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0. Introduction.

There have already been many results on sufficient conditions for the
L*R™)-boundedness of pseudo-differential operators; for example, Hérmander

[6], Calderén-Vaillancourt [2], Cordes [5], Childs [3], Kato [7], Coifman-Meyer
[4]. In many papers, it is the main problem to what degree we can relax

regularity conditions for symbols. In this direction, the most fundamental
result is the following theorem, due to Calderdn-Vaillancourt [2].

THEOREM A. Let a(x, &) be a function which satisfies a;aéo(x, &l e L*(RIXR?)
for a, B={0, 1, 2, 3}". Then the pseudo-differential operator

o(X, D)f(x) = Qx| e*olx, OF@E, fesSRY

is LA(R™)-bounded, that is, it can be extended to a bounded operator on L*R™).

Here we have used the usual notation of multi-indices, the Schwartz space
S=S(R™) of rapidly decreasing smooth functions, and the Fourier transformation
7 of f.

Furthermore, various sufficient conditions for the L*(R™)-boundedness have
been obtained. We list some of them in the following:

THEOREM B. Let a(x, §) be a function which satisfies one of the following
five conditions:

i) (Cordes [5; Theorem B,’]) 6%050(x, &) e L=(R2XR?) (and is continuous)
for lal, |Bl=[n/2]+1.
ii) (Cordes [5; Theorem D]) There exist real numbers 2, A’ >n/2 such that
(D> D> a(x, §)e L=(RZX RY).
iii) (Childs [8]) There exist a real number A>1/2 and a constant C such
that | A%(h)4E(h")a(x, Ol r=rnrpy=C TI7 joi| hs| *2 RS B3% holds for all a, Be
{0, 1}* and all h=(hy, ---, hy), h’=(h{, -+, hp)eR".
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iv) (Coifman-Meyer [4; Théoréme 2, Corollaire 3]) 8%350(x, &) L=(R2X R})
(and is continuous) for |a|<[n/2]+1, B={0, 1, 2}".

v) (Coifman-Meyer [4; Théoréme 4]) There exists a real number 2<g<<oo
such that 92080 (x, &) LYREXRE) for |a|<[n(1/2—1/g)]1+1, | Bl <2n.

Then the operator o(X, D) is LA (R™)-bounded.

Here we have used the following notations.

[s] is the integral part of a real number s.

D =971+ y|)**F,, where F (resp. %) is the Fourier (resp. inverse
Fourier) transformation with respect to the suffixed variable. <{D;>*' is defined
in the same way.

A7(h) = 43 (hy) -+ 47M(Rha); x = (x4, -, x2) € R, where 4zi(h;) G=1, -,
n) denotes the a;-th order (a;=0, 1) difference operator with respect to the
variable x;, that is, 4;,(hi)a(x, &)=0a(x, &) and 4;,(h))o(x, §)=0a(x+hies, &)—
a(x, ). (e; denotes the element in R™ with all its entries equal to 0 except the
i-th, which is equal to 1.) Af (h") is defined in the same way.

REMARK. 1) Theorem A is contained in Theorem B with condition iii).
2) We need not necessarily assume the continuity of derivatives of symbols
in conditions i) and iv).

The purpose of the present paper is to unify all these results in a single
form in terms of Besov spaces, and to give a sharper condition for L:-bounded-
ness. Roughly speaking, condition i) in Theorem B implies that the symbols
are of class CI"/21+! with respect to x and & separately. (Ct*/?1+! ig the class of
all the functions that are ([n/2]+1)-times bounded-continuously differentiable.)
We remark that the order “[n/2]+41” is critical; in fact, there exists a counter-
example in the space C*/#; see Coifman-Meyer [4; p. 12].

On the other hand, it is known that the proper inclusions

Cln/21+1 g B‘,(Jféf""s 5 BZ},{% g: C[n/ZJ

hold for sufficiently small ¢>0. Here B% , denotes the Besov space, and is an
extension of Lipschitz spaces; see, for example, Bergh-Lofstrom [1], Peetre
or Triebel [14]. Recently, Miyachi has shown that the symbols in
B&»+¢ >0, (with respect to x and £ separately) also generate L2(R™)-bounded
pseudo-differential operators, and this result is equivalent to Theorem B with
condition ii) ([10; Theorem B]). We shall show that it can be extended to the
space B%/3 (lheorem 2.1.2; g=co). In other words, Theorem B remains valid
if we replace the “order” [n/2]+1 or (n/2)4¢ in condition i) or ii) by n/2 in
the sense of Besov spaces.
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Furthermore, the same conclusions are true for conditions iii) and iv) in
Theorem B, if we appropriately decompose variables (x, §) € Rz X R{ into (x, &)
=(x1, , Xy, &1y o, E)ERBX o XRIIXREIX o XREY (n=ny+ -+ +ny=
ni+ .- -+n%) and consider Besov spaces with respect to each decomposed
variable separately. For example, condition iii) of Theorem B is in the case
N=N’=n, and this condition says that a symbol ¢(x, &) belongs to the space
B4+ >0, with respect to each variable separately. (See Remark 2.1.2.) We
shall show that the order (1/2)+¢ can be replaced by 1/2.

