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1. Introduction.

Let U be the open unit disc in the complex plane and let 0U be the boundary
of U. If f is analytic in U and Si log*| f(ret?)|d@ is bounded for 0=r<1,
f(e'?), which we define to be lim,., f'(re“’), exists almost everywhere on oU. If

lim | log*| fre)1d6 = " log*| £(e*)1 40,

then f is said to be of the class N.. The set of all boundary functions in N,
is again denoted by N,. For 0< p=<loo, the Hardy space H? is defined by N,NL?
where L? denotes L?(df). If 1<p=<oo, it coincides with the space of functions
in L? whose Fourier coefficients with negative indices vanish. Put H2={fcH?:
fO)=0}. If feL? (1<p<o)and f~3%__.cre'?, then by a well-known theo-
rem of M. Riesz (cf. [6, p. 54]) the series 33%_,c,e'"? is the Fourier series of a
function Pf belonging to L7 (therefore, to H?), and moreover ||Pf|[,<A,|fl,
where A, is a constant depending only on p. Thus P is a bounded projection
from L? to HP,
Let p=L>. We define the Toeplitz operator T4 on H? by

Tef =P(pf).

Clearly 94 is a bounded operator with norm at most A,[é].. We would like
to define Toeplitz operators on H? for p=oco or 0<p=1. There we cannot use
the projection P. Therefore for 0<p=oco we define the Toeplitz operator T4
on H? by

Tyf =¢f+H3E.
Ty is a bounded operator with norm at most |¢|. from H? to L?/H?. Denot-

ing the kernel of Ty, by kerTy, we have clearly

kerTy4 =kerdy
for 1< p<oo.
In §4 of this paper, we determine under what conditions ker7y is finite
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dimensional. This was shown independently by Hayashi for p=2. For
1= p=co, there is a function ¢ such that ker T4+ {0} and ker Ty is finite dimen-
sional. For this purpose, we need special outer functions which we call strong
outer functions (see §3). In §5, we apply the above result to describe the inter-
section of past and future of a stationary stochastic process in the case where
the intersection is finite dimensional. Bloomfield, Jewell and Hayashi deter-
mined the spectral density of the process. To describe the intersection of past
and future relates to researches of nonconstant real (or nonnegative) functions
in weighted Hardy spaces. Applications to H! extremal problems and to Hankel
operators are given in §§6 and 7, respectively. Recently the author des-
cribed the solution sets of extremal problems in H* when the sets are weak*-

compact. in §6 implies Theorem 2 in [10].

2. Nontrivial kernels of Toeplitz operators.

Let Ty be a Toeplitz operator on H? (0<p=co), then ker T4+ {0} if and
only if ¢ has the form g/f for some nonzero g in H% and f in H?. There-

fore ker Ty {0} implies log|¢|<L'; thus |@¢|=|h| for some outer function A
in H*.

PROPOSITION 1. If |@|=I|h| for some outer function h in H> and O@=
oh/|ohl, then ker Ty=Kker Ty.

PROOF. When f=HP and g€ H3E,

of =g iff OF = ghT
because ¢=0Fh.

Let feH> and f=bk for an inner function b and an outer function k.
When ¢=F7, ker Ty=ker T; by Proposition 1 and ker T4+ {0} if b is not constant.

PROPOSITION 2. Let 0<p=<co. If kerTy+{0}, then the range of T4 con-
tains the set ®+HPE of all analytic trigonometric polynomials.

ProOF. When fekerT; is nonzero, ¢f=g for some nonzero g€ H}. g
has the form g=X%,a;z/ and a,#0. Hence ¢z"f=a,+X51d;422’, and T,H?
21+H2.  Moreover @z"+f=anz+an+1+ 2D5ee@;s02""". Thus TsH?>z+HPE.
Proceeding similarly, we obtain TyH?=z'+Hp for any [=0.

Coburn’s theorem states that if 7y is a Toeplitz operator on H? and if
ker T4+ {0}, then ker Ty={0} (cf. [5, p.185]). [Proposition 2| gives a new proof
of Coburn’s theorem for p=2 and generalize it for p+#2. For p=2, we can
show that ker T:4+ {0} if and only if T4H*2>P+H3; If Ty isa Toeplitz opera-
tor on H? (1=p=<oo) and if ker T4+ {0}, then ker T3={0} by be-
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cause H?"\zH?={0}. However this is not true for 0< p<1.

