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Introduction.

In this paper, we shall study the real nilpotent orbits of the vector space
associated to a semisimple symmetric pair.

Let $\mathfrak{g}$ be a real semisimple Lie algebra and let $\sigma$ be its involution. Then
we obtain the direct sum decomposition $\mathfrak{g}=\mathfrak{h}+q$ for $\sigma$ . The pair $(\mathfrak{g}, \mathfrak{h})$ is called
a symmetric pair. The first purpose of this paper is to prove a theorem con-
cerning the H-orbital structure of the nilpotent subvariety $\mathfrak{N}(q)$ of $q$ . The
second purpose is to determine the orbital structure of $\mathfrak{N}(q)$ when the pair $(\mathfrak{g}, \mathfrak{h})$

is of split rank one in the sense of [OS, Def. 2.5.1].

We are going to explain the contents of this paper in detail. Let $H$ be a
connected Lie group with Lie algebra $\mathfrak{h}$ acting on $q$ . Then $H$ leaves $\mathfrak{N}(q)$ in-
variant. Let $[\mathfrak{N}(q)]$ be the totality of H-orbits of $\mathfrak{N}(q)$ . One can define sym-
metric pairs $(\mathfrak{g}^{a}, \mathfrak{h}^{a})$ and ( $\mathfrak{g}^{f}(\mathfrak{h}^{d})$ from $(\mathfrak{g}, \mathfrak{h})$ as we did in [OS, \S 1]. Using the
notation there, we define $\mathfrak{N}(q^{a})$ and $\mathfrak{N}(q^{d})$ . In \S 1, we shall show the following
theorem.

THEOREM. $[\mathfrak{N}(q)]\cong[\mathfrak{N}(q^{a})]\cong[\mathfrak{N}(q^{d})]$ .

Now suppose that $\mathfrak{g}$ and $\mathfrak{h}$ are the complexifications of a real semisimple
Lie algebra $\mathfrak{g}_{0}$ and its maximal compact subalgebra $f_{0}$ , respectively. Then $(\mathfrak{g}, \mathfrak{h})$

is a symmetric pair. In this case, one finds that $(\mathfrak{g}^{d}, \mathfrak{h}^{d})\cong(\mathfrak{g}_{0}\oplus \mathfrak{g}_{0}, \mathfrak{g}_{0})$ and there-
fore that $\mathfrak{N}(q^{d})$ is identified with the totality $[\mathfrak{N}(\mathfrak{g}_{0})]$ of the real nilpotent orbits
of $\mathfrak{g}_{0}$ . Then the theorem mentioned above implies that $[\mathfrak{N}(\mathfrak{p}_{0})_{C})]\cong[\mathfrak{N}(\mathfrak{g}_{0})]$ . Here
$(\mathfrak{p}_{0})_{C}$ is the complexification of $\mathfrak{p}_{0}$ which is the orthogonal complement of $f_{0}$ in
$\mathfrak{g}_{0}$ with respect to its Killing form. This is a modified version of an unpublished
result of Kostant (see Remark 1.10 (ii)). D. Vogan pointed out the importance
of this bijection in the study of irreducible representations of $\mathfrak{g}_{0}$ . Note that in
this case, $(\mathfrak{g}^{a}, \mathfrak{h}^{a})\cong(\mathfrak{g}, \mathfrak{g}_{0})$ and therefore $\mathfrak{N}(q^{a})\cong \mathfrak{N}(\mathfrak{g}_{0})$ .

In [OS, Def. 2.5.1], the rank and the split rank of a symmetric pair were
introduced. These notions correspond to the rank and split rank of a semi-
simple Lie algebra. In \S 2, we shall determine $[\mathfrak{N}(q)]$ in the case where $(\mathfrak{g}, \mathfrak{h})$

is irreducible and of split rank one. In this case, the structure of $[\mathfrak{N}(q)]$ is
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described in terms of the signature of roots and the result is summarized in
Theorem 2.3. It is noted here that in the case where $\mathfrak{g}$ is of split rank one,
the orbital structure of the nilpotent subvariety of $\mathfrak{g}$ is already determined (see,

for example [B]). Theorem 2.3 plays a basic role in the study of invariant
spherical hyperfunctions on $q$ when $(\mathfrak{g}, \mathfrak{h})$ is of split rank one (cf. $[vD]$ , [S2]).

This application will be discussed elsewhere.

\S 1. The bijection.

First we prepare the notations which will be used in this paper. We mainly

follow the ones in [OS].

Let $\mathfrak{g}$ be a real semisimple Lie algebra and let $\sigma$ be its involution. Let
$\mathfrak{g}=\mathfrak{h}+q$ be the direct sum for $\sigma$ . In this paper, $(\mathfrak{g}, \mathfrak{h})$ is called a symmetric
pair and $\mathfrak{q}$ is the vector space associated to $(\mathfrak{g}, \mathfrak{h})$ . The pair $(\mathfrak{g}, \mathfrak{h})$ is irreducible
if the representation of $\mathfrak{h}$ on $q$ via the adjoint representation is irreducible. Let
$G$ be the adjoint group Int $(\mathfrak{g})$ and let $H$ be the analytic subgroup of $G$ corre-
sponding to $\mathfrak{h}$ . At this stage, we recall the following theorem (cf. [ $L$ , Chap.
IV, Th. 2.1]).

THEOREM 1.1. There exists a Cartan involution $\theta$ of $\mathfrak{g}$ commuting with a
Moreover, any two such $\theta$ are conjugate by an automorphism of the form $e^{adX}$

with $X\in \mathfrak{h}$ .

Take a Cartan involution $\theta$ of $\mathfrak{g}$ commuting with $\sigma$ and let $\mathfrak{g}=f+\mathfrak{p}$ be the
Cartan decomposition for $\theta$ . Let $K$ be the maximal compact subgroup of $G$

with Lie algebra $f$.
An element $X$ of $\mathfrak{g}$ is nilpotent if $ad_{\mathfrak{g}}(X)$ is a nilpotent endomorphism of $\mathfrak{g}$ .

Jacobson-Morozov lemma shows that if $X\in \mathfrak{g}$ is nilpotent, there exist $A,$ $Y\in \mathfrak{g}$

such that $[A, X]=2X$, $[A, Y]=-2Y,$ $[X, Y]=A$ . Such a triple $(A, X, Y)$ is
called an S-triple. An element $X$ of $q$ is nilpotent for the pair $(\mathfrak{g}, \mathfrak{h})$ if $X$ is
nilpotent as an element of $\mathfrak{g}$ . In the sequel, we frequently omit the term “for
the pair $(\mathfrak{g}, \mathfrak{h})$ if there is no confusion. Let $\mathfrak{N}(q)$ be the totality of nilpotent
elements of $q$ which is called the nilpotent subvariety of $q$ . By [KR, Prop.
4], for any $X\in \mathfrak{N}(q)$ , there exist $A\in \mathfrak{h}$ and $Y\in q$ such that $(A, X, Y)$ is an S-
triple. Such an S-triple is called a normal S-triple (for the pair $(\mathfrak{g},$ $\mathfrak{h})$ ).

