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1. Introduction, Theorems.

For the pair of Schrédinger operators H, = D3+ --- +D? and H= H,+V,
where D;=—id/dx;, j=1, ---, m, and V is the multiplication operator with the
real valued function V(x), the wave operators W.=W.(H, H,) are defined by

W. = s—lime'Hg-itHo, (1.1)
tatoo

where s—indicates the strong limit in L% R™). In this paper, we prove under
suitable conditions on V(x) that W, are bounded in the Sobolev spaces W* ?(R™)
for any 1<p< and k=0, 1, ---, . The merit of the wave operators is that
they intertwine the part H, of H on the continuous spectral subspace L% H)
and H,: H.=W_.H,W%* on L%H). Hence the W* ?(R™)-boundedness of W, implies
that the functions f(H,) and f(H)P.(H), P.(H) being the orthogonal projection
onto L% H), have equivalent operator norms from W#* ?(R™) to W* ¢ R™) for any
1<p, g<~ and &, k’'=0, 1, ---, {:

Cil f(H) |l gewk 2wt 0y < || f(H)P(H)| gwt 2wk q,
< Gl f(H)|gawk 2wt qy, (1.2)

where the constants are independent of f. We shall apply to obtain,
among others, the L?— L7 estimates for the propagators of the time dependent
Schrédinger equations 7ou/dt=Hu and of the wave or Klein-Gordon equations
with potentials 0*u/0t*+ Hu+ p*u=0, and the “Fourier multiplier theorems” for
the generalized eigenfunction expansions associated with H.

We assume that V(x) satisfies the following assumption, where & is the
Fourier transform, <x)=({14+|x|?»"% [ =0 is a fixed integer, and myx=(m—1)
-/(m—2). For multi-indices a=(a,, ‘-, an), D*=D%---D2m and |a|=a,+ -+ an.

ASSUMPTION 1.1. V(x) is a real valued function on R™, m=3, such that for

any la| <1 FKx>°D*V)e L™(R™) for some ¢ >2/my and satisfies one of the
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following conditions :

1. |FExDV ) Lmwrmy s sufficiently small.

2. The spatial dimension m=2m’—1 is odd. For any |a|<max{l, [+m’—4}
there exists a constant C,>0 such that

[0V /0x2)(x)| € Colx>7%, 0> max(m+2, 3m/2—2).

The assumption F(x>°V)e L™(R™) implies <x>°Ve L™ (R™) and V is short-
range in the sense of Agmon [2]. It follows (cf. Agmon or Kuroda [1I7])
that H and H, with the domain W**R™), are selfadjoint in L% R™); the wave
operators exist and are complete :

Image W. = LZ,(H) = the absolutely continuous subspace for H; (1.3)
and that the singular continuous spectrum of H is absent:
Li.(H)= LiH) = the continuous Subspace for H. (1.4)

The wave operators W. are partial isometries and a fortiori bounded in L*(R™).
The completeness (1.3) and the absence of singular continuous spectrum (1.4)
imply that the limits
Z.=W.H, H)= s—tlim ettHog—itH P (H)
also exist and Z.=W#%. .
The main result in this paper is the following theorem that W. and Z. are
in fact bounded in W*?(R™) for any 0<k</ and 1<p=<oo.

THEOREM 1.1. Let V satisfy Assumption 1.1 and let 0 be neither eigenvalue
nor resonance of H. Then, for any k=0,--,l and 1< p<co, W. and Z.
originally defined on LXR™)NWF#P(R™) can be extended to bounded operators in
W*?(R™) and

IWefllweo = Collfllwro»  fE LAR™NW*P(R™);

(1.5)
1Z:fllweo < Copl flwe.n,  fE LXR™MNWH2(R™).

REMARK 1.1. 0 is said to be resonance of H if there exists a solution u
of —Au(x)+V(x)u(x)=0 such that <x>"u(x)e L*R™) for any y>1/2 but not
for y=0. Under the Assumption 1.1, it is well known ([§], [19]) that 0 can
never be a resonance of H if m=5; and that 0 is neither eigenvalue nor re-
sonance of H if [[F({x)>?V)|zn« is sufficiently small.

REMARK 1.2. If 0 is resonance of H, (1.5) does not hold. If 0 is eigenvalue
of H, then (1.5) does not hold in general. This can be seen by comparing the

results of Jensen-Kato ([8]) or Murata ([19]) with [Corollary 1.1 below.
We list some immediate consequences of [Theorem 1.1. For Banach spaces
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X and ) we write B(¥, %)) for the space of bounded operators from X to %),
B(X)=B(%X, ¥).

THEOREM 1.2. Let the assumption of Theorem 1.1 be satisfied, 0Lk, k' <1,
and 1<p, q<oco. Then there exists a constant C>0 such that for Borel functions
f on R' we have

CH f(H)pwt v wk' oy < || f(H)P(H)|lgawk 2wk q
< Clf(Hy)lgawr v wk'qy. (1.6)

PrOOF. In virtue of (1.3) and (1.4), W. are unitary operators from L*R™)
onto L¥H). Since

e AW, =W.e o, —oo Jt <o 1.7

as is easily seen, we have the unitary equivalence H.=W.HW%* on L¥H). It
follows for Borel functions f that f(H)=W.f(H)W* and f(H)=W*f(H)W.
on L¥H), or

f(H)P(H)=W.f(H)W%,  f(H)=W%f(H)P.(H)W. (1.8)
on L¥R™). Applying (1.5) to [1.8), we immediately obtain [1.6). (Q.E.D.)

REMARK 1.3. The intermediate results that follow from and
1.1:

I f(H)P(H)ulwe.» < Cll f(H)WEullwe. p,
I f(Ho)ulwe.p < Cll f(H)PLH)W ctt|lws.p (1.9)

will also be used in what follows, where the constant C is independent of
Borel f or u.

We should mention here the works of Melin and Jensen-Nakamura
[10]. The wave operators are in fact not the only operators which satisfy the
interwining property and the W* ?(R™) continuity. Indeed, Melin has
constructed a family of such operators Ay, 0= S™ ! when m is odd and V is
smooth and small. Thus, his A¢ may as well be used to obtain the estimates
for such case. It is not clear to us, however, whether his results im-
mediately lead to the boundedness of W.. Jensen-Nakamura have shown
the boundedness of f(H) from L? to L% and its extensions to Besov spaces
for more general Schrodinger operators H=H,+V(x) including the case when
|V(x)| increases at infinity. Their results are different from ours in the respect,
among others, that their ¢ is strictly bigger than p except for the obvious case
p=q=2.

As an immediate corollary of we obtain the following L?—
L7 estimate for the propagator ¢ # for the time dependent Schrédinger equa-
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tion which has been recently proved by Journe-Soffer-Sogge under a
slightly different condition on V.

THEOREM 1.3. Let the assumption of Theorem 1.1 be satisfied. Then, for
any k=0, ---, [, 2<p=<co, and 1/p+1/9=1, there exists a constant C,, such that
for all t=+0

le ™ #P(H) fllwk» < Cpplt|™ VP2 fllyre,  fe LPNAWH.  (1.10)

PROOF. For e %o (1.10) is well known (cf. Kato [13]). implies (1.10)
for H. (Q.E.D.)

