull-back of
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a meromorphic tm-ple 3-form $\psi^{f}$ on $M$, which is holomorphic off $\nu(X)$ . Recall
that dim $h(X)\leqq 0$ . Since $g$ is flat, the image of $X$ in $V$ is at most curves, hence
dim $\nu(X)\leqq 1$ . Therefore $\psi’$ is holomorphic on $M$ by Hartogs’ theorem. Conse-
quently $\psi$ is holomorphic, namely, comes from $H^{0}(W, tmK_{W})$ . Thus we prove
the claim.

Now, since $\kappa(M)=\kappa(K_{W}, W)\geqq 0$ , we infer $\kappa(K_{T}+D, S)=\kappa(h^{*}(K_{T}+D), W)\geqq 0$

by (1.8). Let $K_{T}+D=N+H$ be the Zariski decomposition on $S$ . Since $H$ is
semiample by (3.3), tmN is a usual divisor and $Bs|$ tmH $|=\emptyset$ for some positive
integer $t$ . Using (1.24), (1.22) and the property of $E$ , we infer that $mK_{W}+X$

$=mh^{*}(K_{T}+D)+E$ admits a Zariski decomposition and $mh^{*}H$ is the semipositive
part of it. So, by (1.8), the fixed part of $|tmK_{W}+tX|$ is $tmh^{*}N+tE$ . On the
other hand, the preceding claim implies that $tX$ is fixed by $|tmK_{W}+tX|$ . There-
fore $t(mh^{*}N+E-X)$ is an effective divisor. Then $K_{W}=m^{-1}(mh^{*}N+E-X)+h^{*}H$

is obviously a Zariski decomposition of $K_{W}$ . Finally, applying (1.25), we complete
the proof.

(3.5) COROLLARY. Let things be as in (3.2). Then the canonical ring
$\oplus_{t}{}_{\geq 0}H^{0}(M, tK_{M})$ is a finitely generated C-algebra.

PROOF. Similar as in [F5; (1.5)].

(3.6) COROLLARY. Let $M$ be an algebrazc threefold such that $\kappa(M)\neq 3$ . Then
the canonical $nng$ of $M$ is finitely generated.

PROOF. This is obvious if $\kappa\leqq 0$ . If $\kappa=1$ , [F2; Appendix] applies. If $\kappa=2$ ,

a birational model of $M$ has a structure of an elliptic threefold. So (3.5) applies.

(3.7) Our method works for higher dimensional elliptic fiber spaces too,
provided that we have a generalization of (3.3). The conjecture (A2) in the
Appendix is enough for this purpose.

Appendix.

(A1) DEFINITION. A Q-bundle $L$ on a manifold $M$ is said to be big if $\kappa(L\rangle$

$=\dim M$. This is equivalent to saying that $L-E$ is ample for some effective
Q-divisor $E$ .

An effective Q-divisor $D= \sum\delta_{i}D_{i}$ on $M$ is said to be negligible if $\delta_{i}<1$ for
each coefficient $\delta_{i}$ and if the support of $D$ has no singularity other than normaI
crossings.

(A2) Here we are interested in the following

CONJECTURE. Let $D$ be a negligible divzsor on a manifold $M$ with canonical
bundle $K$ such that $K+D$ is $bg$ . Then $K+D$ admits a Zariski deco $mpo\alpha tion$ and
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the $semipo\alpha tive$ part of it is semiample.

(A3) THEOREM. Let $L$ be a line bundle and let $E$ be a Q-divisor on a
manifold $M$ such that $L+E$ is big. Set $L(t)=tL+\underline{tE}\in Pic(M)$ . Then the graded
algebra $\oplus_{t\geq}{}_{0}H^{0}(M, L(t))$ is finitely generated if and only if $L+E$ admits a
Zariski decomPoxtion whose $semipo\alpha tive$ part is semiample.

PROOF. The “if” part is standard (cf., $e.g.$ , [F5; (1.5)]), so we consider
the “only if” part. Let $\phi_{1},$ $\cdots$ , $\phi_{r}$ be a system of homogeneous generators of
the graded algebra. Set $d_{j}=\deg\phi_{j}$ and take a positive integer $m$ divided by all
the $d_{j}’ s$ such that $mE$ is integral. We take a birational model $\pi;M_{1}arrow M$ to
eliminate Bsl $L(m)|$ . Namely, if $F$ is the fixed part of $|L(m)|_{1}$ , where the lower
index 1 denotes the pull-back to $M_{1}$ , we have $|L(m)|_{1}=F+\Lambda$ for a linear
system $\Lambda$ with $Bs\Lambda=\emptyset$ . We claim that $tF$ is the fixed part of $|L(tm)|_{1}$ for
every positive integer $t$ .

