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Introduction.

One of the most important and interesting problems in the theory of real
analytic function-germs (or singularities) is to search for “nice and natural”
equivalence relations in the set of germs of analytic functions.

I am sure that the notion of blow-analytic equivalence relation defined by

Professor T.-C. Kuo ([3, 4]), is one of them.
Let $F(x;P);(R^{n}\cross P, O\cross P)arrow(R, 0)$ be an analytic function, where $P$ is a

subanalytic subset of some Euclidean space. Then, T.-C. Kuo ([4]) proves the
classification theorem: if for fixed $P,$ $f_{p}(x):=F(x;p)$ has an isolated singularity
at the origin, then there exists a finite filtration $\{P^{i}\}$ by subanalytic subsets $P^{i}$

of the parameter space $P$ of an analytic family $F(x;p)$ such that the functions
$f_{p}(x)$ parameterized by elements $P$ of a connected component of $P^{i}$ form a
blow-analytic equivalence class.

The next problem to be considered would be the following: can we con-
struct concretely the filtration $\{P^{i}\}$ of $P$ for a given analytic family $F(x;p)$

in the classification theorem or what kind of singularities form a blow-analytic
equivalence class?

Several authors studied this problem, see $e$ . $g$ . $[1,3,5]$ .
In [5], it is proved that if a real analytic family $F(x;t)$ of real analytic

$fu^{nction}$-germs $f_{t}(x):=F(x;t):(R^{n}, O)arrow(R, 0)$ admits a simultaneous resolu-
tion $\phi$ , then it admits a $\pi\circ\phi$-MAT (see the definition (1.1)), where $\pi$ is a finite
succession of blowing-ups with non-singular centers of $R^{n}$ . So, the family
$f_{t}(x)$ forms a blow-analytic equivalence class.

In [1] (resp. [3]), it is proved that if an analytic family $F(x;t)$ is non-
$d^{egenerate}$ in some sense, it admits a $\pi$-MAT along the parameter space via
the blowing-up $\pi$ of $R$ “ at the origin (resp. a so-called toroidal embedding $\pi$ ).

Here, it should be emphasized that the mapping $\pi$ is concretely constructible
from the Newton boundary of $F(x;t)$ .

In this paper, we also study this problem. The subblowing-ups and the
blowing-ups of $R^{n}$ with the ideal centers defined by families are made use of
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to prove our results. Main results are formulated in (1.2), (1.3) and (1.4). I
think that these results are ones of direct generalizations of the theorem for-
mulated by making use of blowing-ups in [1]. The families in (1.4) are not
treated in $[1, 3]$ .

I would like to thank T.-C. Kuo and S. Koike for valuable communications.
The idea of singular Riemannian metric on Euclidean space used here, is
originally suggested by T.-C. Kuo. I would like to thank the referee also. I
revised the earlier draft of the introduction part of this paper according to the
suggestion made by the referee.

1. Main Theorems.

Let $F(x;t):$ ( $R^{n}\cross R^{m}$ , Ox $I$ ) $arrow(R, 0)$ be a real analytic function of $n+m$

variables $(x;t)=(x_{1}, x_{2}, \cdots , x_{n} ; t_{1}, t_{2}, \cdots , t_{m})$ in a neighbourhood of $\{O\}\cross I$ where
$I$ is a compact cube $\cross_{i=1}^{m}[a_{i}, b_{i}]$ in $R^{m}$ . Assume that $F(O;t)=0$ for any $t\in I$ .
We call the function $F(x;t)$ a real analytic family of functions

$f_{t}(x):=F(x ; t):(R^{n}, O)arrow(R, 0)$ .
Let $\pi;Xarrow R^{n}$ be a proper analytic modification of $R^{n}$ .
(1.1) DEFINITION. A real analytic family $F(x;t)$ admits an almost $\pi$-modified

analytic trivialization (abbreviated to an almost $\pi$-MAT) along $I$ if there exist a
neighbourhood $U$ of the origin of $R^{n}$ and t-level preserving analytic isomor-
phism

$\tilde{H}:O_{1}\cross Iarrow\{y_{2}\cross I$

where $O_{1},$ $O_{2}$ are two small neighbourhoods of $\pi^{-1}(0)$ in $\pi^{-1}(U)$ such that
$Fo(\pi\cross id_{I})\circ\tilde{H}$ is independent of $t$. Here $id_{I}$ is the identity map of $I$. Moreover,
if the map $\tilde{H}$ induces a t-level preserving homeomorphism $H$ between $\pi(O_{1})\cross I$

and $\pi(O_{2})\cross I$ , then we say that the family $F(x;t)$ admits a $\pi$-modified analytic
trivialization (abbreviated to a $\pi$-MAT) along $I$. Namely, the following diagram
(1.1.1) is commutative:

(1.1.1) Commutative diagram.
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Where $p_{i},$ $1\leqq i\leqq 3$ , are canonical projections and $a=(a_{1}, a_{2}, \cdots , a_{m})$ is an element
of $I$ .

An $F(x;t)$ is called to be a family with a fixed Newton polygon $\Gamma_{+}$ if the
Newton polygons of the all germs $f_{t}(x);=F(x;t)$ are simultaneously equal to
$\Gamma_{+}=\Gamma_{+}(f_{a})$ .

For any real analytic family $F(x;t)$ , we can choose finite analytic functions
$c_{j}(x;t)$ with $c_{j}(0;t)\neq 0$ and monomials $x^{i_{j}}$ $;=x_{1}^{i_{j1}}x_{2}^{i_{j2}}\cdots x_{n^{jn}}^{i},$ $0\leqq j\leqq k$ , so that

$F(x ; t)= \sum_{j=0}^{k}c_{j}(x ; t)x^{i_{j}}$ .

Let $R\pi:RXarrow R^{n}$ (resp. $C\pi|R;CX|Rarrow R^{n}$ ) be the subblowing-up
(resp. the blowing-up) of $R^{n}$ with center $RW$, where

$RW:=\{x\in R^{n}|x^{i_{0}}=x^{i_{1}}=\cdots=x^{i_{k}}=0\}$

(see \S 2). We can find also the definitions of notion of non-degeneracy in (3.1),

(3.5), (3.6), the notion of coordinate face in (2.10) and the notion of transversal
direction $J_{\gamma}$ of a face $\gamma$ of a Newton polygon in (2.7).

Now, we state the main results.

(1.2) THEOREM. Let $F(x;t)$ be an $R$ (resp. $C$)-non-degenerate real analytic
family. Then the family $F(x;t)$ admits an almost $R\pi$-MAT (resp. an almost
$C\pi|$ R-MAT) along $I$.

(1.3) THEOREM. Let $F(x;t)$ be an $R$ (resp. $C$)-non-degenerate real analytic
family. Supp0se that $F_{\gamma}(x;t)$ is independent of $t$ for any non-compact, non-
coordinate face $\gamma$ of $\Gamma_{+}$ . Then the family $F(x;t)$ admits an $R\pi$-MAT (resp. $a$

$C\pi|$ R-MAT) along $I$ .
(1.4) THEOREM. Let $F(x;t)$ be a strongly $R$ (resp. $C$)-non-degenerate real

analytic family. Then the family $F(x;t)$ admits an $R\pi$-MAT (resp. a $C\pi|R-$

MAT) along $I$.