The estimates or can be applied not only to Schrédinger equa-
tions: For example, we can apply them to the wave and Klein-Gordon equa-
tions with potential

?;; +Hu(t, x)+p*u =0,  u@, x)=¢(x), 1,0, x) = (x)  (L.11)

and obtain the following generalization of L?— L?estimates which are well-known
for the free wave and Klein-Gordon equations (cf. Strichartz [24], Pecher [20]).
See also Beals and Strauss [3].

THEOREM 1.4. Let the assumption of Theorem 1.1 be satisfied. Then, for
any k=0, ---, [, 2£p<2(m+1)/(m—1) and 1/p+1/q:1, there exists a constant
C>0 such that for any ¢, ¢= LAXH)NW* with ~H+p*¢SW*H9, the solution
u(t, x) of (1.11) satisfies

lut, )lwe »rmy = Clt|+mar=vo (| / H+ g2 | wr o+ |l wr 9), [t =1.
(1.12)
If k<11, the condition ~H+p’dp € W*? may be replaced by ¢ < W e and
IVH+ *¢llwe.q i (1.12) by |$lwe+ra.

PrROOF. The solution u(¢) of (1.11) can be written in the form
sin(tl/z—l?)
vV H+p?
Let M@#)=|t|**m@/2-1o Tt is well known ([24]) that for any k.=0, 1, --- and

for those p, ¢ as in the theorem, we have for |¢|=1

=

u(t) = cos (tv HF )P (H)p+ P(H). (L.13)

= CM®)|Bllwe.

wk.q
“sin(t\/Ho—i—pz)gb\

v Hy+ pe? ‘

Applying [1.6), we immediately obtain (1.12). When £</—1, we have ’

< CM@®llwt ».

wkaq
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IVHA+p2¢lwra < ClvVHy+ p*@llwta < C’||@lwr+ta
again by [1.6), which completes the proof of the theorem. (Q.E.D.)

It is well known that estimates (1.10) or (1.12) lead to various space-time
integrability properties of the propagators of corresponding equations which
are important in non-linear analysis. We omit here, however, the detailed
discussion into such direction and content ourselves by showing an inequality
of Strichartz type as a prototype (cf. Ginibre-Velo [7], Yajima [28], Pecher
and Brenner [5)).

THEOREM 1.5. Let the assumption of Theorem 1.1 be satisfied and let ¢, P
LiH) be such that (H+p*'‘¢= L*(R™) and (H+p®)**p= LA(R™). Then the
solution u of (1.11) belongs to LP(R7%Y) with p=2(m~+1)/(m—1) and

hellzrrpity = CUHA 2 | 2+ 1(H+ g7V Pl 2) - (1.14)

PROOF. Write By=+~H,+p* and B=+H+p®. By Strichartz’s inequality
(cf. [25], Corollary 2), we have

| {COSUBO)/B})/Z}¢HL"(Rm+1)+ | {Sin(tBo)/Bé/z}¢”Lp(nm+1) = C“¢”L2<Rm)-
Applying to {cos(tB)/B?}P,(H) at every fixed f, we have

Heos(tB)/ B*} PAHDG B> sy = |11 {costB) B'%) PAH G127 apsdt
= O3l _IHcostBy/ By Wig 2o g, dt < CECPIgI2:.

This implies [[cos(tB)P.(H)@| 1P rm+1y=<Cp| B'*@| z2. |sin(tB)B~*P.(H )| L? rm+1)
can be estimated in a similar fashion. Applying these estimates to we
obtain (1.14). (Q.E.D.)

REMARK 1.4. When /=1, the conditions (H+p?)'/*¢ € L* and (H+p?) V¢
L* are respectively equivalent to ¢=W'*? and ¢ W~*% and the norms
(H4p22) 4@ 12 and [[(H+p?) 4|12 in (1.14) may be respectively replaced by
¢llwisz,2 and ||@[lw-1/2,2. This can be shown as in the proof of

We can make more precise in such a way that, when H admits
the generalized eigenfunction expansions, this will give the ‘Fourier multiplier
theorem’ for the generalized Fourier transform. For j=1, .-, m, define D3=
W.D;W¥*, where D;=—id/dx;. We call D*=(Ds, ---, D3,) the asymptotic mo-
mentum operators. D% are commuting selfadjoint operators in L*R™) and, for
any Borel function f on R™, f(D*) can be defined by functional calculus. We
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have f(D*)P,(H)=W.f(D)W* as before and the application of
yields the following

THEOREM 1.6. Let the assumption of Theorem 1.1 be satisfied, k, k’=0, ---,
[, and 1<p, g<oo. Then, there exists a constant C independent of u and Borel
functions f such that

I F(D*)P(H ulwr» < Cll (D)W Eulwk »,

[ F(D)ullwe» < CILF(D*)P(H)W cut]lytp, (1.15)
CHSf (D pawt p.wt" 0y < (| f(D*)P(H )l pawk 2wt 0y < Cll f(D)llgawk 2,w*" 9.
(1.16)
REMARK 1.5. When f(£) is a function of |&|% f(&)= F(|&€]?), we have
f(D)y=F(H,) and f(D*)P(H)=f(H)P(H). Thus can be regarded
as a precision of [Theorem 1.2
We relate with the Fourier multiplier theorem for the gene-

ralized Fourier transform associated with H. For simplicity, we assume (2) of
Assumption 1.1 and that 0 is neither resonance nor eigenvalue of H. We write
Go(x, &)=e'** and a(€)=Fu(§). M, is the multiplication operator with {x>7
and R(z)=(H--2)"!, R(z)=(H,—z)™! are resolvents.

Kato and Kuroda have (essentially) shown the followings: For y>1,
B(L*R™))-valued function M,R(z)M, of z&C*\[0, «) has continuous boundary
values M;R(A+i0)M, on [0, o); and the functions defined by ¢.(-, §)=(1—R(§*
+70)V)do(-, &) are outgoing (incoming) generalized eigenfunctions of H in the
sense that they are solutions of (—A+V(x))@.(x, &)=1&|%.(x, § satisfying the
outgoing (incoming) radiation condition :

i€
6.(x, ) = polx, £)+ %(ﬂfc, §+0( x| (1.17)
as |x|—oo with fixed £=x/|x|. Define the generalized Fourier transform by
T.uf§) = @0 | F B (L18)

Then :

1. &. y are unitary from L% H) onto L*R™) and vanish on the point
spectral subspace L2(H) for H.