3. Strong outer functions.

Let g be a nonzero function in H? (0<p=o0). Then g is an outer function
if and only if % is constant whenever kg H? for some k= L> with k=0 a.e.
For if g is not an outer function, then g has the form g=g¢h where ¢ is a non-
constant inner function and 4 is an outer function in H?. Putting k=¢+4g-+1,
kge H? and k is not constant. If g is an outer function, then g-*< N, by [6,
p.26]. If kg H? for some k= L= with k=0 a.e., then keN,NL=, and & is

constant.

DEFINITION. Let g be a nonzero function in H? 0<p=w0). We say g is
a p-strong outer function if it has the following property: If kg H? for some
Lebesgue measurable & with 2=0 a.e., then % is constant.

A p-strong outer function is an outer function. In [10, p. 225], a 1-strong
outer function is called a strong outer function. We remark that de Leeuw and
Rudin [4, p. 477] used a strong outer function in a slightly different meaning.
Let p=1 and g=H?. Then if g-'€HP? or Reg(e??)=0 a.e., then g is a p-
strong outer function (cf. [10, Proposition 5], [11, Theorem 37]). However if
p<1 this is not true. Choose g=1—z and k=—2z/(1—2)% then kgeH?. Sup-
pose p=1/2. If ge H? and g-*H>, then g is a p-strong outer function.

Let w be a nonnegative function in L!. The weighted Hardy space H?(w)
=H?(wdf), 0< p=co, is defined as follows. For 0<p<oo, H?(w) is the closure
of all analytic polynomials in L?(wd@), while H*(w) is the weak*-closure of all
analytic polynomials in L*(wdf). We assume that w=|g|? for some outer
function g in H?. Then H?(w)=g *H?for p+coand H*(w)=H>. H?(w), denotes
the set of all nonnegative functions in H?(w).

PROPOSITION 3. Let 0<p<oo. A function g is a p-strong outer function in
H? if and only if H?(1g|?):+ consists of nonnegative constants.

PrOOF. Let & be a Lebesgue measurable function. Then kgeH? if and
only if ke H?(|g|?), from which the proposition follows.

PROPOSITION 4. Let 0<p=oco. Suppose gisa p-strong outer function and h
is an outer function in HP. If |g|<y|h| and 7 is a positive constant then h is a
p-strong outer function.

The proof follows easily from the definition of a p-strong outer function.

Let 0<p<1/2. (HP), contains nonconstant functions. Hence 1 is not a p-
strong outer function. It is reasonable to guess that we do not have any p-
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strong outer functions. Unfortunately we could not prove it.

PROPOSITION 5. Let 0<p<1/2. If g is an outer function in H? that is
bounded on some open set, then it is not a p-strong outer function.

PrROOF. Suppose g(e??) is bounded by 7, on an open interval (¢, d). Put
k=z/((z—a)(1—az)) with a=(c, d), then k=H?, k=0 a.e. and % is bounded by
Tz on <_7r’ C]U[d’ ﬂ.‘].

[ 1rgiza/2n = rlgdl k]pd0/27r+r2<gc_ ]glpd0/2x+SZ[glpd0/27r) < oo
and hence kge L?. This implies kg= H? because kg N..

PROPOSITION 6. Let 0<g=co and 0<p<q/(2q+1)<q where if g=co we as-
ume q/(2qg+1)=1/2. If g is a function in H? then it is not a p-strong outer
function.

PrROOF. Put k=—z/(1—z)%. Then £2=0 a.e. and k<\J{H"; 0<y<1/2}.
Let 1/s+1/t=1 (s=1 and {=1), then

1/t

S]kg]pdﬁ/Zﬂ < (Skf’sdﬁ/Zn)us(Slg!p‘dﬁ 2x)

If t=q/p then s=q/{g—p), and ps=pq/(g—p)<1/2. Thus kg belongs to H?
because k= H?® and g H?'. This implies that g is not a p-strong outer func-
tion.

Strong outer functions are defined for the Hardy class H? on a polydisc

and are studied in [7] [11]

§4. Finite dimensional kernels of Toeplitz operators.

For 0<p=oco, T4=T} denotes a Toeplitz operator on H?. Let ¢=%' and
leZ, where Z, denotes the set of all nonnegative integers. When 1<p=<co,
ker T8=H*Oz'H* and dimkerT3=/. When 0<p<1, kerTE=H?Nz'"*'H? and
dimkerT5=oco., We denote by %, the set of all analytic polynomials with
degree =<n.