By this method mentioned above, we can unify conditions i) through iv) in
Theorem B in a single form. In order to state our resuits precisely, we shall
introduce Besov spaces on the product space REX - XRENXREIX - X REY,.
They are extensions of Lipschitz spaces on the product space RZXRZ, which
were introduced for the first time by Miyachi [10; Section 2]. In the frame-
work of Lipschitz spaces, we can treat only bounded symbols. But in the
framework of our Besov spaces, we can treat symbols belonging to the spaces
L% (g#00). Particularly, our theory allows us to treat condition v) of Theorem
B in our theory.

The main result is the following:

MAIN THEOREM (Theorem 2.1.2). Let 2<q=<oo. Then there exists a constant
C such that the estimate

lo(X, D)fllzecrny = Clla(x, E)”Bé}{z‘”‘m"-""Hf“m}zn)
holds for all ¢ in BQ{FYP™) and all f in S(R™).

Here B{{*-1/o™.n" ig one of the Besov spaces on product spaces which are
introduced in Section 1; see [Definition 1.1.3. Any condition in Theorem B
implies that ¢ = B{{*-/2™ ") for some ¢, n, n’, but conversely, for any ¢, n, n’,
the condition ¢ B{{*-/9¥""") does not necessarily imply some condition in
Theorem B; hence this theorem is a proper extension of Theorem B (Remark
2.1.2).

Recently, Muramatu has also discussed the L2-boundedness of pseudo-
differential operators whose symbols belong to the Besov spaces on the product
space R;XR;, and obtained, in a different way from ours, some results similar
to our main theorem; see Muramatu [11; Theorem 3.1]. His results contain
Theorem B with conditions i), ii), and v) while they do not necessarily contain
Theorem B with conditions iii) and iv).

Our Besov spaces are extensions of the symbol class S}, in the sense of
Kumano-go (Remark 2.1.3). On the other hand, Muramatu also dis-
cusses a Besov space version of the symbol class SJ; (0=0=<p<=1), and proves
the L:-boundedness of pseudo-differential operators whose symbols belong to
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this class; see [11; Theorem 4.5, 4.6].

There are two methods of treating Besov spaces; the method of “Fourier
transformation” and the method of “regularization of distribution”. Our treat-
ment follows the first one, while Muramatu follows the second.

The contents of the subsequent sections are the following. In Section 1,
we introduce the weighted Besov spaces on product spaces. These are an
extension of the ordinary Besov spaces. In Section 2, we show some bounded-
ness theorems (including Main Theorem) in terms of these Besov spaces. In
the present paper, we mainly discuss the L*(R™)-boundedness, but the general
L?(R™-boundedness (p+2) will be discussed in the forthcoming paper (Sugimoto
[13D.
 The author is grateful to the referee for his valuable comments.
1.3.9 and Remark 2.1.1 are due to him.

Finally, the author wishes to express his hearty thanks to Professor Tosinobu
Muramatu for valuable advice and discussions.

NoTATIONS. We shall explain the notations used in this paper.

R"™ denotes the Euclidean space of dimension n, and N denotes the set of
all natural numbers.

Multi-index notation follows Kumano-go [8; p. 6]. For A=(4,, -+, Ay) and
o=(0,, -+, oy)ERY, 220 means A1,=o, (r=1, ---, N).

S=8(R™) is the Schwartz space of rapidly decreasing smooth functions, and
S’'=S8’(R™) is the dual space of S=S(R™).

Let f(x) be a function in S(R), and o(x, &) in S(RzXRZ). Then the
Fourier transformations of f and ¢ are defined respectively by the following
formulae :

fo) = gf0) = Fufn) = | e v findz,

Rn

FH) = Ff(y) = T f(y) = <2n>-"§ = f(x)dx,

R"

R Rne—i(x-y+$-r))o.(x, §)dxds§,
X

Fa(y, n)=F,0(9, 1) = SS

Flo(x, ) = 87,0(x, & = @ay || | e vienaly, ndydy.

R™"xR

They can be extended to the dual space S’ as usual.