2. 9. gy diagonalize H. in the sense that

F.nH.TE ng(6) = 1£1°8(8). (1.19)

3. The wave operators W, can be expressed in terms of F. 5:
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W.f(x) =gt gFf(x)= (277)‘"”25 ¢.(x, O)f(©)d¢. (1.20)

RM

Note that the unitarity of Z. y implies the generalized eigenfunction expansions :

fx)= (Zw)‘m’zsmgbi(x, §F . uf($)ds, fe LiH). (1.21)

For a function f write M, for the multiplication operator with f(§) (this
is a little abuse of notation but should not cause any confusion). In virtue of
(1.20), we have

f(D*)P(H)=W.f(DW* =% yF f(D)F*F . gy = FX uM;F. u,

that is, f(D*) is nothing but the Fourier multiplier M, for the generalized
Fourier transform . . Thus immediately implies the following

THEOREM 1.7. Let V satisfy the condition (2) of Assumption 1.1 and let 0
be mneither eigenvalue of H nor resonance. Let k, k’=0, -, [ and 1<p, g<oo.
Then there exists a constant C>0 independent of Borel functions f on R™ such
that

CHf(D)gwk v wt' oy < |F% gM;F . gllaowk 2w’ q

=< Cl (D)l pawh 2wk gy . (1.22)

REMARK 1.6. The argument above shows that estimate (1.22) remains
valid if F¥ yM;F. x is replaced by more general F¥ y,M;9. ,, where H;=
H,+V,, j=1, 2, are two Schrédinger operators satisfying the condition of the

Combining with the well known (ordinary) Fourier multiplier
theorem, we obtain the following L? boundedness theorem for the multiplier
for the generalized Fourier transform.

COROLLARY 1.1. Let V satisfy the condition (2) of Assumption 1.1 and let O
be neither eigenvalue of H nor resomance. Suppose that P(E) is such that

SUDR""S [1&]'*10g P(&)|*d§ < oo, la| < [m/2]+1, (1.23)
R>0 2R

where [m/2] is the greatest integer <m/2. Then F¥ yMpF. yB(W*?) for
any k=0, -, l and 1< p<oco. In particular, if P(§) = f(&%) satisfies (1.23),
f(H)P(H)e BW*?).

R8I

Proor. It is well known that P(D) is bounded in W* ?(R™) under the

condition (1.23) (cf. Taylor [26]). Hence, follows immediately
from (Q.E.D.)

REMARK 1.7. As in the preceding remark, remains valid for
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¥ u,MpF . u, as well, where H,=H,+V;, j=1, 2, are two Schrodinger operators
satisfying the condition of the corollary.

The rest of the paper is devoted to the proof [Theorem I.I. Explaining the
plan of the paper, we outline the proof for W,, using slightly sloppy notation.
V(k)-——EFV(k) and Ry(z)=(H,—z)* and R(z)=(H—z)"! are the resolvents of H,
and H, respectively.

We use the stationary representation formula of the wave operator:
Wof = f—gee|” RA—OV R(+i0)fd2. (1.24)
Expanding R(z)=37-o(—1)"Ry(2)(V Ry(2))", z=1—10, in yields the formal
expansion

Wof =i+ BC0Waf,  Waf = 5| RGOV R(G+i0)dA,

(1.25)

In Section 2, we show that W,, n=1, 2, ---, are bounded in L? and

Wallz?y £ CoCel| FKxDV ) zma)” (1.26)

as follows. We estimate the adjoint operator

W = — ‘27:75: Ry(A—i0)V Ry(A+i0))"dA.

Taking the Fourier transform the adjoint of the integral of (1.25) and perform-
ing the A integration, we have

{3V (k= by} f(E—Ra)d Ry d ks
RMT ?:1{k§—2kj'$—ie}

Set Kn(ky, =, kyp)=i"Q2m) *™*2-"I11,V (k;—k;-1), ko=0, and

FWHf(E) = 1151;1(27:>-mnfzg . (1.27)

Kn(tly Tty tn, wl’ Tty wn)
i T Q. -
———S ne”121=1‘13ﬂ2(sl---sn)m K(swy, -+, Sp@n)dS; - dSy,
[0, )

where (t;, -+, t,)€R™ and (w,, -+, w,)€2", X being the unit sphere of R™.
Taking the inverse Fourier transform of (1.27) leads to

WEf(x)

Kn(tly e 5 tn—l, T, 0)1, Tty wn)f<x+p>dt1dtn_ldz‘dwl'dwn
(1.28)

where I=(—c0, —@), 6=2w,(x+t,0,+ - +t,,0,-,), is the range of the integra-
tion by the variable 7, y=y—2(w,*¥)w,, and p=t,&,+ - +tr-1@n-1—TW,. Since

S[O.w)"‘IXIXEn
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x—ZX is an isometry, it follows by Minkowski’s inequality that

IWafler < 21 Kallicco, s || £l 27, 1< p <o, (1.29)

On the other hand, the interpolation inequality implies
1K 21 cco.e09n, z1cznyy = (Col| F(XDTV) | Lms)™, (1.30)

and by combining (1.29) with we obtain (1.26). Thus, the series in (1.25)
converges in the operator norm of B(L?) and W, is bounded in LP(R™), if
[FKx V) Lma< C3

In Section 3, we prove that W, is bounded in L? when [FKx)DV)|Lms is
not necessary small. In this case (1.25) no longer converges in norm and we
stop the expansion at the m-th stage. We write W, f=f—W,f+-+(=1)"W,f
+(=1)"*'Lf. Here W;, j=1, ---, m, are as above (hence are bounded in L?(R™))
and L is given by

L= —ﬁ%f Ro(k*—10)V N _1(R)V {Ry(k?+10)— Ry(k*—i0)} kdk, (1.31)
where N, _j(R)={R (k*—i0)V}™ 1 R(k*—i0){V Ry(k2—:0)} ™ ' (we deal with the
odd case m=2m’—1 only). Let G.(x, k) be the outgoing (incoming) fundamental

solutions of —A—+F%? and G. ., .(y)=G.(x—y, k). Then the integral kernel
T(x, v, k) of

Ry(k*—10)V N _1(R)V { Ro(k*+10)— Ro(k*—10)}

is given by (Np/ _y(R)V(G, 4 +—G_ ;. 2), VG, » ). We shall show by using the
mapping properties of resolvents Ry (22+:0) and R(k2=+:0) that T(x, v, k) is
continuous in (x, y, k), m’+1 times differentiable in 4 and satisfies the estimates

1@/0kYT(x, y, b)| < C<EY>~¥ x>~ m=-Diz{yy=(m=1/2

It follows that L also has the continuous integral kernel
L(x, y) = %g:oT(x, y, k)kdk, (1.32)

which is bounded by C<{x)~(m~b/2(yy-m-b/2 We apply the integrations by
parts by the variable %2 in for gaining the extra decay property of L(x, y)
in the variable |x|=+|y| and show that L(x, y) satisfies the well known cri-
terion for the LP(R™)-boundedness :

sup { 1LGx pidr <o, sup( 1Ltr idy<e.  3)

yER™ xER™
It is crucial here (at least with our method) that the Hankel functions
rmoDI2H D L 5(r) are e*'" times polynomials of degree m’—1 for odd m=2m’'—1
and we need the condition that m is odd.
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In Section 4, we give the argument which is necessary to prove that W,
is in fact bounded in W*? k=1, --- [, when [=1. We differentiate the in-
tegral in (1.25) by D; and express the commutator [D;, W,] as the sum of n
integrals each of which has exactly the same form as that of (1.25) except
that one of V’s is replaced by D;V. These integrals can be estimated by
using exactly the same method as in Section 2 and we obtain

IWaflwte < C(Cell FLY VI m HNF XDV + 1 FL 7 DV)mll f w2,

where C, is the same constant as in (1.26). Thus, the series in (1.25) in fact
converges in the norm of B(W"?)and W, B(W*" ?) provided that | F({x>?V)| *
< C3'. Similarly, we can estimate [D;, L] by using the method of Section 3
and we conclude that W,=B(W"'?) under the condition of [Theorem 1.1. The
cases k=2 may be proved by repeating the argument above.