To see this, let $\Delta_{j}$ be the divisor of zeros of $\phi_{j}andsetD_{j}=(\Delta_{j}+d_{j}E-\underline{d_{j}E})/d_{j}$ .
Clearly $[D_{j}]=L+E$ and $\phi_{j}^{m/1_{j}}l$ gives $mD_{j}\in|L(m)|_{1}$ . So $mD_{j}-F$ is effective.
For any non-negative integers $a_{1},$ $\cdots$ , $a_{r}$ with $a_{1}d_{1}+\cdots+a_{r}d_{r}=tm$ , the Q-
divisor $\Sigma_{j}a_{j}d_{j}(D_{j}-F/m)=-tF+\Sigma_{j}a_{j}d_{j}D_{j}$ is effective. Since $\phi_{1}^{a_{1}}\cdots\phi_{r}^{a_{r}}$ induces
$\sum_{j}a_{j}d_{j}D_{j}\in|L(tm)|_{1}$ and $H^{0}(M, L(tm))$ is generated by such monomials by
assumption, we infer that $tF$ is in the fixed part of $|L(tm)|_{1}$ . This proves the
claim.

Next we claim that $F$ is numerically fixed by $L(m)_{1}$ . To see this, suppose
that there is a birational morphism $M_{2}arrow M_{1}$ and an effective Q-divisor $X$ such
that $L(m)_{2}-X$ is nef, where the lower index 2 denotes the pull-back to $M_{2}$ .
Take a positive integer $k$ such that $kX$ is a usual Cartier divisor and let $B$ be
the ideal theoretical intersection $kX\cap kF_{2}$ . Take a birational morphism
$g:M_{3}arrow M_{2}$ such that $D=g^{*}B$ is an effective Cartier divisor. Write $kX_{3}=D+kX_{3}’$

and $kF_{3}=D+kF_{3}’$ . Then $X_{3}’\cap F_{3}’=\emptyset$ . Since both $(L(m)-F)_{3}$ and $(L(m)-X)_{3}$

are nef, we infer that $P=L(m)_{3}-k^{-1}D$ is nef. Set $H=[\Lambda]$ . Then $P-H_{a}$

$=F_{3}-k^{-1}D=F_{3}’$ is effective and $H$ is big. So $P$ is big, too. By virtue of [F3;

(6.13)], $P$ is almost base point free in the sense of Goodman. On the other
hand, by the first claim, $tkF_{3}$ is the fixed part of $|tkL(m)_{3}|$ for every positive
integer $t$ . This implies that $t(kF-D)_{3}=tkF_{3}’$ is the fixed part of $|t(kL(m)_{3}-D)|$

$=|tkP|$ . Combining them we infer $F_{3}^{f}=0$ . This implies that $X-F_{2}$ is effective.
Thus we prove the claim.

Now, since $H=[\Lambda]$ is nef, $n\tau L_{1}=F+H$ is a Zariski decomposition. The
semipositive part of $L$ is $n7^{-1}H$, which is clearly semiample. Thus we prove
the “only if” part.

(A4) THEOREM. Let $F$ be a line bundle on a manifold $M$ with canonical
bundle $K$ and let $D,$ $E$ be effective Q-divisors such that $D$ is negligible and $E$ is



34 T. $F_{UJITA}$

usual. Supp0se that $mF+E-K-D$ is nef and big for any $m\gg O$ (hence $F$ itself
is $nef$). Then $H^{0}(M, tF+E)\neq 0$ for every $t\gg O$ .

For a proof, see [S] (or [Ka2]).

(A5) THEOREM. Let $L$ be a Q-bundle admitting a Zanski decomp0siti0n
$L=N+H$ on a manifold M. Supp0se that $L-K-D$ is nef and $bg$ for some
negligible Q-divisor $D$ , where $K$ denotes the canonical bundle of M. Then, for
any line bundle $F$ which is numerically equivalent to $qH$ for some $q>0$ , there
exists an integer $k$ such that $Bs|tF|=\emptyset$ for any $t\geqq k$ .

Proof is almost the same as that of [Ka2; Theorem 2.6]. Here we sketch
the outline.

