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Introduction.

A (local) Liouville surface is by definition a surface which is equipped with
a riemannian metric of the following form:

$g=(f_{1}(x_{1})+f_{2}(x_{2}))(dx_{1}^{2}+dx_{2}^{2})$ ,

where $x=(x_{1}, x_{2})$ is a coordinate system, and $f_{i}$ is a function of the single
variable $x_{i}(i=1,2)$ . This type of metric is called a Liouville metric. A re-
markable property of a Liouville surface is that the geodesic flow has the fol-
lowing first integral $F$. Let $(x, \xi)$ be the canonical coordinate system on the
cotangent bundle, and let

$E= \frac{1}{2}\frac{1}{f_{1}(x_{1})+f_{2}(x_{2})}(\xi_{1}^{2}+\xi_{2}^{2})$

be the energy function associated with the riemannian metric $g$ . If we put

$F= \frac{1}{f_{1}(x_{1})+f_{2}(x_{2})}(f_{2}(x_{2})\xi_{1}^{2}-f_{1}(x_{1})\xi_{2}^{2})$ ,

then it is easy to see that the Poisson bracket $\{E, F\}$ vanishes. The ellipsoid
is a classical example of the Liouville surface, which is originally due to Jacobi
(see Darboux [3] and Klingenberg [7] on this example and historical remarks).

The main purpose of this paper is to give a proper definition of compact
Liouville surfaces, and to classify them. It is classically known that a Liouville
surface is locally characterized as a 2-dimensional riemannian manifold whose
geodesic flow has a first integral which is a homogeneous polynomial of degree
2 on each fibre (cf. Darboux [3] Livre VI, Chapitre II). In \S 1 we first review
this fact. This leads us to the following definition: A compact Liouville surface
$(S, g, F)$ is a compact 2-dimensional riemannian manifold $(S, g)$ wnose geodesic
flow has a first integral $F$ which is fibrewise a homogeneous polynomial of
degree 2, and which is not a constant multiple of the energy function $E$ . We
also assume that $F$ does not come from a local Killing vector field, which means
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that $F$ is not of the form $\pm H+rE$, where $r\in R$ and $H\in C^{\infty}(T^{*}S)$ is fibrewise
the square of a linear form.

We say that two compact Liouville surfaces $(S, g, F)$ and $(S’, g’, F’)$ are
equivalent if there is an isometry $\phi$ : $(S, g)arrow(S’, g’)$ and $r,$ $s\in R$ such that
$F’\circ(\phi^{*})^{-1}=rF+sE$. In case $r=1$ and $s=0$, then these two Liouville surfaces
are said to be isomorphic. We will classify these equivalence classes. In \S 2
we study the geometric properties of the points where the first integral $F$ is
proportional to the energy function $E$. Let $y\iota$ be the set of all such points.
Then it turns out that $\#\Re$ , the number of the points in $\Re$ , is zero if $S$ is dif-
feomorphic to the torus or the Klein bottle, $\#\Re$ is 2 if $S$ is diffeomorphic to
the real projective plane $RP^{2},$ $\#\Re$ is 4 if $S$ is diffeomorphic to the sphere $S^{2}$ ,

and no such metrics exist if the genus of $S$ is greater tban 1 (Theorem 2.1).

In \S 3 the continuation of the natural local coordinate system of the Liouville
surface $(S, g, F)$ is studied. As a result, in case $S$ is diffeomorphic to the
sphere, we obtain a conformal mapping $\Phi$ from a flat torus $R^{2}/\Gamma$ to $(S, g)$ such
that $\Phi^{*}g$ is of the form described before. Here $\Gamma$ is a lattice generated by an
orthogonal basis. The classiPcation in this case is done by using this mapping.
A similar result is shown for the case where $S$ is diffeomorphic to the torus.

In \S 4 we concentrate our attention on a certain type of Liouville surfaces
$(S^{2}, g, F)$ which includes both ellipsoids and the standard sphere. There we
find families of riemannian manifolds which are not isometric, but whose geodesic
flows are mutually symplectically isomorphic. (A similar result has been obtained
in Kiyohara [6] in the case of surfaces of revolution.) In particular we find
concrete examples of $C_{\iota}$ -metrics on $S^{2}$ which seem to be new. A $C_{\iota}$ -metric on
a compact manifold is by definition a riemannian metric such that every geodesic
is closed and has the same length $l$ . Although Guillemin [4] proved that there
are many $C_{\iota}$ -metrics around the standard metric on $S^{2}$ , their explicit forms were
not known except for Zoll’s examples. (See Besse [2] for the generality of the
$C_{\iota}$ -metric.)

In \S 5 we prove that if $(S, g, F_{i})(i=1,2)$ are two Liouville surfaces, then
$F_{2}\in RF_{1}+RE$, unless $(S, g)$ has positive constant gaussian curvature. This
means that our equivalence classes are nothing but the isometry classes. As a
corollary we see that any Liouville surface does not admit a non-zero Killing
vector field under the same assumption.

In the last section, \S 6, we briefly mention about the laplacian acting on
functions on a Liouville surface $(S, g, F)$ . We show that a second order linear
differential operator whose principal symbol is $-F$ is naturally defined, and that
it commutes with the laplacian. This enables us to transform the defining
equation of eigenfunctions of the laplacian into a pair of single ordinary dif-
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ferential equations of second order. If the underlying surface is the sphere,
and if everything is analytic, then this pair of equations are replaced by a
single ordinary differential equation on a complex domain.

Preliminary remark.

We assume the differentiability of class $C^{\infty}$ unless otherwlse stated. Let
$(S, g)$ be a riemannian manifold. The metric tensor $g$ induces the bundle iso-
morphism from the tangent bundle $TS$ to the cotangent bundle $T^{*}S$ as usual.
If $H$ is a function on the cotangent bundle $T^{*}S$ , then $H^{b}$ denotes the function
on the tangent bundle which is the pull back of $H$ by this bundle isomorphism.
We denote by $H_{p}\in C^{\infty}(T_{p}^{*}S)$ (resp. $H_{p}^{b}\in C^{\infty}(T_{p}S)$ ) the restriction of $H(resp. H^{b})$

to the cotangent space $T_{p}^{*}S$ (resp. the tangent space $T_{p}S$ ) at $p\in S$ . For a
tangent vector $v$ to $S,$ $\gamma_{v}(t)$ denotes the geodesic of $(S, g)$ such that the initial
vector $7_{v}(0)$ is $v$ . The space of unit tangent vectors at $p\in S$ is denoted by $S_{p}S$ .

\S 1. The local characterization and the global definition.

Let $g$ be a rlemannian metric on a neighborhood $U$ of a point $p\in R^{2}$ , and
let $E\in C^{\infty}(T^{*}U)$ be the corresponding energy function. The following proposi-
tion is classical.

PROPOSITION 1.1. Assume that $F\in C^{\infty}(T^{*}U)$ satisfies the following conditions:
(1) $\{E, F\}=0$ ,
(2) $F_{q}$ is a homogeneous $polyno?nial$ of degree 2 for every $q\in U$ ,
(3) $F_{p}\not\in RE_{p}$ .
Then there is a coordinate system $(x_{1}, x_{2})$ on a (possibly smaller) neighborhood

of $p$ , and there are functions $f_{i}(x_{i})(i=1,2)$ such that

$g=(f_{1}(x_{1})+f_{2}(x_{2}))(dx_{1}^{2}\neq dx_{2}^{2})$

and

$F= \frac{1}{f_{1}(x_{1})+f_{2}(x_{2})}(f_{2}(x_{2})\xi_{1}^{2}-f_{1}(x_{1})\xi_{2}^{2})$ ,

where $(x, \xi)$ is the associated canonical coordinates on the cotangent bundle. Fur-
thermore, such coordinate system $(x_{1}, x_{2})$ and functions $f_{1},$ $f_{2}$ are essentially unique.

PROOF. In view of the condition (3) we may assume that $F_{q}\not\in RE_{q}$ for
every $q\in U$. By diagonalizing the quadratic forms $E_{q}$ and $F_{q}$ simultaneously,
we see that there exist functions $V_{i}\in C^{\infty}(T^{*}U)$ which are fibrewise linear and
$f_{i}\in C^{\infty}(U)(i=1,2)$ such that $f_{2}>-f_{1}$ on $U$ and

$E= \frac{1}{2}(V_{1}^{2}+V_{2}^{2})$
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$F=f_{2}V_{1}^{2}-f_{1}V_{2}^{2}$ .
The condition (1) then implies that $\{V_{1}, f_{2}\}=\{V_{2}, f_{1}\}=0$ and

$-\{V_{1}, f_{1}\}V_{2}+\{V_{2}, f_{2}\}V_{1}-2(f_{1}+f_{2})\{V_{1}, V_{2}\}=0$ .
Then we have $\{\sqrt{f_{1}+f_{2}}V_{1}, \sqrt{f_{1}+f_{2}}V_{2}\}=0$ . Let $X_{i}(i=1,2)$ be the vector field
on $U$ defined by

$\lambda(X_{i})=\sqrt{f_{1}+f_{2}}V_{i}(\lambda)$ , $\lambda\in T^{*}U$ .
Since the above equality implies $[X_{1}, X_{2}]=0$, it follows that there is a coordinate
system $(x_{1}, x_{2})$ on $U$ such that $\partial/\partial x_{i}=X_{i}(i=1,2)$ . Let $(x, \xi)$ be the associated
canonical coordinates on $T^{*}U$ . Then we have $\xi_{i}=\sqrt{f_{1}+f_{2}}V_{i}(i=1,2)$ and
$\{\xi_{1}, f_{2}\}=\{\xi_{2}, f_{1}\}=0$ . This implies that $f_{i}(i=1,2)$ is the function of the single
variable $x_{i}$ . We note that $f_{i}$ are uniquely determined as the functions on $U$ ,
and that $X_{i}$ are also unique except for the sign. $\blacksquare$

In view of this proposition we are led to the global definition of the compact
Liouville surface. A triple $(S, g, F)$ is called a compact Liouville surface if
$(S, g)$ is a compact 2-dimensional riemannian manifold and $F$ is a $C^{\infty}$ function
on $T^{*}S$ satisfying the following conditions:

(L.1) $\{E, F\}=0$ ,

(L.2) $F_{p}=F|_{\tau_{p^{S}}^{*}}$ is a homogeneous polynomial of degree 2 for any $p\in S$ ,

(L.3) $F$ is not of the form $rH+sE$, where $H\in C^{\infty}(T^{*}S)$ is fibrewise
the square of a linear form, and $r,$ $s\in R$ .

Here $E$ denotes the corresponding energy function. $lt$ should be noted that
the condition (L.3) contains the condition that $F\not\in RE$ . The meaning of this
condition is just as stated in Introduction.

Let $(S, g, F)$ be a compact Liouville surface. We put

$\Re=$ { $p\in S|F_{p}=rE_{p}$ for some $r\in R$}.

LEMMA 1.2. The ratio $r=F_{p}/E_{p}$ does not depend on the point $p\in\Re$ .

PROOF. Since $F$ is the first integral, the function $tarrow F^{b}(\dot{\gamma}(t))$ is constant
for any geodesic $\gamma(t)$ , where the dot denotes the derivative in $t$ . Therefore the
lemma follows from the fact that any two points on $S$ can be joined by a
geodesic. $\blacksquare$

TWO compact Liouville surfaces $(S, g, F)$ and $(S’, g’, F’)$ are said to be
equivalent if there is an isometry di : $(S, g)arrow(S’, g’)$ and $r,$

$s\in R$ such that
$F^{\prime_{O}}(\phi^{*})^{-1}=rF+sE$ . It should be noted that if $(S, g, F)$ is a compact Liouville
surface, so is $(S, g, F-rE)$ for any $r\in R$, and they belong to the same
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equivalence class. Moreover the set $yj$ does not change. Hence, in view of
Lemma 1.2 we can assume the following condition without loss of generality:

(L.4) $F_{p}=0$ if $p\in\Re$ .
In the rest of this paper we shall always assume the condition (L.4) on the

Liouville surface unless otherwise stated.

\S 2. The set su and the geodesics with $F=0$

Let $(S, g, F)$ be a compact Liouville surface, and let $\Re$ be the subset of $S$

defined in the previous section. In tbis section we shall prove the following
theorem.

THEOREM 2.1. $\#\Re$ , the number of the points in $yl$ , must be $0$ or 2 or 4.
In case $\#\Re=4$ , then $S$ is diffeomorphic to the sphere $S^{2}$ . In this case there is a
simply closed geodesic $L$ on $(S, g)$ on which every point in the set $7l$ lies. Let $p_{1}$ ,
$p_{2},$ $p_{3},$ $p_{4}$ be the points in :it ordered along with the geodesic L. Then we see
that Cut$(p_{t})$ , the cut locus of the point $p_{i}$ , consists of the single point $\{p_{i+2}\}$ ,

where $i=1,2,3,4$ and $i+2$ should be considered modulo 4. Moreover, $F_{q}$ is in-
definite if $q\not\in L$ , and $F_{q}$ is degenerate and semi-definite if $q\in L$ .

In case $\#\Re=2$ , then $S$ is dffeomorphic to the real projective plane $RP^{2}$ . In
this case the double covering of $(S, g, F)$ becomes of the above type. In case
$\#\Re=0$, then $S$ is diffeomorphic to the torus or the Klein bottle.

PROOF. First we shall consider the case where $\#\Re=0$ . Let $V_{1}$ and $V_{2}$ be
as in the proof of Proposition 1.1. As was noted there $V_{i}^{2}(i=1,2)$ are uniquely
defined, and in this case they are globally defined functions on $T^{*}S$ . Hence

$c$

they give the decomposition of $T^{*}S$ into the sum of two line bundles, which
implies that $S$ is diffeomorphic to the torus or the Klein bottle.

In order to consider the case $\#\Re>0$ , we need some lemmas.

LEMMA 2.2. If $F_{p}=0$ for every point $p$ in an open subset $U$ of $S$ , then $F$

is identically zero.

PROOF. Fix a point $q\in S$ , and let $\gamma(t)$ be a geodesic such that $\gamma(0)=q$ and
$\gamma(t_{0})\in U$ . Then we have $F^{b}(7(0))=0$ . If we take a vector $v\in T_{q}S$ near 7(0),

then we also have $\gamma_{v}(t_{0})\in U$ , and this implies that $F^{b}(v)=0$ . Since $F_{q}^{b}$ is a
quadratic form, it then follows that $F_{q}=0$ . $\blacksquare$

LEMMA 2.3. Suppose that $\# X\geqq 3$ , and let $p_{i}(i=1,2,3)$ be three points in 97.
Assume that $p_{2},$ $p_{3}\not\in Cut(p_{1})$ , and let $\gamma_{i}(f)=\gamma_{v_{i}}(t)(0\leqq t\leqq t_{i}, v_{i}\in S_{p_{1}}S)$ be the mini-
mizing geodesic from $p_{1}$ to $p_{i}(i=2,3)$ . Then we have $v_{2}+v_{3}=0$ . Furthermore,

if we put $w=-\dot{\gamma}_{2}(t_{2})\in S_{p_{2}}S$ , then $p_{3}$ is the first conjugate point of $p_{2}$ along the
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geodesic $\gamma_{w}(t)(0\leqq t\leqq t_{2}+t_{3})$ . In particular we have #STZ $<\infty$ .
PROOF. Take a point $q\in S$ near $p_{1}$ so that $q\not\in\gamma_{i}([-\epsilon, t_{i}])(i=2,3)$ for a

fixed small $\epsilon>0$ , and let $\gamma_{u_{i}}(t)(0\leqq t\leqq t_{i}’)(i=1,2,3)$ be the minimizing geodesic
from $q$ to $p_{i}(u_{i}\in S_{q}S)$ . We first claim that $u_{2}$ and $u_{3}$ are linearly independent
of $u_{1}$ if $q$ is sufficiently close to $p_{1}$ . In fact, assume that $u_{2}=\pm u_{1}$ for an infinite
sequence of points $\{q_{j}\}$ converging to $p_{1}$ . Since $q_{j}\not\in\gamma_{2}([-\epsilon, t_{2}])$ , the case where
$u_{2}=u_{1}$ does not occur for large $j$ . Hence $\gamma_{-u_{1}}(t)(-t_{1}’\leqq t\leqq 0)$ and $\gamma_{u_{2}}(t)$ are
joined into a single geodesic from $p_{1}$ to $p_{2}$ with length $t_{1}’+t_{2}’$ . Since the
length $t_{1}’+t_{2}’$ converges to $t_{2}$ as $jarrow\infty$ , it follows that $p_{2}=\gamma_{2}(t_{2})$ is the conjugate
point of $p_{1}$ along the geodesic $\gamma_{2}(t)$ . But this contradicts the facts that $\gamma_{2}(t)$

(OS $t\leqq t_{2}$ ) is minimizing and $p_{2}\not\in Cut(p_{1})$ . The case for $u_{3}$ is similar.
Next we assume that $u_{2}$ and $u_{3}$ are linearly independent. Then $F^{b}(u_{i})=0$

$(i=1,2,3)$ and $u_{i}$ are mutually linearly independent. Since $F_{q}^{t}$ is a quadratic
form on $T_{q}S$ , it follows that $F_{q}=0$ . In this case if we take a point $q’$ near $q$ ,

then the corresponding vectors $u_{i}’\in T_{q’}S$ are also mutually linearly independent,
and we have $F_{q’}^{b}=0$ . Then by the previous lemma we see that $F=0$ , which
contradicts the definition of the Liouville surface. Hence $u_{2}$ and $u_{3}$ must be
linearly dependent.