The résumé of this paper is announced in [29].
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2. L? boundedness of W, for small potentials.

In this section, we first record some preliminary results which are valid
under the assumption of and then proceed to the proof of
1.1 in the case that ||[F(x)?V)|™wr™,, 0 >2/m4, is small and [=0.

We begin with recalling some basic facts from the stationary theory of
scattering (cf. Kato [13], Kato-Yajima and Kuroda [16]). For a Banach
space ¥, B.(X) is the space of compact operators in ¥. For a closable operator
T whose closure is bounded, we denote its closure by the same symbol 7.

- LemmaA 2.1, Let A(x), B(x)e L™(R™) be real valued and A and B be the
multiplications by A(x) and B(x), respectively. Let Qy2)=ARz)B*. Then:
1. Qz) is a Bo(L*-valued uniformly bounded analytic function of z&C*\
[0, o0):
1Qu(2)l < CllAllLm ™| Bl Lme™, 2z € C\[0, o), (2.1)
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and [|Qo(2)[|—0 as |z]—co.

2. It has continuous boundary values Q(A+70)=AR\(A+:0)B* on [0, o) which
are locally Hilder continuous when 2>0.

3. For any feL¥R™), AR(Axie)fe L*R, LXR™), dA) and, as e—+0, it
converges to AR(Ax:0)f in that space. Moreover,

sup | I4RKAzi) 112 = |7 JARG£0)S11:d2 < CIFIBIALS. @2)
Similar statements hold for BRAxie)f.

PrROOF. We have only to show the two points that (a): [|Q.(2)|—0 as |z|
—oo; and that (b): Q,(4+70) exist and are continuous near A=0, since other
statements are well-known ([15]). We take A,, B,eL™*N\L™"¢, ¢>0 such
that lim,_o(|A,—Allzn+||Br—Blzn)=0 and set Q,(z)=A,R,z)B,. Then both

(a) and (b) hold for Q,(z) ([13]) and implies that 1im,..|@(z2)—Qo(2)llzz2
=0 uniformly on C*\[0, ). Thus they hold for A, B&L™ as well.

(Q.E.D.)

The following is a result of and the standard argument of
scattering theory.

LEMMA 2.2. Let A and B be as in Lemma 2.1 and V=B*A. Let, in addi-
tion, V(x)eL¥R™) if m=3. Then, H=H,+V is selfadjoint with the domain
D(H)=D(H,) and

R(z) = Ry(z)— Ro(z2) B¥X(1+Q(2)) 'AR(2), Im z+0. (2.3)
Set Q(z)=AR(z)B*. Then:
1. Q(z) is B(L*»-valued meromorphic in z< C'\[0, ) and I—Q(z)=
(I+Q(2)™.
2. If H has no non-negative eigenvalues and 0 is not resonance of H, then
Q(z) has the morm continuous boundary values Q(A+i0) on R*=[0, ). They
satisfy

1Q(Axi0)pey < CllAllLm||Bllim ; (2.4)
for any feL¥R™), AR(Ax+ie)fe L*R*, L*(R™), dA); They converge to AR(A+
:0)f in LXR*, LXR™), dA) as e—+0;

sup|. | AR@xie)f11:d2 = | | ARGi0)f|12dd < CIF IV N imia.  (25)

Similar statements hold for BR(A+ie)f.
3. The wave operators W. exist and are complete. Under the assumption
of statement (2), we have for f, g€ L*(R™):
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W-f, &)=, g)———S (A{R(2£10)— Ry(AF70)} f, BR(A+10)g)da. (2.6)

Let F({x>?V)e L™(R™) and set A(x)=|V(x)|'? and B(x)=sgnV(x)-|V(x)|!/?
so that V=B*A. By Hausdorff-Young’s inequality we have {(x)°VeL™! and
by Holder’s inequality [|V{|im S CI|FKx>°V)|Ln,. Hence A(x) and B(x) satisfy
the main assumption of and 2.2. If we further assume that
[F(x>7V )| Lmy is small or [V(x)| < C<{x>"'"¢, ¢ >0, then positive eigenvalues
are absent from H (cf.[12]). Thus, under the condition of which
will be assumed in the sequel, the additional condition in (2), (3) of
is also satisfied, and all the results of Lemma 2.1 and 2.2 hold. In what follows,
we shall deal with W, only.

Write the integral in (2.6) in the form

lsig)lS:o([R(l—is)B*]A{Ro(l—}—ie)——Ro(l—-ie)}f, g)dAa, (2.7
and replace R(A—ie)B* by the N-iteration of
R(2)B* = R2)B*1+Qu(2)""
= R(DB* 3 (—1)'Qu()" +(~DYR@B*Q(2)",

with z=1—ie. Then, in virtue of and 2.2, we obtain

Wof, &)= Z(—D"Wof, D+(~D""Lf, 2), 2.8)
where Wy=1I is the identity operator and for n=1, -
Waf, £)= 5=\ (@QuA—i0) A {R(A+i0)— R(A—i0) £, BR{A+i0)g)d1;
(2.9)
(Lf, 8)= gz | (QuA—i0)Y A{R(A+i0)— RyA—i0)} £, BRA+iD)g)d2.
(2.10)

PROPOSITION 2.1. For n=1, 2, ---, W, can be written in the form

1
2ri

and the following statements are satisfied :

1. (2.11) defines a bounded operator W, in L% and |W,llg2y < Ci(Call V| zms2)?,
where the constants are independent of V.

2. Let V,L™?® be such that |V;—Vlimie—0 as j— oo, then the operators
W corresponding to V; converge to W, in the norm of B(L?).

3. There exists a constant t, such that for |V|imie < 1, the series

Waf, g8)= S (Qo(A—10)""'AR\(2+10)f, BR(A+i0)g)d2,  (2.11)
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a=o(—1)"W, converges to W, in the norm of B(L?).

PROOF. Since Ry (A+:0)=Ry(A—10) for 2<0, the region of integration in (2.9)
may be replaced by the whole line. On the other hand I(A)=Qy(A—:0)"*AR(A—i0)f
(resp. J(A)=BR,(4+:0)g) is the boundary value of the L?valued analytic func-
tion I(2)=Q(z)" *ARy(z)f (resp. J(z)=BR\(z)g) in the lower (resp. upper) half
plane which satisfies

| * .z 2 o ® : 2
sup|” 1=l fadd <o (vesp. sup|” I JG+ip)]tedd < o).
It follows from the orthogonality property of Hardy functions in the upper and
lower half planes that I(4) and J(A) are orthogonal to each other,

[~ aw, s@nmda=o,

and we obtain (2.11). Applying and (2.2) and Schwarz inequality to (2.11),
we have
(Waf, @) = CAC|Vizmi2)"| fllzellglize

This implies statement (1).
(2) Let A;, B; and Q,;(z) be respectively A, B and Q,(z) corresponding to
Vix). We have