The following lemma is shown by an argument parallel to [KR, Prop. 4]
(cf. [Kl, Th. 3.6]).

LEMMA 1.2. Let $(A_{i}, X_{i}, Y_{i})(i=1,2)$ be two normal $S$-triples. If $X_{1}$ and
$X_{2}$ are conjugate by an element of $H$, there is an $h\in H$ such that $(h\cdot A_{1},$ $h\cdot X_{1}$ ,
$h\cdot Y_{1})=(A_{2}, X_{2}, Y_{2})$ .
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DEFINITION 1.3. Let $(A, X, Y)$ be a normal S-triple. Then $(A, X, Y)$ is a
strictly normal S-triple if $\theta A=-A$ and $\theta X=-Y$ .

We are going to show some basic properties of strictly normal S-triples.

LEMMA 1.4. Let $(A, X, Y)$ be a normal $S$-triple. Then there exists an $h\in H$

such that $(h\cdot A, h\cdot X, h\cdot Y)$ is a stnctly normal $S$-tnple.

PROOF. Let $(A, X, Y)$ be a normal S-triple. We may assume that $X\neq 0$ .
Consider the subalgebra $I=RA+RX+RY$ isomorphic to $5I(2, R)$ . Define a Cartan
involution $\theta_{1}$ of I by $\theta_{1}A=-A,$ $\theta_{1}X=-Y$ . Since $\theta_{1}$ commutes with $\sigma$ on I, it
follows from [$vD$ , Lemma 1] that there is a Cartan involution $\tilde{\theta}_{1}$ of $\mathfrak{g}$ such that
$\tilde{\theta}_{1}\sigma=\sigma\tilde{\theta}_{1}$ and that $\tilde{\theta}_{1}|I=\theta_{1}$ . Then in virtue of Theorem 1.1, we find that there
is an $h\in H$ such that $h\cdot\tilde{\theta}_{1}\cdot h^{-1}=\theta$ . Accordingly $(h\cdot A, h\cdot X, h\cdot Y)$ is a normal
S-triple such that $\theta(h\cdot A)=-h\cdot A,$ $\theta(h\cdot X)=-h$ . Y. $q$ . $e$ . $d$ .

LEMMA 1.5. Let $(A_{i}, X_{i}, Y_{i})(i=1,2)$ be two strictly normal $S$-triples. If
$X_{1}$ and $X_{2}$ are conjugate by an element of $H$, then there is a $k\in H\cap K$ such that
$(k\cdot A_{1}, k\cdot X_{1}, k\cdot Y_{1})=(A_{2}, X_{2}, Y_{2})$ .

PROOF. It follows from the assumption and Lemma 1.2 that there exists an
$h\in H$ such that $(h\cdot A_{1}, h\cdot X_{1}, h\cdot Y_{1})=(A_{2}, X_{2}, Y_{2})$ . Note that $H\cap K$ is a maximal
compact subgroup of $H$ and $H=\exp(\mathfrak{h}\cap \mathfrak{p})\cdot(H\cap K)$ is a Cartan decomposition.
Hence write $h=e^{Z}\cdot k$ with $Z\in \mathfrak{h}\cap \mathfrak{p}$ and $k\in K\cap H$. Then to prove the lemma,

it suffices to show that $Z$ commutes with $k\cdot A_{1}$ , $k\cdot X_{1}$ and $k\cdot Y_{1}$ . Write
$(A_{1}’, X_{1}’, Y_{1}’)=(k\cdot A_{1}, k\cdot X_{1}, k\cdot Y_{1})$ which is, by definition, a strictly normal S-
triple. Then $(e^{Z}A_{1}’, e^{Z}X_{1}’, e^{Z}Y_{1}’)=$ ( $A_{2},$ $X_{2}$ , Y2).

Since $X_{2}-Y_{2}$ , $chZ(X_{1}’-Y_{1}’)\in f\cap q$ and shZ(X $1^{-Y_{1}’)\in \mathfrak{p}\cap \mathfrak{q}}’$ , the equality
$X_{2}-Y_{2}=chZ(X_{1}’-Y_{1}’)+shZ(X_{1}’-Y_{1}’)$ implies that shZ(X $1^{-Y_{1}’)=0}’$ . Since adZ
leaves $\mathfrak{p}\cap q$ invariant and since the eigenvalues of ad $Z$ are real values, it fol-
lows that adZ(X $1^{-Y_{1}’)=0}’$ . By a similar argument, we also find that $adZ(A_{1}’)$

$=0$ . Since $[A_{1}’, X_{1}’-Y_{1}’]=2(X_{1}’+Y_{1}’)$ , it follows that $Z$ commutes with $A_{1}’,$ $X_{\iota}’$

and Y\’i. Hence the lemma is proved.

Let $\mathfrak{g}_{c}$ be the complexification of $\mathfrak{g}$ and extend $\sigma$ and $\theta$ as complex linear
endomorphisms of $\mathfrak{g}_{c}$ . Define

$\mathfrak{g}^{d}=f\cap \mathfrak{h}+\sqrt{-1}(f\cap q)+\sqrt{-1}(\mathfrak{p}\cap \mathfrak{h})+\mathfrak{p}\cap q$ .
Then $\mathfrak{g}^{d}$ is a real form of $\mathfrak{g}_{c}$ and $\sigma$ is a Cartan involution of $\mathfrak{g}^{d}$ . Let $\mathfrak{g}^{d}=f^{d}+\mathfrak{p}^{ti}$

be the Cartan decomposition for $\sigma$ . Then $f^{d}=f\cap \mathfrak{h}+\sqrt{-1}(\mathfrak{h}\cap \mathfrak{p})$ and $\mathfrak{p}^{d}=$

$\sqrt{-1}(f\cap q)+\mathfrak{p}\cap q$ . Since $\theta$ is also an involution of $\mathfrak{g}^{d}$ , let $\mathfrak{g}^{d}=\mathfrak{h}^{d}+q^{d}$ be the
direct sum for $\theta$ . Then $\mathfrak{h}^{d}=f\cap q+\sqrt{-1}(f\cap q)$ and $q^{d}=\sqrt{-1}(\mathfrak{p}\cap \mathfrak{h})+\mathfrak{p}\cap q$ (cf. [OS,
p. 436]). The symmetric pair $(\mathfrak{g}^{d}, \mathfrak{h}^{d})$ is called the dual of $(\mathfrak{g}, \mathfrak{h})$ . Let $G^{d}$ be



130 J. SEKIGUCHI

the adjoint group Int $(\mathfrak{g}^{d})$ , $K^{d}$ the maximal compact subgroup of $G^{d}$ with Lie
algebra $f^{d}$ and $H^{d}$ the analytic subgroup of $G^{d}$ corresponding to $\mathfrak{h}^{d}$ .