We will first show $\kappa(F)\geqq 0$ . Let $\{N\}$ be the fractional part of $N$ and take
a birational morphism $\pi;M’arrow M$ such that $\pi^{-1}(Supp(\{N\})\cup Supp(D))$ is a divisor
having no singularity other than normal crossings. Let $R$ be the ramification
divisor of $\pi$ and let $K’$ be the canonical bundle of $M’$ . Then $\pi^{*}(L-K-D)$

$=\pi^{*}H+\pi^{*}N+R-K’-\pi^{*}D$ is nef and big. Since $D$ is negligible, the upper
integral hull of $R-\pi^{*}D$ is effective. Therefore $\pi^{*}N+R-\pi^{*}D=E-D’$ for some
effective Cartier divisor $E$ and a negligible Q-divisor $D’$ . Now, applying (A4),

we infer that $H^{0}(M’, tF+E)\neq 0$ for any $t\gg O$ . On the other hand, $R$ is numeri-
cally fixed by $L’=R+\pi^{*}L$ by (1.10). So, by (1.3.2), $R+\pi^{*}N$ is numerically
fixed by $L’$ . Since $Supp(E)\subset Supp(R+\pi^{*}N),$ $(1.23)$ implies that $E$ is numerically
fixed by $E+s\pi^{*}H$ for any $s>0$ . Therefore $H^{0}(M^{f}, tF)\neq 0$ for any $t\gg O$ by
(1.8).

Now, for any given integer $b$ with $|bF|\neq\emptyset$ and Bsl $bF|\neq\emptyset$ , we will show
Bsl $tbF|\subsetneqq Bs|bF|$ for any $t\gg O$ . Our theorem follows from this assertion by a
standard argument using a Noetherian induction (cf. [Ka2]).

To prove the assertion, take an effective divisor $\Delta$ on $M$ such that
$L-K-D-\delta\Delta$ is ample for any small positive $\delta\in Q$ . Take a birational morphism
$\pi;M’arrow M$ satisfying the following conditions:
1) Let $R$ be the ramification divisor of $\pi$ . Then $R\cup\pi^{*}(N+D+\Delta)\cup\pi^{-1}Bs|bF|$

is supported on a divisor $E$ having no singularity other than normal crossings.
2) Let $\Sigma_{i}r_{i}E_{i}$ be the fixed part of $\pi^{*}|bF|$ . Then $\pi^{*}|bF|=\Lambda+\Sigma_{i}r_{i}E_{i}$ for
some linear system $\Lambda$ with $Bs\Lambda=\emptyset$ .

Set $R=\Sigma\rho_{i}E_{i}$ , $\pi^{*}N=\Sigma\nu_{i}E_{i}$ , $\pi^{*}D=\Sigma\epsilon_{i}E_{i}$ and we choose $\delta_{i}\in Q$ with
$0\leqq\delta_{i}\ll 1$ such that $\pi^{*}(L-K-D)-\sum\delta_{i}E_{i}$ is ample on $M’$ . Set $a_{i}=\rho_{i}+\nu_{i}-\epsilon_{i}$

and $c_{i}=(a_{i}+1-\delta_{i})/r_{i}$ for each $i$ with $r_{t}>0$ . Then $c_{i}>0$ for every such $i$ since
$D$ is negligible and $\delta_{i}$ is small. Modifying $\delta_{i}$ slightly if necessary, we may
assume that the minimum of $c_{i}’ s$ is attained at exactly one value of $i$, say $0$ .
Then $-cr_{0}+a_{0}-\delta_{0}=-1$ and $-cr_{i}+a_{i}-\delta_{i}>-1$ for $i\neq 0$, where $c=c_{0}$ . Denoting
by $K’$ the canonical bundle of $M^{f}$ , we see that $s \pi^{*}F-K^{f}+\sum_{i}(-cr_{i}+a_{i}-\delta_{i})E_{i}$
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is numerically equivalent to $sF-K’+c(\Lambda-bF)+R+1V-D=((s-bc)q-1)H+c[\Lambda]$

$+ \pi^{*}(L-K-D)-\sum_{i}\delta_{i}E_{i}$ and is ample for any $s\gg O$ . Therefore, by Kawamata-
Viehweg’s vanishing theorem, $H^{0}(M’, s\pi^{*}F+A)arrow H^{0}(B, [s\pi^{*}F+A]_{B})$ is surjective,
where $A$ is the upper integral hull of $\sum_{i\neq 0}(-cr_{i}+a_{i}-\delta_{i})E_{i}$ and $B=E_{0}$ . Note
that $A$ is an effective Cartier divisor. Similarly as in [Ka2], $H^{0}(B, [s\pi^{*}F+A]_{B})$