[A;j=Alwm S | Vi=Vime  [Bj—Blwm < 2|V;=V|[2,
and and (2.2) imply that, as j— o0, ||Q;o(A—70)—Q(A—i0)|| g(z2crm), — 0 uni-
formly in A= R, and the operator f—A;R,(A+:0)f and g—B;R,(A+:0)g converge
respectively to f—ARy(A+:0)f and g—BR\(2+70)g in B(L*R™), L*R, L¥R™),
d2)). Thus statement (2) follows from (2.11).
(3) Using (2.2), (2.5) and Schwarz inequality, we estimate :

(7.~ Z0w2)s, 8)| = 1Laf, 9]
< %‘S?(Qo(l—z‘O)NA{Ro(l—{—z’O)—Ro(l—z‘O)} f, BRQA+i0)g)dA
< CAColV]zmm) H fllz2ll gl 22

Thus [W,—Z0-o(—D)"Wallas SCi(CollV]zm)V*'—0 as N—oo, if Col|V|1m/e<1.
(Q.E.D)

We now proceed to the proof of in the case that /=0 and
IFx>?V)||Lm, is small. We wish to show that the series Xn-o(—1)"W, con-
verges in the norm of B(L?) for any 1<p<c. For this, it suffices to prove
the following

THEOREM 2.1. There exist constants C, and C, such that for any 1< p< oo,
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Wafler < CCA FL Wllzm)"I flle,  f € L*NLP. (2.12)

As it will slightly simplify the notation, we prove (2.12) for the adjoint
operator W% though entirely similar argument works for W, as well. For
proving [Theorem 2.1, it suffices to show the following

PROPOSITION 2.2. Let V,, -, V, be such that V,, -, V,=C3, A; and B,
be the operators A and B corresponding to V; and Q.(z)=1, Q{z)=A;R\(z)B¥_,,
j=2, -+, n. Let Z, be defined for f,g<S, the space of rapidly decreasing
functions, by

Zof, 8)= 5 ((TLQU—i0))BaRA+0)S, ARG+iOE)d (213)

where the product should be taken from the left to the right. Then, for any
1<p< o, Z, can be extended to a bounded operator in LP and it satisfies the
following estimate with constants C, and C, independent of f and V;, j=1, -+, n:

1Z01er < Ci( [ CFCD Vlm ) fl,  fELP.  @214)

To see that [Proposition 2.2] indeed implies [Theorem 2.1, we note that
F(x)°V)e L™ is equivalent to VEH;?L*, the generalized Sobolev space (cf. [1])
of order ¢, and C% is dense in Hy,. Take a sequence V;=S8 such that I7je C%
and |F(KxY(V—=V )llLny,—0 as j—co, and define W by (2.11) with V; replac-
ing V. In virtue of Proposition 2.2, |W’—W.llgiz»»—0. On the other hand,
(2.14) implies that W§> is convergent in the norm of B(L?) as j—oo. It follows
that W, is in fact bounded in L? and (2.12) is satisfied.

For proving [Proposition 2.2 we prepare two lemmas. We define the integral
operator T, . depending on the parameters 2=R™\ {0} and ¢>0 by

— * _ﬂ_— — 4 ® —it(|k|—tgj k1~ 1)/2
Tuof) = (g 5=7e) = 373 e 2 f(x+1w)dt, (2.15)

where w=*Fk/|k| €2, 2 being the unit sphere, and

d S‘”w‘“kw Flx+tw)dt. 2.16)

Tk,Of(x) = ka('x) = 2|k| 0

LEMMA 2.3. For ¢=0 and f(k, x)eC5(R, LP(R™)) define

Gsf:SRmTk,sf(k, 2)dk, égf:ngTk'Efk(k’ Dk, (2.17)

where fi(k, x)=e'***f(k, x). Then there exists a constant C>0 independent of
f and €>0 such that

dk
B

IGflzpeam = C 2 <™ IDEf(k, lzocamy

la|s2

(2.18)
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~ dk
G fllzprmy < C 2 S kO™ 2D f(R, Lrwmy—a - (2.19)
la|<2JR™ Ikl

As e—0, G.f and G~ef respectively converge to G,f and 5(,]‘ in LP(R™).

Proor. We prove the lemma for G. first. Using the polar coordinates &
=sw and changing the order of integration, we write

G.f(x)= LS dwgwdz‘(gwe’”“'i”“’”zsm’zf(sw, x—}-z‘w)ds). (2.20)
2)z 0 0
We estimate the inner most integral
Ft, x, 0) = S:e‘“‘s‘i“'l)’zsm‘zf(sa), x+tw)ds.
Integrating by parts twice using the identity
2(_it(1+is/32))-1(a/as)e—iL(s-ies-l)/z — e—it(s—isS'l)/z’ (2'21)
we obtain
~ 2 =] . X .
Fot, x, @) = Zot—zgo gTitsmtsThizg (5 e)0/0s) f(sw, x+tw)ds. (2.22)
i=

Here g,(s, ) satisfies |g;(s, e)] < Cs™**, 7 =0, 1, 2, m = 3; and when m=3,
g4(s, €) can be written in the form g(s, e)=g0(e/s*)(1/s) with go,(1/s%)(1/s)
integrable on (0, ). Hence, for m=4 we clearly have

1Fut, x, 0)] < c<t>—25‘;°§ (sym2|(8/8sY f(sw, x+tw)|ds,  te R'.(2.23)

When m=3, the summands in (2.22) with j=1,2 can be estimated as above
and the one with j=0 as

0

Swe"““”'“'1"Zgol(e/sz)(l/S)f(sw, x)dsl = S:o |g0i(1/*X1/5)f(Vesw, x)|ds

=< syplf(sw, X)Igj |goi(1/s%)(1/s)ds = CS? |(@f/0s)(sw, x)|ds. (2.24)

Thus (2.23) holds for m=3 as well. Take the L?(R?) norm in both side of
(2.20) and apply the Minkowski inequality. We have in virtue of (2.23) that

1GAlzr = € dof drcey 3 [ <orm210/0s7 fsw, lzods

< cz gzdw§f<s>m-zn<a/as>ff<sw, Izeds (2.25)

which is bounded by the RHS of (2.18). G.f(x) obviously converges to G,f(x)
for every fixed x and G.f(x) is bounded by the integral of the RHS of (2.23)
by the variables (¢, @) which is just shown to be in L?(R™) and is independent
of . Hence, by the Lebesgue dominated convergence theorem, G.f converges
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to Gof in L?. This completes the proof for G.f.

The proof for &f is essentially the same. As we did for G.f(x), we
write it in the form

5£f(x):ig dwrdt(gwe"”’z‘”/“””""s""zf(sw, x+iw)ds),  (2.26)
2)z 0 0
and estimate the s-integral
f;k(t, X, (1)) = S(:eitslz—stlzsﬂ‘sx.wsm—zf(sw, x+tw)ds
via integrations by parts. It is obvious that for any (¢, x, w)
1725, x, @) < [T<omt flsw, x+ta)]ds. 2.27)

When |t+2x-w| =1, we estimate it by integrating by parts twice using the
identity
2
(t+2x - -w)(1+ie’/s?)

where ¢’=—e¢t/(t+2x-w), which has the same form as except that ¢ and
t are replaced by &’ and —(t+2x-w), respectively. Thus the argument used
for proving (2.23) and (2.24) gives

<a/as)ezits/2—st/2s+isx~a) — eits/2—5£/28+isx-w , (228)

|75, %, )] S C+2x-0y” (™ 1@/05 fsw, x-+tw)lds.  (2.29)

We integrate both sides of (2.29) by the variable t<(0, «). Changing ¢ by —
2x-w and writing X, for the reflection x—2(x-w)w of x along the w axis, we
see that right hand side becomes

ngz.w<t>'2gj;§,<s>m‘2|<6/6s>"f(sw, o+iw)|ds.