Since $H$ acts on $\mathfrak{N}(q)$ , denote by $[\mathfrak{N}(q)]$ the totality of H-orbits of $\mathfrak{N}(q)$ . It
is known (cf. [KR, Th. 2], [V, p. 14]) that $[\mathfrak{N}(q)]$ is a finite set. Similarly, let
$[\mathfrak{N}(q^{d})]$ be the totality of $H^{d}$-orbits of $\mathfrak{N}(q^{d})$ . We are going to define bijective
mappings between $[\mathfrak{N}(q)]$ and $[\mathfrak{N}(q^{d})]$ .

Take an H-orbit $O$ of $[\mathfrak{N}(q)]$ . Then it follows from Lemma 1.4 that there
is a strictly normal S-triple $(A, X, Y)$ for the pair $(\mathfrak{g}, \mathfrak{h})$ such that $X\in O$ . Then
put

(1) $A^{d}=\sqrt{-1}(X-Y)$ , $X^{d}= \frac{1}{2}(X+Y+\sqrt{-1}A)$ , $Y^{d}= \frac{1}{2}(X+Y-\sqrt{-}1^{-}A)$ .

It follows from the definition that $(A^{d}, X^{d}, Y^{d})$ is a strictly normal S-triple for
the pair $(\mathfrak{g}^{d}, \mathfrak{h}^{d})$ , or equivalently, the following conditions hold:

$A^{d}\in \mathfrak{h}^{d}$ $X^{d},$ $Y^{d}\in q^{d}$ ,

$\theta X^{d}=-X^{d}$ , $\theta A^{d}=A^{d}$ , $\theta Y^{d}=-Y^{d}$ ,

$aX^{d}=-Y^{ti}$ , $\sigma A^{d}=-A^{d}$ , $\sigma Y^{d}=-X^{d}$ .

Lemma 1.5 implies that the $H^{d}$-orbits $H^{d}\cdot X^{d}$ and $H^{d}\cdot Y^{d}$ depend only on the
H-orbit $O$ . Noting this, we define

$\Phi_{+}(O)=H^{d}\cdot X^{d}$ , $\Phi_{-}(o)=H^{d}\cdot Y^{d}$ .
Then $\Phi_{+}$ and $\Phi_{-}$ are mappings of $[\mathfrak{N}(q)]$ to $[\mathfrak{N}(q^{d})]$ .

Similarly, define mappings $\Phi_{+}^{d},$ $\Phi_{-}^{d}$ of $[\mathfrak{N}(q^{d})]$ to $[\mathfrak{N}(q)]$ . Namely, for an
$H^{d}$ -orbit $O$ of $[\mathfrak{N}(q^{d})]$ , take a strictly normal S-triple $(A, X, Y)$ for the pair
\langle $\mathfrak{g}^{d},$ $\mathfrak{h}^{d}$ ) such that $X\in O$ . Then define $A^{d},$ $X^{d}$ and $Y^{d}$ by formula (1), and put
$\Phi_{+}^{d}(o)=H\cdot X^{d}$ and $\Phi_{-}^{d}(o)=H\cdot Y^{d}$ .

THEOREM 1.6. (i) $\Phi_{-}$ and $\Phi_{+}$ give bijective maPpings between $[\mathfrak{N}(q)]$ and
$\overline{L}\mathfrak{N}(q^{d})]$ .

(ii) Take a strictly normal $S$-friple $(A, X, Y)$ for the Pair $(\mathfrak{g}, \mathfrak{h})$ . Then
$\Phi_{-}^{d}\Phi_{+}(H\cdot X)=H\cdot X$ and $\Phi_{+}^{d}\Phi_{+}(H\cdot X)=H\cdot Y$.

PROOF. The claim (ii) follows from the definitions of $\Phi_{\pm}$ and $\Phi_{\neq}^{d}$ , and this
implies (i).

We recall the definition of $\mathfrak{h}^{a}$ and $q^{a}$ (cf. [OS, p. 436]), namely, $\mathfrak{h}^{a}=$

$\mathfrak{k}\cap \mathfrak{h}+\mathfrak{p}\cap q$ and $q^{a}=f\cap q+\mathfrak{h}\cap \mathfrak{p}$ . Then $\mathfrak{g}=\mathfrak{h}^{a}+q^{a}$ and $(\mathfrak{g}^{a}, \mathfrak{h}^{a})$ is a symmetric pair,
where $\mathfrak{g}^{a}=\mathfrak{g}$ . This is called the associated pair to $(\mathfrak{g}, \mathfrak{h})$ . Let $(A, X, Y)$ be a
strictly normal S-triple for the pair $(\mathfrak{g}, \mathfrak{h})$ . As in (1), we put

\langle 2) $A’=X+Y$ , $X’= \frac{1}{2}(-A+X-Y)$ , $Y’= \frac{1}{2}(-A-X+Y)$ .
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Then $(A’, X’, Y’)$ is a strictly normal S-triple for the pair $(\mathfrak{g}^{a}, \mathfrak{h}^{a})$ . Following
the construction of bijections between $[\mathfrak{N}(q)]$ and $[\mathfrak{N}(q^{f}()]$ , we are going to define
mappings between $[\mathfrak{N}(q)]$ and $[\mathfrak{N}(q^{a})]$ . Namely, take an H-orbit $O$ of $\mathfrak{N}(q)$ .
Then there is a strictly normal S-triple $(A, X, Y)$ for the pair $(\mathfrak{g}, \mathfrak{h})$ such that $X\in O$ .
Define $A’,$ $X’,$ $Y’$ by formula (2) by using $(A, X, Y)$ and put $\Psi_{+}(\mathcal{O})=H^{a}\cdot X’$ and
$\Psi_{-}(o)=H^{a}\cdot Y’$ , where $H^{a}$ is the analytic subgroup of $G$ corresponding to $\mathfrak{h}^{a}$ .
Then it follows from Lemma 1.5 that the $H^{a}$ -orbits $H^{a}\cdot X$‘ and $H^{a}\cdot Y’$ of $\mathfrak{N}(q^{a})$

depend only on the H-orbit O. By the same reason as in the case $\Phi_{\pm}:$ $[\mathfrak{N}(q)]$

$arrow[\mathfrak{N}(q^{d})]$ , we conclude that $\Psi_{\pm}:$ $[\mathfrak{N}(q)]arrow[\mathfrak{N}(q^{a})]$ are bijective mappings. Thus
we obtain the following theorem.