If o(x,& is a function on RZXR¢, then the pseudo-differential operator
(X, D) can be defined by

o(X, D)f(x) = (et=%(x, /@, feSR)

(26=(2n)""d&) if the integral exists.
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Throughout the paper the letter “C” denotes a constant which may be
different in each occasion.

1. Weighted Besov spaces on product spaces.

In this section, we shall introduce the weighted Besov spaces on product
spaces. Although these spaces are a slight extension of the ordinary Besov

spaces discussed in Peetre [12], Bergh-Lofstrém or Triebel [14], these
generalized spaces play an important role in Section2. We shall extend
Triebel’s discussion ([14]) of the ordinary Besov spaces.

1.1. Definitions. Following Triebel [14], we shall introduce some classes
of partition of unity.

DEFINITION 1.1.1. Let JA(R™ be the collection of all the systems
O={0;(y)}32.CS(R™) that satisfy the following conditions:
i) supp@, C {y; |¥|=2}, supp@; C {y;277'<|y| <2/} if j=1, 2, --.
i) X704y =1
iti) For every multi-index «, there exists a positive number C, such that
the estimate 2/'%'19°0,(y)| <C, holds for all j=0, 1, 2, --- and all yeR".

Next, we shall introduce the polynomially weighted L?*-spaces.

DEeFINITION 1.1.2. Let 0<p=<oo, n=n,+ - +ny; n,eN (r=1, ---, N), and
let n:(nly Tty nN); P:(Ph Ty PN)ERN, x:(xly "ty xN); erRnT (r':ly Ty N)
Then we set

wp(x) = {x P {xx)PW, Hf“Lgue,,) = |z fllzrcrm,

LE(R,) = {fES"; | flzpean<-+co}.

Here || zrzry means usual LP-(quasi-)norm on R"™ with respect to Lebesgue
measure, and {->=(1+]-|®)2

Now, we can define the weighted Besov spaces on product spaces follow-

ing Triebel [14].

DEFINITION 1.1.3. Let 0<p, g<co, n=n;+ =+ +ny=iy+ =+ +iig; 0, ;N
(7’:1, 7N; S:]-) '”:ﬁ), and let n:(nl) "ty nN): ii:(ﬁly 0y ﬁﬁ)) A=
(A, =, AMERY, p=(py, -+, px)€R”. Then we set

B} o o(RY) ={f€S'(R"); |Ifla2

p.q.p

en<+oo},
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where

I3

3, pc = 1273505 G fl ey

2

= {51, l0800)-272 50537 7))

j=o

(with a slight modification in the case of p=oo and/or ¢g=o0). Here j=
(j1, =+, J~) (non-negative integer vector) and @5(»)=05(yi, -+, yx)=06;,(31) -
0;,(yx); {0, ()} 5=0E AR™) (r=1, ---, N). In the case p=0, we use the
abbreviation B3 (R™).

It is convenient to use the following notations.

DEFINITION 1.1.4. Let n, n, fi, 2, and p be the same as in Definition 1.1.3.
Then we set for feS'(R™)

I3f = $7'wigf (Bessel transformation),
Jof =awpf.

DerFINITION 1.1.5. Let n, n, 7i, 2 and p be the same as in Definition 1.1.3,
and let 1< p=co,
i) (Bessel potential space) We set

Hj o(R3) = {f€S'(R"); | /a3 ap<+oo},
where

”f“Hé'P(Rz) = ||13f||Lg(Rﬂ)-
ii) Let A4 be a non-negative integer vector. Then we set
CAHR%) ={feCR™; 05! - ;¥ feC(R™) for |a.|<A, (r=1, -+, N)
and “f||c},(ng>< +oo},

where C(R™) is the set of all continuous functions on R"™ and

”f“oﬁue'ﬁh = langeragi 3g%f“L°;<Rﬁ)
)

(r=1,*, N

(classical derivative) (x,€R"r; r=1, ---, N).
iii) (Sobolev space) Let A be a non-negative integer vector. Then we set
W3 (R ={feS(R"); ”f”W%,p(Rﬁ)< +coo},

where

2 ny — a1 ... J°N
”f”wp,pmﬁ) mril)sxrllax, axN “Lg(zz,p
(r=1,, N)
(distributional derivative) (x,€R"r; r=1, ---, N).



Pseudo-differential operators 111

In the case p=0, we use the abbreviation Hi(R"), CA(R") and Wi(R™).

H2 ,(R3) (resp. CA(R3R), W3} ,(R%) is a normed space with norm (quasi-
norm if 0<p=1) "‘”H},,pmp (resp. ”'"cf,cn’,;), "'”W},,pm;))

In the rest of this section, we shall abbreviate the above notations by
omitting n, i, R", R, and R}. For example, we shall abbreviate wj and

B3 . o(RY) to w, and B2 , , respectively.