The case where $u_{2}=u_{3}$ clearly does not occur. Hence $u_{2}+u_{3}=0$ , and the
same argument as above shows that $v_{2}+v_{3}=0$ and $p_{3}$ is the conjugate point of
$p_{2}$ along the geodesic $\gamma_{w}(t)(0\leqq t\leqq t_{2}+t_{3})$ . If it is not the first conjugate point,
then it contradicts the minimizing property of the geodesic segments $\gamma_{w}(t)(0\leqq$

$t\leqq t_{2})$ and $\gamma_{w}(t)(t_{2}\leqq t\leqq t_{2}+t_{3})$ . Finally if $\#cJ1=\infty$ , then there are three points
in su which are sufficiently close to one another. But this contradicts the fact
just proved. $\blacksquare$

Let $\sigma\tau Conj(p)$ be the tangential first conjugate locus of $p\in S$ , and let
$gCut(p)$ be the tangential cut locus.

LEMMA 2.4. If $p\in\Re$ , then ZConj$(p)$ is not empty.

PROOF. Assume that $p\in\Re$ and $gConj(p)$ is empty. Then the exponential
mapping $Exp_{p}$ : $T_{p}Sarrow S$ is the local diffeomorphism, and hence is the universal
covering of $S$ . In this case there are at least two minimizing geodesics joining
$p$ and each $q\in Cut(p)$ . Assume that the number of such geodesics is just two
for every point $q\in Cut(p)$ . Let $B_{p}$ be the closure of the bounded component of
$T_{p}S-gCut(p)$ in $T_{p}S$ . Let $\sigma$ be the free involution on the boundary $gCut(p)$

of $B_{p}$ such that $v\in gCut(P)$ and $\sigma(v)$ are mapped to the same point by $Exp_{p}$ .
Then $S$ becomes homeomorphic to the quotient space of $B_{p}$ obtained by identify-
ing each $v\in\sigma rCut(p)$ and $\sigma(v)$ , which is clearly homeomorphic to the real
projective plane. This contradicts that $Exp_{p}$ is the universal covering. Hence
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there is a point $q\in Cut(p)$ such that at least three minimizing geodesics from $P$

to $q$ exist.
Since $Exp_{p}$ is the local diffeomorphism, there is a neighborhood $U$ of $q$ in

$S$ and $C^{\infty}$ functions $v_{i}=v_{i}(q’)\in T_{p}S(q’\in U, i=1,2,3)$ such that $\gamma_{v_{i}}(1)=q’$ and
$v_{i}\neq v_{j}$ if $i\neq j$ , and $\gamma_{v_{i^{(q)}}}(r)$ (OS t$l) are minimizing. If $\gamma_{v_{i^{(q’)}}}(t)$ are mutually
transversal at $t=1$ , then $F_{q’}=0$ and so is true for $q’$ near $q’$ . Then by Lemma
2.1 we get a contradiction. Hence we see that, for example, 7 $v_{1}Cq’$

)(1) and
$\dot{\gamma}_{v_{2}(q’)}(1)$ are linearly dependent for all $q’$ near $q$ . But this implies, as in the
proof of the previous lemma, the point $P$ is the conjugate point of $P$ itself
along the geodesic $\gamma_{v_{1}(q)}(t)$ (0$ t$2). This contradicts the assumption that
$gConj(p)$ is empty. $\blacksquare$

NOW we shall observe the local behavior of geodesics around a conjugate
point. Let $p\in\Re$ . We introduce the positive functions $t_{0}(w)$ and $t_{1}(w)$ of $w\in$

$S_{p}S$ by $t_{0}(w)w\in SCut(p)$ and $t_{1}(w)w\in gConj(p)$ respectively. Here $t_{1}(w)$ may
be $\infty$ at some $w$ . We note that the function $t_{0}$ is continuous, and that the
function $t_{1}$ is smooth wherever its value is finite. We next define the positive
function $\overline{t}(v, w)$ of $(v, w)\in S_{p}S\cross S_{p}S$ on a neighborhood of the set

$D=\{(v, v)\in S_{p}S\cross S_{p}S|t_{1}(v)<\infty\}$

as follows: Let $v\in S_{p}S$ such that $t_{1}(v)<\infty$ . We first put $\overline{t}(v, v)=i_{1}(v)$ . If we
take $\delta>0$ sufficiently small, then there is a neighborhood $I_{0}$ of $v$ in $S_{p}S$ such
that the two geodesic segments $\gamma_{v}(t)(|t-t_{1}(v)|<\delta)$ and $\gamma_{w}(t)(|t-t_{1}(v)|<\delta)$ in-
tersect exactly at one point for any $w\in I_{0}-\{v\}$ . We then define $\overline{t}(v, w)\in$

$(t_{1}(v)-\delta, t_{1}(v)+\delta)$ so that $\gamma.(t(v, w))$ is this intersection point. It is easy to see
that $\overline{t}$ is well-defined and continuous on a neighborhood of $D$ .

LEMMA 2.5. Let $p\in\Re$ , and fix $v\in S_{p}S$ such that $t_{1}(v)<\circ\circ$ . Put $p’=\gamma_{v}(t_{1}(v))$ .
Then there is a neighborhood I of $v$ in $S_{p}S$ such that one of the following two
cases occurs:

(a) $w-\overline{t}(v, w)$ is constant for $w\in I$ , and $F_{p},$ $=0$ ;
(b) $w-*\overline{t}(v, w)$ is injective for $w\in I$ , and $F_{p’}$ is non-zero and semi-definite.
Furthermore if the case (b) occurs, then there are $u\in S_{p},$ $S$ which is orthogonal

to $\dot{\gamma}_{v}(t_{1}(v)),$ $\epsilon>0$ , and $\delta>0$ such that the set

$\{\gamma_{w}(t)||t-t_{1}(v)|<\delta, w\in I-\{v\}\}$

does not meet the ‘half-slice’ $Z=\{Exp_{p’}(su)|0\leqq s\leqq\epsilon\}$ .
PROOF. Assume that $u^{1}-\overline{t}(v, w)$ is not injective on any neighborhood of $v$ .

Then there are $w_{j}^{1},$ $w_{j}^{2}\in S_{p}S(J^{=1},2, \cdots)$ such that $w_{J}^{1}\neq w_{j}^{2},\overline{t}(v, w_{j}^{1})=\overline{t}(v, w_{j}^{2})$ , and
$w_{j}^{1},$ $w_{j}^{2}arrow v(J^{arrow\infty})$ . It is easy to see that the three geodesics $\gamma_{v},$

$\gamma_{w_{j}^{1}}$ , and $\gamma_{w_{j}^{2}}$

intersect mutually transversally at the point $\gamma_{v}(\overline{t}(v, w_{j}^{1}))$ if $w_{j}^{1}$ and $w_{j}^{2}$ are suf-
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ficiently close to $v$ . Hence we have $F_{\gamma_{v^{(\overline{t}(v.w_{j}^{1}))}}}=0$ for large $j$ . In view of
Lemma 2.3 this implies that $\overline{t}(v, w_{j}^{1})=t_{1}(v)$ for large $j$ .

NOW let $I$ be a small connected neighborhood of $v$ in $S_{p}S$ . Fix $e\in S_{p}S$

which is orthogonal to $v$ , and put

$I_{+}=\{w\in I|g(w, e)>0\}$ , $I_{-}=\{w\in I|g(w, e)<0\}$ .

Assume that there is a vector $u_{1}\in I_{+}$ such that $\overline{t}(v, u_{1})=t_{1}(v)$ , and also assume
that there is a vector $u_{2}\in I_{+}$ on the arc between $v$ and $u_{1}$ such that $\overline{t}(v, u_{2})\neq$

$t_{1}(v)$ . Then the image of the arc between $u_{1}$ and $u_{2}$ by the mapping $w-\succ\overline{t}(v, w)$

contains the interval between $t_{1}(v)$ and $\overline{t}(v, u_{2})$ , and so does the image of the
arc between $v$ and $u_{2}$ . Hence, if $I_{+}$ is sufficiently small, by the same reason
as above we have $F_{\gamma_{v^{(t)}}}=0$ for every $t$ between $t_{1}(v)$ and $\overline{t}(v, u_{2})$ . But this
contradicts Lemma 2.3. Therefore this case does not occur.

Above two facts sbow that for a sufficiently small $I_{+}$ (resp. $I_{-}$ ) only two
cases can occur: (1) $w-\rangle\overline{t}(v, w)$ is injective on $I_{+}\cup\{v\}$ (resp. $I_{-}\cup\{v\}$ ), or (2)
$\overline{t}(v, w)=t_{1}(v)$ for all $w\in I_{+}$ (resp. $w\in I_{-}$ ). Furthermore, by the same reason as
above we see that if the case (1) occurs for both $I_{+}$ and $I_{-}$ , then the mapping
$w-arrow\overline{t}(v, w)$ is injective on $I$ . Note that the case (2) occurs for $I_{+}$ (resp. $I_{-}$ ) if
and only if $t_{1}(v)=t_{1}(w)$ for all $w\in I_{+}$ (resp. $w\in I_{-}$ ), and $F_{p’}=0$ in this case.
Hence if the derivative of tbe function $t_{1}$ does not vanisb at $v$ , then the map-
ping $w-\overline{t}(v, w)$ is injective on $I$ .

NOW we shall show that if tbe mapping $w->\overline{t}(v, w)$ is injective on $I$ , then
$F_{p’}^{b}$ is non-zero and semi-definite. Assume that $F_{p}^{b}$ , is zero or indefinite. Then
there is a vector $u_{0}\in S_{p’}S$ such that $u_{0}\neq\pm\dot{\gamma}_{v}(t_{1}(v))$ and $F_{p’}^{b}(u_{0})=0$ . The injecti-
veness of the mapping $w-\overline{t}(v, w)$ implies that if $u_{0}$ is suitably chosen, then
there are $\epsilon>0$ and $\delta>0$ such that $\gamma_{w}(t)(|t-t_{1}(v)|<\delta)$ intersects

$X_{+}=\{Exp_{p’}(su_{0})|0\leqq s<\epsilon\}$

and does not intersect

$X_{-}=\{Exp_{p’}(su_{0})|-\epsilon<s<0\}$

for any $w\in I$ . Furtbermore we see that the intersection of the set

$\{\gamma_{w}(t) t-t_{1}(v)|<\delta, w\in I_{+}\cup\{v\}\}$

and $X_{+}$ forms a neighborhood of $P’$ in $X_{+}$ , and so does for $I_{-}$ . Hence bv the
same reason as before we have $F_{q}=0$ for all $q\in X_{+}$ near $p’$ , which contradicts
Lemma 2.3. Therefore if follows that $F_{p’}$ is non-zero and semi-definite under
the assumption that the mapping $warrow\overline{t}(v, w)$ is injective on $I$ . The existence
of the half-slice $Z$ in this case is also obvious.

Finally we assume that the case (1) occurs for $I_{+}$ and the case (2) occurs
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for $I_{-}$ . Then as was mentioned above we can take $w\in I_{+}$ arbitrary near $v$ such
that the derivative of the function $t_{1}$ at $w$ does not vanish. Fix such $w\in I_{+}$ .
By tbe fact just shown above we see that $F_{\gamma_{w^{(t_{1}(w))}}}$ is non-zero and semi-definite.
Let $\gamma$ be the minimizing geodesic joining $P’$ and $\gamma_{w}(t_{1}(w))$ . Then the geodesics
$\gamma$ and $\gamma_{w}(t)$ intersect transversally at the point $\gamma_{w}(t_{1}(w))$ , because $\gamma_{w}(t)$ does not
pass the point $P’$ near the time $t=t_{1}(v)$ . Since $F_{p’}=0$ , we obtain a contradic-
tion. This completes the proof of Lemma 2.5. $\blacksquare$

PROPOSITION 2.6. If $p\in\Re$ , then $gCon_{J}(p)$ is a circle of constant radius.
Hence Conj$(p)$ consists of one Point $\{q\}$ , and $q\in\Re$ .

PROOF. Set
$U=\{v\in S_{p}S|t_{1}(v)<\infty, F_{\gamma_{v^{(t_{1}(v))}}}=0\}$ .

We first show that $U$ is open and closed in $S_{p}S$ . If $v\in U$ , then the case $(a)$

in Lemma 2.5 occurs for $v$ . As was mentioned in the proof of the lemma, we
have $\overline{t}(v, w)=t_{1}(v)=t_{1}(w)=\overline{t}(w, v)$ for any $w$ in a neighborhood $I$ of $v$ . This
implies $I\subset U$ , and hence $U$ is open. Closedness of $U$ is now clear, because $t_{1}$

is finite on $\overline{U}$, the closure of $U$ . Therefore if it is shown that $U$ is not empty,
then $U$ coincides with $S_{p}S$ , and $t_{1}$ becomes a constant function.

NOW assume tbat $U$ is empty. They $F_{\gamma_{v^{(t_{1}(v))}}}$ is non-zero and semi-definite
for any $v\in S_{p}S$ with $t_{1}(v)<\infty$ . First we shall consider the case where SCut$(P)$

$=\sigma\tau Con_{J}(p)$ . Let $v\in S_{p}S$ be any vector, and suppose that tbere is another
minimizing geodesic joining $p$ and $\gamma_{v}(t_{1}(v))$ besides $\gamma_{v}(t)(0\leqq t\leqq t_{1}(v))$ . Since
$F_{\gamma_{v^{(t_{1}(v))}}}$ is non-zero and semi-definite, these two geodesics form a simple geodesic
loop $\gamma_{v}(t)(0\leqq t\leqq 2t_{1}(v))$ from $P$ to $p$ . If $\gamma_{w}(t)(0\leqq t\leqq 2t_{1}(w))$ is also a geodesic loop
for a vector $w\in S_{p}S$ sufficiently close to $v$ , then these two loops intersects at
one point except for $p$ , and as is easily seen it contradicts the fact that four
geodesic segments $\gamma_{v}(t)(0\leqq t\leqq t_{1}(v), t_{1}(v)\leqq t\leqq 2t_{1}(v))$ and $\gamma_{w}(t)(0\leqq t\leqq t_{1}(w), t_{1}(w)\leqq$

$t\leqq 2t_{1}(w))$ are minimizing, and that $F_{\gamma_{v^{(t_{1}(v))}}}$ and $F_{\gamma_{w^{(t_{1}(w))}}}$ are non-zero and
semi-definite. Therefore in any way there is a vector $v\in S_{p}S$ such that $\gamma_{v}(t)$ (0$
$t\leqq t_{1}(v))$ is the unique minimizing geodesic from $P$ to $\gamma_{v}(t_{1}(v))$ .

NOW let $Z$ be the half-slice for $v$ which is given in Lemma 2.5, and let $q_{j}$

$(J^{=1},2, -)$ be points on $Z$ such that $q_{j}arrow\gamma_{v}(t_{1}(v))$ as $jarrow\infty$ . Let $w_{j}\in S_{p}S$ and
$t_{J}>0$ such that $\gamma_{w_{j}}(t)(0\leqq t\leqq t_{J})$ be a minimizing geodesic from $p$ to $q_{j}$ . By
taking a subsequence if necessary, we may assume that $t_{J}arrow t_{1}(v)$ and $w_{J}$ con-
verges as $J^{arrow\infty}$ . In view of the way of the choice of $v,$ $w_{j}$ must converge to
$v$ . But this contradicts the property of $Z$.

Next we consider the case where $gCut(p)\neq gConj(p)$ . Let $v\in S_{p}S$ such
that $t_{0}(v)<t_{1}(v)<\infty$ . We note that $\gamma_{v}(t_{1}(v))\neq p$ , because $\gamma_{v}(t_{1}(v))\not\in\Re$ . Since
$\gamma_{v}(t)(0\leqq t\leqq t_{1}(v))$ is not minimizing, and since $F_{\gamma_{v^{(t_{1}(v))}}}$ is semi-definite, it follows
that there is a unique minimizing geodesic joining $P$ and $\gamma_{v}(t_{1}(v))$ . Note that it
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is also true for $w\in S_{p}S$ near $v$ . This implies that the minimizing geodesic from
$P$ to $\gamma_{v}(t_{1}(v))$ is of the form $\gamma_{v’}(t)(0\leqq t\leqq t_{1}(v’))$ for some $v’\in S_{p}S$ , and that $t_{0}(v’)=$

$t_{1}(v’)$ . Hence the same argument as above is applicable for $v’$ , and we get a
contradiction. This completes the proof of the proposition. $\blacksquare$

COROLLARY 2.7. Let $p\in\Re$ . If XCut$(p)=\mathscr{F}Con_{J}(p)$ , then $S$ is diffeomorPhic
to the sphere $S^{2}$ , and $\#\Re=2$ or 4. If $gCut(P)\neq gConj(p)$ , then $S$ is diffeomor-
phic to $RP^{2}$ .

PROOF. We have already seen that the function $t_{1}$ is constant on $S_{p}S$ , Set

$B(t_{1})=\{w\in T_{p}S|g(w, w)\leqq t_{1}^{2}\}$ .

Let $\partial B(t_{1})$ be its boundary. The quotient space $B(t_{1})/\partial B(t_{1})$ is then homeomor-
phic to $S^{2}$ . The exponential mapping $Exp_{p}$ induces the continuous mapping
$\rho$ : $B(t_{1})/\partial B(t_{1})arrow S$ . AS is easily seen, this mapping is locally homeomorphic,
and hence is tbe universal covering. Therefore the manifold $S$ is homeomorphic
(and hence diffeomorphic) to $S^{2}$ or $RP^{2}$ . If $\sigma\tau Cut(p)=\sigma\tau Con_{J}(p)$ , then $\rho$ is bijec-
tive, and $S$ is diffeomorphic to $S^{2}$ . If $gCut(p)\neq gConj(p)$ , then $\rho$ is not in-
jective, and $S$ must be diffeomorphic to $RP^{2}$ .