THEOREM 1.7. $\Psi_{\pm}:$ $[\mathfrak{N}(q)]arrow[\mathfrak{N}(q^{a})]$ are bijective $m$appings.

In order to state the main theorem of this section, we use the notation
$(\mathfrak{g}, \mathfrak{h})^{a}=(\mathfrak{g}^{a}, \mathfrak{h}^{a})$ and $(\mathfrak{g}, \mathfrak{h})^{d}=(\mathfrak{g}^{d}, \mathfrak{h}^{d})$ . Moreover $(\mathfrak{g}, \mathfrak{h})^{ad}=(\mathfrak{g}^{ad}, \mathfrak{h}^{ai}()$ and $q^{ad}$ denote
the dual of $(\mathfrak{g}, \mathfrak{h})^{a}$ and the vector space associated to $(\mathfrak{g}, \mathfrak{h})$ ”, respectively and
so on. Then it follows that $(\mathfrak{g}, \mathfrak{h})^{ada}\cong(\mathfrak{g}, \mathfrak{h})^{dad}$ . Hence there are at most six
symmetric pairs obtained from the given $(\mathfrak{g}, \mathfrak{h})$ by taking dual pair and associated
pair, succesively (cf. [OS, p. 436]). Then Theorems 1.6 and 1.7 imply the fol-
lowing theorem.

$\prime rHEOREM1.8$ . $[\mathfrak{N}(q)]\cong[\mathfrak{N}(q^{d})]\cong[\mathfrak{N}(q^{a})]\cong[\mathfrak{N}(\mathfrak{q}^{ad})]$

$\cong[\mathfrak{N}(q^{da})]\cong[\mathfrak{N}(q^{ada})]$ .

Tbeorem 1.6 has an important consequence which we are going to state.
Let $\mathfrak{g}$ be a real semisimple Lie algebra and let $\mathfrak{g}=f+\mathfrak{p}$ be its Cartan decomposi-
tion. Let $\mathfrak{g}_{c},$

$f_{c}$ and $\mathfrak{p}_{c}$ be the complexifications of $\mathfrak{g},$

$f$ and $\mathfrak{p}$ , respectively. Then
$(g_{c}, f_{c})$ is an example of a symmetric pair and its dual $(\mathfrak{g}_{c}, f_{c})^{d}$ is isomorphic to
$(\mathfrak{g}\oplus \mathfrak{g}, \mathfrak{g})$ (cf. [OS, Lemma 1.13.1]). Let $K_{c}$ be the analytic subgroup of the
adjoint group $G_{c}$ of $\mathfrak{g}_{c}$ corresponding to $f_{c}$ and let $G$ be the adjoint group of $\mathfrak{g}$ .
In this case, the nilpotent subvariety of the vector space associated to the pair
$(\mathfrak{g}_{c}, f_{c})^{d}$ is identified with the totality $\mathfrak{N}_{\mathfrak{g}}$ of the nilpotent elements of $\mathfrak{g}$ .

THEOREM 1.9. (i) Let $O$ be a $K_{c}$-orbit of $\mathfrak{N}(\mathfrak{p}_{c})$ . Then we have the fol-
lowing.

(a) There are $A\in f_{c}$ and $X,$ $Y\in \mathfrak{p}_{c}$ such that

$K_{c}\cdot X=\mathcal{O}$ , $[A, X]=2X$, $[A, Y]=-2Y$ , [X, $Y$ ] $=A$ ,

$X+Y,$ $\sqrt{-1}(X-Y)\in \mathfrak{p}$ , $\sqrt{}-\overline{1}A-\in f$ .

(b) $X^{d}=(1/2)(X+Y+\sqrt{-1}A)$ and $Y^{d}=(1/2)(X+Y-\sqrt{}-1A)$ are contained
in $\mathfrak{g}$ .

(c) $X^{d},$ $Y^{d}$ and $X$ are contained in the same $G_{c}$-orbit of $\zeta\{c$ .
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(ii) With the notation in (i), Put $\Phi_{+}(o)=G\cdot X^{d}$ and $\Phi_{-}(O)=G\cdot Y^{d}$ for any
$K_{c}$-orbit $O$ of $\mathfrak{N}(\mathfrak{p}_{c})$ . Then $\Phi_{+}$ and $\Phi_{-}$ are bijective maPpings of the set of $K_{c^{-}}$

orbits $oJ\mathfrak{N}(\mathfrak{p}_{c})$ onto that of G-orbits of $\mathfrak{N}_{\mathfrak{g}}$ .
PROOF. (i) Take $A\in f_{c}$ and $X,$ $Y\in \mathfrak{p}_{c}$ . Then it follows from the definition

that $(A, X, Y)$ is a strictly normal S-triple for the pair $(\mathfrak{g}_{c}, f_{c})$ if and only if
$A,$ $X,$ $Y$ satisfy the conditions in (a). Hence (a) is a consequence of Lemma 1.4.
Since $X+Y\in \mathfrak{p}$ and $\sqrt{-1}A\in f,$ $(b)$ follows. Reducing to the case \S 1 $(2, C)$ , we
easily find that $X^{d},$ $Y^{d}$ and $X$ are $G_{c}$-conjugate.

The statement (ii) is a consequence of Theorem 1.6. $q$ . $e$ . $d$ .