REMARK 1.1.1. If N=N=1 and p=0, B3, in Definition 1.1.3 is the ordinary
one; see [1], and [14]. Miyachi defines and uses some spaces which

correspond to B&&%, . (Ré:7}) in our notation.

REMARK 1.1.2. Triebel and Lofstrém also discuss the weighted
Besov spaces (not on product spaces). For example, Lofstrom [9] discusses
more general weight functions which include our polynomially weight functions.

REMARK 1.1.3. In the next section, we only use the case p=0. But the
case p#0 plays an important role in Sugimoto [13].

1.2. Fundamental inequalities. We shall show several fundamental in-
equalities which are used to construct the theory of Besov spaces systematically.
Throughout this subsection, we always decompose variables in R™ in such a
way that

x=(xy, , x5), %, R" (r=1, ---, N),

= (%1, =, x5), *%;& R (s=1, -, N).
The next lemma states the most important property of our weight functions.

LEMMA 1.2.1. There exists a constant C such that the inequality
€9 Wp(x+u) £ Cop(x)wps(u)

holds for all x, ueR"™. Here p*=(|p.l, -, |psl) for p=(ps, -+, p#)-

Proor. This lemma can be proved immediately from the facts <{x,+u,>
<2 xritrd, <t uy 2K ay Kuy, (r=1, -, N).

With this lemma, we can reform the fundamental inequalities which are
used in Triebel [14].

LEMMA 1.2.2 (cf. [14; p. 18 (5)], [12; p. 54 (12), (13)]). Let a, be a multi-
index of dimension n, (r=1, ---, N). Then it holds that

Iflzg < COTr - bym)@ P2 fllp if 0<p<g=<oco

(Nikol’skij inequality) and
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102} -+ 0z Sllzp < COI*™t - by ¥ fllez  if 1Sp=oo

(Bernstein inequality) for all by, -, by=1 and all feL} such that suppf
Cly; |y by, -, |yn|Sby}. Here C is a constant independent of by, -, by
and f.

LEMMA 1.2.3 (Fourier multiplier theorem ; cf. [14; p. 28 (13)]). Let 0<p= oo,

and let s, p=n(l/min(p, D—1/2)+1p| (lpl=1psl+ - +1ps). If s>5p,, then
there exists a constant C such that the estimate

”g—lMgf”Lg = ClIMbyys, -+, bNyN)”Hg(Rn)”f“Lg

holds for all by, -, by=1, all MeHYR") (ordinary Sobolev "space), and all
feL} such that supp fC{y; | y:1| <bs, -, |yn| by}

The proof of these lemmas is essentially the same as that in Triebel [14].

PrOOF OF LEMMA 1.2.2. We shall prove the lemma only for fS. By
taking limit, we have the general case; see [14; Theorem 1.4.1]. Moreover,
it suffices to show the inequalities

(2) lwp, s Fllze< Clwp,s-fllzr (0<p=g=00)
3) l@p, 503 - 0z¥ fllzr < Cllwp, s fllzr (1= p=00)

for all b=(b,, ---, by) such that b, ---, by=1 and all f&S such that suppf
Cl{y; 13121, -, lyw| =1}, Here w,,5(x)=wp(bi*x1, -+, b3 xw).

We can write f=F'¢Ff=¢**f for some g=S(R"™) such that ¢=1 on
{y;13:1=1, -, |yy| =1}, hence 03! -+ 0z f=(07% - 0:¥4*)*f. Then we have
by

4 |(@p,50z] ++ Oz y ) (x)] = Cgl(wp*'agi e Oy ¥ (x—w)| - (@p, 5+ F)(u) | du,

where we use the fact that wp« s(x—u)Zwp«(x—u) holds for all by, ---, by=1.
(3) is an easy consequence of (4). (2) is also obtained from (4) by the same
argument as in [14; Proposition 1.3.2].

Proor orF LEMMA 1.2.3. It suffices to show the inequality
®) lwp,s- F*MTfllr < C| Ml agcrmllwp, s+ fllo

for all fe L% such that supp fC{y; |9/ <1, -, |yl <1} and all b=(b,, ---, by)
such that b, -+, by=1l. Here @, s(x)=wp(bi'x1, -+, b3*xy). Moreover (5) is
reduced to the following two inequalities:

(6) lwp, v FMEfllzr = Cllwps T M| 18| wp, 5 fllP
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@ lwps: F*M|| 22 < Cl| Ml n3cans

for all b, -, by=1, all feL} such that suppfC{y;|y|=<1, -, |ynl <1},
and all MeH§R™ such that suppMC{y;|y:|=2, -, |yxy]£2}. Here p=
min(l, ) and p* is the same as in Lemma 1.2.1.