Extending the region of integration by ¢ to the whole line and using Minko-
wski’s inequality, we have

I7175¢, =, o1ae

< )75 <o>m@/0s) f(sw, D)l zraapsds - 2,30

—ooj:o

LP(R

Integration of the last inequality by  yields the desired estimate for G. f.
The convergence of G.f to G,f can be proved exactly in the same way as of
G.f. (Q.E.D.)

Setting ¢=0 in (2.20) and (2.26), we obtain the following.
LEMMA 2.4. For LP(R7T)-valued C3(R[) function f(k, x), set

ft, o, x) = %S?e‘“s”f(sw, x)s™2ds, teR, wel (2.31)
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and fi(k, x)=e**=f(k, x). Then:
0

Gof(x) = SRmTk F(k, x)dk = Szdw{g ft, o, x+to)dt},  (232)

Gty =, Tufstk, )k = dof["

=)

‘wf(t; @, j(u——tw)dt}, (2.33)
where %,=x—Q2x-w)w is the reflection of x along the @ axis.

PROOF OF PROPOSITION 2.2. In virtue of Lemma 2.1, Z, is bounded in
L? and

Z.f = lim--lim lim—LSm RO(X——z'eO)(f[l V,-Ro(l—i—ie,-)) fda,  (2.34)
o ]:

€140 Epi0 gglo 271 J-

as a weak limit. Let f&S. As 17,E C%, 7/=1~mn, the Fourier transform of the
function under the limit signs is clearly in S and can be written as

1 (= (o 1V kNf (6=t iky)dky - d Ry

- 2 nm/zg j=1 'J J j=17%j d di
w7 A T b AT
T3V (ky— ko)t fE—ka)d byd ks

RMT H?:l{k‘%—ij'e‘—i(Ej—FEO)} ‘
Here we changed the variables (k,, -+, k,) by (ky—Fkq, -, ku—F._y), kg=0 and
performed the A-integration using the residue theorem. After taking the limit
¢,—0, we obtain

-0

— rym|

{131V (k= ky-0)} f(E—ka)d ey d ks
RMT IT5-i (k3 —2k;-E—ie;t

anf(&) = lim -+ lim (Zﬂ)-mn/zg
€1y o0 nio

€

(2.35)
Note here that the mapping

T2,V (k=R D} f =k )dRy-dE,
Rmn {32k, -E—ic;} ’

f —> @yl

is not only continuous in S but also continuous in S’. Hence Z,.f<S’ can be
defined for f=&’ as long as the limit (2.35) exists in §’. We show that the
limit does exist in the strong topology of L?(R™) for any f< LP(R™).

Let feL?(R™)and set K.(ky, -, kn)=(27r)‘m”’ZII’;=J7,~(k,-—k,-_l). Applying
the Fourier inversion formula to (2.35) and using (2.15), we see that Z,f is
the lim, ,o---lim, o Of

SRmT,,l,EI{SRmTkz_ez{---{SRm]?n(kl, BT sy g frgdlnbotdbob by, (2.36)

where fi(x)=e***f(x). Since V,&C5(R™) by the assumption, K,(k,, -, ka)f(x)
is an L?(R™)-valued C3(R™") function of (k,, ---, k,). It follows from the G.
part of that as ¢,—0
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[ ol o, BTy f 1, (5
converges in the topology of CT(R%7)_,, LP(RY)) to

Snm[?n(kl, oy BT Fr (X)d by (2.37)

and, from the G. part of that Z,f(x) is the lim, ,o--lim, _,,, Of

G AT B N R | D : TS 7 SN ES 7 T I S

Then, the repeated use of the G. part of implies that Z,f< L? and
Z, can be expressed as the superposition of T,---T,, Meiz.x, over (By, -+, ky)E
R"™, M,iz-x, being the multiplication operator by e®***n:

Zaf(x)= SRmTk]{SRmTkz{---{SRmf(’n(kl, o, k)T, kandkn}--}dkz}dkl.

(2.38)
We compute the last integral using [Lemma 2.4. By (2.33) we have

)

[ o Balks, o, BT, o dn

= | don] T Pl e, ks, ta, 0)f (= th0n)dta,

- 00

where y=y—2(y-w,) is the reflection of vy along the w, axis and
Fn(kly Y kTL—l, tn, a)n) = —?Z—S:e_“nsn/zkn(kl, tt, kn_l, Snwn)sﬂ—zdsn.

It is clear that F,eCyR™ D™ CAR'XX)NL R DPmxR'xY) and (2.38) is a
C% function of (k,, ---, k,-,) with values in L?(R™). Next we apply (2.32) to
(2.38) to compute

[ Trne{ Bl -, BT a s,

Setting Fn—l(kl) Ty kn—Z; tn—l; tn; wn—l, wﬂ) by
F Z‘)2S it 8 +ins8n)/2
== e~ n-1°n-1"tnsn
n-1 2 [0,00)2
X Ko(ky, v, kns, Sno1@noy, Sn@Wn)(Sp-182)""2dSp_1d Sy,

we see it can be written as

gy
S S S Fn—l(kly tty kn—2, lno1, tny Wnoy, wn)
22 )o

X f(f+tn—lan-l—'tnwn)dwn—ldwndtn-ldtn »

where ¢,=—2(x+tw,-,):@,. Repeating this procedure n—2 more times, we
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finally arrive at the expression (1.28):

an(x) = S Kn(tl, oy tal, T, @, oo , wn)

[0,00)t—Ix [xZN
X f(Z+p)dt,-dt, drdw, - dw, . (2.39)
Here K.(ky, -, ka) =i*@a) ™22 1[2_ V(k;—k;_y), ky=0 and

R, - te, @y, -, @)
= S[o ne-i2?=1thj/2(Sl...Sn)m-2K(slwb e snwn)dsl'“dsn, (240)
L 09)

0=t + 1@~ TWs, and I=(—o0, —0), 0 =20,(x+t0,+ -+t 10r-1), 1S
the range of the integration by the variable z. Taking the absolute value in
both sides of and extending the region of integration by the variable ¢
to the whole line lead to

|Z7Lf<x>[ ég |K7I<tll ”’ytn—ly T; wlr "',w;,,)

[0,00)?—1xRIxZIT

Note that x—X is an isometry and p is independent of x. We apply Minkowski’s
inequality to the last inequality and obtain for any 1<p< that

1Zafllze = ”an|L1<Eo,w>n—1xmx£n)||f”LT’ = ZHKn“L1<£o,oo)nx2n>”f“Lp-

Thus the proof of [Proposition 2.2 will be completed by the following lemma.