In case $S$ is diffeomorphic to $S^{2}$ , then Cut$(p)(=Con_{J}(p))$ consists of one point
$\{q\}$ , and $q\in\Re$ . In this case it is clear that Cut$(q)=Con_{j}(q)=\{p\}$ . Hence the
set $\Re$ becomes the disjoint union of such pairs of points, which implies that
#SU is even. Assume that $\#\Re\geqq 6$ . Then there are three points $p_{1},$ $p_{2},$ $P_{3}$ in $yl$

such that $p_{i}\not\in CuJ(p_{j})$ for any $i,$ $j$ . In view of Lemma 2.3 this implies $p_{3}\in$

$c_{on_{J}}(p_{2})$ , etc.. But since $Con_{J}(p_{2})=Cut(p_{2})$ , this is a contradiction. Hence we
have $\#\Re=2$ or 4. $\blacksquare$

LEMMA 2.8. Suppose that $S$ is diffeomorphic to $S^{2}$ , and that $\#\Re=2$ . Then
$F_{q}$ is semi-difinite for all $q\in S$ .

PROOF. Let $\Re=\{p, P’\}$ . We take a normal polar coordinate system $(r, \theta)$

(OS $r\leqq R,$ $\theta\in R/2\pi Z$ ) with $P$ being the center, $i$ . $e.,$ $(r, \theta)$ represents the point
$Exp_{p}r(v_{1}\cos\theta+v_{2}\sin\theta)$ , where $\{v_{1}, v_{2}\}$ is an orthonormal basis of $T_{p}S$ , and
$t_{1}(v_{1})=R$ . Let $\mathscr{L}$ be the set of points $q\in S$ such that $F_{q}$ is indefinite, and put

$\mathscr{L}(\theta)=\{(r, \theta)\in \mathscr{L}|r\in(O, R)\}$ .

NOW assume that 3 is not empty, and let $(r_{0}, \theta_{0})\in \mathscr{L}$ . Let $\gamma(t)$ be the
geodesic such that $\gamma(0)=(r_{0}, \theta_{0}),$ $F^{b}(\dot{\gamma}(0))=0$ , and that $\dot{\gamma}(0)$ is linearly independent
of $\partial/\partial r$ . Since $\gamma(t)$ is transversal to each radial geodesic $r-,(r, \theta)$ , it easily
follows that $\gamma(t)$ again intersects the geodesic $\theta=\theta_{0}$ at a finite time $t>0$ . In
particular $\mathscr{L}(\theta)$ is not empty for any $\theta$ . Let $r^{s}(\theta)\in(O, R]$ be the supremum of
$r$ such that $(r, \theta)\in \mathscr{L}(\theta)$ . If $r^{s}(0)<R$ for some $\theta$ , then as is easily seen, the
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set $\{(r^{s}(\theta), \theta)|\theta\in R/2\pi Z\}$ coincides with the trajectory of a closed geodesic.
This implies that $F^{b}(\partial/\partial\theta(r^{s}(0), \theta))$ vanishes, and hence that $F_{(rs(\theta).\theta)}$ is in-
definite. Since 3 is open, it contradicts the definition of $r^{s}(0)$ . Hence we
have $r^{s}(0)=R$ for all $\theta$ .

NOW let $\gamma_{j}(t)(0\leqq t\leqq t_{j})(J^{=1}, 2, )$ be a sequence of geodesics such that
$\gamma_{J}(0)\in \mathscr{L}(O),$ $\gamma_{j}(0)arrow p’$ as $jarrow\infty,$ $F^{b}(\dot{\gamma}_{j}(0))=0,$ $\gamma_{j}(t_{j})\in \mathscr{L}(O),$ $\gamma_{j}(t)\not\in \mathscr{L}(O)$ if $0<t<t_{j}$,

and $r(\gamma_{j}(t_{j}))\geqq r(\gamma_{j}(0))$ . Tben we can easily see that this sequence of geodesic
segments converges to the point $p’$ . But this clearly contradicts the existence
of a convex neighborhood around $P’$ . $\blacksquare$

We now give the rest of the proof of Theorem 2.1. Suppose that $S$ is
diffeomorphic to $S^{2}$ . First assume that #STZ $=2$ . Let $(r, \theta)$ be the normal polar
coordinates as in the proof of the previous lemma. Let $(r, \theta, \eta_{1}, \eta_{2})$ be the
corresponding canonical coordinates on $T^{*}(S-\Re)$ . Since $F$ is semi-definite
everywhere, and since $F^{b}(\partial/\partial r)=0,$ $F$ must be of the form $\pm h\eta_{2}^{2}$ . Here $h$ is a
positive function on $S-\Re$ . Put $H=\sqrt{h}\eta_{2}$ on $T^{*}(S-\Re)$ and $H_{q}=0$ if $qEM$ .
Then $H$ is continuous on $T*S$ , smooth on $T^{*}$( $S-$ ETZ), and fibrewise linear. More-
over we have $\{E, H\}=0$ on $T^{*}(S-\Re)$ . Then the differentiability of $H$ at points
$\lambda\in T_{q}^{*}S-\{O\}(q\in\Re)$ follows from the differentiability of $\xi_{t}^{*}H=H$ at points $\xi_{-t}(\lambda)$,

where $\{\xi_{t}\}$ denotes the geodesic flow. Hence this case is just that excluded by
the condition (L.3) in the definition of Liouville surfaces.

Thus we have $\#\Re=4$ . Let $p_{1},$ $p_{2},$ $p_{3},$ $p_{4}$ be points in $7l$ such that Cut$(p_{1})=$

$\{p_{3}\},$ $Cut(p_{2})=\{p_{4}\}$ , and vice versa. Let $L$ be the infinite extension of the
minimizing geodesic from $p_{1}$ to $p_{2}$ . As is easily seen, $L$ must be a simply
closed geodesic, and $d(p_{1}, p_{3})=d(P_{2}, p_{4})=one$ half of the length of $L$ , where $d$

denotes the distance function.
NOW let $q$ be a point on $L$ between $p_{1}$ and $p_{2}$ , and let $q’$ be a point near

$q$ which is not on $L$ . Since $F_{q},$ $\neq 0$ , by considering the minimizing geodesics
from $q’$ to $p_{1},$ $p_{2}$ , and $q$ respectively, we have $F^{b}(v)\neq 0$ , where $v$ is the tangent
vector to the minimizing geodesic from $q’$ to $q$ at $q$ . Since $q’$ is arbitrary, it
follows that $F_{q}$ is semi-definite.

Next let $q\not\in L$ . Then the two minimizing geodesics from $q$ to $p_{1}$ and $p_{2}$

intersects transversally at $q$ . Hence $F_{q}$ is indefinite. This completes the proof
of Theorem 2.1. $\blacksquare$

\S 3. The natural coordinate system and the classification

First we shall classify Liouville surfaces whose underlying manifolds are
diffeomorphic to the sphere $S^{2}$ . For this purpose we introduce quadruples
$(\alpha_{1}, \alpha_{2}, f_{1}, f_{2})$ such that $\alpha_{1}$ and $\alpha_{2}$ are positive real numbers, and that $f_{i}$ is a
$C^{\infty}$ function on the circle $R/a_{i}Z(i=1,2)$ satisfying the following conditions:
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$f_{i}(-t)=f_{\ell}(t)$ , $f_{i}’’(0)>0$, $f_{i}(O)=f_{i}( \frac{\alpha_{i}}{2})=0$ ,

$f_{i}(t)>0$ if $t$ if $0,$ $\frac{a_{i}}{2}$ $(mod \alpha_{i}Z)$ , $(i=1,2)$ ;

if $f_{1}(t) \sim\sum_{k\geqq 1}a_{k}t^{2k}$
$(tarrow 0)$ , then

(3.1) $f_{2}(t) \sim\sum_{k\geqq 1}(-1)^{k-1}a_{k}t^{2k}$ $(tarrow 0)$ ,

$f_{1}(t) \sim\sum_{k\geqq 1}$ a $k(t- \frac{\alpha_{1}}{2})^{2k}$ $(t arrow\frac{\alpha_{1}}{2})$ ,

$f_{2}(t) \sim\sum_{k\geqq 1}(-1)^{k-1}\alpha_{k}(t-\frac{\alpha_{2}}{2})^{2k}$ $(t arrow\frac{\alpha_{2}}{2})$ .

Here $f_{i}$ is identified with the periodic function on $R$ with period $\alpha_{i}(i=1,2)$ ,

and the symbol $\sim$ stands for the formal Taylor expansion. Let $Q$ be the set of
all such quadruples. We say that two quadruples $(\alpha_{1}, \alpha_{2}, f_{1}, f_{2})$ and $(\beta_{1}. \beta_{2}, h_{1}, h_{2})$

in $Q$ are equivalent if there is a constant $c>0$ and

$\nu\in\{0,$ $\frac{\alpha_{1}}{2}\}$ , $\mu\in\{O,$ $\frac{\alpha_{2}}{2}\}$

such that one of the following conditions is satisfied:

(1) $\beta_{i}=c\alpha_{i}(i=1,2)$ , and $c^{2}h_{1}(ct)=f_{1}(t+\nu)$ , $c^{2}h_{2}(ct)=f_{2}(t+\mu)$ ;

(2) $\beta_{1}=c\alpha_{2},$ $\beta_{2}=ca_{1}$ , and $c^{2}h_{1}(ct)=f_{2}(t+\mu)$ , $c^{2}h_{2}(ct)=f_{1}(t+\nu)$ .

If the case (1) occurs with $c=1$ , then these two quadruples are said to be
isomorphic.

We can construct a Liouville surface whose underlying manifold is $S^{2}$ from
each quadruple $(\alpha_{1}, \alpha_{2}, f_{1}, f_{2})\in Q$ in the following way. Let $\Gamma=\Gamma(a_{1}, \alpha_{2})$ be
the lattice in $R^{2}$ generated by $(\alpha_{1},0)$ and $(0, \alpha_{2})$ , and put $T(a_{1}, \alpha_{2})=R^{2}/\Gamma$.
We shall identify $R^{2}$ with $C$ by taking the complex coordinate $z=x_{1}+\sqrt{-1}x_{2}$ .
Let $\tau$ be the involution on $T(\alpha_{1}, a_{2})$ defined by $zarrow-z$ . We now consider the
quotient space $R=T(\alpha_{1}, \alpha_{2})/\{1, \tau\}$ . Note that $\tau$ has four fixed points in $T(\alpha_{1}, \alpha_{2})$

represented by $z=0,$ $a_{1}/2,$ $\sqrt{-1}\alpha_{2}/2,$ $(\alpha_{1}+\sqrt{-1}\alpha_{2})/2$ . Let $z_{0}$ be one of these
four values. By taking $(z-z_{0})^{2}$ as a local coordinate around the point $z=z_{0}$ ,

the quotient space $R$ can be regarded as the Riemann sphere. Clearly the
quotient mapping $\Phi$ : $T(a_{1}, \alpha_{2})arrow R$ is holomorphic. By the conditions (3.1) we
have a unique riemannian metric $g$ on $R$ such that

$\Phi^{*}g=(f_{1}(x_{1})+f_{2}(x_{2}))(dx_{1}^{2}+dx_{2}^{2})$ ,

and we also have a unique $C^{\infty}$ function $F$ on $T^{*}R$ such that

$\tilde{F}\circ\Phi^{*}=F$, $\hat{F}=\frac{1}{f_{1}(x_{1})+f_{2}(x_{2})}(f_{2}(x_{2})\xi_{1}^{2}-f_{1}(x_{1})\xi_{2}^{2})$ ,
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where $(x, \xi)$ is the canonical coordinate system of $T^{*}(T(\alpha_{1}, \alpha_{2}))$ . Then $(R,$ $g,$ $F\rangle$

is a Liouville surface which satifies the condition (L.4). It is clear that equivalent
(resp. isomorphic) quadruples yield equivalent (resp. isomorphic) Liouville surfaces.

THEOREM 3.1. The above construction gives the one-to-one corresPondence
between the equivalence classes (resp. isomorPhism classes) of quadruples in $Q$ and
the equivalence classes (resP. isomorphism classes) of Liouville surfaces whose
underlying manifolds are the sPhere $S^{2}$ , and which satisfy the condition (L.4).

PROOF. We shall give the inverse correspondence. Let $(S^{2}, g, F)$ be a
Liouville surface which satisfies the condition (L.4). As in the proof of Pro-
position 1.1, the energy function $E$ and the first integral $F$ are described as

$E= \frac{1}{2}(V_{1}^{2}+V_{2}^{2})$

$F=f_{2}V_{1}^{2}-f_{1}V_{2}^{2}$

on a fibred neighborhood of each point in $T^{*}(S^{2}-\Re)$ , where $V_{1}$ and $V_{2}$ are
fibrewise linear. In this case $f_{1}$ and $f_{2}$ are well-defined $C^{\infty}$ functions on $S^{2}-\Re$ ,
and $V_{1}^{2}$ and $V_{2}^{2}$ are well-defined $C^{\infty}$ functions on $T^{*}(S^{2}-\Re)$ .

Let $L$ be the simply closed geodeslc given in Theorem 2.1. Since $F$ is
indefinite at each point on $S^{2}-L$ , and since $f_{2}>-f_{1}$ there, it follows that $f_{1}$

and $\beta_{2}$ are positive on $S^{2}-L$ . Let $p_{i}\in 7l(1\leqq i\leqq 4)$ be as in Theorem 2.1, and
let $L_{i}(1\leqq i\leqq 4)$ be the connected component of $L-\Re$ bounded by $p_{i}$ and
$p_{i+1}(p_{\overline{o}}=p_{1})$ . We have already seen that $F$ is semi-definite at each point on $L_{i}$ .
In fact it is easy to see that the sign of $F$ on $L_{i}$ and that of $L_{i+1}$ are opposite.
Therefore we may assume that $F\geqq 0$ on $L_{1}$ and $L_{3},$ $F\leqq 0$ on $L_{2}$ and $L_{4}$ . Then
we have $f_{1}=0,$ $f_{2}>0$ on $L_{1}$ and $L_{3}$ , and $f_{1}>0,$ $f_{2}=0$ on $L_{2}$ and $L_{4}$ . Since
$F=0$ on $yl$ , it follows that $f_{1}$ and $f_{2}$ are continuously extended to the whole
$S^{2}$ by putting $f_{1}=f_{2}=0$ on $\Re$ .

Let $D_{1}$ and $D_{2}$ be the closure of the two connected components of $S^{2}-L$

respectively. Clearly $D_{1}$ and $D_{2}$ are diffeomorphic to a closed disc. Hence on
$D_{1}-\Re$ we can take a square root $V_{i}$ of $V_{l}^{2}$ as a $C^{\infty}$ function and the corres-
ponding vector field $X_{i}(i=1,2)$ as in the proof of Proposition 1.1. Note that
the vector fields $X_{1}$ and $X_{2}$ are also continuously extended to $D_{1}$ by putting
$X_{1}=X_{2}=0$ on $\Re$ . We choose $V_{1}$ (resp. $V_{2}$ ) so that the vector field $X_{1}$ (resp. $X_{2}\rangle$

on $L_{1}$ (resp. on $L_{2}$ ) tends to the inside of $D_{1}$ .

LEMMA 3.2. Consider the ordinary differential equation

$\frac{dc_{i}(t)}{dt}=(X_{i})_{c_{i^{(t)}}}$ $(i=1,2)$

with the initial condition $c_{i}(0)=q\in D_{1}$–L. Then there are positive constants $a_{f}$

and $b_{i}$ such that the unique solution $c_{i}(t)$ is defined on the closed interval $[-a_{i}, b_{i}]$ ,
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and satisfies
$c_{i}((-aib_{i}))\subset(D_{1}, -L),$ $c_{i}(-a_{i})\in L_{i},$ $c_{i}(b_{i})\in L_{i+2}(i=1,2)$ .

Furthermore the value $a_{i}+b_{i}(i=1,2)$ does not depend on the initial point $q$ .

PROOF OF LEMMA 3.2. Let $(r, \theta)$ be the normal polar coordinate system
centered at $p_{2}$ such that $L_{1}\cup L_{4}$ is represented by $\theta=0,0<r<r_{0},$ $L_{2}\cup L_{3}$ by
$\theta=\pi,$ $0<r<r_{0}$ , and $D_{1}-L$ by $0<\theta<\pi,$ $0<r<r_{0}$ , where $r_{0}$ is the distance be-
tween $p_{2}$ and $p_{4}$ . Since the vectors $X_{1},$ $X_{2}$ are linearly independent of, $and\sum$

not orthogonal to the vectors defined by $F^{b}=0$ on $D_{1}-L$ , it easily follows that
$\theta(c_{1}(t))$ (resp. $\theta(c_{2}(t))$ ) are the increasing (resp. decreasing) function, and $r(c_{i}(t))$

$\langle$ $i=1,2)$ are the increasing functions. Since $X_{1}f_{2}=0$ , and since $f_{2}=0$ on $L_{2}\cup L_{4}$ ,

it follows that $c_{1}(t)$ does not pass a neighborhood of the closure of $L_{2}\cup L_{4}$ .
These facts show the existence of the finte times $-a_{1}$ and $b_{1}$ so that the former
conditions are satisfied. Similarly we have the times $-a_{2}$ and $b_{2}$ for $c_{2}(t)$ .