REMARK 1.10. (i) In this case, $(\mathfrak{g}^{a}, \mathfrak{h}^{a})\cong(\mathfrak{g}, \mathfrak{g}_{0})$ and therefore $\mathfrak{N}(q^{a})\cong \mathfrak{N}_{\mathfrak{g}}$ .
(ii) We give here the original version of Theorem 1.9 due to B. Kostant.
Let $K_{c}$ and $\tilde{G}$ be the normalizers of $K_{c}$ and $G$ in $G_{c}$ , respectively. Let

$[\mathfrak{N}(\mathfrak{p}_{c})]^{\sim}$ be the set of $K_{c}$-orbits of $\mathfrak{N}(\mathfrak{p}_{c})$ and let $[\mathfrak{N}_{\mathfrak{g}}]^{\sim}$ be the set of G-orbits
of $\mathfrak{N}_{\mathfrak{g}}$ . Then

THEOREM. Keep the notation in Theorem 1.9. If $\Theta$ is a $K_{c}$-orbit of $\mathfrak{N}(\mathfrak{p}_{c})$ ,
take $A,$ $X,$ $Y$ and define $X^{d},$ $Y^{d}$ as in Theorem 1.9 (i). Put $\tilde{\Phi}_{+}(\Theta)=\tilde{G}\cdot X^{d}$ and
$\Phi_{-}(\Theta)=\tilde{G}\cdot Y^{d}$ . Then $\tilde{G}\cdot X^{d}$ and $\tilde{G}\cdot Y^{d}$ depend only on $\Theta$ and $\hat{\Phi}_{\pm}$ are bijective
maPpings of $[\mathfrak{N}(\mathfrak{p}_{c})]^{\sim}onto$ $[\mathfrak{N}_{\mathfrak{g}}]^{\sim}$ .

This is an unpublished result of B. Kostant.
(iii) D. Vogan pointed out the importance of the bijections of Theorem 1.9

in the study of unitary representation of semisimple Lie groups. Inspired by
Vogan’s lecture, the author was led to formulate Theorem 1.6.

(iv) In the case where $\mathfrak{g}_{c}$ is simple of classical type, the orbital structure
of $\mathfrak{N}_{\mathfrak{g}}$ is completely determined by Bourgoyne and Cushman [BC]. This com-
bined with Theorem 1.9 gives $a$ classification of $K_{c}$-orbital structure of $\mathfrak{N}(\mathfrak{p}_{c})$

when $\mathfrak{g}_{c}$ is simple of classical type.

Theorem 1.9 combined with a result of L. Antonyon (cf. [Sl, Prop. 1.18’])
implies the following.

PROPOSITION 1.11. Keep the notation above. Let $(A, X, Y)$ be an $S$-triple
with $A,$ $X,$ $Y\in \mathfrak{g}_{c}$ . Then the following conditions are equivalent.

(i) $G_{c}\cdot X\cap \mathfrak{p}_{c}\neq\emptyset$ .
(ii) $G_{c}\cdot X\cap \mathfrak{g}\neq\emptyset$ .
(iii) $G_{c}\cdot A\cap \mathfrak{p}_{c}\neq\emptyset$ .
PROOF. The equivalence of (i) and (ii) is a consequence of Theorem 1.9.

On the other hand, a result of Antonyon (cf. [Sl, Prop. 1.18’]) implies the equiv-
alence of (i) and (iii). But there seems to be no reference to its proof. For
this reason, we give it here for the sake of completeness.
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The implication $(i)\Rightarrow(iii)$ is easy (cf. [Sl, Lemma 1.15]). We are going to
show the implication $(iii)\Rightarrow(ii)$ . Let $(A, X, Y)$ be an S-triple with $A,$ $X,$ $Y\in \mathfrak{g}_{c}$ .
Assume that $G_{c}\cdot A\cap \mathfrak{p}_{c}\neq\emptyset$ . Let $\mathfrak{a}$ be a maximal abelian subspace of $\mathfrak{p}$ and $\mathfrak{a}_{c}$

its complexification. Due to [KR, Th. 1], we may assume that $A\in \mathfrak{a}_{c}$ . Since
all the eigenvalues of $ad_{\mathfrak{g}}(A)$ are real, it follows that $A\in \mathfrak{g}$ . Hence $A\in \mathfrak{a}$ . Now
put $\mathfrak{g}_{c}(j)=\{Z\in g_{c} ; [A, Z]=jZ\}(j\in Z)$ and $V=\{Z\in \mathfrak{g}_{c} ; [\mathfrak{g}_{c}(0), Z]=\mathfrak{g}_{c}(2)\}$ . Then
$V$ is a non-empty Zariski open subset of $\mathfrak{g}_{c}(2)$ (cf. [Kl, Lemma 4. $2B]$ ). On the
other hand, it is clear that $\mathfrak{g}_{c}(2)\cap \mathfrak{g}$ is an everywhere Zariski dense subset of
$\mathfrak{g}_{c}(2)$ . These imply that $\mathfrak{g}_{c}(2)\cap \mathfrak{g}\cap V\neq\emptyset$ . Take an element $X’$ of $\mathfrak{g}_{c}(2)\cap \mathfrak{g}\cap V$ .
Since $X’$ and $X$ are $G_{c}$-conjugate (cf. [Kl, Th. 4.2]), we have thus shown
$G_{c}\cdot X\cap \mathfrak{g}\neq\emptyset$ . $q$ . $e$ . $d$ .

REMARK 1.12. The proof of $(iii)\Rightarrow(ii)$ employed here is due to T. Tanisaki.

Now let $\mathfrak{g}=\mathfrak{h}+q$ be a direct sum as before. Let $X$ be a nilpotent element
of $\mathfrak{g}_{c}$ . We give here a sufficient condition in order that $G_{c}\cdot X\cap q\neq\emptyset$ .

PROPOSITION 1.13. Retain the notation above. Assume that $G_{c}\cdot X$ intersects
with $q$ . Then the weighted Dynkin diagram of $X$ satisfies the following condition.

In the weighted Dynkin diagram of $X$, let $n_{i}$ ( $=0,1$ or 2) be the number
written in the node $i$ . Then, in the Satake diagram for the real form $\mathfrak{g}$ of $\mathfrak{g}_{c}$ ,
$fhe$ following holds:

$o_{ti’}^{r_{O}}\supset n_{i}=n_{i’}$ ,

$\bullet i$
$=n_{i}=0$ .

Moreover the same condifion holds for the Satake diagram $oJ$ the real form $\mathfrak{g}^{d}$

of $\mathfrak{g}_{c}$ .

PROOF. Let $X$ be a nilpotent element of $q$ . Take a normal S-triple $(A, X, Y)$

for the pair $(\mathfrak{g}, \mathfrak{h})$ . Due to Lemma 1.4, we may assume that $(A, X, Y)$ is strictly
normal. Then $A$ and $X+Y$ are G-conjugate and $X+Y\in \mathfrak{p}\cap q$ . Take a maximal
abelian subspace $\mathfrak{a}$ of $\mathfrak{p}\cap q$ containing $X+Y$. Then there exists a Cartan sub-
algebra $\tilde{i}$ of $\mathfrak{g}$ such that $\tilde{i}\cap \mathfrak{p}$ (resp. $\tilde{i}\cap q$ ) is maximal abelian in $\mathfrak{p}$ (resp. q) (cf.