LEMMA 2.5. Let ¢>2/my. Then, there exists a constant C, such that
IR 21co, wrn, 21c5myy < (Coll FLXDTV)| 1m)?, n=1,2,--. (2.41)

PROOF. As was remarked above, F((x>°V)eL™ if and only if VeH?S,,
the generalized Sobolev space. It is easy to see that

| Kall cmacanmy < 2@ IV oo, (2.42)
and, for |a;| <1,
1@/3k2)~@/0k ) K limacanms < @™ P TLI lwams.  (243)

By Hardy’s inequality, we also have for a;=0, 1, j=1, ---, n, that

[kt kn| 22Ky Lmacrrm)
<cCr P [(@/0k)*1--(0/0k ) K || Lmycrnm, - (2.44)

lajlsay,, laplisan

On the other hand, we have by Hausdorff-Young’s inequality,
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e 1/(m-1)
(Sto ooy lKn(tl, oy e, @y, e, wn)lm’ldtl“‘dtn>

1/ mx
= CH(S |Kn(31w1; Tty Snwn)lm*(sl“'sn)m_ldsl"'dsn) .
[0,00)7

Integrating both sides of the inequality above by (w,, ---, w,)€2™ and using the
Holder’s inequality, we obtain by that

1Bl icsn, 1m-1cc0,coynyy < CPI Kl Lmacmny < CT 1 1Vl imee  (2.45)

Integrating by parts by the variables s; in the defining equation (2.40) of K,
and arguing similarly as above using [2.43) and (2.44), we also obtain

(f1a)Re

< CHIII Vilwe, me. (2.46)

LL(ER, LM ~1([0,00) 7))

It follows from (2.45), and the multi-linear complex interpolation theorem
(A1, p. 96) that

|

The estimate (2.41) follows by combining this inequality with the following

< CPITIV g ams = CF TL SOV e

L1(I7, LM ~1([0,00)))

1K) 215, 110, 00myy < C?ﬁ

LI(Xn, LMm~1([0,00)N))
’

which is a consequence of Hélder’s inequality since ¢>2/my. (Q.E.D.)

3. L? boundedness of 1/, for large potentials V.

In this section, we prove that W, is bounded in L? assuming that V satisfies
Assumption 1.1 (2) (with /=0) and 0 is neither resonance nor eigenvalue of H,
in particular m=2m’—1 is odd. As in the previous section, we begin with the
representation formula (2.6). Here we rewrite it in a way slightly different
from the one in the previous section: We replace R(A—z¢)B* in (2.7) by the
right hand side of the identity:

R(2)B* = R(2)B* 3 (—1/Quz) +(~ D" Ri@B* Q@™ ~Q@)Qu)"™ ™,

z = A—ie,
which produces:

W.f, 8)= B(~1"Waf, @+(=D""Laf, &), 3.1)

where W, is the identity operator, W,, n=1, ---, m, are the same as in the
previous section (hence are bounded in L?(R™)) and
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(Luf, )= S (F(A—i0)A{Ry(2+10)— R(2—10)} f, BR(4+10)g)dZ, (3.2)

where F(z)zA(Ro(z)V)m’“R(z)(VRD(z))m"IB*. The operator L=L, defined by
(3.2) is of course bounded in L2%(R™). Changing the variable A2 by k2, we write
L in the form:

L= —71_175? Ry(k2—10)V N(R)V {R\(k2+10)— Ry(k?—10)} kd &, (3.3)
where N(B)=N,._(B)={R(k*—i0)V}™ *R(k*—:10){V R,(2*—:0)} ™ ~*. We prove
that L is bounded in L?(R™) by showing that its integral kernel L(x, y) satisfies
the well known criterion for the LP-boundedness:

sup SM!L(x, y)|dx < o, sup nglL(x, )dy < co. (3.4)

yeR™ zER™

As is well known ([23]), R,(%k*=+:0) is the convolution with (j=1 for + and j=2
for —):

+i

- 42y | x| ™2
v =(m—2)/2,

o |
G-(x, )= (5211 (k|x | HO (R x]),

where H,Y(r) is the Hankel function of j-th kind. Expanding (z=(it/2))y "'/
by the binomial theorem in Hankel’s formula ([27]):

PHI(z) =

9 ,ti(z~(2v+1)m/4) t v-1/2
‘\/22 g —ttv-1/2(z+ : dt, (3_5)

vVl (v+(1/2))

we see that z2H,7(z) is ¢*** times a polynomial of order m’—2 for odd m=
2m’—1 and

EX2 2K A

[x|™2 Z:J (£ )’C;(klxl)i (3.6)

G.x, k)=

where the constants C; are independent of the signs +. We write G. . :(y)=
G.(x—y, k).

In virtue of the distribution kernel L(x, y) of L is at least formally
given by

L(x, y)= -—g (NRYW(G o,y 5 =Gy 1), VGi o )R dE, 3.7

where (-, -) should be considered as a coupling between suitable function
spaces. We denote the integrand of [3.7) by T(x, y, B)=(NR)V (G, 4. e —G_ 4. 1),
VG, . ). For making its oscillation property explicit, we set G. .=
e*t*1=IG, Ly, that is,

big*ikd(z,y)

= x(¥) = 2 (+1)JC]\—TZ-“7’ ¢(x, y)=lx—yl—Ixl, (3.8
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and define

Tu(x, v, B) = (NBYWG. y &, VG 2.2) (3.9)
and

Li(x, y) = S:e-”“mwnu, y, k)kdk 310

so that L(x, y)=(L.(x, y)—L_(x, y))/ix.

In what follows we write d/dk for the partial derivative w.r.t. k.

For showing that is well defined and for estimating L.(x, y), we shall
use the following lemmas. The first two are concerned with the mapping
property and the decay of the derivatives of the resolvents R, (k2+:0) and
R(k*+i0). The proof can be found in Murata [19], Jensen and Jensen-
Kato [8]. Recall that |V(x)|<C<{x)>~® with d>max(m+2, 3m/2—2) by (2) of
Assumption 1.1 which we are assuming in this section.

LEMMA 3.1. Let j=0,1,, 7,7 > j+1/2, and y+7'>2 when j=0. Let
teR and 0<s=<2. Then, {x>TR(E?+{0){x>"" are B(H(R™), H***(R™)) valued
C? functions of k[0, ) and satisfy the estimates

[(d/dRY<{x>TRy(E2£10)Xx>7" | gcmecrmy, mi+srmyy, = C<RYTHE, (3.11)

LEMMA 3.2. Let 0L 7=<0—-1,7,v>7+1/2, and y+7'>2 when j=0. Let
—2<t<0 and 0 < s £2. Then, (x> TR(k* £ i0)x>"" are B(H'(R™), H'"*¥R™))
valued C7 functions of k[0, o) and satisfy the estimates

(d/dRY{x>TR(k* £i0Xx>™" | pcareomy, mevscrmyy = C<CROTHE. 3.12)
The next lemma is elementary but plays an important role in our theory.
LEMMA 3.3. Let 1=g<m/(m—t), t>0 and p>(m/q)—(m—t). Then
x>0 if pg>m;
(a2 d2) ™ 5 €] oo m=tlogL-¢on if pg =m;
Qrytmio=m=n=e 4f pg<m.