2. Subblowing-ups and blowing-ups.

We let

$K:=R$ or $C$,

$x\iota_{j-};-=x_{1}^{i_{j1}}x_{2}^{i_{j2}}\cdots x_{n^{fn}}^{i},$ $0\leqq j\leqq k$ , monomials,

$KW:=\{x\in K^{n}|x^{i_{j}}=0,0\leqq j\leqq k\}$ ,

$KS:=\{x\in K^{n}|x_{1}x_{2}\cdots x_{n}=0\}$ ,

$KX_{W}^{*}:=\{(x, \zeta)\in(K^{n}-KW)\cross KP^{k}|\zeta_{0} : \zeta_{1} : \cdots : \zeta_{k}=x^{i_{0}} ; x^{i_{1}} ; \cdots : x^{i_{k}}\}$ ,
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$KX_{S}^{*}$ $:=\{(x, \zeta)\in(K^{n}-KS)\cross KP^{k}|\zeta_{0} : \zeta_{1} :... : \zeta_{k}=x^{i_{0}} : x^{i_{1}} :... : x^{i_{k}}\}$ ,

$KX:=KX_{W}$ $:=the$ topological closure of $KX_{W}^{*}$ in the Hausdorff space
$K^{n}\cross KP^{k}$ ,

$KX_{S}$ $:=the$ topological closure of $KX_{S}^{*}$ in the Hausdorff space $K^{n}\cross KP^{k}$

and
$CX|R:=CX\cap(R^{n}\cross RP^{k})$ .

(2.1) DEFINITIONS.

(2.1.1) We call the canonical projection

$R\pi:RXarrow R^{n}$

(or simply, $RX$ ) the subblowing-uP of $R^{n}$ with center $RW$.
(2.1.2) We call the canonical projection

$C\pi;CXarrow C^{n}$

(or simply, $CX$ ) the blowing-up of $C^{n}$ with center $CW$.
(2.1.3) We call the restriction map $C\pi|R$ of $C\pi$ to the real part $CX|R$

$:=CX\cap(R^{n}\cross RP^{k})$

$C\pi|R:CX|Rarrow R^{n}$

(or simply, $CX|R$ ) the blowing-up of $R^{n}$ with center $RW$.
It is well-known that the subblowing-up $RX$ is a semi-algebraic set and the

blowing-up $CX$ (resp. $CX|R$ ) is the Zariski closure of $CX_{W}^{*}$ (resp. $RX_{W}^{*}$ ) in
$C^{n}\cross CP^{k}$ (resp. $R^{n}\cross RP^{k}$ ).

The subblowing-up $R\pi:RXarrow R^{n}$ is a proper surjective modification of
$R^{n}$ in the sense that the map $R\pi$ is a proper surjective analytic map and the
restriction

$R\pi|RX_{W}^{*}:$ $RX_{W}^{*}arrow R-RW$

is an analytic isomorphism of real analytic manifolds.
The blowing-up $C\pi$ (resp. $C\pi|R$ ) is, of course, a proper surjective modi-

fication of $C^{n}$ (resp. $R^{n}$ ).

(2.2) LEMMA. $KX_{W}=KX_{S}$ .

PROOF. Let $(x^{0}, \zeta^{0})$ be a point of $KX_{W}^{*}$ . There exists a monomial $x^{i_{j}}$ such
that $(x^{0})^{i_{j}}\neq 0$ for $x^{0}=(x_{1}^{0}, x_{2}^{0}, \cdots , x_{n}^{0})\not\in KW$.

Define
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$x_{p}^{m}$ $:=\{\begin{array}{ll}x_{p}^{0} if x_{p}^{0}\neq 0,1\int m otherwise\end{array}$

and
$\zeta^{m}$ $;=(x^{m})^{i_{0}}$ : $(x^{m})^{i_{1}}$ :... ; $(x^{m})^{i_{k}}$ .

Then, $(x^{m}, \zeta^{m})\in KX_{S}^{*}$ and

$(x^{m}, \zeta^{m})arrow(x^{0}, \zeta^{0})$ if $marrow\infty$ .
So, $(x^{0}, \zeta^{0})\in KX_{S}$ . This implies $KX_{W}^{*}\subset KX_{S}$ and $KX_{W}\subset KX_{S}$ .

The converse inclusion $KX_{W}\supset KX_{S}$ follows the inclusion $KX_{W}^{*}\supset KX_{S}^{*}$.
This completes the proof of (2.2).

(2.3) LEMMA. The blowing-up $C\pi;CXarrow C^{n}$ (resp. the blowing-up
$C\pi|R:CX|Rarrow R^{n}$ , the subblowing-up $R\pi;RXarrow R^{n}$ ) is independent of the
choice of the generators of the ideal

$(x^{i_{0}}, x^{i_{1}}, \cdots , x^{i_{k}})K[x_{1}, x_{2}, \cdots , x_{n}]$

for $K=C$ (resp. $K=C,$ $K=R$ ) up to an analytic isomorphjsm where $K[x_{1}, x_{2}, \cdots, x_{n}]$

is the ring of polynOmjals with coefficients $K$.
PROOF. It is well-known that the blowing-up $C\pi$ and $C\pi|R$ are independent

of the choice of the generators up to analytic isomorphism ([2]). The unique-
ness of the subblowing-up $R\pi$ follows the uniqueness of the blowing-up $C\pi|R$.

Let $\Gamma_{+}$ be the Newton polygon of the polynomial

$x^{i_{0}}+x^{i_{1}}+\cdots+x^{i_{k}}$ ,

namely $\Gamma_{+}$ be the convex hull of the set

$\{i_{j}+R_{+}^{n}|0\leqq j\leqq k\}$

in $R^{n}$ , where $R_{+}:=\{x\in R|x\geqq 0\}$ .
Adding some monomials $x^{i_{j}},$ $k+1\leqq j\leqq l$ , of the ideal $(x^{i_{0}}, x^{i_{1}}, \cdots , x^{i_{k}})$

$K[x_{1}, x_{2}, \cdots , x_{n}]$ to the set of generators $x^{i_{j}},$ $0\leqq j\leqq k$ , if necessary, we may
assume that the following properties (2.4) are satisfied.

(2.4) PROPERTIES.

(2.4.1) The Newton polygon of the polynomial $x^{i_{0}}+x^{i_{1}}+\cdots+x^{i_{l}}$ is $\Gamma_{+}$ .
(2.4.2) The rank of $\{i_{s}-i_{t}|i_{s}, i_{t}\in\gamma, 0\leqq s, t\leqq l\}$ is equal ts $\dim\gamma$ for any face

$\gamma$ of $\Gamma_{\dashv-}$ .
In the sequal of this section, we assume that the blowing-up and the sub-

blowing-up of $K^{n}$ with center $KW$ satisfy the properties (2.4). Namely, let
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$KX_{l}$ be the topological closure of

$KX_{W.l}^{*}$ $:=\{(x, \zeta)\in(K^{n}-KW)\cross KP^{l}|\zeta_{0} : \zeta_{1} : \cdots : \zeta_{l}=x^{i_{0}} ; x^{t_{1}} ; \cdots : x^{i_{l}}\}$

in the Hausdorff space $K^{n}\cross KP^{l}$ and $K\pi_{l}$ : $KX_{l}arrow K^{n}$ be the canonical projec-
tion. By (2.3), $K\pi$ is analytically isomorphic to $K\pi_{l}$ , namely there exists an
analytic isomorphism $\psi:KXarrow KX_{\iota}$ such that $K\pi=K\pi\circ\psi$. Define

$KX_{S.l}^{*}$ $:=\{(x, \zeta)\in(K^{n}-KS)\cross KP^{l}|\zeta_{0} : \zeta_{1} : \cdots : \zeta_{\iota}=x^{i_{0}} ; x^{t_{1}} : : x^{i_{l}}\}$ .
(2.5) LEMMA. For any $(x^{0}, \zeta^{0})\in KX_{l}-KX_{S.l}^{*}$ , there exists a unique face $\gamma=$

$\gamma(x^{0}, \zeta^{0})$ of the Newton polygon $\Gamma_{+}$ such that $\zeta_{j}^{0}\neq 0$ if and only if $i_{f}\in\gamma(x^{0}, \zeta^{0})$ .