[OS, Lemma 2.4 $(i)$ ]). The rest of the proof is accomplished by an argument

similar to the one in [Sl, Prop. 1.16]. $q$ . $e$ . $d$ .

\S 2. The case of split rank one.

Let $(\mathfrak{g}, \mathfrak{h})$ be a symmetric pair and let $\sigma$ be the involution for $(\mathfrak{g}, \mathfrak{h})$ . Let $\mathfrak{g}=$

$f+\mathfrak{p}$ be the Cartan decomposition for a Cartan involution $\theta$ of $\mathfrak{g}$ commuting with
$\sigma$ . If $\mathfrak{a}$ is a maximal abelian subspace of $\mathfrak{p}\cap q,$ $r=dim\mathfrak{a}$ is, by definition, the
split rank of $(\mathfrak{g}, \mathfrak{h})$ (cf. [OS, Def. 2.5.1]). In this section, we always assume that
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$(\mathfrak{g}, \mathfrak{h})$ is irreducible and of split rank one. A classification of such pairs is given
in [OS, \S 5]. The purpose of this section is to determine the H-orbital struc-
ture of $\mathfrak{N}(q)$ in this case.

Let $\mathfrak{a}$ be a maximal abelian subspace of $\mathfrak{p}\cap q$ . Let $\Sigma$ be the root system of
$(\mathfrak{g}, \mathfrak{a})$ (cf. [OS, \S 2]). Since $\Sigma$ is of rank one, we may assume that $\Sigma=\{\alpha, -\alpha\}$

or $\Sigma=\{\alpha, -\alpha, 2\alpha, -2\alpha\}$ . Take the unique element $A_{0}\in \mathfrak{a}$ such that $\alpha(A_{0})=1$ .
Then $\mathfrak{a}=RA_{0}$ . For any $\lambda\in\Sigma$ , put $\mathfrak{g}^{\pm}(\mathfrak{a}, \lambda)=\{X\in \mathfrak{g}$ ; $[Y, X]=\lambda(Y)X$ for any
$Y\in \mathfrak{a},$ $\sigma\theta X=\pm X$ } and $m^{\pm}(\lambda)=\dim_{R}\mathfrak{g}^{\pm}(\mathfrak{a}, \lambda)$ .

LEMMA 2.1. If $\mathfrak{g}^{+}(\mathfrak{a}, \alpha)\neq 0$ or $\mathfrak{g}^{+}(\mathfrak{a}, 2\alpha)\neq 0$ , there is an $h\in H\cap K$ such that
$h\cdot A_{0}=-A_{0}$ .

PROOF. By definition, $\mathfrak{g}^{+}(\mathfrak{a}, \alpha)$ and $\mathfrak{g}^{+}(\mathfrak{a}, 2\alpha)$ are contained in $\mathfrak{h}^{a}=\mathfrak{h}\cap \mathfrak{k}+\mathfrak{p}\cap q$

which is a reductive Lie algebra. Then the assumption implies that $\mathfrak{h}^{a}$ is not
abelian and therefore $[\mathfrak{h}^{a}, \mathfrak{h}^{a}]$ is semisimple of split rank one. Since $\mathfrak{a}$ is a
maximal abelian subspace of $\mathfrak{p}\cap q$ and since $H\cap K$ is a maximal compact sub-
group of $H^{a}$ , the lemma follows.

LEMMA 2.2. Let $(\mathfrak{g}, \mathfrak{h})$ be an irreducible symmetric pair of spljt rank one and
assume that $\mathfrak{h}$ is not compact.

(i) If $m^{+}(\alpha)=m^{+}(2\alpha)=0$ , then $m^{-}(2\alpha)=0$ and $(\mathfrak{g}, \mathfrak{h})$ is isomorphic to
(\S o(p+l, 1), $\mathfrak{s}o(p,$ $1)$ ) for some $p>0$ .

(ii) If $m^{+}(\alpha)=m^{-}(\alpha)=1$ , then $m^{+}(2\alpha)=0$ and $m^{-}(2\alpha)=0$ or 1. In the case
uhere $m^{-}(2\alpha)=0,$ $(\mathfrak{g}, \mathfrak{h})$ is isomorphjc to one of the pairs $(\mathfrak{s}0(2,2),$ $eo(2,1)),$ $(\mathfrak{s}0(3,1)$ ,
$\mathfrak{s}0(2)+5\mathfrak{o}(1,1))$ , and in the case where $m^{-}(2\alpha)=1,$ $(\mathfrak{g}, \mathfrak{h})$ is isomorphic to one of
the pajrs $(\mathfrak{s}\downarrow(3, R),$ $\mathfrak{s}\downarrow(2, R)+R),$ $(\mathfrak{s}\mathfrak{u}(2,1),$ @o $(2, 1))$ .

This lemma follows from the classification in [OS, \S 5].

If $\mathfrak{g}^{-}(\mathfrak{a}, \alpha)\neq 0$ , take an element $X_{\alpha}$ of $\mathfrak{g}^{-}(\mathfrak{a}, \alpha)$ such that $(2A_{0}, X_{\alpha}, -\theta X_{\alpha})$ is
an S-triple. Similarly, if $\mathfrak{g}^{-}(\mathfrak{a}, 2\alpha)\neq 0$ , take an element $X_{2\alpha}$ of $\mathfrak{g}^{-}(\mathfrak{a}, 2\alpha)$ such
that $(A_{0}, X_{2\alpha}, -\theta X_{2\alpha})$ is an S-triple. Now fix such $X_{\alpha}$ and $X_{2\alpha}$ and define

$A_{i}=-X_{i\alpha}+\theta X_{i\alpha}$ ,

$X_{i}= \frac{1}{2}((3-\iota)A_{0}+X_{i\alpha}+\theta X_{i\alpha})$ $(i=1,2)$ ,

$1_{\iota}^{-}= \frac{1}{2}((3-i)A_{0}-X_{i\alpha}-\theta X_{i\alpha})$ .

By definition, (A., $X_{i},$ $1_{i}^{r}$ ) $(i=1,2)$ are strictly normal S-triples and in particular,
$X_{i},$ $Y_{i}\in \mathfrak{N}(q)$ .

THEOREM 2.3. Assume that $(\mathfrak{g}, \mathfrak{h})$ is an irreducible symmetric pair of spll’t
rank one and that $\mathfrak{h}$ is not compact. Then $(\mathfrak{g}, \mathfrak{h})$ satisfies one of the following
conditions (a), (b), ( $c1$ ;
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(a) $m^{+}(\alpha)=m^{+}(2\alpha)=m^{-}(2\alpha)=0$ .
(b) $m^{+}(\alpha)=m^{-}(\alpha)=1$ .
(c) $m^{+}(\alpha)+m^{+}(2\alpha)>0$ but (b) does not hold.