(6) and (7) are easy consequences of Lemmas [.2.1 and by the same
argument as in the proof of [14; Proposition 1.5.1, Theorem 1.5.2]. We shall
omit the details.

1.3. Basic properties. We shall show some basic properties of the weighted
Besov spaces on product spaces. Their proof is carried out essentially in the
same way as in Triebel and Peetre [12] with the aid of the preceding
lemmas. We shall leave most of them to the reader as exercises.

THEOREM 1.3.1 (cf. [14; Theorem 2.3.3]). Let 0<p, g<oo0, A€RY and
Pp<RP. Then it holds that

i) B2, p 1S a quasi-Banach space. (Banach space if 1=p, g=oo).

ii) B2, does not depend on the choice of {®;} in Definition 1.1.3.

ili) SC B2,,C S (continuous embedding).

iv) In particular, S is dense in B} ., if 0<p, g<co.

THEOREM 1.3.2 (cf. [14; Proposition 2.3.2]). Let 0<p=<co, 2, &, L ERY
and p, po, plER’v . Then we have the following continuous inclusions:

1) B}.0.poC Bhares if 0<q=q:<00 and p,<p..

i) B39, p C B31y,.p if 0<qo, 1500 and 2,<2,.

THEOREM 1.3.3 (cf. [12; Chapter 5, Theorem 6]). Let 1=<p,, D1, go, 10
(excluding the cases po=pi=c0 and qy=¢;=0), A, LERY, po, p.=RY and
0<0<1. Then it holds that

[B28 40000 B2t.ay.p.10 = B3 4 p (complex interpolation).

Here 1/p=(01—0)/po+0/p1, 1/9=(1—0)/q0+0/q;, A=(1—0)2+04,, and p=
(1—6)po+0p:.

REMARK 1.3.1, Lofstréom [9] proves in the case N=1, but
deals with more general weight functions satisfying the inequality (1) in

Lemma 1.2.1; see Lofstrom [9; Theorem 4].

THEOREM 1.3.4 (lifting property; cf. [14; Theorem 2.3.8]). Let 0<p, g< oo,
A0, ,=RY and pcR¥. Then the mapping

. R, 20-2
111 : B%,p —> Bz)?q.p1

is isomorphism.



114 M. SuciMoTo

THEOREM 1.3.5 (cf. [14; Section 2.5.6, 2.5.7]). Let 0<p<oco, A€R" and
pERF. Then we have the following continuous embeddings :

i) B%,,CCACcB3i., if Zisa non-negative integer vector.

ii) B3, ,CH?,CB}«, if 1Sp<Zoo.

iliy Hi=W3 if A is a non-negative integer vector and 1< p<oo.

THEOREM 1.3.6 (pointwise multiplier theorem; cf. [14; p. 143 (24)]). Let

1< p=<c0, 0<g=o0, 0<A=RY and p,, pr=RY. Then there exists a constant C
such that the estimate

If-glls2 < Clflls2

2
p.40.p0+P1 P»‘LPO”gHB”-Q»Pl

holds for all f in B} g,,, and all g in B2 g ,,.

REMARK 1.3.2. The condition 0<2 yields feLj, and gLy, by virtue of
Theorems [.3.2] and [.3.5, hence pointwise multiplication f-g makes sense.

THEOREM 1.3.7. Let 1<p=<oo, 0<g<co, 0<A=RY and p,, p,=R". Then
the mapping

. R 2
Joi * B2.a.00 = Br.0.00-p1
1S isomorphism.

REMARK 1.3.3. [Theorem 1.3.7 is an easy consequence of Theorems [.3.2]
and

THEOREM 1.3.8 (cf. [14; Theorem 2.3.9]). Let 1=p,, p;=c0, 0<q,, ¢1=00,
0<2, 4,=RY and p=RY. Then B3 o, p=B3! 4.p if and only if pe=p1, qo=qx,
and A,=A4;.

REMARK 1.3.4. Triebel essentially proved this theorem in the case
p=0. [Theorem 1.3.7 yields the general case p+0.

We shall define the operator d,: R"—RY' (s=1, ---, N—1) by J,()=
(A1, =+, As—1, AsFAst1, Asta, -+, Ay), Where A=(4;, ---, Ay). Then we have the
following typical property of Besov spaces on product spaces.