PROOF. By (2.2) and the curve selection lemma ([6]), there exists an
analytic map $\phi:[0, \epsilon$ ) $arrow KX_{l}$ such that $\phi(0)=(x^{0}, \zeta^{0}),$ $\phi(s)\in KX_{S,l}^{*}$ for $s\in(O, \epsilon)$ .
Let $K\pi_{l}\circ\phi=(\phi_{1}, \phi_{2}, \cdots , \phi_{n})$ and

$\phi_{p}(s):=d_{p}s^{r_{p}}+$ ($higher$ terms), $d_{p}\neq 0$

be the Taylor expansion of $\phi_{p}$ for $1\leqq p\leqq n$ . Here, $\Sigma_{p=1}^{n}r_{p}>0$ for $x^{0}\in KS$.
Define

$\Phi(s):=(d_{1}s^{r_{1}}, d_{2}s^{r_{2}}, \cdots d_{n}s^{r_{n}})$ .
Then,

$(K\pi_{l^{o}}\phi(s))^{i_{0}}$ ; $(K\pi_{l}\circ\phi(s))^{i_{1}}$ : $\cdots$ ; $(K\pi_{l}\circ\phi(s))^{i_{l}}arrow\zeta_{0}$

if $sarrow 0$. This implies that

$(\Phi(s))^{i_{0}}$ : $(\Phi(s))^{i_{1}}$ :. .. : $(\Phi(s))^{i_{l}}arrow\zeta_{0}$

if $sarrow 0$.
Let $\gamma(x^{0}, \zeta^{0})$ be the face of the Newton polygon $\Gamma_{+}$ such that the restriction

to $\Gamma_{+}$ of the linear function $L(\nu_{1}, \nu_{2}, \cdots , \nu_{n}):=r_{1}\nu_{1}+r_{2}\nu_{2}+\cdots+r_{n}\nu_{n}$ takes the
minimum value if and only if $(\nu_{1}, \nu_{2}, \cdots , \nu_{n})\in\gamma(x^{0}, \zeta^{0})$ . Noting that $(r_{1}, r_{2}, \cdots, r_{n})$

$\neq(0,0, \cdots , 0)$ for $x^{0}\in KS$. Then, $\zeta_{j}^{0}\neq 0$ if and only if $i_{j}\in\gamma(x^{0}, \zeta^{0})$ . The pro-
perty (2.4.2) guarantees the uniqueness of the face with this property.

(2.6) DEFINITION. We say that the point $(x^{0}, \zeta^{0})\in KX_{l}-KX_{S.l}^{*}$ is suppOrted
by the face $\gamma(x^{0}, \zeta^{0})$ of (2.5).

(2.7) DEFINITION. For a face $\gamma$ of the Newton polygon $\Gamma_{+}$ , a subset $J_{\gamma}$ of
$\{$ 1, 2, $\cdots$ , $n\}$ is called the transversal direction of the face $\gamma$ if $J_{\gamma}$ is the subset
of all indexes $p$ of $x_{p}$-axis, each of which is transversal to the face $\gamma$ , namely
there is no parallel translation $\tau$ of $R^{n}$ such that the affine space determined
by $\gamma$ contains $\tau$( $x_{p}$-axis).

(2.8) LEMMA. $SuPPose$ that a $p\alpha nt(x^{0}, \zeta^{0})\in KX_{l}-KX_{S}^{*}$ is suPported by a
face $\gamma=\gamma(x^{0}, \zeta^{0})$ of $\Gamma_{+}$ . Then, $x_{p}^{0}=0$ if and only if $p\in I_{\gamma}$ .
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PROOF. Let $\Phi(s)=(d_{1}s^{r_{1}}, d_{2}s^{r_{2}}, \cdots d_{n}s^{r_{n}})$ be the analytic map in the proof
of (2.5). Then, the restriction to $\Gamma_{+}$ of the linear function $L(\nu_{1}, v_{2}, \cdots , \nu_{n})=$

$r_{1}\nu_{1}+r_{2}\nu_{2}+\cdots+r_{n}\nu_{n}$ takes its minimum value just on the face $\gamma(x^{0}, \zeta^{0})$ . So, $r_{p}\neq 0$

if and only if $p\in I_{\gamma}$ . Note that $\Phi(0)=x^{0}$ . This completes the proof of (2.8).

(2.9) COROLLARY. A face $\gamma(x^{0}, \zeta^{0})$ is comPact if and only if $x^{0}=0$.

PROOF. Note that a face $\gamma$ is compact if and only if the transversal direc-
tion $J_{\gamma}$ of $\gamma$ is equal to $\{1, 2, \cdots n\}$ . So, (2.8) implies (2.9).

(2.10) DEFINITION. We call a non-compact face $\gamma$ of $\Gamma_{+}$ a coordinate face
if $\gamma$ is contained in some coordinate space and contains a non-empty open sub-
set of the coordinate space.

(2.11) LEMMA.

(2.11.1) SuPpose that a Pmnt $(x^{0}, \zeta^{0})$ is supported by a coordinate face $\gamma=$

$\gamma(x^{0}, \zeta^{0})$ . Then
$K\pi_{l}^{-1}(x^{0})=\{(x^{0}, \zeta^{0})\}$ .

(2.11.2) If $\# K\pi_{l}^{-1}(x^{0})>1$ and $x^{0}\neq 0$, then a $p\alpha nt(x^{0}, \zeta^{0})\in KX_{l}$ is suPported
by a non-compact, non-coordinate face.

PROOF. (2.11.2) is an immediate corollary of (2.9) and (2.11.1).

So, let us prove (2.11.1). Since $\gamma(x^{0}, \zeta^{0})$ is coordinate face, we may assume
that dim $\gamma=P$ and $\phi(s)=(d_{1}, \cdots d_{p}, d_{p+1}s^{r_{p+1}}, \cdots d_{n}s^{r_{n}})arrow x^{0}=(d_{1}, \cdots d_{p}, 0, \cdots 0)$

if $sarrow 0$ .
If $i_{j}\in\gamma(x^{0}, \zeta^{0})$ , then $i_{jp+1}=\ldots=i_{jn}=0$ because $\gamma(x^{0}, \zeta^{0})$ is a coordinate face.

And $x^{i}J\circ\phi(s)=d_{1}^{l_{j1}}\cdots d_{p^{fp}}^{i}$ if $i_{j}\in\gamma(x^{0}, \zeta^{0})$ and $ord(x^{i_{j_{0}}}\phi(s))\geqq 1$ otherwise. There-
fore $\zeta^{0}$ is uniquely determined by $x^{0}=(d_{1}, \cdots d_{p}, 0, \cdots 0)$ .

3. Non-degeneracy.

Let $f(x)= \sum_{i}c_{i}x^{l}$ be a germ of real analytic function at the origin of $R^{n}$ .
Suppose $f(O)=0$. Define

$f_{\gamma}(x)= \sum_{i\in\gamma}c_{i}x^{i}$

for any subset $\gamma$ of the Newton polygon $\Gamma_{+}(f)$ of $f(x)$ . Let $J$ be a subset of
$\{$ 1, 2, $\cdots$ , $n\}$ and $K=R$ or $C$ .

(3.1) DEFINITION. A germ $f(x)$ is K-J-non-degenerate if the following equa-
tion
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(3.1.1) $x_{p}(\partial f_{\gamma}/\partial x_{p})=0$ , $p\in I$

has no solutions in $K^{n}-KS$ for any compact face $\gamma$ of $\Gamma_{+}(f)$ .
In particular, we call a germ $f(x)$ being K-non-degenerate if it is K-J-non-

degenerate for $J=\{1,2, \cdots , n\}$ .
The following Lemma (3.2) is clear.