NOW let $\omega_{1}$ and $\omega_{2}$ be 1-forms on $D_{1}-\Re$ such that $\omega_{i}(X_{j})=\delta_{ij}$ . Clearly
they are closed. Let $\gamma(t)(\alpha\leqq t\leqq\beta)$ be a curve in $D_{1}-\Re$ such that $\gamma(\alpha)\in L_{1}$

and $\gamma(\beta)\in L_{3}$ . Since the vector field $X_{2}$ is tangent to $L_{1}$ and $L_{3}$ , it follows that
the integral

$\int_{\gamma}\omega_{1}$

does not depend on the choice of $\gamma$ . This shows that the value $a_{1}+b_{1}$ does not
depend on $q$ . The constancy of $a_{2}+b_{2}$ is also shown in the same way. $\blacksquare$

We put $a_{i}=2(a_{i}+b_{i})(i=1,2)$ . Let $\omega_{1}$ and $\omega_{2}$ be 1-forms defined in the proof
of Lemma 3.2. We define functions $x_{1}$ and $x_{2}$ on $D_{1}-\Re$ by

$x_{i}(q)= \int_{\gamma_{i}}\omega_{i}$ $(i=1,2)$

where $\gamma_{i}$ is a curve in $D_{1}-\Re$ from a point on $L_{i}$ to $q$ . Moreover we put $x_{1}(p_{1})=$

$x_{1}(p_{2})=x_{2}(p_{2})=x_{2}(p_{3})=0,$ $x_{1}(p_{3})=x_{1}(p_{4})=\alpha_{1}/2,$ $x_{2}(p_{1})=x_{2}(p_{4})=a_{2}/2$ . Clearly we
have $X_{i}=\partial/\partial x_{i}$ on $D_{1}$ –Su.

LEMMA 3.3. The functions $(x_{1}, x_{2})$ give the homeomorphism from $D_{1}$ to the
rectangle $[0, \alpha_{1}/2]\cross[0, \alpha_{2}/2]$ which is the diffeomorphism from $D_{1}-\Re$ to the
$rectangle-$ { $4$ vertices}.

PROOF OF LEMMA 3.3. In view of Lemma 3.2 it is enough to show the
continuity of the functions $x_{1}$ and $x_{2}$ at four points in $yl$ . Assume that the
function $x_{1}$ is not continuous at $p_{1}$ . Then there is a sequence of points $q_{k}\in$

$D_{1}-\Re(k=1, 2, )$ such that $q_{k}arrow P_{1}$ and $x_{1}(q_{k})\searrow c>0$ as $karrow\infty$ . By Lemma 3.2
we have points $q_{k}’\in L_{4}(k=1, 2, )$ such that $q_{k}$ and $q_{k}’$ are on the same integral
curve of $X_{2}$ . Since $x_{1}(q_{k})=x_{1}(q_{k}’)$ , it follows that $x_{1}(q_{k}’)\searrow c$ as $karrow\infty$ . Since the
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function $x_{1}$ is monotonous on $L_{4}$ , it then follows that $q_{k}’$ converges to a pcint
$q_{\infty}’\in L_{4}\cup\{p_{1}\}$ . On the other hand, since $X_{2}fi=0$ , we have $f_{1}(q_{k})=f_{1}(q_{k}’)$ . This
implies that $f_{1}(q_{\infty}’)=0$ , and hence that $q_{\infty}’=p_{1}$ . Therefore it has been shown
that $x_{1}>c$ on $L_{4}$ . But since there is a point in $D_{1}-L$ with $x_{1}<c$ , this clearly
contradicts the previous lemma. Other cases are shown in the same way. $\blacksquare$

We now continue the proof of Theorem 3.1. In the similar way to the case
of $D_{1}$ we can define the vector fields $X_{i}$ and the functions $x_{i}(i=1,2)$ on $D_{2}so_{\lrcorner}q$

that the functions $x_{1}$ and $x_{2}$ coincide with those on $D_{1}$ on the common boundaryl
$\lambda$

$L$ . Therefore the curves $x_{t}=constant$ are joined into a simply closed curve.
AS before, let $\Gamma=\Gamma(\alpha_{1}, \alpha_{2})$ be the lattice in $R^{2}$ generated by $(\alpha_{1},0)$ and

$(0, \alpha_{2})$ . We denote by $[y_{1}, y_{2}]\in R^{2}/\Gamma$ the image of $(y_{1}, y_{2})\in R^{2}$ by the quotient
mapping $R^{2}arrow R^{2}/\Gamma$. Then it is easy to see that tbe above coordinate systems

on $D_{1}$ and $D_{2}$ induce a continuous mapping $\Phi$ : $R^{2}/\Gammaarrow S^{2}$ satisfying the follow-
ing conditions.

(1) $\Phi$ maps the set $\{[y_{1}, y_{2}]|0\leqq y_{1}\leqq\alpha_{1}/2,0\leqq y_{2}\leqq\alpha_{2}/2\}$ homeomorphically
onto $D_{1}$ , and

$x_{i}\circ\Phi([y_{1}, y_{2}])\equiv y_{i}$ moda $iZ$ $(i=1,2)$ .

(2) $\Phi$ maps the set { $[y_{1},$ $y_{2}]|$ OS $y_{1}\leqq\alpha_{1}/2,$ $\alpha_{2}/2\leqq y_{2}\leqq\alpha_{2}$ } homeomorphically
onto $D_{2}$ , and

$x_{1}\circ\Phi([y_{1}, y_{2}])\equiv y_{1}mod\alpha_{1}Z$ ,

$x_{2}\circ\Phi([y_{1}, y_{2}])\equiv-y_{2}mod \alpha_{2}Z$ .

(3) $\Phi([-y_{1}, -y_{2}])=\Phi([y_{1}, y_{2}])$ .
In view of Lemma 3.3 it is easy to see that $\Phi$ is $C^{\infty}$ outside the four points

$[0,0],$ $[\alpha_{1}/2,0],$ $[0, \alpha_{2}/2],$ $[\alpha_{1}/2, \alpha_{2}/2]$ , and there $\Phi$ is the double covering onto
$S^{2}-\Re$ . Let SP2 be the set of these four points. By the definition of the coor-
dinate system $(x_{1}, x_{2})$ we have

$\Phi^{*}g=(\Phi^{*}f_{1}+\Phi^{*}f_{2})(dy_{1}^{2}+dy_{2}^{2})$

on $R^{2}/\Gamma-\tilde{X}$ . Here the functions $\Phi^{*}f_{i}$ are continuous, and are $C^{\infty}$ outside St.
It is clear that $\Phi^{*}f_{i}$ depends only on the single variable $y_{i}(i=1,2)$ . We now
consider the conformal structure on $R^{2}/\Gamma$ induced from the flat metric $dy_{1}^{2}+dy_{2}^{2}$ .
Since $\Phi$ is continuous, and is the $C^{\infty}$ conformal mapping outside St, it follows
from an elementary function theory that $\Phi$ is $C^{\infty}$ on the whole $R^{2}/\Gamma$.

Next we shall show that the functions $\Phi^{*}f_{i}(i=1,2)$ satisfy the condition
(3.1), regarding them as the periodic functions on $R$ with periods $\alpha_{i}$ . Since
$\Phi([-y_{1}, -y_{2}])=\Phi([y_{1}, y_{2}])$ , we first have $\Phi^{*}f_{i}(-y_{i})=\Phi^{*}f_{i}(y_{i})(i=1,2)$ . Now
let us take tbe complex coordinate $z=y_{1}+\sqrt{-1}y_{2}$ around the point $[0,0]$ on
$R^{2}/\Gamma$. Then it is easy to see that the function $z^{2}$ induces the local coordinate
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around $\Phi([0,0])=p_{2}$ on $S^{2}$ . This implies that the symmetric 2-form $\Phi^{*}g$ is
described as

$h({\rm Re} z^{2}, {\rm Im} z^{2})dz^{2}d\overline{z}^{2}$

on a neighborhood of $[0,0]$ , where $h$ is a positive $C^{\infty}$ function in two variables
defined on a neighborhood of $(0,0)$ . Hence we have

$\Phi^{*}f_{1}(x_{1})+\Phi^{*}f_{2}(x_{2})=4h(x_{1}^{2}-x_{2}^{2},2x_{1}x_{2})(x_{1}^{2}+x_{2}^{2})$

on a neighborhood of $(x_{1}, x_{2})=(0,0)$ . From this it easily follows that if $\Phi^{*}f_{1}(x_{1})$

has the Taylor expansion $\sum_{k\geqq 1}a_{k}x_{1}^{2k}$ at $x_{1}=0$ , then $a_{1}>0$ , and the Taylor ex-
pansion of $\Phi^{*}f_{2}(x_{2})$ at $x_{2}=0$ is given by $\Sigma_{k\geqq 1}(-1)^{k-1}a_{k}x_{2}^{2k}$ . Other conditions
can be obtained in the similar way. Therefore we have obtained the quadruple
$(\alpha_{1}, \alpha_{2}, \Phi^{*}f_{1}, \Phi^{*}f_{2})\in Q$ . It is easy to verify that this assignment gives the con-
verse correspondence. This completes the proof of Theorem 3.1. $\blacksquare$

COROLLARY 3.4. Let $(S^{2}, g, F)$ be a Louville surface, and let $L$ be the closed
geodesic stated in Theorem 2.1. Then the reflection with respect to $L$ is a well-
defined isometry of $(S^{2}, g)$ , and it preserves $F$.

PROOF. Let $(\alpha_{1}, a_{2}, f_{1}(x_{1}), f_{2}(x_{2}))$ be a quadruple belonging to the corres-
ponding isomorphism class. Then the involution on $R^{2}/\Gamma(a_{1}, \alpha_{2})$ defined by
$(x_{1}, x_{2})arrow(x_{1}, -x_{2})$ induces the mapping $\sigma$ on $S^{2}$ whose fixed point set is $L$ .
Since $f_{2}(-x_{2})=f_{2}(x_{2})$ , it is clear that $\sigma$ preserves $g$ and $F$, and that $\sigma$ is the
reflection with respect to L. $\blacksquare$

PROPOSITION 3.5. A Liouville surface $(S^{2}, g, F)$ is the double covering of a
Liouville surface $(RP^{2}, g’, F’)$ if and only if the corresponding quadruples $(\alpha_{1},$

$\alpha_{2}$ ,
$f_{1},$ $f_{2})$ satisfy

(3.2) $f_{i}(x_{i}+ \frac{\alpha_{i}}{2})=f_{i}(x_{i})$ $(i=1,2)$

for any $x_{t}\in R$ . In this case the covering transformation is induced from

(3.3) $(x_{1}, x_{2})- \geq(x_{1}+\frac{\alpha_{1}}{2},$ $-x_{2}+ \frac{a_{2}}{2})$ .

PROOF. ’if’ part is clear. Now assume that $(S^{2}, g, F)$ is the double cover-
ing of $(RP^{2}, g’, F’)$ , and let $\tau$ be the covering transformation on $S^{2}$ . As was
noted in the proof of Theorem 3.1, $f_{i}$ and $\xi_{i}^{2}=(f_{1}+f_{2})V_{i}^{2}(i=1,2)$ are regarded
as functions on $S^{2}-X$ and $T^{*}(S^{2}-X)$ respectively. Since $E$ and $F$ are preserved
by $\tau$ , we have

(3.4) $f_{i}\circ\tau=f_{i}$

(3.5) $\xi_{i}^{2}\circ\tau^{*}=\xi_{t}^{2}$ .
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From the latter formula it follows that $\tau$ is induced from the mapping of the
form

$(x_{1}, x_{2})-(x_{1}+a, \pm x_{2}+b)$ .
Since $\tau$ is the fixed point free involution, we have (3.3). Then the formula
(3.2) follows from (3.4). $\blacksquare$

In the analytic case we have the following

COROLLARY 3.6. Let $(S^{2}, g, F)$ be a Liouville surface such that $(S^{2}, g)$ is
the analytic riemannian manifold. Let $(\alpha_{1}, \alpha_{2}, f_{1}(x_{1}), f_{2}(x_{2}))$ be one of the cor-
responding quadruples. Then $f_{1},$ $f_{2}$ , and $F$ are also analytic, and satisfies

$f_{i}(t+ \frac{\alpha_{i}}{2})=f_{i}(t)$ $(i=1,2)$

for any $t\in R$ . Furthermore, extending $f_{1}$ as a holomorphic function on a neigh-
borhood of the real axis, we have

$f_{2}(t)=-f_{1}(\sqrt{}\overline{-1}t)$

for $t\in R$ near $0$ . In particular the extended $f_{1}$ is a holomorphic function on a
neighborhood of the set

$\{z\in C|{\rm Re} z=\frac{n}{2}\alpha_{1}$ or ${\rm Im} z= \frac{n}{2}\alpha_{2},$ $n\in Z\}$

and has the double periods $\alpha_{1}/2$ and $\sqrt{}\overline{1}a_{2}/2$ .

PROOF. AS is well-known, in case $(S^{2}, g)$ is analytlc, any isotbermal coor-
dinates are analytic with respect to the given analytic charts. Therefore it
follows that the conformal mapping $\Phi$ : $T(\alpha_{I}, \alpha_{2})arrow(S^{2}, g)$ constructed in the
proof of Theorem 3.1 is analytic, and that so is $\Phi^{*}g$ . This implies the analy-
ticity of the functions $f_{1}$ and $f_{2}$ , and hence of the first integral $F$. The rest
part is immediately obtained from the conditions (3.1) for $f_{1}$ and $f_{2}$ . $\blacksquare$

The following corollary is an immediate consequence of Proposition 3.5 and
Corollary 3.6.

COROLLARY 3.7. If $(S^{2}, g, F)$ is an analytic Liouville surface, then it is the
double covering of a Liouville surface whose underlying manifold is the real pro-
jective plane $RP^{2}$ .

We next consider Liouville surfaces whose underlying manifolds are the
torus. The simplest example in this case is given as follows: Let $\Gamma$ be a
lattice in $R^{2}=\{(x_{1}, x_{2})\}$ generated by an orthogonal basis. After an orthonormal
change of the coordinates, we may assume that they are $(\alpha_{1},0)$ and $(0, \alpha_{2})$

$(\alpha_{1}, \alpha_{2}>0)$ . Let $f_{\ell}\in C^{\infty}(R/\alpha_{i}Z)(i=1,2)$ be any non-constant functions such that
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$f_{1}(x_{1})+f_{2}(x_{2})>0$ for any $x_{1},$ $x_{2}\in R$. Put

$g=(f_{1}(x_{1})+f_{2}(x_{2}))(dx_{1}^{2}+dx_{2}^{2})$

$F= \frac{1}{f_{1}(x_{1})+f_{2}(x_{2})}(f_{2}(x_{2})\xi_{1}^{2}-f_{1}(x_{1})\xi_{2}^{2})$ ,

where $(x, \xi)$ is the associated canonlcal coordinate system on the cotangent
bundle. Then $(R^{2}/\Gamma, g, F)$ is clearly a Liouville surface. We shall say that
this Liouville surface is of elementary type.

PROPOSITION 3.8. Let $(S, g, F)$ be a Liouville surface such that $S$ is dif-
feomorphic to the torus. Then there is a Liouville surface $(R^{2}/\Gamma g’, F’)$ of
elementary type, and a finite covering $\phi:S-arrow R^{2}/\Gamma$ such that $\phi^{*}g’=g$ and $F\circ\phi^{*}$

$=F’$ .
PROOF. AS in the proof of Proposition 1.1 we can write

$E= \frac{1}{2}(V_{1}^{2}+V_{2}^{2})$

$F=f_{2}V_{1}^{2}-f_{1}V_{2}^{2}$

on a fibred neighborhood of each point in $S$ , where $V_{i}(i=1,2)$ are fibrewise
linear, and $f_{2}>-f_{1}$ . In this case Theorem 2.1 shows that $E$ and $F$ are never
proportional at any point in $S$ . It thus follows that $f_{i}$ and $V_{i}^{2}$ are well-defiend
$C^{\infty}$ functions on $S$ and $T^{*}S$ respectively. Then we have

LEMMA 3.9. The functions $f_{1}$ and $f_{2}$ are not constant.

PROOF. If $f_{1}$ is constant, then

$(f_{1}+f_{2})V_{1}^{2}=F+2f_{1}E$

becomes also a first integral. But this contradicts the condition (L.3) in the
definition of the Liouville surface. $\blacksquare$

AS in the proof of Proposition 1.1, we can take the square root $V_{i}$ of $V_{l}^{2}$

and the corresponding vector $X_{i}$ at each point in $S$ . Let $p$ be a point in $S$ such
that $(df_{1})_{p}\neq 0$ , and let $c_{0}(x_{2})(x_{2}\in R)$ be the $C^{\infty}$ curve in $S$ such that

$c_{0}(O)=P$ , $c_{0}’(x_{2})=\pm(X_{2})_{c_{0}(x_{2})}$ .

Since $X_{2}f_{1}=0$ , it follows that $df_{1}\neq 0$ at each point $c_{0}(x_{2})$ . This implies that
the connected component of the closed set $f_{1}^{-1}(f_{1}(p))$ containing $p$ coincides
with the orbit of $c_{0}(x_{2})(x_{2}\in R)$ . Hence the orbit of $c_{0}(x_{2})$ must be a circle, and
the curve $x_{2}-\rangle$ $c_{0}(x_{2})$ has a period. Let $\alpha_{2}>0$ be the least period.

NOW let $x_{1}-c(x_{1}, x_{2})$ be the $C^{\infty}$ curve in $S$ such that
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$c(O, x_{2})=c_{0}(x_{2})$ , $\frac{\partial c}{\partial_{X_{1}}}(x_{1}, x_{2})=\pm(X_{1})_{c(x_{1},x_{2})}$ .