THEOREM 1.3.9. Let 1=p=Zco, 0<g=oo, A=y, -, AW)ER", A;, 2;41>0,
and pcR?Y, and let n and #i be the same as in Definition 1.1.3. Then we have
the following proper inclusion:

BEGH(R¥™) & B o o(RY).

PrOOF OF THEOREM 1.3.9. For the sake of simplicity, we shall assume
s=1. For a function ®5(y)=Pj(ys, -, y¥)=0;,(31) - O;,(yx) (see Definition
1.1.3), we shall define {O}(y:, ¥.)}5 and {O}(y)}5= =3, -, N) by O;=
6,+6,4+0,, 0;=60,.,+6,+60,;,+6,., (j€N). Then we have
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0;,(31)+01,(32) = Ornaxiy, i (Y1, ¥2)-0,(91)0,,(32),
0;(y.:) =05(y,)-0;(y,) (=3, -, N).
Hence, Fourier multiplier Theorem gives
1) 17 @5(9)Ff 122 = CAmaxisy, s, g5 dw »

where A;, ;... iy =1F0(y1, yz)-@j3(y3)---@jN(yN)Eflng. On the other hand, we
can easily see

(2) { 2}'1.jg.\--.jN(2j111+j212+"'+jN XNAmax(jl, I Janee fN)q} 1/q

<C{Z; Fge J.N(ZJ'(11+22)+.1323+...+jN1NAj - jN)q}uq

(with a slight modification in the case of ¢g=co). From the inequalities (1) and
(2), we have the desired inclusion. By virtue of [Theorem 1.3.8 we can easily
show the existence of a function which belongs to B3 ,, while not to B33),.
(Consider a function of the type f(xi)g(x2)h(xs, -+, xx).)

From these theorems, we can easily obtain the following corollaries.

COROLLARY 1.3.1. Let 1<p<oo, 0<g<co, 2, 0= RY, pcR" and let 0<i<a.
Then we have the following proper inclusions:

i) C5< B2,, if =NV,

ii)y Wg< B2, if NV,

ili) HS,S Bi.,,.

COROLLARY 1.3.2. Let 1<p=<co, 0<g=<oco, &R, ¢=N¥, p,, p.=R" and
let 0<A<a. Then it holds that

I$- flls2 o pyrp, = Clidlleg 11152, .-

Here C is a constant independent of f and ¢.

2. LP?-estimates for pseudo-differential operators.

In this section, we shall show some L?-estimates for pseudo-differential
operators with symbols in the Besov spaces which were introduced in the
preceding section.

2.1. Main results. In order to state the main results, we use “unweighted”
Besov spaces on product spaces of dimension “2n”. Throughout this section,
we take n=n,+ - +ny=ni+ - +ny @, nieN; r=1, .-, N, s=1,---, N’
and use the following notations:
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Let 0<p’ 4§°°; 22(219 Tty XN)ERN7 2,:(2;» Tty X;V')ERNI, n:(nls "ty nN)
and n’=(ny, ---, n%). Then we set

Bt = BEAO(R™™) = {0 €S/ (R™); lols@ 20 <+oo},
where

lolag> = 12744570, ,F ol scaon

142

={ > (SSle'l’f"'z'EF‘l(Dj,k&'G(x, §)|ded5)q/p}”q

Jr k20

(with a slight modification in the case of p=co and/or g=o0). Here j=
(G =y Iw), k=(ky, -+, ky+) (non-negative integer vectors) and @; «(y, p)=
D) Pi(=P5(»P% (n); see Definition L.1.3

Furthermore, we always decompose variables y, 7 in such a way that
y=(31, =, ¥n) 9=, =, 7w"); ¥.ER™, 9, €R™ (r=1,--, N; s=1,---, N).

Now, we shall give the main results of the present paper.

THEOREM 2.1.1. Let 1<p=2. Then there exists a constant C such that the
estimate

lo(X, D)fllLrcrn, < Cllo(x, E)"B%,l”f”Lp(R”)
holds for all = BY%,, and all f in S(R™).

THEOREM 2.1.2. Let 2<qg=<co. Then there exists a constant C such that the
estimate

lo(X, D)fllr2erny = Clla(x, E)“Bé}{z"llq)("’"')”f”LZ(R”)
holds for all ¢ in B{{E-YPmm"> gnd all f in S(R™).

REMARK 2.1.1. In [Theorem 2.1.2 with 2<<¢=<co, we can have the sharpest
estimates if we take N=N’=n, and the other case is a corollary of this special
case by virtue of [Theorem 1.3.9.