(3.2) LEMMA.

(3.2.1) The C-J-non-degeneracy of $f(x)$ implies the R-J-non-degeneracy of
$f(x)$ .

(3.2.2) Supp0se $I_{1}\subset I_{2}\subset\{1,2, \cdots , n\}$ . If a germ $f(x)$ is $K- J_{1^{arrow}}non$-degenerate,
then $f(x)$ is $K- J_{2^{-}}non$-degenerate.

(3.3) EXAMPLE. Let $f(x_{1}, x_{2}, x_{3}):=x_{1^{4}}+x_{1^{2}}x_{2^{3}}+x_{2^{8}}+x_{z^{6}}x_{3}^{2}$ . The followin$g$

figure (3.3.1) represents the Newton polygon $\Gamma_{+}(f)$ of $f(x)$ .

(3.3.1) Figure.

The Newton polygon $\Gamma_{+}(f)$ has $f$

$\gamma_{1},$
$\cdots$ , $\gamma_{5}$ in the figure (3.3.1). Define

five faces of dimension two. They are

$\gamma_{ij}:=\gamma_{i}\cap\gamma_{j}$ and $\gamma_{ijk}$ $:=\gamma_{i}\cap\gamma_{j}\cap\gamma_{k}$ .
The all compact faces of $\Gamma_{+}(f)$ are

$\gamma_{6},$ $\gamma_{15},$ $\gamma_{35},$ $\gamma_{45},$ $\gamma_{34},$ $\gamma_{135},$ $\gamma_{145},$ $\gamma_{345}$ and $\gamma_{234}$ .
The all coordinate faces are

$\gamma_{1},$ $\gamma_{2},$ $\gamma_{a},$ $\gamma_{1\}$ and $\gamma_{23}$ .
The faces $\gamma_{4},$ $\gamma_{14},$ $\gamma_{24}$ are non-compact and non-coordinate faces.
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(3.3.2) The germ $f(x)$ is $R-\{1, 2\}$ -non-degenerate and C-non-degenerate.
(3.3.3) The germ $f(x)$ is $K-\{1,3\}$ -degenerate and $K-\{2,3\}$ -degenerate.
(3.3.4) The germ $f(x)$ is $C-\{1,2\}$ -degenerate.

PROOF. We have the following calculating table.

(3.3.5) Table.

The table (3.3.5) shows that the equation (3.1.1) for $J=\{1,2,3\}$ has no
solutions in $K^{3}-KS$ for any compact face $\gamma$ . So, the germ $f(x)$ is K-non-
degenerate. The equation

$x_{1} \frac{\partial f_{\gamma}}{\partial_{X_{1}}}=x_{2}\frac{\partial f_{\gamma}}{\partial x_{2}}=0$

has no solutions in $R^{3}-RS$. So, the germ $f(x)$ is $R-\{1, 2\}$ -non-degenerate.
This implies (3.3.2).

For the compact face $\gamma=\gamma_{135}$ , both the polynomials $x_{1}\partial f_{\gamma}/\partial x_{1}$ and $x_{3}\partial f_{\gamma}/\partial x_{3}$

are identically zeros. So, the germ $f(x)$ is $K-\{1,3\}$ -degenerate.
For the compact face $\gamma=\gamma_{2S4}$ , both of the polynomials $x_{2}\partial f_{\gamma}/\partial x_{2}$ and $x_{3}\partial f_{\gamma}/\partial x_{3}$
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are identically zeros. So, the germ $f(x)$ is $K-\{2,3\}$ -degenerate. This implies
(3.3.3).

For $\gamma=\gamma_{15},$ $x_{1}\partial f_{\gamma}/\partial x_{1}=0$ and $x_{2}\partial f_{\gamma}/\partial x_{2}=2x_{2}^{6}(4x_{2}^{2}+3x_{3}^{2})$ . Then the equation
$x_{1}\partial f_{\gamma}/\partial x_{1}=x_{2}\partial f_{\gamma}/\partial x_{2}=0$ has solutions in $C^{3}-CS$. This implies (3.3.4).

Let $f(x)$ be a germ of analytic function at the origin of $R^{n}$ . Then, there
exist finite analytic functions $c_{j}(x)$ with $c_{j}(0)\neq 0$ such that

$f(x)= \sum_{j=0}^{k}c_{j}(x)x^{i}!$ .

Let $KW:=\{x\in K^{n}|x^{t_{0}}=x^{i_{1}}=\cdots=x^{i_{k}}=0\}$ and $K\pi:KXarrow K^{n}$ be the sub-
blowing-up (resp. the blowing-up) of $K^{n}$ with center $KW$ for $K=R$ (resp. $K=C$).

(3.4) THEOREM. A germ $f(x)$ is K-J-non-degenerate if and only if the linear
equation

(3.4.1) $i_{0p}c_{0}(0)\zeta_{0}+i_{1p}c_{1}(0)\zeta_{1}+\cdots+i_{kp}c_{k}(0)\zeta_{k}=0$ , $p\in I$

has no solutions in $K\pi^{-1}(0)$ .
PROOF. Suppose that a germ $f(x)$ is K-J-degenerate. There exist a com-

pact face $\gamma$ of $\Gamma_{+}(f)$ and a solution $x^{0}\in K^{n}-KS$ of the equation (3.1.1) for 7.
Choose $n$ positive integers $r_{1},$ $r_{2},$

$\cdots$ , $r_{n}$ so that the restriction to $\Gamma_{+}(f)$ of the
linear function $L(\nu)=r_{1}\nu_{1}+r_{2}\nu_{2}+\cdots+r_{n}\nu_{n}$ takes its minimum value just on the
face $\gamma$. Let

$\zeta_{j}^{0}:=\{\begin{array}{ll}d(x^{0})^{i}!, \text{\’{a}}\neq 0 if i_{j}\in\gamma,0 otherwise.\end{array}$

Then,
$((s^{r_{1}}x_{1}^{0}, s^{r_{2}}x_{2}^{0}, \cdot.. , s^{r_{n}}x_{n}^{0}), \zeta)\in KXarrow(O, \zeta^{0})$

if $s$ tends to zero.
Now,

$(x_{p} \frac{\partial f_{\gamma}}{\partial x_{p}})(x^{0})=\sum_{i_{j}\in\gamma}i_{jp}c_{j}(0)(x^{0})^{i_{j}}$

$=d \sum_{i_{j}\in\gamma}i_{jp}c_{j}(0)\zeta_{j}^{0}$

$=d \sum_{j=0}^{k}i_{jp}c_{j}(0)\zeta_{j}^{0}$

$=0$ for $p\in J$ .

So, $(0, \zeta^{0})\in K\pi^{-1}(0)$ is a solution of the equation (3.4.1).

Conversely, suppose that the equation (3.4.1) has a solution $(0, \zeta^{0})\in K\pi^{-1}(0)$ .
Let $\gamma=\gamma(0, \zeta^{0})$ be the face supporting the point $(0, \zeta^{0})$ . Then the face $\gamma$ is com-
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pact by (2.9). Let $\Phi(s)=(d_{1}s^{r_{1}}, d_{2}s^{r_{2}}, \cdots d_{n}s^{r_{n}})$ be the analytic map in the
proof of (2.5). Then, the polynomial $(x_{p}\partial f_{\gamma}/\partial x_{p})(\Phi(s))$ is the initial term of
$(x_{p}\partial f/\partial x_{p})(\Phi(s))$ . Let $\alpha:=\deg_{s}(x_{p}\partial f_{\gamma}/\partial x_{p})(\Phi(s))$ . Then,

$(x_{p} \frac{\partial f_{\gamma}}{\partial x_{p}})(d_{1}, d_{2}, \cdots d_{n})=(x_{p}\frac{\partial f_{\gamma}}{\partial x_{p}})(\Phi(s))/s^{\alpha}$

$= \sum_{i_{j}\in\gamma}i_{jp}c_{j}(0)(\Phi(s)^{i_{j}}/s^{\alpha})$ .