Moreover the structure of $[\mathfrak{N}(q)]$ is given as follows.
(I) The case (a).

$[\mathfrak{N}(q)]=\{\begin{array}{ll}\{H\cdot X_{1}, H\cdot Y_{1}, H\cdot(-X_{1}), H\cdot(-Y_{1}), \{0\}\} if m^{-}(\alpha)=1,\{H\cdot X_{1}, H\cdot Y_{1}, \{0\}\} if m^{-}(\alpha)>1.\end{array}$

(II) The case (b).

$[\mathfrak{N}(q)]=\{\begin{array}{ll}\{H\cdot X_{1}, H\cdot Y_{1}, \{0\}\} if m^{-}(2\alpha)=0,\{H\cdot X_{1}, H\cdot Y_{1}, H\cdot X_{2}, H\cdot Y_{2}, \{0\}\} if\uparrow n^{-}(2\alpha)=1.\end{array}$

(m) The case (c).
$(m. i)$ If $m^{-}(2\alpha)=0$ , then

$[\mathfrak{N}(q)]=\{\begin{array}{ll}\{H\cdot X_{1}, H\cdot Y_{1}, \{0\}\} if m^{-}(\alpha)=1,\{H\cdot X_{1}, \{0\}\} if m^{-}(\alpha)>1.\end{array}$

( $m$ . ii) If $m^{-}(2a)>0$ , then

$[\mathfrak{N}(q)]=\{\begin{array}{l}\{H\cdot X_{1},H\cdot X_{2},H\cdot Y_{2},\{0\}\}\{H\cdot X_{1},H\cdot X_{2},\{0\}\}\end{array}$ $ififm^{-}(2\alpha)>1m^{-}(2\alpha)=1,$

.

PROOF. By the classification in [OS, \S 5], we find that one of the conditions
(a), (b), (c) holds for $(\mathfrak{g}, \mathfrak{h})$ .

Let $(\mathfrak{g}, \mathfrak{h})$ be a symmetric pair satisfying one of the conditions (a) and (b).

Then it follows from Lemma 2.2 that $(\mathfrak{g}, \mathfrak{h})$ is isomorphic to one of the pairs

$(\Xi o(P+1,1),$ $\mathfrak{s}o(p, 1))$ ,

$(\mathfrak{s}0(2,2)$ , @0 $(2, 1))$ , $(\mathfrak{s}0(3,1),$ $\mathfrak{s}o(2)+eo(1,1))$ ,

$(5I(3, R),$ $\mathfrak{s}\mathfrak{l}(2, R)+R)$ , $(5\mathfrak{u}(2,1)$ , @o $(2, 1))$ .

It is easy to determine $[\mathfrak{N}(q)]$ in these cases. So (I) and (II) follow.
We are going to prove (m). Hence we assume that $m^{+}(\alpha)+m^{+}(2\alpha)>0$ and

that $m^{+}(\alpha)=m^{-}(\alpha)=1$ does not hold. Take $X\in \mathfrak{N}(q)$ $(X\neq 0)$ and consider its
orbit $H\cdot X$. In virtue of Lemma 1.4, we may assume that there is a strictly
normal S-triple $(A, X, Y)$ . As in \S 1, (2), put

$A’=X+Y$ , $X’= \frac{1}{2}(-A+X-Y)$ , $Y’= \frac{1}{2}(-A-X+Y)$ .

Since $A’\in \mathfrak{p}\cap q$ , there exists an $h\in H\cap K$ such that $h\cdot A’\in \mathfrak{a}$ . Therefore we may
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assume from the first that $A’$ is contained in $\mathfrak{a}$ . In virtue of Lemma 2.1, we
may also assume that $A’=jA_{0}$ for a positive constant $j$ . Since $(A’, X’, Y’)$ is
an S-triple, $X’$ is contained in the eigenspace of $adA_{0}$ . On the other hand, it
follows from the assumption that $\theta\sigma X’=-X’$ . These imply that $X’$ is con-
tained in $\mathfrak{g}^{-}(\mathfrak{a}, a)+\mathfrak{g}^{-}(\mathfrak{a}, 2a)$ . Hence $j=1$ or $j=2$ and

(1) $X’\in \mathfrak{g}^{-}(\mathfrak{a}, a)$ if $A’=2A_{0}$ ,
(2) $X’\in \mathfrak{g}^{-}(\mathfrak{a}, 2a)$ if $A’=A_{0}$ .
Now consider $t$he case (1). Let $\mathfrak{g}_{0}$ be the subalgebra of $\mathfrak{g}$ generated by

$\mathfrak{g}^{-}(\mathfrak{a}, a)$ and $\mathfrak{g}^{-}(\mathfrak{a}, -a)$ . Then $\mathfrak{g}_{0}$ is semisimple and is invariant by $\theta$ and $\sigma$ .
Moreover $\mathfrak{g}_{0}=\mathfrak{g}_{0}\cap f+\mathfrak{g}_{0}\cap \mathfrak{p}$ is the Cartan decomposition for $\theta$ and $\mathfrak{g}_{0}=\mathfrak{g}_{0}\cap \mathfrak{h}+\mathfrak{g}_{0}\cap q$

is the direct sum for $\sigma$ . We are now going to show that $\mathfrak{a}$ is a maximal
abelian subspace of $\mathfrak{g}_{0}\cap \mathfrak{p}$ . Since $\mathfrak{a}$ is a maximal abelian subspace of $\mathfrak{g}_{0}\cap \mathfrak{p}\cap \mathfrak{q}$ ,

let $\Sigma_{0}$ be the root system of $(\mathfrak{g}_{0}, \mathfrak{a})$ . From the definition of $\mathfrak{g}_{0}$ , we find that
$\mathfrak{g}(\mathfrak{a}, a)\cap \mathfrak{g}_{0}=\mathfrak{g}^{-}(\mathfrak{a}, a)\cap \mathfrak{g}_{0}$ . On the other hand, $(\mathfrak{g}_{0}, \mathfrak{h}\cap \mathfrak{g}_{0})$ is an irreducible sym-
metric pair of split rank one. Noting these, we conclude by the classiPcation
that $(\mathfrak{g}_{0}, \mathfrak{h}\cap \mathfrak{g}_{0})$ is of Type $(f_{\epsilon})$ in the sense of [OS, \S 1]. In this case, every
maximal abelian subspace of $\mathfrak{p}\cap q\cap \mathfrak{g}_{0}$ is also that of $\mathfrak{p}\cap \mathfrak{g}_{0}$ . Therefore we find
that $\mathfrak{a}$ is maximal abelian in $\mathfrak{p}\cap \mathfrak{g}_{0}$ . Let $G_{0}$ be the analytic subgroup of $G$