LEMMA 1. Let Ty=T} be a Toeplitz operator on H? (0<p=o0). If feH?
is a nonzero function and z"f€kerTy for some neZ,, then pfekerTy for any
PEP, and thus dimker Ty=n+1.

PROOF. If T4(z"f)=0, then there is a g= HY such that ¢z"f=3. If pee,,
then we can write p=y(z—a,) --- (z—a,) where /[<n. Thus

opf =@ 'gl—a,2) - (1—a,2";
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hence T4(pf)=0.

LEMMA 2. Let Ty=T3 be a Toeplitz operator on H? (0< p=o0). If dimkerTy
=n-+1, then there exists a nonzero f<HP such that z"fekerT.

PrROOF. Since kerTy is a subspace of H? and has at least n+1 linearly
independent functions, we can find a function z"f<kerTy for some nonzero
feH?.

THEOREM 7. Let 0<p=co and neZ.~{0}. Suppose T4=T} is a Toeplitz
operator on H?. Then the following conditions (1), (2) and (3) are equivalent:

(1) dimker Tg=n< oo,

(2) There is a p/2-strong outer function g* in HP'® such that

kerT¢ = {Pg: peg)n—l};

(3) There is an outer function h in H* with |¢|=|h| and a p/2-strong
outer function g® in HP?'? such that

P — ¢ h n]glz.

T gl Bl g

Proor. (1)=(2). By there exists a nonzero g=H? such that
z"gekerTy. By Lemmal, pge=ker T, for any peP,-,. Thus each fekerTy
has the form pg because dimker Ty=n. If g=gq,g; for some nonconstant inner
function ¢, and g,=H?, that is, g is not an outer function, then z"~*(¢,—¢.(0))g:
belongs to ker Ty and so z"k<ker Ty for some nonzero k= H?. This contradicts
dimker Ty=n; hence g is an outer function. We shall show that g*is a p/2-
strong outer function. Since kerTy+ {0}, there is an outer function A in H*
with |¢|=|h|. Setting D=¢h/|@h|, one has a nonzero k< H?Z such that @z"'g
=k, because kerTg=kerT, by [Proposition 1. Since |@|=1, £ has the form
k=zq,g where ¢, is an inner function; thus z"-'g,geker To=KkerT4. By what
was just proved above, z""'¢,g=pg for some pe<P,;, and ¢, is a constant
function ¢, with |¢,|=1. Thus @=c,z"|g|?/g% 1If g*is not a p/2-strong outer
function, then there exists a nonzero f=H?? such that f is not a positive
scalar multiple of g® and arg f=argg® Suppose f=q,/* Where ¢, is an inner
function and /* is an outer function. Then @=¢,z"q,|/|%/l?, and @z”“qsl:c'zél'
and z""'g,/ckerTo=kerTy,. Hence z"-'g/=pg for some p=<P, ,. Since g is
an outer function, p=cz"~' for some nonzero constant ¢ and so ¢, is a constant
function ¢;. Thus /=¢Cycg and so f=|c;|%Csc?g® This implies that g% is a p/2-
strong outer function.

(2)=(3). As in the proof of (1)=(2), there is an outer function h in H®
with [¢|=1h|. Thus for @=¢h/|¢h|, there holds @=cz"|g,|?/g? where ¢
is a constant function with |c|=1 because z"~'g,ekerTy. g=c'/?g, satisfies
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the condition of (3).

(3)=(). It is sufficient to show that dimker7Ty=n by [Proposition I. If
dim ker Tg=n-+1, then z" f ker Ty for some nonzero /< H? by Lemma 2. Hence
@z"f=F for some nonzero k< H?, and

fk g*

This contradicts the fact that g2 is a p/2-strong outer function because fke
H?’®, Thus dimkerTp=<n. On the other hand, @z"-'g=Zg so that z"-'ge
kerTy. By Lemma 1, dim ker Tp=n.

o= B _ . lal’

COROLLARY 1. Suppose 0<p<1 and T4 is a Toeplitz operator on HP. If
there 1s a nonzero function f in kerTg which is bounded on some open set, then
dim ker Tg=o0.

ProoF. If dimkerTs=n<oo for n+#0 then f=pg for some p&P,., and
some p/2-strong outer function g® by [Theorem 71 Hence g* is bounded on some
open set. This contradicts

COROLLARY 2. Let g be a nonzero function in H?* (0<p=o0). Suppose ¢=
lgl/g and Ty is a Toeplitz operator on HP. g is a p/2-strong outer function if
and only if ker Ty={0}.