The ratio $(\Phi(s)^{l_{0}} : \Phi(s)^{i_{1}} : \cdots : \Phi(s)^{i_{k}})$ tends to $\zeta^{0}$ if $s$ tends to zero.
On the other hand, $\Sigma_{i_{j}\in\gamma}i_{jp}c_{j}(0)\zeta_{j}^{0}=0$ because $\sum_{j=0}^{k}i_{jp}c_{j}(0)\zeta_{j}^{0}=0$ for $p\in J$ by

the assumption and $\zeta_{j}^{0}=0,$ $i_{j}\not\in\gamma$ by (2.5).

So, $(x_{p}\partial f_{\gamma}/\partial x_{p})(d_{1}, d_{2}, \cdots d_{n})=0$ for $P\in J$ and the equation (3.1.1) has a
solution $(d_{1}, d_{2}, \cdots , d_{n})$ in $K^{n}-KS$ for the compact face $\gamma$ .

Let $F(x;t)= \sum c_{i}(t)x^{l}$ be a real analytic family with a fixed Newton
polygon $\Gamma_{+}$ .

(3.5) DEFINITION. For $K=R$ or $C$ , we call $F(x;t)$ a K-J-non-degenerate
family if each function $f_{t}(x):=F(x;t),$ $t\in I$, is K-J-non-degenerate.

Let $\gamma_{p},$ $1\leqq P\leqq M$, be the all faces of $\Gamma_{+}$ (which contain the face of dimen-
sion n) and construct a new family $F(x;T),$ $T=(t_{q.p})\in 1$, changing the param-
eter $t=(t_{1}, t_{2}, \cdots t_{m})$ of $F(x;t)$ as follows. Substitute a new parameter $t_{q.p}$ for
the parameter $t_{q}$ (if there exists) in the coefficient $c_{i}(t)$ of term $x^{i},$ $i\in Int(\gamma_{p})$ .
Then $F(x;T)$ is a real analytic family with the fixed Newton polygon $\Gamma_{+}$ and
$\dim l\leqq mM$. We call $P(x;T)$ the corresponding family to $F(x;t)$ . We denote
the boundary of $\gamma$ by $\partial\gamma$ .

(3.6) DEFINITION. We call a K-non-degenerate family $F(x;t)$ a strongly
K-non-degenerate family if the corresponding family $F(x;T)$ is $K- J_{\gamma^{-}}non-$

degenerate and $F_{\partial\gamma}(x;t)$ is independent of $t$ for any non-compact, non-coordinate
face $\gamma$ of $\Gamma_{+}$ .

We denote the function substituting $t_{q,p}$ for $t_{q}$ of $c_{j}(t)$ as above by $c_{j}(T)$ .

4. Kuo vector fields and singular Riemannian metrics.

Let $F(x;t)= \sum_{j=0}^{k}c_{j}(x;t)x^{i_{j}}$ , $c_{j}(0;t)\neq 0$ be a real analytic function in a
neighbourhood of $\{O\}\cross I$, where $I$ is a compact interval in $R$ and $F(O;t)=0$.
Namely, $F(x;t)$ is a real analytic family with one parameter.

Assume that $F(x;t)$ is a family with a fixed Newton polygon $\Gamma_{+}=\Gamma_{+}(f_{t})$ .
Let $K\pi:KXarrow K^{n}$ be the subblowing-up (resp. the blowing-up) of $K^{n}$ with

center $KW$ where $KW=\{x\in K^{n}|x^{i_{0}}=x^{i_{1}}=\cdots=x^{i_{k}}=0\}$ if $K=R$ (resp. $K=C$ ).

In this section, we shall prove that there exists an analytic vector field $\tilde{V}$
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defined in a neighbourhood of $R\pi^{-1}(0)\cross I$ (resp. $(C\pi|R)^{-1}(0)\cross I$) in $R^{n}\cross RP^{k}\cross R$

if the all $f_{t}(x)$ are R-non-degenerate (resp. C-non-degenerate) with the follow-
ing properties:

$(\tilde{V}1)\tilde{V}$ is tangent to the analytic manifold $RX_{W}^{*}\cross R$ and is tangent to the
level set of $F\circ(R\pi\cross id_{I})$ (resp. $F\circ(C\pi|R\cross id_{I})$) at its regular point,

$(\tilde{V}2)$ the $t$ component of $\tilde{V}$ is $\partial/\partial t$ .
Now, let us introduce a singular Riemannian metric on $R^{n}$ . Let $g_{p}(x)$ ,

$1\leqq p\leqq n$ , be analytic functions on $R^{n}$ . Define the inner product by

$\langle g_{p^{\frac{\partial}{\partial x_{p}}}},$ $g_{q} \frac{\partial}{\partial x_{q}}\rangle:=\delta_{pq}$

where $\delta_{pq},$ $1\leqq p,$ $q\leqq n$ , are the Kronecker’s symbols. This inner product induces
a Riemannian metric on $R^{n}-\{x\in R^{n}|g_{1}g_{2}\cdots g_{n}=0\}$ , which we call a singular
Riemannian metric on $R^{n}$ .

Using this singular metric, we have the following

(4.1) LEMMA.

(4.1.1) $Grad_{x}F=\sum_{p=1}^{n}g_{p^{2}}\frac{\partial F}{\partial_{X_{p}}}\frac{\partial}{\partial x_{p}}$

(4.1.2) $Grad_{x}F|^{2}=\sum_{p=1}^{n}(g_{p}\frac{\partial F}{\partial x_{p}})^{2}$.

PROOF. Put $Grad_{x}F:=\Sigma_{p=1}^{n}a_{p}\partial/\partial x_{p}$ . Then, by the definition of $Grad_{x}F$,
we have:

$\frac{\partial F}{\partial x_{p}}=\langle Grad_{x}F,$ $\frac{\partial}{\partial x_{p}}\rangle=\langle a_{p^{\frac{\partial}{\partial x_{p}}}},$ $\frac{\partial}{\partial x_{p}}\rangle=\frac{a_{p}}{g_{p}^{2}}$ .

So, $a_{p}=g_{p}^{2}\partial F/\partial x_{p}$ . This completes the proof of (4.1.1).

(4.1.2) We have:

$| Grad_{x}F|^{2}=\langle\sum_{p=1}^{n}g_{p^{2}}\frac{\partial F\partial}{\partial x_{p}\partial x_{p}},\sum_{p=1}^{n}g_{p}^{2}\frac{\partial F\partial}{\partial x_{p}\partial x_{p}}\rangle$

$= \sum_{p=1}^{n}(g_{p}\frac{\partial F}{\partial x_{p}})^{2}$

Recall so called a Kuo vector field $V(x;t)$ ([3]):

$V(x;t):= \frac{|Grad_{x.t}F|^{2}}{|Grad_{x}F|^{2}}(\frac{\partial}{\partial t}-\langle\frac{\partial}{\partial t},$ $\frac{Grad_{x,t}F}{|Grad_{x.l}F|}\rangle\frac{Grad_{x.t}F}{|Grad_{x.t}F|})$

$= \frac{-\partial F/\partial t}{|Grad_{x}F|^{2}}Grad_{x}F+\frac{\partial}{\partial t}$ .
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The vector field $V(x;t)$ is tangent to the level set of $F(x;t)$ at its any
regular point, by definition. By (4.1), we have the following representation of
$V(x;t)$ .