REMARK 2.1.2. [Theorem 2.1.2 is an extension of Theorem B in Section O.
The conditions i) and ii) (resp. iii), iv), v)) of Theorem B are in the case g=oo,
N=N’=1 (resp. g=co, N=N’'=n; g=o0, N=1, N'=n; 2<q<co, N=N’=1).
In fact, we can easily see that Theorem B with conditions i), ii), iv), and v)
is contained in [Theorem 2.1.2, by virtue of [Corollary 1.3.1. On the other hand,
condition iii) of Theorem B says that ¢(x, &) B{»+e QD+ ¢>(), by virtue
of the ordinary argument; see, for example, Triebel [14; Section 2]. Hence
Theorem B with condition iii) is contained in [Theorem 2.1.21 by virtue of
Theorem 1.3.2l
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REMARK 2.1.3. The symbol class Sj,, in the sense of Kumano-go [8], is

contained in B&*™/? by [Corollary 1.3.1. Hence [Theorem 2.1.2 with g=co
states that the symbols belonging to the class S}, generate L% R™)-bounded
pseudo-differential operators.

REMARK 2.1.4. Muramatu [117] also proves [Theorem 2.1.2] in the case of
N=N’=1 in a way different from ours.

REMARK 2.1.5. The sharpness of the order (1/2—1/¢)n in [Theorem 2.1.2
was essentially discussed in Coifman-Meyer [4; p. 24]. The sharpness of the
order n/2 and n’/2 in [Theorem 2.1.2 with g=c0 was also discussed in Miyachi

[10; Section 5]. But the present author does not know whether the suborder
“1” can be relaxed or not.

2.2. Lemmas. In order to prove the main results, we shall show some
lemmas.

LEMMA 2.2.1. There exists a pair of functions ¢, XES(R™) which satisfies
the following two conditions:

i [puede=1.
ii) suppg C {&;1€]<1}, suppdC {n;IpI<1}.

PROOF. Let X be a function in S(R™) which satisfies suppic{%;|y|<1}
and X(O):—-(Z:r)””gi(v)dv:l. Then we can take such a function ¢OES(R") as
satisfies supp ¢, {&; |§] <1} and SqSoX(E)dE:C #0. Set ¢=¢,/C and this proves

the lemma.

In the following two lemmas | 2| denotes the Lebesgue measure of a subset
QCR"

LEMMA 2.2.2. Let g.(x)=g(x, t) be as follows:

i) gz, 7)€ LAXRLXRY).

it) sgpllg(x, T)”IJ(R;’) < +oo,

iil) supp F,g.(¥)CR, where 2 is a compact subset of R" independent of .
If h(x):ge”"g(x, 2)dr, then it holds that

Ihllzecany < C121*18(%, )l z2canxrm -

Here C is a constant independent of g and 8.
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ProOF. By the Fourier transformation, we formally have
1) h(y) = Sffxgr(y—r)dr = S(gxgr'xﬁ)(y_f>df:

where Xo denotes the characteristic function of £. Then, we have by Schwarz’s
inequality,

@ 1A= C121| 1 Fogdy—0)ldr.
Integrating both sides of (2) with respect to y, we have
@ WhOlan < Cl21(|| F.g.(y—0)*dyde

= C121{1% gl zrcapsidr.

By Plancherel’s theorem, (3) implies the desired inequality. Formula (1) can be
easily justified with the aid of ii), and we shall omit the details.

LEMMA 2.2.3. Let 2<p=oo and let ¢,(&)=0a(x, &) be as follows:

i) 0,8 eLYR;) and € L*R;) for all x€R".
ii) supp Feo,(9)C8, where 2 is a compact subset of R"™ independent of x.
Then it holds that

lo(X, D)fllzecem = CI1R1"* supllo(x, &)l z2capsll flLocans
for fES(R™). Here C is a constant independent of f, ¢ and .

ProOF. Set K(x, n)=%¢0,(n). Then we have

o(X, D)f(x) = <2:r>—"§K<x, n—x)f()dy

= <2n>-"§K<x, 71— Wa(n—x)f(n)dy .

Here Xo denotes the characteristic function of £. Then by Schwarz’s inequal-
ity and Plancherel’s theorem, we have

(4) lo(X, D)f(x)| = Cllo(x, E)llzacaps- (1X-g]® = | F1%(x)).
By Young’s inequality, (4) implies
le(X, D)f|Locem, = C sgp!la(x, Ellzecrps- [1X-g|** | f 1| L2/2cpny "

<Cl|2|v SEP”(TUC: E)HLZ(Rg)”f”LPcRn),
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which is the desired inequality.