Proor. If kerTy={0}, then g is an outer function; hence g'*ckerT ;4.
If dimkerT;5=2, then zfckerT;4 for some nonzero f€H? by hence
fekerTy. This contradiction implies dimker T';4=1, therefore z¢=2|k|%/k* for
some p/2-strong outer function k2 by Hence |g|/g=1k|%/k* and
g=7k® for some positive constant y. Thus g is a p/2-strong outer function.
Conversely if g is a p/2-strong outer function then it is easy to see that
dim ker T'y={0}.

If 0<p<g=oco, then kerT4CkerT% and it may happen that kerT4<Sker T4,

COROLLARY 3. Let 0<p<g=oco. If dimkerT3=n and neZ.\{0}, then
kerT%={0} or kerT%=kerT3.

PROOF. By and we can write ¢=z"|g|%/g* for
some p/2-strong outer function g® If ker7'%+{0}, then ¢=2z'|k|%/k* for some
g/2-strong outer function %* and /<n by Thus k*ckerT3 because
k*ckerT%, and k*=yg*® for some positive constant y. Thus (=n, and kerT%=

kerT% by [Theorem 7.

COROLLARY 4. Let 0<p<g=oco. If dimkerT%4=n and neZ,, then
dimkerT4=o0 or kerTj=kerT%.
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Proor. If log|g|& LY, then kerTE=kerT4={0}. We may assume log|¢|
eL! so that ¢=2"|g|%/g® for some p/2-strong outer function g® by

If 0+dim kerT5< oo, then ker T%=={0} or kerT4=ker T3 by Hence
if kerT3+kerT%, then dim kerT'5=o0.

Let 1=p<g=oco and n>0. Then there exists ¢ in L> such that ker7%={0}
and dimker73=n. For put g=(1+2)""? and ¢=2"|g|?/g’ then dimkerT]=
by While ker T%={0} by because g¢ H

n

5. The intersection of past and future.

Let w be a nonnegative function in L' and H?(w) the weighted Hardy
space, 0<p=<=oo. Levinson and McKean showed essentially that dim A*(w)
NzH*w)=1 if and only if w=]|h|? for some l-strong outer function A% From
the view point of probability theory, zH%*w) denotes the future of a discrete
stationary stochastic process and H*(w) denotes its past. In this section, we
consider A?(w)NzH?(w) in general. If p=co and w>0a.e., H>(w)=H>; hence
H>(w)NzH=(w)={0}. For p#co we can assume that w=|h|? for some outer
function 4 in H?. Otherwise H?(w)N\zH?(w)=L?(wdf). Note that hH?(w)=H?.

PROPOSITION 8. Let 0<p<oco. Suppose w=1|h|? for some outer function h
in H? and ¢=|h|*/h*. Then

H?(w)NzH?(w) = zh~'kerT}.
ProoF. If fe H?(w)NzH?(w) is nonzero, then f=h-1g=zh 'k for some g
and %2 in H?. Hence ¢k=2g and kekerT3. This implies H?(w)NzH?(w)C
zh-*kerT8. Conversely, if kekerT}, then ¢k=2zg for some g=Hj. Thus

=T~ PR,

zh—*k=h"'g belongs to H?(w)N\zH?(w). Hence zh~'ker T§CH?(w)N\zH?(w).

THEOREM 9. Let 0<p<co. Let w be a nonnegative function in L' such that
logwe L' and neZ.. Then the following are equivalent :

(1) dim H?w)N\zH?(w)=n.

(2) There is a p/2-strong outer function g® and an analytic polynomial s, of
degree n with all of its zeros on 0U such that w=|s,g|?, leading thus to H?(w)
NzHP(w)={zs8,7!; SEP1-1}.

PrOOF. We may assume w=|h|? for some outer function in H?. Put ¢=
|h|2/h%. (1)=(2). By dimkerT8=n and ¢=2z"|g|*/g* for some
p/2-strong outer function g* by [Theorem 7. Since hckerT?; and dimkerT 4
=n+1 by h=s,g for some s,cP, by [Theorem 7. Since 4 is an
outer function, all zeros of s, are on dU. s,is an analytic polynomial of degree
n exactly because ¢=|s,g|%/s,g%. By kerT2={sg; s€P,_,} and
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by (2) follows. (2)=(1) is clear.