We may assume that $(\partial c/\partial x_{1})(0, x_{2})$ is $C^{\infty}$ in the variable $x_{2}$ . Since the mapping
$(x_{1}, x_{2})->c(x_{1}, x_{2})$ is the local diffeomorphism, it gives a $C^{\infty}$ covering of $S$ by
$R\cross R/a_{2}Z$. Hence there is a point on the circle $\{c(O, x_{2})\}$ where $df_{2}$ does not
vanish. By shifting the parameter $x_{2}$ , we may assume that this point is $p=$

$c(O, 0)$ . Then it follows from the same reason as the case of $c_{0}(x_{2})$ that the
curve $x_{1}-\rangle$ $c(x_{1},0)$ is periodic. Let $a_{1}>0$ be the least period. Note that the
vector fields $(\partial c/\partial x_{1})(0, x_{2})$ and $(\partial c/\partial x_{2})(x_{1},0)$ are also periodic with periods $\alpha_{2}$

and $a_{1}$ respectively, because $S$ is orientable. Since $[X_{1}, X_{2}]=0$ if $X_{1}$ and $X_{2}$

are locally chosen as $C^{\infty}$ vector fields, it follows that the mapping $(x_{1}, x_{2})-$

$c(x_{1}, x_{2})$ induces a $C^{\infty}$ covering of $S$ by $(R/a_{1}Z)\cross(R/\alpha_{2}Z)$ . Clearly $c^{*}f_{i}$ is a
function on the single variable $x_{i}(i=1,2)$ , and

$c^{*}g=(c^{*}f_{1}+c^{*}f_{2})(dx_{1}^{2}+dx_{2}^{2})$

$F=\tilde{F}\circ c^{*}$ , $F_{-\frac{1}{c^{*}f_{1}+c^{*}f_{2}}(c^{*}f_{2}\xi_{1}^{2}-c^{*}f_{1}\xi_{2}^{2})}$ .

Let $\Gamma’$ be the lattice in $R^{2}$ generated by $(\alpha_{1},0)$ and $(0, \alpha_{2})$ . By using the
covering $c$ , we have a lattice $\Gamma$ in $R^{2}$ containing $\Gamma’$ such that $c$ and the
natural covering $R^{2}/\Gamma’arrow R^{2}/\Gamma$ induces a conformal diffeomorphism between
$(S, g)$ and $R^{2}/\Gamma$ with the flat metric $dx_{1}^{2}+dx_{2}^{2}$ . Therefore we identify $S$ with
$R^{2}/\Gamma$, and $c$ with the natural covering $R^{2}/\Gamma’arrow R^{2}/\Gamma$. By regarding $c^{*}f_{i}$ as
a periodic function on $R,$ $c^{*}g$ and $F$ are regarded as a riemannian metric on
$R^{2}$ and a function on $T^{*}R^{2}$ which are invariant under the additive action of $\Gamma$.
Let $\pi_{1}(resp. \pi_{2}):R^{2}arrow R$ be the projection to the first (resp. the second) variable,
and put $\Gamma_{i}=\pi_{i}(\Gamma)\subset R(i=1,2)$ . Since $\Gamma$ contains the sublattice $\Gamma’$ generated
by $(a_{1},0)$ and $(0, \alpha_{2})$ , it follows that the additive group $\Gamma_{i}$ has a generator
$\beta_{i}>0(i=1,2)$ . Let $\Gamma’’$ be the lattice in $R^{2}$ generated by $(\beta_{1},0)$ and $(0, \beta_{2})$ .
Then it is clear that the functions $c^{*}f_{i}$ are periodic with the period $\beta_{i}(i=1,2)$ ,
and hence that the metric $c^{*}g$ and the function $\tilde{F}$ are invariant under the action
of $\Gamma’’$ . Hence we have a Liouville surface of elementary type whose underly-
ing manifold is $R^{2}/\Gamma’’$ , and which is covered by the Liouville surface $(S, g, F)$

by the natural covering $S=R^{2}/\Gammaarrow R^{2}/\Gamma’’$ . This completes the proof of Pro-
position 3.8. $\blacksquare$

We shall now classify Liouville surfaces whose underlying riemannian mani-
folds are conformally isomorphic to a prescribed flat torus $(R^{2}/\Gamma, dx_{1}^{2}+dx_{2}^{2})$ . As
before, we identify $R^{2}$ with $C$ by taking the complex coordinate $z=x_{1}+\sqrt{-1}x_{2}$ .
AS usual, we may assume that the lattice $\Gamma$ in $C$ is generated by 1 and $w\in U$ ,
where
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$U=\{z\in C||z|\geqq 1$ , $0\leqq{\rm Re} z\leqq\frac{1}{2}$ , ${\rm Im} z>0\}$ .

Let $l_{1}$ and $l_{2}$ be real lines through the origin in $C$ which are mutually
orthogonal, and such that both $l_{1}\cap\Gamma$ and $l_{2}\cap\Gamma$ are not $\{0\}$ . Let $\mathcal{A}=\mathcal{A}(\Gamma)$ be
the set of all such ordered pairs $(l_{1}, l_{2})$ of lines. For each $l=(l_{1}, l_{2})\in \mathcal{A}$ we
assign a lattice $\Gamma’(l)$ in the following manner. Let $\pi_{i}$ be the orthogonal pro-
$jectionCarrow l_{i}(i=1,2),$ $andput\pi_{i}(\Gamma)=\Gamma_{i}’$ . $Notethat\Gamma_{i}’(i=1,2)havegenerators$ ,
because $m\Gamma\subset l_{1}\cap\Gamma+l_{2}\cap\Gamma$ for some $m\in Z$. Then we put $\Gamma’(1)=\Gamma_{1}’+\Gamma_{2}’$ .
Clearly we have $\Gamma\subset\Gamma’(1)$ .

LEMMA 3.10. $\mathcal{A}=\mathcal{A}(\Gamma)$ is not empty if and only if ${\rm Re} w\in Q$ , or there are
$p,$ $q\in Q$ such that $|w|^{2}+(p+q){\rm Re} w+pq=0$ , where $Q$ denotes the field of rational
numbers. When this condition is satisfied, we have the following two cases.

(i) If ${\rm Re} w\not\in Q$ or $|w|^{2}\not\in Q$ , then $\#\mathcal{A}=2$ .
(ii) If ${\rm Re} w\in Q$ and $|w|^{2}\in Q$ , then

$\mathcal{A}=\{(R(w+p_{r}), R(u’+q_{r}))|r\in Q^{\cross}\}C’\{(R, R\sqrt{}\overline{-1}), (R\sqrt{}\overline{-1}, R)\}$ ,

where
$p_{\gamma}=-({\rm Im} w)^{2}r-{\rm Re} w$ , $q_{r}=r^{-1}-{\rm Re} w$ .

PROOF. AS is easily seen, a pair of lines

$(R(w+p), R(w+q))$ , $P,$ $q\in R$

is an element of $\mathcal{A}$ if and only if

$p,$ $q\in Q$ , ${\rm Re}( \frac{w+p}{w+q})=0$ .

This condition is equivalent to

$\langle$ 3.6) $P,$ $q\in Q$ , $({\rm Re} w+P)({\rm Re} w+q)+({\rm Im} w)^{2}=0$ .

The condition for $(R, R\sqrt{}\overline{-1})\in \mathcal{A}$ is clearly given by ${\rm Re} w\in Q$ . Hence the first
assertion follows.

NOW assume that ${\rm Re} w\in Q$ , or the formula (3.6) is satisfied. If ${\rm Re} w\not\in Q$ ,

then in the formula (3.6) $p+q$ and $pq$ must be unique. Hence $\#\mathcal{A}=2$ in this
case. If ${\rm Re} w\in Q$ and $|w|^{2}\not\in Q$ , then there are no $p,$ $q\in Q$ satisfying (3.6).

Hence $\mathcal{A}=\{(R, R\sqrt{}\overline{-1}), (R\sqrt{}\overline{-1}, R)\}$ in this case. If ${\rm Re} w\in Q$ and $|w|^{2}\in Q$ ,

then $({\rm Im} w)^{2}$ is a positive rational number. Hence (3.6) is solved by using the
parameter $r\in Q^{\cross}:$

${\rm Re} w+p=-({\rm Im} w)^{2}r$ , ${\rm Re} w+q=r^{-1}$

This proves (ii). $\blacksquare$
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Let $l=(l_{1}, l_{2})\in \mathcal{A}$ . Let $\mathscr{F}(1)$ be the set of pairs of functions $f=(f_{1}, f_{2})$ such
that $f_{i}$ is a function on $l_{i}$ which is invariant under the action of $\Gamma_{i}’(i=1,2)$ ,
and $f_{1}+f_{2}>0$ . Here the functions $f_{i}$ are identified with their pulled back images
by the orthogonal projections $\pi_{i}$ : $Carrow l_{i}$ . We put

di $(\Gamma)=\{(l, f)|l\in \mathcal{A}, f\in \mathscr{F}(l)\}$ .

For each $(l, f)\in$ di $(\Gamma)$ we assign a Liouville surface whose underlying rieman-
nian manifold is conformally isomorphic to

$(C/\Gamma, d_{X_{1}^{2}}+dx_{2}^{2})$

as follows. Let $(y_{1}, y_{2})$ be an orthonormal coordinate system on $C=R^{2}$ so that
$\partial/\partial y_{i}$ is tangent to $l_{i}(i=1,2)$ . Put

$g=(f_{1}(y_{1})+f_{2}(y_{2}))(dy_{1}^{2}+dy_{2}^{2})$

$F= \frac{1}{f_{1}(y_{1})+f_{2}(y_{2})}(f_{2}(y_{2})\eta_{1}^{2}-f_{1}(y_{1})\eta_{2}^{2})$ ,

where $(y, \eta)$ is the associated canonical coordinate system on $T^{*}C$. Clearly $g$

and $F$ are invariant under the action of $\Gamma$. By regarding them as a riemannian
metric on $C/\Gamma$ and a function on $T^{*}(C/\Gamma)$ respectively, we obtain the Liouville
surface $(C/\Gamma, g, F)$ .

Let $G_{0}$ denote the group of all conformal transformations of $C$ which fix
the origin $0$ and leave $\Gamma$ invariant. If ${\rm Re} w\neq 0,1/2$ and $|w|\neq 1$ , then $G_{0}$ consists
of the multiplication of +1. If ${\rm Re} w=0,1/2,$ $w\neq\sqrt{}\overline{-1},$ $e^{\pi i/3}$ , then $G_{0}$ is generated
by the mappings $zarrow\overline{z}$ and $z-\succ-z$ . If $|w|=1,$ $w\neq\sqrt{-1},$ $e^{\pi i/3}$ , then $G_{0}$ is
generated by $z-*w\overline{z}$ and $z--z$ . If $w=\sqrt{}\overline{-1}$ or $e^{\pi i/3}$ , then $G_{0}$ is generated by
$z-,\overline{z}$ and $z-wz$ . In each case $G_{0}$ is clearly a finite group which preserves the
set $\mathcal{A}$ and the metric $dx_{1}^{2}+dx_{2}^{2}$ . Let $G(\Gamma)$ be the group of conformal transforma-
tions of $C$ generated by $G_{0}$ and all of the translations.

We say that two elements $(1, f)$ and $(m, h)$ in $\ovalbox{\tt\small REJECT}(\Gamma)$ are equivalent if there
are $\Phi\in G(\Gamma)$ and $a\in R$ such that one of the following two cases occurs:

(1) $\Phi_{0}(l_{i})=m_{t},$ $\Phi^{*}h_{i}=f_{i}+(-1)^{i}a$ $(i=1,2)$ ;

(2) $\Phi_{0}(l_{1})=m_{2},$ $\Phi_{0}(l_{2})=m_{1},$ $\Phi^{*}h_{2}=f_{1}-a,$ $\Phi^{*}h_{1}=f_{2}+a$ ,

where $\Phi_{0}\in G_{0}$ denotes the linear part of $\Phi$ . It is easy to see that mutually
equivalent elements in di $(\Gamma)$ give mutually equivalent Liouville surfaces. Let
$B(\Gamma)$ denotes the set of all equivalence classes.

THEORIM 3.11. The above assignment gives the one-to-one correspondence
between the set $\ovalbox{\tt\small REJECT}(\Gamma)$ and the set of equivalence classes of Liouville surfaces
whose underlying riemannian manifolds are conformally $iso$morphic to the flat
torus $(C/\Gamma, dx_{1}^{2}+dx_{2}^{2})$ .
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PROOF. In view of Proposition 3.8 it is clear that the assignment described
above is surjective. Now assume that $(l, f)$ and $(m, h)$ in di $(\Gamma)$ give the same
equivalence class of Liouville surfaces. Put

$g=(f_{1}+f_{2})(dx_{1}^{2}+dx_{2}^{2})$ , $g’=(h_{1}+h_{2})(dx_{1}^{2}+dx_{2}^{2})$ .

Then by the assumption we have an isometry $\phi:(C/\Gamma, g)arrow(C/\Gamma, g’)$ .
This gives an isometry $\phi:(C, g)arrow(C, g’)$ and an automorphism $\psi$ of $\Gamma$ as an
abelian group such that

$\tilde{\phi}(z+\gamma)=\tilde{\phi}(z)+\psi(\gamma)$ , $z\in C,$ $\gamma\in\Gamma$ ,

where the metrics $g$ and $g’$ on $C/\Gamma$ are identified with their pulled back images
on $C$. Hence we can extend $\psi$ on $C$ by putting $\psi(z)=\tilde{\phi}(z)-\tilde{\phi}(O)$ . Since di is a
conformal mapping, it follows that $\psi\in G_{0}$ . Hence $\hat{\phi}\in G(\Gamma)$ , and we have
$\tilde{\phi}^{*}(h_{1}+h_{2})=f_{1}+f_{2}$ . Since $f_{i}$ and $h_{i}(i=1,2)$ are non-constant functions, it easily
follows that $\{\psi(l_{1}), \psi(1_{2})\}=\{m_{1}, m_{2}\}$ . Therefore we see that $(l, f)$ and $(m, h)$

are equivalent. $\blacksquare$

Finally we consider the case where the underlying manifold is diffeomorphic
to the Klein bottle. Let $w\in R\sqrt{}\overline{-1}$ such tbat ${\rm Im} w>0$ , and let $\Gamma$ be the lattice
in $C$ generated by 1 and $w$ . Put

$\delta(z)=\overline{z}+\frac{1}{2}$ , $z\in C$ .

Clearly $c\sim$ induces a conformal transformation $c$ of $C/\Gamma$ satisfying $c^{2}=1$ . We
put

$K_{w}=(C/\Gamma)/\{1, c\}$ .
Then $K_{w}$ is diffeomorphic to the Klein bottle, which possesses the riemannian
metric $g_{w}$ induced from the metric $dx_{1}^{2}+dx_{2}^{2}$ . As is easily seen, any riemannian
manifold whose underlying manifold is diffeomorphic to the Klein bottle is
conformally isomorphic to one of the flat Klein bottles $(K_{w}, g_{w})$ .

NOW we fix $w\in R\sqrt{}\overline{-1},$ ${\rm Im} w>0$ . Let $f_{1}(x_{1})$ and $f_{2}(x_{2})$ be functions such
that $f_{1}(x_{1})+f_{2}(x_{2})>0$ for any $x_{1},$ $x_{2}\in R$ and

$f_{1}(x_{1}+\overline{2})=f_{1}(x_{1})$

$f_{2}(-x_{2})=f_{2}(x_{2})$ , $f_{2}(x_{2}+{\rm Im} w)=f_{2}(x_{2})$ .

We say that two such pairs of functions $(f_{1}, f_{2})$ and $(h_{1}, h_{2})$ are equivalent if
there are $a,$ $b\in R,$ $n\in Z$, and $\epsilon\in\{1, -1\}$ such that

$h_{1}(x_{1})=f_{1}(\epsilon x_{1}+b)-a$

$h_{2}(x_{2})=f_{2}(x_{2}+ \frac{n}{2}{\rm Im} w)+a$ .
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Let $C(w)$ be the set of the equivalence classes of such pairs. For each element
of $C(w)$ we assign an equivalence class of Liouville surfaces as follows. Let
$(f_{1}, f_{2})$ be a representative. Put

$g=(f_{1}(x_{1})+f_{2}(x_{2}))(dx_{1}^{2}+dx_{2}^{2})$

$F= \frac{1}{f_{1}(x_{1})+f_{2}(x_{2})}(f_{2}(x_{2})\xi_{1}^{2}-f_{1}(x_{1})\xi_{2}^{2})$ .

Then clearly $g$ and $F$ are invariant under the action of $\Gamma$ and the mapping 6.
Hence they induce a Liouville surface whose underlying manifold is $K_{w}$ , and
whose riemannian metric is conformal to $g_{w}$ . It is easy to see that another
representative gives an equivalent Liouville surface.

Then we get

PROPOSITION 3.12. The above assigment gives the one-to-one correspondence
between the set $C(w)$ and the equivalence classes of Liouville surfaces whose un-
derlying riemannian manifolds are conformally isomorphic to $(K_{w}, g_{w})$ .

The proof is easily obtained by using Theorem 3.11.

\S 4. Symplectically isomorphic geodesic flows

Let us consider a Liouville surface $(S^{2}, g, F)$ . Let $(\alpha_{1}, a_{2}, f_{1}, f_{2})$ be one of
the corresponding quadruples. In this section we shall assume that the follow-
ing condition is satisfied.

There is only one $c_{i} \in(0,\frac{\alpha_{i}}{2})$ such that $f_{i}’(c_{i})=0$ . Moreover
(4.1)

the second derivative $f_{i}’’(c_{i})$ does not vanish. $(i=1,2.)$

Put $M=f_{1}(c_{1})+f_{2}(c_{2})>0$ . Then there is a number $\beta\in(0,1)$ such that

$f_{1}(c_{1})=M(1-\beta)$ , $f_{2}(c_{2})=M\beta$ .
We then introduce new coordinates $\theta_{i}(i=1,2)$ by

$f_{1}(x_{1})=M(1-\beta)\sin^{2}\theta_{1}$

(4.2)
$f_{2}(x_{2})=M\beta\sin^{2}\theta_{2}$

and the conditions: $dx_{i}/d\theta_{i}>0$ , and $x_{i}=0$ corresponds to $\theta_{i}=0(i=1,2)$ . It is
easy to see that this coordinate change is well-defined, and that the mapping
$x_{i}arrow\theta_{i}$ gives a diffeomorphism $R/a_{i}Zarrow R/2\pi Z$ .