corresponding to $\mathfrak{g}_{0}$ . Then $K_{0}=K\cap G_{0}$ is a maximal compact subgroup of $G_{0}$ .
Let $M_{0}$ be the centralizer of $\mathfrak{a}$ in $K_{0}$ . For any positive number $p$ , let $S_{p}$ be
the sphere $\{Z\in \mathfrak{g}^{-}(\mathfrak{a}, a) ; -B(Z, \theta Z)=p\}(B(, )$ denotes the Killing form). If
$m^{-}(\alpha)>1$ , it follows from [K2, Th. 2.1.7] that $M_{0}$ acts on $S_{p}$ in a transitive
way. On the other hand, in the case when $m^{-}(a)=1,$ $S_{p}$ consists of just two
$po^{\{}\wedge nts$ . So we arrive at the following results.

(1.1) If $m^{-}(a)>1$ , there exist an $m\in M_{0}$ and a constant $c>0$ such that
$m\cdot X’=cX_{\alpha}$ .

(1.2) If $m^{-}(a)=1$ , there exist an $m\in M_{0}$ and a constant $c\neq 0$ such that
$m\cdot X’=cX_{\alpha}$ .

If $m\cdot X’=cX_{\alpha}$ , then $(2A_{0}, m\cdot X’, m\cdot Y’)=(2A_{0}, cX_{\alpha}, -c\theta X_{\alpha})$ is an S-triple.
This implies that $c^{2}=1$ . Hence, if $c>0$ , then $c=1$ and if $c<0$ , then $c=-1$ .
Therefore we find that

(1.1) If $m^{-}(a)>1$ , then $(A’, X’, Y’)$ and $(2A_{0}, X_{\alpha}, -\theta X_{a})$ are $(H\cap K)$ -con-
jugate.

(1.2) If $m^{-}(\alpha)=1$ , then $(A’, X’, Y’)$ is $(H\cap K)$ -conjugate to one of
$(2A_{0}, X_{\alpha}, -\theta X_{\alpha})$ and $(2A_{0}, -X_{\alpha}, \theta X_{a})$ .

We are going to show that if $m^{-}(a)=1$ , then $H\cdot X_{1}$ and $H\cdot Y_{1}$ are disjoint.
Consider the strictly normal S-triple $(-A_{1}, Y_{1}, X_{1})$ . Then $(2A_{0}, -X_{a}, \theta X_{\alpha})$ is
the S-triple obtained from formula (2) of \S 1 if one applies this to $(-A_{1}, Y_{1}, X_{1})$

instead of $(A_{1}, X_{1}, Y_{1})$ . Now assume that $X_{1}$ and $Y_{1}$ are H-conjugate. Then it
follows from Lemma 1.4 that there exists an $h\in H\cap K$ such that $(h\cdot A_{1}, h\cdot X_{1}, h\cdot Y_{1})$
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$=(-A_{1}, Y_{1}, X_{1})$ . Then we find that $h\cdot X_{\alpha}=-X_{\alpha}$ and $h\cdot A_{0}=A_{0}$ . Define $\mathfrak{h}^{a}=$

$f\cap \mathfrak{h}+\mathfrak{p}\cap q$ . Then, by definition, $\mathfrak{h}^{a}$ is a reductive Lie algebra and its derived
algebra is of split rank one. Let $H^{a}$ be the analytic subgroup of $G$ correspond-
ing to $\mathfrak{h}^{a}$ . Then $H\cap K$ is a maximal compact subgroup of $H^{a}$ . At this stage,
we note that $m^{+}(\alpha)>1$ holds. In fact, we assumed that $m^{-}(\alpha)=1$ and $m^{+}(\alpha)+$

$m^{+}(2a)>0$ . These assumptions combined with the classification in [OS, \S 5]
imply that $m^{+}(\alpha)>1$ (cf. Lemma 2.2). Then it follows that $M^{a}=Z_{H\cap K}(\mathfrak{a})$ is
connected (cf. $[H$ , p. 435]). On the other hand, it is clear that $h\in M^{a}$ . Since
$m^{-}(a)=1$ , we find that $\mathfrak{g}^{-}(\mathfrak{a}, a)=RX_{\alpha}$ . Then $M^{a}\cdot X_{\alpha}\subseteqq\{cX_{\alpha} ; c>0\}$ . This con-
tradicts that $hX_{\alpha}=-X_{\alpha}$ . Hence $X_{1}$ and $Y_{1}$ are not H-conjugate.

Next consider the case (2). Note that if $m^{-}(2a)>0$ , then $m^{+}(a)=m^{-}(a)>0$

(cf. [OS, Lemma 2.17.1]). By an argument similar to the previous case, we
can prove the following results.

(2.1) If $m^{-}(2a)>1$ , then $(A’, X’, Y’)$ is $(H\cap K)$ -conjugate to $(A_{0}, X_{2\alpha}, -\theta X_{2\alpha})$ .
(2.2) If $m^{-}(2\alpha)=1$ , then $(A’, X’, Y’)$ is $(H\cap K)$ -conjugate to one of

$(A_{0}, X_{2a}, -\theta X_{2\alpha})$ and $(A_{0}, -X_{2\alpha}, \theta X_{2\alpha})$ .
Now consider the case when $m^{-}(2\alpha)=1$ . In this case, it follows that $m^{+}(\alpha)>0$ .

Since we exclude the case $m^{+}(a)=m^{-}(\alpha)=1$ , we may assume that $m^{+}(\alpha)>1$ .
Then we can prove by an argument similar to the previous case that $X_{2}$ and
$Y_{2}$ are not H-conjugate. We have thus shown (m). $q$ . $e$ . $d$ .

REMARK 2.4. (i) If $(\mathfrak{g}, \mathfrak{h})$ is of rank one, that is, $\mathfrak{g}^{d}$ is of split rank one,
the H-orbital structure of $\mathfrak{N}(q)$ is investigated by several authors (cf. $[vD]$ and
its references).

(ii) In the case where $(\mathfrak{g}, \mathfrak{h})\cong(\mathfrak{g}’\oplus \mathfrak{g}’, \mathfrak{g}’)$ with $\mathfrak{g}’$ semisimple of split rank
one, the orbital structure is already determined (cf. [B], [BC]).

We shall give an application of Theorem 2.3 to the study of invariant
spherical hyperfunctions elsewhere (cf. $[vD]$ , [S2]).
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