$\neq 0$ by (A4). On the other hand, we have $Supp(A)\subset Supp(R+\pi^{*}N)$ since $a_{i}>0$

implies $\rho_{i}>0$ or $\nu_{i}>0$ . So, similarly as in the first step, we infer that $A$ is
numerically fixed by $s\pi^{*}F+A$ . Hence $H^{0}(M’, s\pi^{*}F)\simeq H^{0}(M’, s\pi^{*}F+A)$ for any
$s>0$ . Combining these observations we infer that $H^{0}(M’, s\pi^{*}F)arrow H^{0}(B, s\pi^{*}F)$

is not a zero-map for any $s\gg O$ . This implies $\pi(B)\not\subset Bs|sF|$ for $s\gg O$ , so
$Bs|tbF|\subsetneqq Bs|bF|$ for any $t\gg O$ .

REMARK. There is nothing new in this theorem (A5), except possibly the
notion of Zariski decomposition.

(A6) DEFINITION. Let $V$ be a normal variety and let $D$ be a Q-Weil divisor
on $V$ . The pair (V, $D$) is said to have only negligible singularities if there
exists a non-singular model $\pi;Marrow V$ and effective Q-divisors $D^{*},$ $R$ on $M$

satisfying the following conditions:
1) $D^{*}$ is negligible and $\pi_{*}(D^{*})=D$ .
2) codim $\pi(R)\geqq 2$ .
3) $(K+D^{*}-R)C=0$ for any curve $C$ in any fiber of $\pi$ , where $K$ is the canoni-
cal bundle of $M$.

If (V, $D$) has only negligible singularities, the Q-bundle $K+D^{*}-R$ is deter-
mined uniquely up to birational equivalence. Namely, if $\pi_{1}$ : $M_{1}arrow V$ is another
nonsingular model with effective Q-divisors $D_{1}^{*}$ and $R_{1}$ on it as above, then the
pull-backs of $K+D^{*}-R$ and $K_{1}+D_{1}^{*}-R_{1}$ to any manifold dominating $M$ and $M_{1}$

over $V$ are the same. This Q-bundle will be denoted by $K(V, D)$ , or symboli-
cally by $K_{V}+D$ . When it admits a Zariski decomposition, the semipositive part
of it is well-dePned.

REMARK. If in addition $K(V, D)$ comes from a Q-bundle on $V,$ $(V, D)$ has
only log-terminal singularities in the sense of Kawamata [Ka2]. We say that
$V$ has only negligible singularities if so does (V, $0$). Any canonical singularity
in the sense of Reid is negligible in this sense.

(A7) THEOREM. Let (V, $D$ ) be a pair having only negligible singularities
and supp0se that $K(V, D)$ admits a Zariski decomposjtjon. Then the semipositjve
part of it is semiample if $K(V, D)$ is big.

PROOF. We have a non-singular model $\pi:Marrow V$ and effective Q-divisors
$D^{*},$ $R$ on $M$ as in (A6). Changing the model if necessary, we may assume
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that we have a Zariski decomposition $K+D^{*}-R=K(V, D)=N+H$ on $M$. Set
$L=N+R+tH$ for some $t\gg O$ . Then $L-K-D^{*}=(t-1)H$ is nef and big. So, by
virtue of (A5), it suffices to show that $tH$ is the semipositive part of $L$ . This
is equivalent to saying that $N+R$ is numerically fixed by $L$ .

By the property (A6; 3) of $K(V, D)$ and by (1.5), we infer that $R$ is numeri-
cally fixed by $T=R+tK(V, D)=R+tN+tH$. Using (1.3.2) we see that $R+tN$

is numerically fixed by $T$. So (1.23) applies.

(A8) COROLLARY. Let $D$ be a negligible Q-divisor on a manifold $M$ such
that $K+D$ is big. If $K+D$ admits a Zariski $decompo\alpha tion$ , then the graded
algebra $\oplus {}_{t}H^{0}(M, tK+\underline{tD})$ is finitely generated.

(A9) Final Comment. The essential problem is whether $K+D$ admits a
Zariski decomposition or not. The answer will be Yes if we have a good theory
of “minimal model”. Moreover, other approach might be possible because it
seems that any big Q-bundle admits a Zariski decomposition.
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Note added in proof.

Recently, S. Cutkosky found a counter-example to (1.21). We have dim $M$

$=\kappa(L)=3$ in his example, which shows that, in general, the negative part of the
Zariski decomposition may be an R-divisor whose coefficients are irrational
numbers.
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