NOW we define positive functions $A_{1}(t)(|t|\leqq\sqrt{}\overline{1-\beta})$ and $A_{2}(t)(|t|\leqq\sqrt{}\overline{\beta})$ by

$A_{1}( \sqrt{}\overline{1-\beta}\cos\theta_{1})=\frac{dx_{1}}{d\theta_{1}}\sqrt{}\overline{\lrcorner M}\sqrt{}\overline{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}$
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$A_{2}( \sqrt{}\overline{\beta}\cos\theta_{2})=\frac{dx_{2}}{d\theta_{2}}\sqrt{}\overline{M}\sqrt{}\overline{(1-\beta)\cos^{2}\theta_{2}+\sin^{2}\theta_{2}}$.

It is easy to see that $A_{1}(t)$ and $A_{2}(t)$ are well-defined $C^{\infty}$ functions on the
closed intervals $[-\sqrt{}\overline{1-\beta,}\sqrt{}\overline{1-\beta}]$ and $[-\sqrt{\beta}\sqrt{\beta}]$ respectively. The rieman-
nian metric $g$ is then described as

$g=((1-\beta)\sin^{2}\theta_{1}+\beta\sin^{2}\theta_{2})$

$\langle$4.3)
$\cross(\frac{A_{1}(\sqrt{}\overline{1-\beta}\cos\theta_{1})^{2}}{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}d\theta_{1}^{2}+\frac{A_{2}(\sqrt{}\overline{\beta}\cos\theta_{2})^{2}}{(1-\beta)\cos^{2}\theta_{2}+\sin^{2}\theta_{2}}d\theta_{2}^{2})$

In this case the conditions (3.1) are translated to the following conditions.

$A_{1}(t)\sim A_{1}(-t)(tarrow\sqrt{}\overline{1-\beta})$

$\langle$4.4) $A_{2}(t)\sim A_{2}(-t)(t-+\sqrt{}\overline{\beta})$

$A_{1}(t)\sim A_{2}(\sqrt{}\overline{1-t^{2}})(tarrow\sqrt{}\overline{1-\beta})$

Here the symbol $\sim$ expresses that both sides have the same Taylor expansion at
the given points. Conversely, for any positive number $M$, and for any positive
$C^{\infty}$ functions $A_{1}(t)$ and $A_{2}(t)$ defined on the closed intervals $[-\sqrt{}\overline{1-\beta}, \sqrt{}\overline{1-\beta}]$

and $[-\sqrt{}\overline{\beta,}\sqrt{}\overline{\beta}]$ which satisfy the conditions (4.4), we get a quadruple and
hence a Liouville surface $(S^{2}, g, F)$ by reversing the above procedure. Clearly
another choice of $M$ gives an equivalent Liouville surface. Therefore we shall
assume that $M=1$ in the rest of the paper.

We shall describe some examples. First let us consider the ellipsoid

$\frac{y_{1}^{2}}{b_{1}}+\frac{y_{2}^{2}}{b_{2}}+\frac{y_{3}^{2}}{b_{3}}=1$ $(b_{1}>b_{3}>b_{2}>0)$

in $R^{3}=\{(y_{1}, y_{2}, y_{3})\}$ . This ellipsoid is parametrized by $R/2\pi Z\cross R/2\pi Z=$

$\{(\theta_{1}, \theta_{2})\}$ as follows:
$y_{1}=\sqrt{}\overline{b_{1}}\cos\theta_{1}\sqrt{}\overline{(1-\beta)cos^{2}\theta_{2}+\sin^{2}\theta_{2}}$

(4.5) $y_{2}=\sqrt{}\overline{b_{2}}\cos\theta_{2}\sqrt{}\overline{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}$

$y_{3}=\sqrt{}\overline{b_{8}}\sin\theta_{1}\sin\theta_{2}$

where $\beta=(b_{3}-b_{2})/(b_{1}-b_{2})\in(0,1)$ . Then the riemannian metric $g$ induced
from the canonical metric on $R^{3}$ is given by

$g=((1-\beta)\sin^{2}\theta_{1}+\beta\sin^{2}\theta_{2})$

$\cross(\frac{b_{3}\cos^{2}\theta_{1}+b_{1}\sin^{2}\theta_{1}}{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}d0_{1}^{2}+\frac{b_{3}\cos^{2}\theta_{2}+b_{2}\sin^{2}\theta_{2}}{(1-\beta)\cos^{2}\theta_{2}+\sin^{2}\theta_{2}}d\theta_{2}^{2})$

(cf. Klingenberg [7] Section 3.5). Next we consider the sphere of radius 1.
In this case, put $b_{1}=b_{2}=b_{3}=1$ and let $\beta\in(0,1)$ be arbitrary in (4.5). Tben the
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induced metric $g_{0}$ is given by

$g_{0}=((1-\beta)\sin^{2}\theta_{1}+\beta\sin^{2}\theta_{2})$

$\langle$4.6)
$\cross(\frac{d\theta_{1}^{2}}{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}+\frac{d0_{2}^{2}}{(1-\beta)\cos^{2}\theta_{2}+\sin^{2}\theta_{2}})$ .

NOW we sball show the main theorem in this section. We put

$A_{j}^{\pm}(t)= \frac{1}{2}(A_{j}(t)\pm A_{j}(-t))$ $(j=1,2)$ .

THEORIM 4.1. Fix $\beta\in(0,1)$ . Let $A_{i1}(t)$ and $A_{i2}(t)(i=1,2)$ be positive $C^{\infty}$

functions on $[-\sqrt{}\overline{1-\beta}, \sqrt{}\overline{1-\beta}]$ and $[-\sqrt{}\overline{\beta}, \sqrt{}\overline{\beta}])$ respectively which satisfy the
conditions (4.4), and let $(S^{2}, g_{i}, F_{t})$ be the corresponding Liouville surfaces. Assume
that $A_{1j}^{+}(t)=A_{2j}^{+}(t)(J^{=1,2)}$ Then the geodesic flows of the riemannian manifolds
$(S^{2}, g_{i})(i=1,2)$ defined on $t*s^{2}=T^{*}S^{2}-$ { $0$-section} are mutually sympletically
isomorphic.

PROOF. We put A. $j(t)=(2-r)A_{1j}(t)+(r-1)A_{2j}(t)(1\leqq r\leqq 2)$ . Then we have
$A_{r_{J}}^{+}(t)=A_{1j}^{+}(t)=A_{2_{J}}^{+}(t)(j=1,2)$ . The corresponding riemannian metric $g_{r}$ is
given by

$g_{r}=((1-\beta)\sin^{2}\theta_{1}+\beta\sin^{2}\theta_{2})$

$\cross(\frac{A_{\gamma 1}(\sqrt{1-\beta}\cos\theta_{1})^{2}}{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}d\theta_{1}^{2}+\frac{A_{r2}(\sqrt{\beta}\cos\theta_{2})^{2}}{(1-\beta)\cos^{2}0_{2}+\sin^{2}\theta_{2}}d\theta_{2}^{2})$ .

Here the underlying manifold $S^{2}$ is identified with $R/2\pi Z\cross R/2\pi Z$ devided by
the involution $(\theta_{1}, \theta_{2})-\rangle(-\theta_{1}, -\theta_{2})$ . Let $E_{r}$ be the corresponding energy function,
and let $\dot{E}_{r}$ be its derivative in $r$ . In general for a function $u$ on an open
subset of $T^{*}S^{2}$ , let $X_{u}$ denote the symplectic vector field defined by the hamil-
tonian $u$ .

We shall solve the equation

(4.7) $X_{E_{r}}G_{r}=\dot{E}_{r}$ $(1\leqq r\leqq 2)$

so that $G_{r}$ is a homogeneous $C^{\infty}$ function on $t*s^{2}$ which is also $C^{\infty}$ in the
parameter $r$ . If such $G_{r}$ is found, then the one-parameter family of homogeneous
symplectic diffeomorphisms $\Phi_{r}(1\leqq r\leqq 2)$ of $\overline{T}^{*}S^{2}$ defined by

$\frac{d}{dr}\Phi_{r}(\eta)=(X_{G_{T}})_{\Phi_{r}(\eta)}$ , $\Phi_{0}(\eta)=\eta$ , $\eta\in T*s^{2}$

satisfies $\Phi_{r}^{*}E_{r}=E_{0}$ , which will prove the theorem.
The function $G_{r}$ is given as follows. Let $(\theta, \eta)$ be the canonical coordinates

associated with $\theta=(\theta_{1}, \theta_{2})$ . As is easily seen, the energy function $E_{r}$ and the
first integral $F_{r}$ are given by
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$E_{r}= \frac{1}{2}\frac{1}{(1-\beta)\sin^{2}\theta_{1}+\beta\sin^{2}\theta_{2}}$

$\cross(\frac{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}{A_{r1}(\sqrt{1-\beta}\cos 0_{1})^{2}}\eta_{1}^{2}+\frac{(1-\beta)\cos^{2}\theta_{2}+\sin^{2}\theta_{2}}{A_{r2}(\sqrt{\beta}\cos\theta_{2})^{2}}\eta_{2}^{2})$

$F_{r}= \frac{1}{(1-\beta)\sin^{2}\theta_{1}+\beta\sin^{2}\theta_{2}}$

$\cross(\frac{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}{A_{r1}(\sqrt{}\overline{1-\beta}\cos\theta_{1})^{2}}\beta\sin^{2}\theta_{2}\eta_{1}^{2}$

$- \frac{(1-\beta)\cos^{2}\theta_{2}+\sin^{2}\theta_{2}}{A_{r2}(\sqrt{}\overline{\beta}\cos\theta_{2})^{2}}(1-\beta)\sin^{2}\theta_{1}\eta_{2}^{2})$ .

When $F_{r}(\theta, \eta)\leqq 0$ , then we put

$G_{r}( \theta, \eta)=-\frac{\sqrt{}\overline{2E_{r}}}{2}\epsilon_{1}\int_{(1-\beta)\cos^{2}\theta_{1}}^{1-\beta+(F_{T}/2E_{\mathcal{T}})}\frac{B_{1}(y)}{\sqrt{}\overline{1-y}}\sqrt{\frac{1-\beta+(F_{r}/2E_{r})-y}{1-\beta-y}}dy$

$- \frac{\sqrt{}\overline{2E_{r}}}{2}\epsilon_{2}\int_{\beta\cos^{2}\theta_{2}}^{\beta}\frac{B_{2}(y)}{\sqrt{}\overline{1-y}}\sqrt{\frac{\beta-(F_{r}/2E_{r})-y}{\beta-y}}dy$ ,

and when $F_{r}(\theta, \eta)>0$ ,

$G_{r}( \theta, \eta)=-\frac{\sqrt{}\overline{2E_{r}}}{2}\epsilon_{1}\int_{(1-\beta)\cos^{2}\theta_{1}}^{1-\beta}\frac{B_{1}(y)}{\sqrt{}\overline{1-y}}\sqrt{\frac{1-\beta+(F_{\tau}/2E_{r})-y}{1-\beta-y}}dy$

$- \frac{\sqrt{}\overline{2E_{r}}}{2}\epsilon_{2}\int_{\beta\cos^{2}\theta_{2}}^{\beta-(F_{T}/2E_{r})}\frac{B_{2}(y)}{\sqrt{}\overline{1-y}}\sqrt{\frac{\beta-(F_{r}/2E_{r})-y}{\beta-y}}dy$ ,

where $\epsilon_{j}$ denotes the sign of $\eta_{j}\sin\theta_{j}(\gamma=1,2)$ . The functions $B_{1}(y)$ and $B_{2}(y\rangle$

are defined as follows. By the assumption on $A_{ij}(t)$ , we see that $\angle\dot{4}_{rj}(t)=$

$A_{2j}(t)-A_{1j}(t)$ is the odd function in $t$ . Hence there is a unique $C^{\infty}$ function
$B_{j}(y)$ so that

$\dot{A}_{rj}(t)=tB_{j}(t^{2})$ $(J^{=1},2)$ .

From the above definition it is easy to see that $\{G_{r}\}$ is a well-defined
continuous function on $[1, 2]$ X $\mathring{T}^{*}S^{2}$ which is $C^{\infty}$ in the region where $F_{r}\neq 0$ ,
and that the formula (4.7) is satisfied. The smoothness at points where $F.=0$

is also easily verified in view of the fact that $B_{1}(y)$ and $B_{2}(y)$ vanishes up to
infinite order at $y=1-\beta$ and $y=\beta$ respectively, which is a consequence of the
conditions (4.4) and the assumption that $A_{1j}^{+}=A_{2j}^{+}$ . $\blacksquare$

A riemannian metric $g$ on $S^{2}$ is called a $C_{2\gamma}$-metric if every geodesic on
$(S^{2}, g)$ is closed and has the length $2\pi$ . We can determine Liouville surfaces
whose riemannian metrics are $C_{2-\vee}$-metrics.

PROPOSITION 4.2. Let $(S^{2}, g, F)$ be a Liouville surface. Then $g$ is $C_{2\pi^{-}}$
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metric if and only if the corresponding quadruples satisfy the condition (4.1), and
the corresponding functions $A_{1}(t)(|f|\leqq\sqrt{}\overline{1-\beta)}$ and $A_{2}(t)(|t|\leqq\sqrt{}\overline{\beta})$ satisfy

$A_{1}^{+}(t)=A_{2}^{+}(t)=1$ .
PROOF. If $A_{1}^{+}=A_{2}^{+}=1$ , then Theorem 4.1 shows that the geodesic flow of

$(S^{2}, g)$ is symplectically isomorphic to that of $(S^{2}, g_{0})$ , the sphere of constant
curvature 1. Hence $g$ is a $C_{2\pi}$-metric.

Next let $(S^{2}, g, F)$ be a Liouville surface such that $g$ is a $C_{2\pi}$-metric. Let
$(\alpha_{1}, \alpha_{2}, f_{1}(x_{1}), f_{2}(x_{2}))$ be one of the corresponding quadruples. Suppose that
$f_{1}’(x_{1})$ vanishes at $x_{1}=a\in(0, \alpha_{1}/2)$ . Then the closed curve $x_{1}=a$ is the orbit
of a geodesic, and its length is given by

$\int_{0}^{\alpha_{2}}\sqrt{}\overline{f_{1}(a)+f_{2}(x_{2})}dx_{2}$ .

Since this value shoud be $2\pi$ , it follows that the value $f_{1}(a)$ does not depend on
$a$ . This implies that $f_{1}’’(a)\leqq 0$ . Now assume that $f_{1}’’(a)=0$ . Then along the
closed geodesic $x_{1}=a$ , tbe following vector field becomes a Jacobi field:

$\int_{0}^{t}\frac{ds\partial}{f_{1}(a)+f_{2}(x_{2}(s))\partial x_{1}}$ ,

where $t$ and $s$ are the length-parameter of the geodesic $x_{1}=a$ . Clearly this
Jacobi field is not periodic, which contradicts the assumption. Hence we have
$f_{1}’’(a)<0$ , and $a$ must be unique. Since the same is true for $f_{2}(x_{2})$ , the condition
$\langle$4.1) is satisfied.