(4.2) LEMMA.

$V(x ; t)=- \frac{\partial F}{\partial t}\sum_{p=1}^{n}g_{p^{2}}\frac{\partial F\partial}{\partial x_{p}\partial x_{p}}/\sum_{p\Leftarrow 1}^{n}(g_{p}\frac{\partial F}{\partial x_{p}})^{2}+\frac{\partial}{\partial t}$ .

Define

$E_{p}$ $:=\{\begin{array}{ll}x_{1}x_{2}\cdots x_{n}/x_{p} if p\not\in I,1 otherwise.\end{array}$

$A_{p}(x, \zeta;t);=\frac{-(\sum_{j=0}^{k}(\partial c_{j}/\partial t)\zeta_{j})E_{p^{2}}\{\sum_{j\approx 0}^{k}i_{jp}c_{j}(x;t)\zeta_{j}+x_{p}\sum_{j=0}^{k}(\partial c_{j}/\partial x_{p})\zeta_{j}\}}{\Sigma nE_{p}^{2}\{\sum_{j=0}^{k}i_{jp}c_{j}(x;t)\zeta_{j}+x_{p}\sum_{j=0}^{k}(\partial c_{j}/\partial x_{p})\zeta_{j}\}^{2}}$ .
$p=1$

(4.3) THEOREM. Supp0se that $F(x;t)$ be a real analytic family of germs of
R-J-nm-degenerate (resp. C-J-non-degenerate) functions $f_{t}(x);=F(x;t)$ with a
fixed Newton p0lyg0n $\Gamma_{+}$ . Then, the vector field defined in $R^{n}\cross U_{r}\cross R=\{(x, \zeta;t)|$

$\zeta_{r}\neq 0\}$

$\hat{V}^{r}$

$:= \sum_{p=1}^{n}A_{p}(x, \zeta;t)x_{p}\frac{\partial}{\partial x_{p}}+\sum_{J=0}^{k}\sum_{p=1}^{n}A_{p}(x, \zeta;t)(i_{jp}-i_{rp})\frac{\zeta_{j}}{\zeta_{r}}(1-\delta_{jr})\frac{\partial}{\partial(\zeta_{j}/\zeta_{r})}+\frac{\partial}{\partial t}$

is analytic in a neighbourhood of $R\pi^{-1}(0)\cross I$ (resp. $(C\pi|R)^{-1}(0)\cross I$ ) in $R^{n}\cross RP^{k}\cross R$

and satisfies the conditions $(\tilde{V}1)$ and $(\tilde{V}2)$ .

PROOF. Substituting $x=0$ in the denominator of the coefficient of $\partial/\partial x_{p}$ ,
we have $\Sigma_{p\in J}\{\Sigma_{J}^{k}ic_{j}(0;t)\zeta_{j}\}^{2}$ .

By (3.4), it does not vanish on $R\pi^{-1}(0)\cross I$ (resp. $(C\pi|R)^{-1}(0)\cross I$ ) because
the germs $f_{t}(x)$ are R-J-non-degenerate (resp. C-J-non-degenerate). So, the
vector field $\tilde{V}(x, \zeta;t)$ is analytic in a neighbourhood of $R\pi^{-1}(0)\cross I$ (resp.
$(C\pi|R)^{-1}(0)\cross I)$ in $R^{n}\cross RP^{k}\cross R$, where $\tilde{V}|R^{n}\cross U_{r}\cross R:=\tilde{V}^{r}$.

Now, let $(x, \zeta)$ be a point of $RX_{S}^{*}$ . Then,

$d(R\pi\cross id_{I})(V(x, \zeta;t))=d((C\pi|R)\cross id_{I})(V(x, \zeta;t))$

$=_{n}^{-(tx^{i_{j}}} \ovalbox{\tt\small REJECT}+\frac{\partial}{\partial t}\sum_{j=0}^{k}\partial c_{j}/\partial)_{p=1}\Sigma^{n}E_{p}^{2}\{\sum_{j=0}^{k}i_{fp}c_{j}(Xjt)X^{t_{J+x_{p}}^{k}}\sum_{j=0}\partial c_{j}/\partial x_{p}x^{t_{j}}\}x_{p}\partial/\partial x_{p}\sum E_{p^{2}}\{\sum_{j=0}^{k}i_{jp^{C_{j}}}(x;t)x^{i}J+x_{p}\sum_{j=0}^{k}\partial c_{j}/\partial x_{p}x^{t_{j}}\}2$

$p\Rightarrow 1$
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$= \frac{-\partial F/\partial t\sum_{p=1}^{n}E_{p^{2}}x_{p}(\partial F/\partial x_{p})x_{p}\partial/\partial x_{p}}{\Sigma(E_{p}x_{p}\partial F/\partial x_{p})^{2}n}+\frac{\partial}{\partial t}$

$p=1$

$=V(x;t)$ .
The last equality is proved by the application of (4.2) in which put

$g_{p}$ $:=E_{p}x_{p},$ $1\leqq p\leqq n$ .
This shows that the vector field $V(x, \zeta;t)$ is tangent to the analytic mani-

fold RX\S $\cross$ R and is tangent to the level set of $F\circ(R\pi\cross id_{I})$ (resp. $F\circ(C\pi|R\cross id_{I})$)

at its regular point since the Kuo vector field $V(x;t)$ satisfies similar properties.
Thus, the vector field $\tilde{V}(x, \zeta;t)$ satisfies the condition $(\tilde{V}1)$ .

The condition (V2) is clearly satisfied by the definition of $\tilde{V}(x, \zeta_{j}t)$ . This
completes the proof of (4.3).

5. Proof of main Theorems.

PROOF OF (1.2). The proof of Theorem (1.2) in the case of C-non-degeneracy
is completely parallel to the proof of Theorem (1.2) in the case of R-non-
degeneracy, using the blowing-up $C\pi|R:CX|Rarrow R^{n}$ of $R^{n}$ with center $RW$

instead of the subblowing-up $R\pi;RXarrow R^{n}$ of $R^{n}$ with center $RW$.
Now, let us prove Theorem (1.2) in the case of R-non-degeneracy.
Let $F(x;t):R^{n}\cross Iarrow R$ be a real analytic family of germs of R-non-

degenerate real analytic functions with a fixed Newton polygon $\Gamma_{+}=\Gamma_{+}(f_{t})$

where $I=X_{q\approx 1}^{m}[a_{q}, b_{q}]$ be a compact cube in $R^{m}$ .
Let $\tilde{V}_{q}$ be an analytic vector field in a neighbourhood of $R\pi^{-1}(0)\cross I$ in

$R^{n}\cross RP^{k}\cross R^{m}$ with the properties:
$(V_{q}1)\hat{V}_{q}$ is tangent to the analytic manifold $RXcross R$ and is tangent to

the level set of $F\circ(R\pi\cross id_{I})$ at its regular point,
$(\tilde{V}_{q}2)$ the $t$ component of $\tilde{V}_{q}$ is $\partial/\partial r_{q}$ for $1\leqq q\leqq m$ .
By (4.3) in which put $J:=\{1,2, \cdots , n\},$ $\partial/\partial t;=\partial/\partial t_{q}$ , the existence of $\tilde{V}_{q}$ is

guaranteed. Let $\phi_{q}(t_{q} ; x, \zeta, c)$ be the trajectory of $V_{q}$ with $\phi_{q}(0_{j}x, \zeta, c)=(x, \zeta, c)$ .
Then,

$\tilde{H}(x, \zeta, t):=\phi_{m}(t_{m}-a_{m} ; \phi_{m-1}(\cdots ; \phi_{1}(t_{1}-a_{1} ; x, \zeta, a)\cdots))$

is an analytic isomorphism between two neighbourhoods of $R\pi^{-1}(0)\cross I$ in $R^{n}\cross$

$RP^{k}\cross R$.
Since the vector field $\tilde{V}_{q}$ has the properties $(\tilde{V}_{q}1)$ and $(V_{q}2)$, the restriction

of $\tilde{H}(x, \zeta;t)$ to $RX\cross R$ induces an analytic isomorphism between two neigh-
bourhoods of $R\pi^{-1}(0)\cross I$ in $RX\cross R$ and the function $FQ(R\pi\cross id_{I})\circ\tilde{H}(x, \zeta;t)$ is
independent of $t$ . This completes the proof of Theorem (1.2) in the case of
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R-non-degeneracy.