2.3. Proofs of the main results. Using the preceding lemmas, we can
easily prove the main results.

(PROOF OF THEOREM 2.1.1)
Step 1 (The case c=S(R?*")). We can decompose ¢ in such a way that

a(x, &) =Eaj,k(x, §) (0jx=F'0;,F0) in S(R*"),
and have
(1) (X, D)f(x) ZJZ}‘ o x(X, D)f(x) for feS(R").

Setting Kj x(x, 7)=%F [0} r(x, §)1(n), we can write
@ o D) = @my | Katx, n—2)fn)dy.

By Holder’s inequality and the Hausdorff-Young inequality, (2) implies
3) loj (X, D)f(x)| = C||Kj,x(x, 77)||Lq<R;'>”f”LZ’<R">
< Cloj, iz, E)”meg’)”f"LPm")-

(1=1/p+1/q; 1£p=2)
Then we have

@ lgj,x(X, D) fllrcany = Clloj,allLpcanxepll fllzocans -

Combining (1) and (4), we have the desired result.

Step 2 (The general case). Let o(x, &) be in BJ,. Then there exists a
sequence {0,}i=,CS(R?**) such that ¢,—¢ in Bj, (v—oo) (Theorem 1.3.1, iv)).
Notice that

[(o(X, D)—=a.(X, D)fllzocams
= |z, §—au(x, OO lzrcnps

LP(RD
= C"O'_Uu“LP(Rngg)”f”LhR") (1=1/p+1/9)
< Cllo—a,l58, I/l zacans heorem 1.3.5

=0 (y—c0).
The general case of the theorem is obtained from this and Step 1.

(PROOF OF THEOREM 2.1.2)

Step 0. [Theorem 2.1.2] with ¢=2 is [Theorem 2.1.1 with p=2. By virtue
of the interpolation theorem (Theorem 1.3.3), it suffices to show [Theorem 2.1.2
with g=co.
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Step 1. Let ¢ be in B&{>»/® and f in S. From [Lemma 2.2.1, we have
|g1e—r)dr=1 for all & and this implies

® k) =0(X, D)fx)
= {arfe=tatx, OprE—nf@de

= (etergln, e €+,
where
(6) 8(x, t) = 0(X, DYX(D)fx),
@) ox, §) = a(x, §+1) € BS™/®,
® S8 =9@fE+).
We can decompose ¢. in such a way that
9) o(x, §) = %3 0, i(%, §)

:,-%0" iz, &) (uniform convergence),

where
(10 0cj(x, §) = F5'P;F ,0(x, §)

0. k(x, 8) = F' 0} Fe0. j(x, &)
= g_l@j,kgo'r(x: S)
=F1Q; ,;Fa(x, E+7).

We define g; and g;,, in the same way as in (6) with ¢, replaced by o, ; and
d.j.x respectively. We define h; and hj  in the same way as in (5) with g
replaced by g; and gj . respectively. Then we have

(11) h(x) = ZJ] hix), gilx,7)= Zk) gj.k(x, T).
Step 2. By we have

(12) lhsllzeceny < C272| gj(x, )l 22 xR -

In fact, noticing

F [e'*¢a. j(x, ENEF)]) = PAY—E)F 10.(y—E, EUESE)f(E+7)
(by (8) and [(10)),

we have
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supp F.[g5(x, ©)1(9) C {y; y—E<supp@; for some §&supp ¢}
CHy; [ 3] S2H 41, o, |yy| 209441}

by Definitions [.1.1, [.1.3, and Lemma 2.2.1. [12) is easily obtained from this.
Step 3. By [Lemma 2.2.3, we have

(13) I gj,x(x, T)”chng)é CZ"'"”zsgpllor,j,k(x, S)X(E)“LZCR?)”fr”Le(R")
< C{sup 125 20, el zocmgampp} - Ufel zzcams.
In fact, it holds that
supp FeLo.j,x(x, ENEI(7) C supp Fel o j.4(x, §I(7)+supp x

C supp P} +supp (by
C {5 | ma S2MFHL, e, [ | S2EW LY,

which implies [I3). (The second inequality of is trivial.) Squaring and
integrating both sides of with respect to z, we easily have

(14) I gs, x(x, Tl z2crnxrny = C SURIL ”2"'"'/20'r,j,k“L°°<R§><RQ>“f”L2<R”>
TE

by (8) and Plancherel’s theorem.
Step 4. Combining [11), (12), and [14), we have

Al z2crmy = cjz‘;‘ sup lle"'/“"'""20”',1:“L”(Rﬁm?)”f“ﬁm")

TSR
= Cjz;‘HZ’""/“"'""Zg'l@j,kg"o'HL“(RZ><R?)||JC“L2(R">
(by (10D

This implies the desired result.
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