NOW let $A_{1}(t)(|t|\leqq\sqrt{}\overline{1-\beta)}$ and $A_{2}(t)(|t|\leqq\sqrt{}\overline{\beta})$ be the corresponding func-
tions. Let $(S^{2}, g^{+}, F^{+})$ be the Liouville surface defined from the functions $A_{1}^{+}$

and $A_{2}^{+}$ . Then it follows from Theorem 4.1 that $g^{+}$ is a $C_{2\pi}$-metric. Let $E^{+}$

be the corresponding energy function. Then on a solution curve of $X_{E^{+}}$ with
$2E^{+}=1$ and $F^{+}=c$ , we get

$\frac{dt}{(1-\beta)\sin^{2}\theta_{1}+\beta\sin^{2}0_{2}}=\frac{\eta_{1}}{|\eta_{1}|}\frac{A_{1}^{+}(\sqrt{}\overline{l-\beta}\cos 0_{1})d\theta_{1}}{\sqrt{}\overline{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}\sqrt{}\overline{(1-\beta)\sin^{2}\theta_{1}+c}}$

(4.8)
$= \frac{\eta_{2}}{|\eta_{2}|}\frac{A_{2}^{+}(\sqrt{}\overline{\beta}\cos\theta_{2})d\theta_{2}}{\sqrt{}\overline{(1-\beta)\cos^{2}\theta_{2}+\sin^{2}\theta_{2}}\sqrt{}\overline{\beta\sin^{2}\theta_{2}-c}}$

(4.9)
$di= \frac{\eta_{1}}{|\eta_{1}|}\frac{A_{1}^{+}(\sqrt{}\overline{1-\beta}\cos\theta_{1})\sqrt{}\overline{(1-\beta)\sin^{2}\theta_{1}+c}}{\sqrt{}\overline{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}}d\theta_{1}$

$+ \frac{\eta_{2}}{|\eta_{2}|}A_{2}^{+}(\sqrt{}\overline{\beta}\cos\theta_{2})\sqrt{}\overline{\beta\sin^{2}\theta_{2}-c}d0_{2}$ ,
$\sqrt{}\overline{(1-\beta})\cos^{2}0_{2}+\sin^{2}\theta_{2}$

where $t$ is the parameter of the solution curve.
First assume that $c<0$ . Since the geodesic is closed with length $2\pi$ , it

follows that there are positive integers $p$ and $q$ which are mutually prime
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such that

$2\pi=2q\int_{i}^{\pi-i}\frac{A_{1}^{+}(\sqrt{}\overline{1-\beta c}os\theta_{1})\sqrt{}\overline{(1-\beta)\sin^{2}\theta c}}{\sqrt{}\overline{\beta\cos^{2}\theta_{1}+\sin^{2}0_{1}}}d\theta_{1}$

$+2p \int_{0}^{\pi}\frac{A_{2}^{+}(\sqrt{}\overline{\beta c}os\theta_{2})\sqrt{}\overline{\beta\sin^{2}\theta_{2}-c}}{\sqrt{}\overline{(1-\beta)\cos^{2}\theta_{2}+\sin^{2}\theta_{2}}}d\theta_{2}$ ,

where $i=\arcsin\sqrt{}\overline{-c/(1-\beta)}\in(0, \pi/2)$ . Clearly $p$ and $q$ do not depend on $c<0$ .
Hence by taking the limit $carrow 0$ , we get $p=q=1$ in view of Theorem 2.1. By
differentiating the above formula in the variable $c$ , we get

$\int_{i}^{\pi-i}\frac{A_{1}^{+}(\sqrt{}\overline{1-\beta}\cos\theta_{1})d\theta_{1}}{\sqrt{}\overline{\beta}\overline{\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}\sqrt{}\overline{(1-\beta)\sin^{2}\theta_{1}+c}}$

(4.10)

$= \int_{0}^{\pi}\frac{A_{2}^{+}(\sqrt{}\overline{\beta}\cos\theta_{2})d\theta_{2}}{\sqrt{}\overline{(1-\beta)\cos^{2}\theta_{2}+\sin^{2}\theta_{2}}\sqrt{}\overline{\beta\sin^{2}\theta_{2}-c}}$

for $c<0$ . Similarly we also get

(4.11)
$\int_{0}^{\pi}\frac{A_{1}^{+}(\sqrt{}\overline{1-\beta}\cos\theta_{1})d\theta_{1}}{\sqrt{}\overline{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}\sqrt{}\overline{(1-\beta)\sin^{2}\theta_{1}+c}}$

$= \int_{j}^{\pi-j}\frac{A_{2}^{+}(\sqrt{}\overline{\beta}\cos\theta_{2})d\theta_{2}}{\sqrt{}\overline{(1-\beta)\cos^{2}\theta_{2}+\sin^{2}\theta_{2}}\sqrt{}\overline{\beta\sin^{2}\theta_{2}-c}}$

for $c>0$ , where $j=\arcsin\sqrt{}\overline{c/\beta}\in(0, \pi/2)$ .
Put

$A_{1}^{+}(\sqrt{}\overline{1-\beta})=A_{2}^{+}(\sqrt{}\overline{\beta})=a$ .
Then

$h_{1}= \frac{A_{1}^{+}(\sqrt{}\overline{1-\beta}\cos\theta_{1})-a}{(1-\beta)\sin^{2}\theta_{1}+\beta\sin\theta_{2}}$ , $h_{2}= \frac{A_{2}^{+}(\sqrt{}\overline{\beta}\cos\theta_{2})-a}{(1-\beta)\sin^{2}\theta_{1}+\beta\sin^{2}\theta_{2}}$

are well-defined $L^{2}$ functions on $S^{2}$ . Clearly they are even with respect to the
antipodal mapping $(\theta_{1}, \theta_{2})->(\theta_{1}+\pi, -\theta_{2}+\pi)$ . Let $R$ be the Radon transform
on $S^{2}$ with the standard $C_{2\pi}$-metric go (cf. Besse [21 p. 123). The operator $R$

transforms the functions $f$ on $S^{2}$ to the functions on the manifold of geodesics;
the value of $R(f)$ at the geodesic 7 is given by

$R(f)( \gamma)=\int_{\gamma}f$ .

Then the formula (4.8) for the standard metric go (the case where $A_{1^{--}}^{+-}$

$A_{2}^{+}=1)$ implies that the value of the function $R(h_{1})$ at the geodesic with $2E_{0}=$

$1,$ $F_{0}=c$ is given by

$2 \int_{i}^{\pi-t}\frac{A_{1}^{+}(\sqrt{}\overline{1-\beta}\cos\theta_{1})-a}{\sqrt{}\overline{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}\sqrt{}\overline{(1-\beta)\sin^{2}0_{1}+c}}d\theta_{1}$

when $c<0$ , and
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$2 \int_{0}^{\pi}\frac{A_{1}^{+}(\sqrt 1-}{\sqrt{}\overline{\beta}^{\frac{}{\cos^{2}\theta_{1}+\sin^{2}0}}}\frac{\cos\theta_{1})-a}{1^{\sqrt{}\overline{(1-\beta)\sin^{2}\theta_{1}+c}}}d\theta_{1}\overline{\beta}$

when $c>0$ , where $E_{0}$ and $F_{0}$ are the corresponding energy function and the first
integral. Similarly we can compute the values of $R(h_{2})$ , and we consequently
get $R(h_{1})=R(h_{2})$ in view of the formulae (4.10) and (4.11). Since the operator
$R$ is injective on the space of even functions, it follows that $h_{1}=h_{2}$ . This
implies that

$A_{1}^{+}=A_{2}^{+}=a$ .

Then it is obvious that $a=1$ . $\blacksquare$

In contrast with Zoll’s examples (cf. Besse [2] Chapter 4), we have the
following.

COROLLARY 4.3. Let $(S^{2}, g, F)$ be a Liouville surface such that $g$ is a $C_{2\pi^{-}}$

metric. Assume that the riemannian manifold $(S^{2}, g)$ is analytic. Then $(S^{2}, g)$

is isometric to $(S^{2}, g_{0})$ of constant curvature 1.

PROOF. In view of Corollary 3.6 the functions $A_{1}(t)$ and $A_{2}(t)$ are even in
this case. Hence they are identically equal to 1. $\blacksquare$

\S 5. The isometry class and the equivalence class

In this section we shall prove the following

THEOREM 5.1. Let $(S, g, F_{i})(i=1,2)$ be two compact Liouville surfaces.
Assume that the gaussian curvature of $(S, g)$ is not positive constant. Then $F_{2}\in$

$RF_{1}+RE$.

PROOF. By taking a double covering we may assume that $S$ is diffeomorphic
to the sphere or the torus. First we consider the case where $S$ is diffeomorphic
to $S^{2}$ . Let $L$ be the closed geodesic given in Theorem 2.1 with respect to the
Liouville surface $(S, g, F_{1})$ , and let $\sigma$ be the reflection with respect to $L$ . We
normalize the metric $g$ so that the length of $L$ is equal to $2\pi$ . In view of
Corollary 3.4, $\sigma$ is a well-defined isometry of $(S, g)$ which preserves $F_{1}$ . Put

$F_{2}^{\pm}= \frac{1}{2}(F_{2-}-- F_{2}\circ\sigma^{*})$ .

Then it is clear that $F_{2}^{+}$ and $F_{2}^{-}$ are also first integrals.
First we shall show that $F_{2}^{-}=0$ . Assume that this is not the case. Then

we have $F_{2}^{-}\not\in RF_{1}+RE$, because $F_{2}^{-}\circ\sigma^{*}=-F_{2}^{-}$ . If $(F_{2}^{-})_{p}=rE_{p}$ at some point
$p\in S$ , then $(F_{2}^{-})_{\sigma(p)}=-rE_{\sigma(p)}$ . Hence tbe ratio $r$ must be $0$ in view of the
proof of Lemma 1.2. Furthermore, the eigenvalues of $(F_{2}^{-})_{q}^{f}(q\in L)$ with respect
to the metric $g$ have the same absolute value with opposite sign. Since $(F_{2}^{-})_{q}\neq 0$
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for some $q\in L$ in view of Lemma 2.3, these facts imply that $(S, g, F_{2}^{-})$ becomes
a Liouville surface satisfying the condition (L.4). (Note that Lemmas 1.2 and
2.3 do not need the condition (L.3).)

It is easily seen that $(F_{2}^{-})^{b}(u_{p})=0$ at each point $p\in L$ , where $u_{p}\in T_{p}S$ is
tangent to or perpendicular to $L$ . Then by applying Theorem 2.1 to the
Liouville surface $(S, g, F_{2}^{-})$ , we get a point $0\in S-L$ and $0’=\sigma(0)$ such that
$(F_{2}^{-})_{0}=(F_{2}^{-})_{0’}=0$ , and that any minimizing geodesic from $0$ to $0’$ intersects with
$L$ orthogonally at the midpoint. Let $\gamma(t)$ be any geodesic with (0) $\in S_{0}S$ .
Then geodesic segment $\gamma(t)(|t|\leqq\pi/2)$ and its image by $\sigma$ are joined into a
simply closed geodesic with length $2\pi$ . Note that the tangent vectors to these
geodesics give all possible values of $F_{1}$ . Since $F_{1}$ is a first integral, it follows
from the well-known theorem on the invariant tori (cf. Arnold [1] \S 49) that $g$

is a $C_{2\pi}$-metric.
We now apply the arguments in the previous section to the Liouville surface

$\langle$ $S,$ $g,$ $F_{1})$ . Then metric $g$ is described as
$g=((1-\beta)\sin^{2}\theta_{1}+\beta\sin^{2}\theta_{2})$

(5.1)
$\cross(\frac{(1+h_{1}(\sqrt{1-\beta}\cos\theta_{1}))^{2}}{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}d\theta_{1}^{2}+\frac{(1+h_{2}(\sqrt{}\overline{\beta}\cos 0_{2}))^{2}}{(1-\beta)\cos^{2}\theta_{2}+\sin^{2}\theta_{2}}d0_{2}^{2})$ ,

where $\beta\in(0,1)$ , and $h_{1}(t)(|t|\leqq\sqrt{}\overline{1-\beta})$ and $h_{2}(t)(|t|\leqq\sqrt{}\overline{\beta})$ are $C^{\infty}$ odd functions
vanishing up to infinite order at the end points. $F_{1}$ is given by

$F_{1}= \frac{1}{(1-\beta)\sin^{2}\theta_{1}+\beta\sin^{2}\theta_{2}}$

$\cross(\frac{\beta\cos^{2}\theta_{1}\dashv-\sin^{2}\theta_{1}}{(1+h_{1}(\sqrt{}\overline{1-\beta}\cos\theta_{1}))^{2}}\beta\sin^{2}\theta_{2}\eta_{1}^{2}$

$- \frac{(1-\beta)\cos^{2}\theta_{2}+\sin^{2}\theta_{2}}{(1+h_{2}(\sqrt{}\overline{\beta}\cos\theta_{2}))^{2}}(1-\beta)\sin^{2}\theta_{1}\eta_{2}^{2})$ ,

where $(\theta, \eta)$ is the associated canonical coordinates. Then on a solution curve
of $X_{E}$ with $2E=1$ and $F_{1}=c$ we have

$\frac{dt}{(1-\beta)\sin^{2}\theta_{1}+\beta\sin^{2}\theta_{2}}=\frac{\eta_{1}(1+h_{1}(\sqrt{}\overline{l-\beta}\cos 0_{1}))d\theta_{1}}{|\eta_{1}|\sqrt{}\overline{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}\sqrt{}\overline{(1-\beta)\sin^{2}\theta_{1}+c}}$

(5.2)
$= \frac{\eta_{2}(1+h_{2}(\sqrt{}\overline{\beta}\cos 0_{2}))d\theta_{2}}{|\eta_{2}|\sqrt{}\overline{(1-\beta)\cos^{2}\theta_{2}+\sin^{2}\theta_{2}}\sqrt{}\overline{\beta\sin^{2}\theta_{2}-c}}$ ,

where $t$ is the parameter of the solution curve. By considering the cases where
$c=\beta$ and $c=-(1-\beta)$ , we see that the points $0$ and $0’$ are represented by
$(\theta_{1}, \theta_{2})=(\pi/2, \pi/2)$ and $(\pi/2, -\pi/2)$ respectively.

NOW assume $c<0$ , and consider the two solution curves which pass the
points $(\theta_{1}, \theta_{2})=(i, 0)$ and $(z-i, 0)$ respectively at $t=0$ , and $\eta_{2}>0$ , where $i=$
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$\arcsin\sqrt{}\overline{-c(1-\beta)^{-1}}\in(0, \pi/2)$ . Then $tn$ese solution curves pass the point $0$ at
$t=\pi/2$ , and $d\theta_{1}/dt$ is positive on the first solution curve and negative on the
second one while $r\in(O, \pi/2]$ . Hence we have

$\int_{i}^{\pi/2}\frac{1+h_{1}(\sqrt{}\overline{1-\beta}\cos 0_{1})}{\sqrt{}\overline{\beta}\overline{\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}\sqrt{}\overline{(1-\beta)\sin^{2}\theta_{1}+c}}d\theta_{1}$

$= \int_{0}^{\pi/2}\frac{1+h_{2}(\sqrt{}\overline{\beta}\cos\theta_{2})}{\sqrt{}\overline{(1-\beta)\cos^{2}\theta_{2}+\sin^{2}\theta_{2}}\sqrt{}\overline{\beta\sin^{2}\theta_{2}-c}}d\theta_{2}$

$= \int_{\pi/2}^{n-i}\frac{1+h_{l}(\sqrt{}\overline{1-\beta}\cos\theta_{1})}{\sqrt{}\overline{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}\sqrt{}\overline{(1-\beta)\sin^{2}\theta_{1}+c}}d\theta_{1}$

Since $h_{1}$ is odd, it follows that

$\int_{i}^{\pi/2}\frac{h_{1}(\sqrt{}\overline{l-\beta}\cos 0_{1})}{\sqrt{}\overline{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}\sqrt{}\overline{(1-\beta)\sin^{2}0_{1}+c}}d\theta_{1}=0$ .

By considering the same formula for the standard $C_{2\pi}$-metric go, we get

$\int_{i}^{\pi/2}\frac{d0_{1}}{\sqrt{}\overline{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}\sqrt{}\overline{(1-\beta)\sin^{2}\theta_{1}+c}}$

$= \int_{0}^{n/2}\frac{d\theta_{2}}{\sqrt{}\overline{(1-\beta)\cos^{2}\theta_{2}+\sin^{2}\theta}_{2}\sqrt{}\overline{\beta\sin^{2}\theta_{2}-c}}$

Hence we also have

$\int_{0}^{\pi\prime z}\frac{h_{2}(\sqrt{}\overline{\beta}\cos\theta_{2})d\theta_{2}}{\sqrt{}\overline{(1-\beta)\cos^{2}\theta_{2}+\sin^{2}\theta_{2}}\sqrt{}\overline{\beta\sin^{2}\theta_{2}-c}}=0$ .

$ln_{A}^{-}the$ case where $c>0$ we also get

$\int_{0}^{\pi\prime 2}\frac{h_{1}(\sqrt{}\overline{1-\beta}\cos\theta_{1})d\theta_{1}}{\sqrt{}\overline{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}\sqrt{}\overline{(1-\beta)\sin^{2}\theta_{1}+c}}$

$= \int_{j}^{\pi/2}\frac{h_{2}(\sqrt{}\overline{\beta}\cos\theta_{2})d\theta_{2}}{\sqrt{}\overline{(1-\beta)\cos^{2}\theta_{2}+\sin^{2}\theta_{2}}\sqrt{}\overline{\beta\sin^{2}0_{2}-c}}=0$

in the same way, where $j=\arcsin\sqrt{}\overline{c\beta^{-1}}\in(0, \pi/2)$ .
Let $\tilde{h}_{1}(t)(|t|\leqq\sqrt{}\overline{1-\beta})$ be the even function such that $\tilde{h}_{1}(t)=h_{1}(t)$ for $t\geqq 0$ .

Then

$\frac{\tilde{h}_{1}(\sqrt{}\overline{l-\beta}\cos 0_{l})}{(1-\beta)\sin^{2}\theta_{1}+\beta\sin^{2}\theta_{2}}$

expresses a continuous function on $S^{2}$ . Let $R$ be the Radon transform on $S^{2}$

with the standard $C_{2\pi}$-metric $g_{0}$ . The formula (5.2) for the standard metric $g_{0}$

implies that the function
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$R( \frac{\tilde{h}_{1}(\sqrt{}\overline{l-\beta}\cos\theta_{l})}{(1-\beta)\sin^{2}\theta_{1}+\beta\sin^{2}\theta_{2}})$

takes value

$4 \int_{i}^{\pi/2}\frac{h_{1}(\sqrt{}\overline{l-\beta}\cos\theta_{1})d\theta_{1}}{\sqrt{}\overline{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}\sqrt{}\overline{(1-\beta)\sin}^{2}\overline{\theta_{1}+c}}=0$

at geodesic with $F_{1}=c<0$ , and

$4 \int_{0}^{\pi/2}\frac{h_{1}(\sqrt{}\overline{l-\beta}\cos\theta_{1})d\theta_{1}}{\sqrt{}\overline{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}\sqrt{}\overline{(1-\beta)\sin^{2}\theta_{1}+c}}=0$

at geodesic with $F_{1}=c>0$ . Since the operator $R$ is injective on the space of
even functions, it follows that $\tilde{h}_{1}=0$ , and hence $h_{1}=0$ . In the same way we
also have $h_{2}=0$ . But this indicates $g=g_{0}$ , which contradicts the assumption.
Therefore we get $F_{2}^{-}=0$ and $F_{2}=F_{2}^{+}$ .