PROOF OF (1.3). It is sufficient to prove Theorem (1.3) in the case of R-
non-degeneracy by the same reason in the proof of (1.2).

In this proof, we make use of some results in Section 2, and so we assume
that the subblowing-up of $R^{n}$ with center $RW$ is the $RX_{l}$ defined by the mono-
mials $x^{t_{j}},$ $0\leqq j\leqq l$ satisfying the conditions (2.4.1) and (2.4.2).

Since $F(x;t)$ is an R-non-degenerate real analytic family, the hypothesis of
Theorem (1.2) is satisfied. So, there exists an analytic isomorphism $\tilde{H}(x, \zeta;t)$

proving (1.2). For the proof of (1.3), it is sufficient to show that the analytic
vector field $V_{q}(x, \zeta;t)$ in the proof of (1.2) is tangent to $R\pi^{-1}(x^{0})\cross R$ for any
$x^{0}\in RW$ whose inverse image of $R\pi$ is not a one point set. In fact, if the all
vector fields $\tilde{V}_{q},$ $1\leqq q\leqq m$ , have these properties, then the analytic isomorphism
$\tilde{H}$ induces the homeomorphism $H$ between two neighbourhoods of $\{O\}\cross I$ in
$R^{n}\cross R^{m}$ proving (1.3).

(5.1) LEMMA. The coefficient of $\partial/\partial x_{p}$ in $V_{q}(0, \zeta;t)$ vanishes for any $p,$ $q$ .
PROOF. This is clear by the definition of $\nu_{q}$ .
(5.2) LEMMA. If $\# R\pi_{l}^{-1}(x^{0})>1$ and $x^{0}\neq 0$ , then $\tilde{V}_{q}(x^{0}, \zeta^{0} ; t)=\partial/\partial t_{q},$ $1\leqq q\leqq m$ ,

for $(x^{0}, \zeta^{0})\in RX_{l}$ .
PROOF. By (2.11.1), the point $(x^{0}, \zeta^{0})$ is supported by a non-compact, non-

coordinate face $\gamma=\gamma(x^{0}, \zeta^{0})$ of the Newton polygon $\Gamma_{+}$ .
Then,

$\sum_{j=0}^{k}\frac{\partial c_{j}}{\partial t_{q}}(x^{0} ; t)\zeta_{j}^{0}=\sum_{i_{j}\in\gamma}\frac{\partial c_{j}}{\partial t_{q}}(x^{0} ; t)\zeta_{j}^{0}$

by (2.5). Note that
$F_{\gamma}(x^{0} ; t)= \sum_{i_{j}\in\gamma}c_{j}(x^{0} ; t)(x^{0})^{l}!$ .

Because we may assume that the exponent of any monomial of $c_{j}(x;t)x^{:_{i}},$ $i_{j}\in\gamma$ ,
lies on the face $\gamma$ after changing (if necessary) the formulation $F(x;t)=$

$\sum_{j=0}^{k}c_{j}(x;t)x^{i_{j}}$ without change of $R\pi$ up to isomorphism. $F_{\gamma}(x;t)$ is independent
of $t$ , the hypothesis of (1.3).

Hence,

$\sum_{i_{j}\in\gamma}\frac{\partial c_{j}}{\partial t_{q}}(x^{0} ; t)\zeta_{j}^{0}=0$ .

Since $\Sigma_{j=0}^{k}\partial c_{j}/\partial t_{q}(x;t)\zeta_{j}$ is a factor of the coefficient of $\partial/\partial x_{p}$ and $\partial/\partial(\zeta_{j}/\zeta_{r})$ (see

the definition of the vector field $\tilde{V}_{q}$ in (4.3)), the coefficient of $\partial/\partial x_{p}$ and
$\partial/\partial(\zeta_{j}/\zeta_{r})$ in the vector field $V_{q}$( $x^{0},$ $\zeta^{0}$ ; t) is zero. So,
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$\hat{V}_{q}(x^{0}, \zeta^{0} ; t)=\partial/\partial t_{q}$ .
So, the vector field $\tilde{V}_{q}$( $x^{0},$ $\zeta^{0}$ ; t) is equal to $\partial/\partial t_{q}$ . This completes the proof

of (5.2).

By (5.1) and (5.2), the vector field $\tilde{V}_{q}$( $x^{0},$ $\zeta^{0}$ ; t) is tangent to $R\pi_{l}^{-1}(x^{0})\cross R$.
Therefore, the real analytic family $F(x;t)$ admits an $R\pi_{l}$-MAT along $I$ and

so admits an $R\pi$-MAT along $I$ because the subbIowing-up $R\pi_{l}$ of $R^{n}$ is analyti-
cally isomorphic to the subblowing-up $R\pi$ of $R^{n}$ . This completes the proof of
(1.3).

PROOF OF (1.4). It is sufficient to prove (1.4) in the case of R-non-degeneracy
by the same reason in the proof of (1.2).

Since $F(x;t)$ is a subfamily of the corresponding family $\tilde{F}(x;T)$ , it is
sufficient to prove that $\tilde{F}(x;T)$ admits an $R\pi$-MAT along 7.

Let $J_{q.r}$ be the subset of $\{$ 1, 2, $\cdots$ , $n\}$ defined as follows:

$J_{q.r}$ $:=\{\begin{array}{ll}J_{\gamma_{r}} if \gamma_{r} is a non- compact, non- coordinate face,\{1, 2, \cdots n\} otherwise.\end{array}$

Let $\tilde{V}_{q,r}(x, \zeta;T)$ be an analytic vector field defined by (4.3) in which put
$J:=J_{q.r},$ $\partial/\partial t;=\partial/\partial t_{q,t}$ and $F(x;t):=F(x;T)$ .

The residual part of the proof is completely parallel to the proof of (1.3)

except making use of the following Lemma (5.3) instead of (5.2).

(5.3) LEMMA. If $\# R\pi_{l}^{-1}(x^{0})>1$ and $x^{0}\neq 0$ , then the coefficient of $\partial/\partial x_{p}$ in
$V_{q.r}(x^{0}, \zeta^{0} ; T)$ vamshes for any $p$ .

PROOF. By (2.11.1), the point $(x^{0}, \zeta^{0})$ is supported by a non-compact, non-
coordinate face $\gamma$ of the Newton polygon $\Gamma_{+}$ .

At first, suppose $\gamma_{r}=\gamma$ . Then, $x_{p}^{0}=0$ for any $p\in J_{\gamma_{r}}$ by (2.8). So the co-
efficient of $\partial/\partial x_{p}$ in the vector field $\tilde{V}_{q.r}(x^{0}, \zeta^{0} ; T)$ vanishes if $p\in J_{\gamma_{T}}$ .