Bloomfield, Jewell and Hayashi determined w such that H¥Hw)N\z*H*(w)
={0} but H*(w)Nz*'H¥w)#{0}. This result follows from which
we obtained independently of them. Similarly we can study H?(w)N\H?(w) and
H?(w), in the special weights w as in [Theorem 9 However we do not know
their structures in general. For 0<p<1 (resp. 0<p<1/2), H?NHP? (resp. H?)
is not well understood even for w=1.

6. Extremal problems.

For ¢ = L=, we define the functional K4 on the Hardy space H' by
Ko(f) = S;f(e“’)gﬁ(e“’)dﬁ/%.

The norm of Ky is [|Kyl|=sup{|Ky(f)|; fES}, where S={f€H"; | fl:=1}. Let
Sy denote the set of all f&S for which Ky(f)=||K4|. There is always an
extremal kernel ¢ of K, that is, ¢|.=[Kyll. Let S'={feH'; ||fl,=1}.

PROPOSITION 10. Suppose Sy is not empty and ¢ is an extremal kernel of
K4. Then Sy={¢|f1*€S"; fekerTi}.

Proor. If fekerTj, and |f[*€S', then Z¢f=zg for some g H® Thus
|fI*=¢fg and fgeH' because |¢|=|Kyll a.e. (cf. [6, p.133]). Hence &|f|*
€Ss and SyD{g|f1°eS; fekerTi}t. If FeSy, then ¢F=0 (cf. [4, p. 133])
and ¢F=¢gh*=hh where F=qgh® denotes an inner outer factorization. Hence
zZph=27h and so hekerT3, F has the form F=¢|h|® and this implies the
proposition.

Let ¢ be an extremal kernel of K. By Se+ @ if and only
if kerT;,+{0}. Hence by ker T4+ {0} if and only if S,,+ @ and
z® is an extremal kernel, where |¢|=h| for some outer function % in H* and
@=¢h/|gh|. If ¢ is an inner function, then g is an extremal kernel and S;+ @.
By Proposition 10, S;={q|f|*eS"; fekerTs}. Hence S,={q|f|*cS'; fe
H*©zqH*} because kerT;;=H*OzqH*. If ¢=2z" for some neZ,, then

Sy = {2 p|*ES"; pEP.} = {lefll(z—aﬂ(l—dﬂ)esl; 7>0 and |a;|<1}.

For a general inner function ¢, we know the structure of H2OzgH* by Ahern
and Clark and hence that of S,.

COROLLARY 5. If ¢=z"|k|/k for some ncZ, and some l-strong outer func-
tion k in H, then
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where {r} denotes the set of all positive numbers.

PrROOF. It is clear that Sy is not empty and ¢ is an extremal kernel. So
by Sg={z"(k/| k)| f1?€S*; fekerT;s}. On the other hand, by
[Theorem 7 ker T2;={pg; € Py}, Where g*=k. Thus S;={z"|p|*kES'; p=P,}
and the corollary follows.

is known ([10]) and it implies that if Sy is weak*-compact and
nonempty, then Sy has the form in

7. Hankel operators.

Let Q be an orthogonal projection from L? to H:. Let gL~ We define
the Hankel operator H; on H*? by

Hyf = Q(of) .
We investigate the set maxHy={f<H?*; |Hyf |.=1Hglll 2}

PROPOSITION 11. Let ¢ be in L* and g=¢+H> and |¢p+H>||=|llw. Sup-
pose maxHy+@. Then

maxHy = kerT} .

ProoOF. It is well known that |Hyl|=|l¢+H>| and Hy=H,, and if maxH,

+@, then |p]=[Hy| a.e. (cf. [1]) so that [T,/ I5+IH,fIi=1Hyllf]3 Hence
max Hg=Kker T.

REMARK. We note that Theorem 2.2 in [1] implies easily. If
¢=2z"|k|/k for some neZ, and some l-strong outer function % in H*, then the
Hankel operator H;; has an s-number |H;4|| of multiplicity exactly n+1, that
is, the dimension of the set of eigenvectors of the operator H;4*H;,; correspond-
ing to the eigenvalue ||H;4|®. For if the s-number of multiplicity is more than
n+2, then zg=Zz'|F|/F for some l-strong outer function Fe H' with /=n+2
by Theorem 2.2 in because |z¢+H>=||=1. Therefore ¢=2z'-'|F|/F and this
contradicts the definition of ¢. Now Theorem 2.2 in [1] implies
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