NOW assume that $F_{2}\not\in RF_{1}+RE$ . In this case it is easy to see that at each
point on $L$ the eigenvectors of $F_{2}^{b}$ with respect to the metric $g$ are proportional
to or perpendicular to the tangent vector of $L$ . Therefore for any point $p\in L$

with $(F_{2})_{p}\not\in RE_{p}$ , we can find $t\in R^{\cross}$ and $s\in R$ such that $F=F_{1}+tF_{2}+sE$ vani-
shes at $p$ . Then it is clear that $F^{b}$ is semi-definite at each point on $L$ whose
value for the tangent vector of $L$ is $0$ . Let $p’\in L$ be the point whose distance
from $p$ along the geodesic $L$ is $\pi$ . Then by Theorem 2.1 we see that $F_{p’}=0$ ,
and every geodesic starting at $p$ passes the point $p’$ at time $\pi$ . Let $\gamma(t)$ be a
geodesic with $\dot{\gamma}(O)\in S_{p}S$ . Then $\gamma(-\pi)=\gamma(\pi)=p^{r}$ . If $\dot{\gamma}(O)$ is not perpendicular
to $L$ , then $\gamma([-\pi, \pi])$ is not invariant under the action of $\sigma$ . Furthermore we
have $F_{1}^{b}(\dot{\gamma}(-\pi))=F_{1}^{\}}(\dot{\gamma}(\pi))$ . These facts imply that $\dot{\gamma}(-\pi)=\dot{\gamma}(\pi),$ $i$ . $e.,$ $\gamma(t)(|t|\leqq\pi)$

is a closed geodesic with length $2\pi$ . Clearly this is also true when 7(0) is
perpendicular to $L$ . Therefore it has shown that $g$ is a $C_{2\pi}$-metric.

NOW again the metric $g$ is described as (5.1), and we get the formula (5.2)

on an integral curve of $X_{E}$ . In this case we consider a geodesic $\gamma(t)$ with $\gamma(0)=$

$p\in L$ and $\gamma(\pi)=p’$ . First assume that $F_{1}^{b}(\dot{\gamma}(t))=c<0$ . Then the point $p$ (resp.
$p’)$ is represented by $\theta_{2}=0$ and $\theta_{1}=\theta_{1}(p)\in(0, \pi)$ (resp. $0_{2}=\pi$ and $\theta_{1}=\theta_{1}(p’)\in$

$(0, \pi)$ . Clearly we have $\theta_{1}(p)+\theta_{1}(p’)=\pi$ . We take the geodesic $\gamma(t)$ so that
$d\theta_{2}/dt>0$ and $(d\theta_{1}/dt)|_{t=0}<0$ . Then we have

$\int_{0}^{\pi}\frac{dt}{(1-\beta)\sin^{2}\theta_{1}+\beta\sin^{2}\theta_{2}}$

$= \int_{i}^{\theta_{1}(p)}\frac{(1+h_{1}(\sqrt{}\overline{l-\beta}\cos\theta_{1}))d\theta_{1}}{\sqrt{}\overline{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}\sqrt{}\overline{(1-\beta)\sin^{2}\theta_{1}+c}}$

$+ \int_{i}^{\theta_{1}(p’)}\frac{(1+h_{1}(\sqrt{}\overline{1-\beta}\cos\theta_{1}))d\theta_{l}}{\sqrt{}\overline{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}\sqrt{}\overline{(1-\beta)\sin^{2}\theta_{1}+c}}$
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$= \int_{0}^{\pi}\frac{(1+h_{2}(\sqrt{\beta}c}{\sqrt{}\frac{}{(1-\beta)\cos^{2}\theta_{2}+\sin^{2}\theta_{2}}}os\theta_{2_{\frac{))d0_{2}}{\sqrt{}^{\frac{}{\beta\sin^{2}\theta_{2}-c’}}}}}$

where $i=\arcsin\sqrt{}\overline{-c(1-\beta)^{-1}}\in(0, \pi/2)$ .
Since $h_{2}$ is odd, the last formula is equal to

$\int_{0}^{\pi}\frac{d\theta_{2}}{\sqrt{}\overline{(1-\beta)\cos^{2}\theta_{2}+\sin^{2}\theta_{2}}\sqrt{}\overline{\beta\sin^{2}\theta_{2}-c}}$

By considering the case of the standard metric $g_{0}$ , this formula is equal to

$\int_{i}^{\pi-i}\frac{d\theta_{1}}{\sqrt{}\beta\overline{\cos^{2}\theta_{1}+\sin^{2}0_{1}}\sqrt{}\overline{(1-\beta)\sin^{2}\theta_{1}+c}}$ .

Since $\theta_{1}(p’)=\pi-\theta_{1}(p)$ , we then obtain

$\int_{i}^{\theta_{1}(p)}\frac{h_{1}(\sqrt{}\overline{1-\beta}\cos\theta_{1})}{\sqrt{}\overline{\beta\cos^{2}\theta_{1}+\sin^{2}\theta_{1}}\sqrt{}\overline{(1-\beta)\sin^{2}\theta_{1}+c}}d\theta_{1}=0$ .

Since $\theta_{1}(p)\in[i, \pi-i]$ is arbitrary for a fixed $c<0$ , it follows that $h_{1}=0$ . By
considering the case where $c>0$ , we also have $h_{2}=0$ . Hence we again get a
contradiction. This completes the proof of the case where $S$ is diffeomorphic
to the sphere.

Next we shall consider the case where $S$ is diffeomorphic to the torus. In
view of the proof of Theorem 3.11, it is easily seen that if two elements $(l, f)$

and $(m, h)$ in di $(\Gamma)$ induce the mutually isometric Liouville surfaces $(C/\Gamma, g_{i}, F_{i})$

$(i=1,2)$ , then any isometry $\phi$ : $(C/\Gamma, g_{1})arrow(C/\Gamma, g_{2})$ is covered by a conformal
transformation di $\in G(\Gamma)$ , which combined with some $a\in R$ gives the equivalence
of $(l, f)$ and $(m, h)$ . Hence we have $F_{2}\circ(\phi^{*})1\in RF_{1}+RE_{1}$ . This completes
the proof of Theorem 5.1. $\blacksquare$

COROLLARY 5.2. Let $(S, g, F)$ be a compact Liouville surface such that the
gaussian curvature of $(S, g)$ is not positive constant. Then $(S, g)$ admits no non-
zero Killing vector field.

PROOF. Let $Z$ be a Killing vector field on $(S, g)$ , and define $\zeta\in C^{\infty}(T^{*}S)$ by

$\zeta(\lambda)=\lambda(Z)$ , $\lambda\in T^{*}S$ .

Then it is obvious that the function $F+t\zeta^{2}$ satisfies the conditions (L. 1), (L.2),

and (L.3) for small $t\in R$ . Hence by Theorem 5.1 there are $a_{t},$ $b_{t}\in R$ such that

$F+t\zeta^{2}=a_{t}F+b_{t}E$ .
By restricting this formula to a fibre where $F$ and $E$ are linearly independent,
we see that $a_{t}$ and $b_{t}$ are unique and $C^{\infty}$ in $t$ . Then we get

$\zeta^{2}=\dot{a}_{0}F+\dot{b}_{0}E$ .
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If $\dot{a}_{0}\neq 0$ , then it contradicts tbe condition (L.3). Hence $\dot{a}_{0}=0$ , and clearly $\dot{b}_{0}$ is
also zero. $\blacksquare$

\S 6. Laplacian and the operator $\square$

Let $(S, g, F)$ be a compact Liouville surface, and let $\triangle$ be the laplacian
acting on functions.

PROPOSITION 6.1. There is a naturally defined differential operator $\square$ of
second order on $S$ such that its principal symbol is $-F$, and that $[\triangle, \square ]=0$ .
Furthermore the operator $\square$ is self-adjoint with respect to the canonical density
on $(S, g)$ .

PROOF. AS was seen in the proof of Proposition 1.1, we get functions $f_{1}$

and $f_{2}$ on $S-$ srz in a unique way. Although the coordinate functions $x_{1}$ and $x_{2}$

are not uniquely obtained there, it is easy to see that the differential operators
$\partial^{2}/\partial x_{1}^{2}$ and $\partial^{2}/\partial x_{2}^{2}$ are unique. Hence we can define a $C^{\infty}$ operator $\square$ on $S-\Re$

by

$\langle$ 6.1) $\square =\frac{1}{f_{1}+f_{2}}(f_{2}\frac{\partial^{2}}{\partial_{X_{1}^{2}}}-f_{1}\frac{\partial^{2}}{\partial_{X_{2}^{2}}})$ .

We shall show that this is a well-defined $C^{\infty}$ operator on $S$ . Assume that
$S$ is diffeomorphic to $S^{2}$ . Let $U(y_{1}, y_{2})$ be a $C^{\infty}$ function around $(0,0)$ , and put
$u(x_{1}, x_{2})=U(x_{1}^{2}-x_{2}^{2},2_{X_{1}}x_{2})$ . Then

$\square \mathcal{U}=4\frac{f_{2}(x_{2})x_{1}^{2}-f_{1}(x_{1})x_{2}^{2}\partial^{2}U}{f_{1}(x_{1})+f_{2}(x_{2})\partial y_{1}^{2}}(x_{1}^{2}-x_{2}^{2},2x_{1}x_{2})$

$+4 \frac{f_{2}(x_{2})x_{2}^{2}-f_{1}(x_{1})x_{1}^{2}\partial^{2}U}{f_{1}(x_{1})+f_{2}(x_{2})\partial y_{2}^{2}}(x_{1}^{2}-x_{2}^{2},2x_{1}x_{2})$

$+2 \frac{\partial U}{\partial y_{1}}(x_{1}^{2}-x_{2}^{2},2x_{1}x_{2})+8x_{1}x_{2}\frac{\partial^{2}U}{\partial y_{1}\partial y_{2}}(x_{1}^{2}-x_{2}^{2},2x_{1}x_{2})$ .

In view of the condition (3.1) it is easy to see that each line of the right hand
side is the $C^{\infty}$ function of $(x_{1}^{2}-x_{2}^{2},2x_{1}x_{2})$ . Since the situation is the same for
other three points in $yl$ , it follows that $\square$ is the well-defined $C^{\infty}$ operator on $S$ .
If $S$ is diffeomorphic to $RP^{2}$ , then by taking the double covering we obtain the
same result.

The laplacian $\triangle$ is described as

$\triangle=\frac{-1}{f_{1}+f_{2}}(\frac{\partial^{2}}{\partial_{X_{1}^{2}}}+\frac{\partial^{2}}{\partial\chi_{2}^{2}})$ .

Hence we have $[\triangle, \coprod]=0$ by an easy calculation. Other properties are also
easily verified. $\blacksquare$
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Let $(S, g, F)$ be a compact Liouville surface, and let $V_{\lambda}$ be the eigenspace
of $\triangle$ corresponding to the eigenvalue $\lambda$ . Since the operator $\square$ preserves $V_{\lambda}$ ,

and is self-adjoint, it follows that $V_{\lambda}$ is the direct sum of the vector space of
simultaneous eigenfunctions $V_{\lambda,\mu}$ :

$V_{\lambda.\mu}=\{u\in C^{\infty}(S)|\triangle u=\lambda u, \coprod u=\mu u\}$ .

AS is easily seen, the equations which define $u\in V_{\lambda.\mu}$ are transformed into a
pair of ordinary differential equations of second order in each case. In the rest
of this section we shall see the details of this fact in the case where $S$ is
diffeomorphic to the sphere $S^{2}$ .

Let $(\alpha_{1}, \alpha_{2}, f_{1}(x_{1}), f_{2}(x_{2}))$ be one of the corresponding quadruples. Then
$u\in V_{\lambda.\mu}$ if and only if

$\frac{\partial_{\mathcal{U}}^{2}}{\partial_{X_{1}^{2}}}=(-\lambda f_{1}(x_{1})+\mu)u$

(6.2)

$\frac{\partial^{2}u}{\partial_{X_{2}^{2}}}=(-\lambda f_{2}(x_{2})-\mu)u$ ,

where $u$ is regarded as the function on the torus $T(a_{1}, a_{2})$ . We now define
four functions $v_{i.\pm}(x_{i})(i=1,2)$ on $R$ as the solutions of the ordinary differential
equations

$\frac{d^{2}v_{i,\pm}}{dx_{i}^{2}}=(-\lambda f_{i}(x_{i})+(-1)^{\ell-1}\mu)v_{i.\pm}$

(6.3)

$v_{i,+}(0)= \frac{dv_{i.-}}{dx_{i}}(0)=1$ , $v_{i.-}(0)= \frac{dv_{i.+}}{dx_{i}}(0)=0$ .

Clearly we have $v_{i.\underline{+}}(-x_{i})=\pm v_{i.\pm}(x_{i})$ .
PROPOSITION 6.2. $V_{\lambda,\mu}\neq 0$ if and only if both $v_{l’+}$ and $v_{2,+}are$ periodic with

periods $a_{1}$ and $\alpha_{2}$ respectively, or both $v_{1,-}$ and $v_{2,-}$ are periodic with periods $\alpha_{1}$

$and\alpha_{2}$ respectively. $InthiscaseV_{\lambda.\mu}isspannedbyv_{1.+}(x_{1})v_{2,+}(x_{2})orv_{1,-}(x_{1})v_{2.-}(x_{2})$

or both of them. In particular we have $\dim V_{\lambda.\mu}\leqq 2$ .
PROOF. Let $\sigma$ be the reflection with respect to the closed geodesic $L$ given

in Corollary 3.4. Since $\sigma$ preserves the operators $\triangle$ and $\square$ , it also preserves
$V_{\lambda.\mu}$ . Let $V_{\lambda.\mu}^{\pm}$ be the subspaces of $V_{\lambda,\mu}$ on which $\sigma^{*}=\pm$ identity respectively.
Let $u\in V_{\lambda.\mu}^{+}$ . Then as the function on $T(\alpha_{1}, \alpha_{2})$ , we have $u(-x_{1}, x_{2})=u(x_{1}, -x_{2})$

$=u(x_{1}, x_{2})$ . Hence from the equation (6.2) it follows that

$u(x_{1}, x_{2})=cv_{1.+}(x_{1})v_{2.+}(x_{2})$

for some $c\in R$ . If $u\in V_{\overline{\lambda,}\mu}$ , then in the same way we have

$u(x_{1}, x_{2})=cv_{1.-}(x_{1})v_{2.-}(x_{2})$ .
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Conversely the functions $v_{1.+}(x_{1})v_{2.+}(x_{2})$ and $v_{1.-}(x_{1})v_{2.-}(x_{2})$ clearly satisfy
the equation (6.2). If they have the double periods $(a_{1},0)$ and $(0, \alpha_{2})$ , then
they are $C^{\infty}$ functions on $T(\alpha_{1}, a_{2})$ , and invariant under the mapping $(x_{1}, x_{2})\mapsto$

$(-x_{1}, -x_{2})$ . Moreover it easily follows from the conditions (3.1) that they are
$C^{\infty}$ functions of

$((x_{1}-t_{1})^{2}-(x_{2}-t_{2})^{2},2(x_{1}-t_{1})(x_{2}-t_{2}))$

around the point $(x_{1}, x_{2})=(i_{1}, t_{2})$ , where $(t_{1}, t_{2})$ is one of the four points $(0,0)$ ,
$(\alpha_{1}/2,0),$ $(0, \alpha_{2}/2)$ , and $(a_{1}/2, \alpha_{2}/2)$ . These facts show that the above functions
are in fact $C^{\infty}$ functions on $S$ , and hence are elements of $V_{\lambda.\mu}$ . $\blacksquare$

NOW we consider the case where $(S^{2}, g, F)$ is an analytic Liouville surface.
Let $(\alpha_{1}, \alpha_{2}, f_{1}, f_{2})$ be one of the corresponding quadruples. Then as we have
seen in Corollary 3.6, $f_{1}(x_{1})$ is extended as a holomorphic function on a neigh-
borhood of

$\Lambda=\{z\in C|{\rm Re} z=\frac{na_{1}}{2}$ , or ${\rm Im} z= \frac{na_{2}}{2},$ $n\in Z\}$

and $f_{2}(t)=-f_{1}(\sqrt{}\overline{-1}t),$ $t\in R$ . Hence in this case the condition for $V_{\lambda.\mu}\neq 0$

turns into the existence of a doubly periodic solution $v(z)$ of

(6.4) $\frac{d^{2}v}{dz^{2}}=(-\lambda f_{1}(z)+\mu)v$

with double periods $\alpha_{1}$ and $\sqrt{}\overline{-1}\alpha_{2}$ .
AS an example, let $g=g_{0}$ be the standard metric on $S^{2}$ given by (4.6).

Then

$f_{1}(x_{1})=(1-\beta)\sin^{2}\theta_{1}$ , $x_{1}= \int_{0}^{\theta_{1}}\frac{ds}{\sqrt{}\overline{\beta\cos^{2}s+\sin^{2}s}}$ ,

and we have

$\beta_{1}(z)=-p(z-\frac{a_{1}+\sqrt{}\overline{-1}\alpha_{2}}{4})+\frac{1-2\beta}{3}$ ,

where $\wp(z)$ is the $\wp$ function of Weierstrass associated with the lattice
$\Gamma(\alpha_{1}/2, a_{2}/2)$ , and

$\frac{\alpha_{1}}{2}=\int_{0}^{\pi}\frac{ds}{\sqrt{}\overline{\beta\cos^{2}s+\sin^{2}s}}$ , $\frac{a_{2}}{2}=\int_{0}^{\pi}\frac{ds}{\sqrt{}\overline{(1-\beta)\cos^{2}s+\sin}^{2}\overline{s}}$ .

In this case the equation (6.4) is essentially the same as Lam\’e’s equation (cf.

[5] Chapter 11).
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Note added in proof. Recently the author was informed by Professor M.
Tanaka of the work of H. Viesel; Math. Ann., 166 (1966), 175-186. There a
similar result to Theorem 2.1 was shown for analytic Liouville surfaces.
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