If $P\not\in I_{\gamma_{r}}$ , then the function $E_{p}x_{p}=x_{1}x_{2}\cdots x_{n}$ is a factor of the coefficient
of $\partial/\partial x_{p}$ in the vector field $\tilde{V}_{q.r}(x, \zeta;T)$ and so the coefficient of $\partial/\partial x_{p}$ in
$7_{q.r}(x^{0}, \zeta^{0} ; T)$ vanishes because $\# R\pi^{-1}(x^{0})>1$ and $x^{0}\in RS$.

Nextly, suppose $\gamma_{r}\neq\gamma$ . Then,

$\sum_{j=0}^{k}\frac{\partial c_{j}}{\partial t_{q.r}}(x^{0} ; T)\zeta_{j}^{0}=\sum_{i_{j}\in\gamma}\frac{\partial c_{j}}{\partial t_{q,r}}(x^{0} ; T)\zeta_{j}^{0}$

by (2.5).

Here, if $i_{j}\in Int(\gamma)$ , then $c_{j}(x;T)$ is independent of $t_{q,r}$ for $\gamma_{r}\neq\gamma$. We may
assume that the exponent of each monomial of $c_{j}(x;t),$ $i_{j}\in\partial\gamma$ , lies on $\partial\gamma$ after
changing (if necessary) the formulation $F(x;t)=\Sigma_{j=0}^{k}c_{j}(x;t)x^{i_{j}}$ without change
$R\pi$ up to isomorphism. So, if $i_{j}\in\partial\gamma$ , then $c_{j}(x;T)$ is independent of $t_{q,r}$ because



Modified analytic trivializaiion 177

$F(x;t)$ is strongly R-non-degenerate, the hypothesis of (1.4).

Hence,

$\sum_{i_{j}\in\gamma}\frac{\partial c_{j}}{\partial t_{q,r}}(x^{0} ; T)\zeta_{j}^{0}=0$ .

Since $\Sigma_{j=0}^{k}\partial c_{j}/\partial t_{q.r}(x;T)\zeta_{j}$ is a factor of the coefficient of $\partial/\partial x_{p}$ (see the
definition of the vector field $V_{q,r}$ in (4.3)), the coefficient of $\partial/\partial x_{p}$ in the vector
field $V_{q,r}(x^{0}, \zeta^{0} ; T)$ is zero.

This completes the proof of (5.3).

This completes the proof of (1.4).

Note that the corresponding family $\tilde{F}(x;T)$ admits an $R\pi$-MAT along $\tilde{I}$ by
the proof of (1.4).

6. Corollaries.

(6.1) COROLLARY. Let $F(x;t)$ be an $R$ (resp. $C$)-non-degenerate real analytic
family. Assume that

$RW=\{x\in R^{n}|x^{i_{0}}=x^{i_{1}}=\cdots=x^{i_{k}}=0\}=\{0\}$ .
Then the family $F(x;t)$ admits an $R\pi$-MAT ( $resP\cdot C\pi|$ R-MAT) along $I$.
PROOF. (6.1) follows the proof of (1.2). In fact, the additional hypothesis

of (1.3) compared with the hypothesis of (1.2) is needed to prove(5.2). But we
are not in need of (5.2) to prove (6.1) by the assumption $RW=\{0\}$ of (6.1).

(6.2) COROLLARY. Assume that a real analytic function $f(x)$ is R-non-
degenerate. Then, the $R\pi$-MAT tyPe (and so the local topOlOgjcal type) of $f(x)$

is determined by $f_{\partial\Gamma+Cf)}(x)$ .
PROOF. Let $g(x)$ be a real analytic function at the origin such that $\Gamma_{+}(g)$

$=\Gamma_{+}(f)$ and $g_{\partial\Gamma+}(x)=f_{\partial\Gamma+}(x)$ . Then the analytic family $F(x;t);=(1-t)f(x)+$

$+tg(x)$ satisfies the hypothesis of (1.3). So, the family $F(x;t)$ admits an $R\pi-$

MAT along the interval $[0,1]$ and $F(x;O)=f(x),$ $F(x;1)=g(x)$ . This com-
pletes the proof.

7. Examples.

(7.1) EXAMPLE. Let

$F(x;t):=x_{1^{4}}+(1+tx_{3}^{k})x_{1}^{2}x_{2}^{3}+x_{2}^{8}+x_{2}^{6}x_{3}^{2}$ , $k\geqq 1$ .
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As we studied in (3.3), $F(x;t)$ is a family of $R-\{1, 2\}$ -non-degenerate real
analytic functions. Let $I$ be a parameter space, an any compact interval in $R$.
Let $R\pi;RXarrow R^{3}$ be the subblowing-up of $R^{3}$ with center

$RW=\{x\in R^{3}|x_{1}^{4}=x_{1^{2}}x_{2}^{3}=x_{2}^{8}=x_{2^{6}}x_{3}^{2}=0\}$ .
(7.1.1) The family $F(x;t)$ admits an $R\pi$-MAT along $I$ .

PROOF. For any non-compact, non-coordinate face $\gamma_{4},$ $\gamma_{14}$ or $\gamma_{24}$ , the trans-
versal direction is {1, 2}. The corresponding family $F(x;T)$ is equal to $F(x;t)$ .
The family $F(x;t)$ (and so $F(x;T)$) is $R- J_{\gamma^{-}}non$-degenerate. And

$F_{\partial\gamma}(x;t)=x_{1}^{4}+x_{1}^{2}x_{2}^{3}+x_{2}^{6}x_{3}^{2}$

is independent of $t$ . Namely, $F(x;t)$ is strongly R-non-degenerate.
Thus, the family $F(x;t)$ satisfies the hypothesis of (1.4) and admits an

$R\pi$-MAT along $I$ .

(7.2) EXAMPLE. Let

$F(x;t);=x_{1^{4}}+x_{1}^{2}x_{2^{4}}+x_{2}^{10}x_{3}^{2}+tx_{1}x_{2}^{7}x_{3}^{2}+tx_{1}x_{2}^{8}x_{3}+tx_{1}^{3}x_{2}x_{3}$ .
(7.2.1) The family $F(x;t)$ is strongly R-non-degenerate.

PROOF. The figure of the Newton polygon $\Gamma_{+}$ of $F(x;t)$ is denoted as
follows:

(7.2.2) Figure.

The corresponding family $\tilde{F}(x;T)$ to $F(x;t)$ is defined as follows:

$\tilde{F}(x;T)=x_{1}^{4}+x_{1}^{2}x_{z^{4}}+x_{2}^{10}x_{3}^{2}+t_{1}x_{1}x_{2}^{7}x_{3}^{2}+t_{2}x_{1}x_{2}^{8}x_{3}+f_{3}x_{1}^{3}x_{2}x_{S}$ .
Note that $\tilde{F}_{\gamma}=F_{\gamma}$ for any compact face $\gamma$ . Calculating the polynomials

$x_{p}\partial F_{\gamma}/\partial x_{p}$ for the all compact faces $\gamma$ of $\Gamma_{+}$ , we have the following table
\langle 7.2.3).
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(7.2.3) Table.

This calculation implies that the family $R(x;T)$ is $R-\{1, 2\}$ -non-degenerate
and $R-\{1, 3\}$ -non-degenerate. For any non-compact, non-coordinate face $\gamma=\gamma_{4}$ ,
$\gamma_{5},$ $\gamma_{6},$ $\gamma_{14},$ $\gamma_{16},$ $\gamma_{26},$ $\gamma_{34},$ $\gamma_{56}$ , the transversal direction $J_{\gamma}$ is {1, 2} or {1, 3} and it is
clear that $F_{\partial\gamma}$ is independent of $i$ . Thus, the family $F(x;t)$ is strongly R-non-
degenerate and so admits an $R\pi$-MAT along any compact interval in $R$ by (1.4).
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