Proor. For <(x><10, the lemma is obvious. When <{x>=10, we split the
region of integration into three parts: Q2,={y: |x —y| <|[x|/2}, 2, =
{p:lx—yl=1xl/2, |y|>1}, Le={y: |x—y|=|x|/2, |y|<1}. The contribution
from £, is obviously bounded by C<{x)~ ‘™9, If we bound <{y> ¢ by Cdlx)>"°,
it is easy to see that the contribution from £, is bounded by C{x)(m/@-(m=-t1-p,
For estimating the integral over the region £., we bound <{y)>=* by |y|~*,
change the variables y by |x|y and then split the region of integration into
two parts: 1/]x|<|y|<1/2 and |y|=1/2. Then:
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{y>~° | x| m-(m-ta-pay
S92< Ixfyl”‘“ )qdy = C(S,y1;1,2+gl,m§,y,§1/2) l;l pqm__;ql :‘c};q

< C|x§"“<m“)‘1‘f"1(1+g dy )

izisiyist/e | Y] P2

Summing up these three contributions, we obtain the lemma. (Q.E.D.)

In what follows Lemma 3.1, 3.2 and 3.3 will be used in the following forms.
We write M, for the multiplication operator with the function <x)>~7. Choose
and fix 0<e<1/2 such that d>max(m+2+¢, 3m/2—24¢).

LEMMA 3.4. Let j=0,1, -, m'+1, 7, 7' >7+1/2 and 0<t, v/<m’—2. Then
M,N,.. (R)M,. is a B(H ' (R™), H*(R™))-valued C?-function of k and

(d/dRY MNu (R)My | pear-vr, mry < CCRY™MTF7T0 (3.13)

PROOF. As a prototype, we prove the lemma only for the case that =1,
m=9(m’ =5) and m'—3 <r, v/ < m’—2. Differentiating with Leibniz’ formula
shows that (d/dkYM;N, _,(k)M; is a sum over the indices j,, -, /» With j;
++jn=7s of

le,..‘,ijrRéjm’VRéjm‘l’V - VRYmOV ... VRYV M, , (3.14)
where C;, .. ;, is a constant and R{’=(d/dk) R,(k*—i0) and etc.. We let £=

(1+¢)/2. Using the assumption y, y'>;+1/2 and (3.11) with s=2, we estimate

the first and last resolvents as follows gaining the smoothness by the order 2:
M RV My | gea-vr, ma-vy < C<RY,
[M;RY™ M, illpcre-2, ary < C<RY. (3.15)

We estimate the second terms from the left and right as follows using the as-
sumption |02V (x)| < Clx>-m*2* |a| <1 and m+2+e=7;+ 7.1 +26+1, and the
estimate (3.11) of with 0<s=7"—2<1 (resp. 0<s=7r—2<L1):

M, e REPV MYl pae-or 12y < CCRYT TS,

IM35L VRIm=-OM;  _ illpe mae-sy < CCROT (3.16)
We estimate other factors as |M7L VRO M, llpa =C<kY™, =3, -+, m'—1,
m’+1, -, m—2, and |M7.,, VRInOVM7L., | <C<k>"" by using (3.11) and (3.12)
with s=¢t=0 which produces

IM7:_ .V RIm-2V - VROV . VREPV M7 pan < CCRY™. (3.17)

Combining (3.15), and (3.17), we see that each summand is bounded
from H-“(R™) to H'(R™) and its operator norm is bounded by Ckyere-m,
This proves (3.13). (Q.E.D.)
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We write

O/0kY 2 s) = G (E1YCFs5040), (3.18)

by setting for j=0, ---, m’'—2,
. _ 0 \$; bipg*tikdiz.m)
F5ie9)= (’a-kj> (m)
When s<j, we clearly have Fi;, .=0, and for s=>j

. _ s xD)e(x, )t
Fii0:09)= G [x—y |7 -

(3.19)
Recall that ¢(x, y)=|x—y|—|x].

LEMMA 3.5. Let 0<e<1/2, m/2<p<(m-+¢)/2 and

0< i_l_}_(

m . e .
—_—— R < [
y 5 5 2 ])<2 , for 07 m'=3,

and q;=2 for j=m’—2. Then, for any s=0, 1, --- the following statements are
satisfied :
1. For j=0,1, -, m'—2, M, ,F5 ;s - is LY(R™) valued continuous in (k, x)
and
Mo, oF 5 5 0, 2l 295mmy £ CLxD™ M DI R,

2. For j=0,1, -, m' =3, Mu_s.s_2j::FFjo »1s LY9R™) valued continuous in
x and

IMunzis_2jeF5 50, 2l 195 Rmy < CLxD¥HI™™,
3. For j=m'—2, Ms,,_;F5 ;. is L*(R™) valued continuous in x and
“MHP-J'Fst,j,o,x“Lme) < C<x>—(m—1)/2.

PROOF. (1) Since |@(x, y)| = |y|, we have (> P|F5; 2 (3)| SC<RY
-{y>~Plx—y|**~™.  On the other hand, by the choice of g¢;, p > (m/q;)—
{m—2—7j) for any 0 < j < m’'—2; m > pg; for 0<7<m’—3, and m<pg; for j=
m’—2. Hence (1) follows immediately from Lemma 3.3

(2) We may assume j<s. We have (y)-m-2s-2+a|fFz. I <C
S(yym=itere |y —y|2*-m and g;(m—j—2+¢) > m by the choice of ¢;, Hence
implies (2).

(3) We have y> ¢ m"*B|FF i 500 = C{y>~?lx—y|™ ™ Thus (3)
follows as in the proof of (1). (Q.E.D.)

PROPOSITION 3.1. T.(x, y, k) is well defined continuous function of (x, y, k).
It is C™*! in the variable k and its derivatives are continuous in the all variables
{x, v, k). Moreover,
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1(d/dR)T(x, y, k)] < C<Lx) MDY= MV Ry, [ =0, -, m'+1.

(3.20)
L.(x, v) is continuous in (x, y) and satisfies the estimate

| Le(x, y)| < C<xpm Mo y)mim=bre, 3.21)

PrOOF. Computing the derivative (d/dk)™'*!' of the right hand side of
with Leibniz’ formula, we see that (d/dk)™ *'T.(x, y, k) is a sum of
Capris(VN(R)WF% ;4. 4, Ff,jr.z.x) over the indices (a, 8, 7) and j, j° such

that a+B8+y=m’4+1 and 0=y, j'S<m’—2. Taking k=(14-¢)/2, we write this
in the form

Caﬂ]’jj’(Ma+/cN(a)(k>Ma+x'M;}HcVFﬁ,j,y.Iz, M;i—/cVF;:j',.r, )

where N@(k)=(d/dk)*N(k). We have {x>***|V(x)] < C{x)y ~maxB.n-p m/2<p
<(m+¢)/2, by the assumption |V(x)|<C<{x)~™*2*  Hence, if we take g¢;, ¢;-
which satisfy the condition for ¢ in Lemma 3.5, we have

IMZLVEF i o sl S CCRY () (mmDIz, 3.22)

”M;}I-EVFE‘J',y,kHqu = C<k>j<y>—(m—l)/2,

Since L%(R™)c H2-m*eid (< 7 <m’—3, by Sobolev’s embedding theorem,
implies

”Ma+xN(a)(k)Ma+x“B(LqJ', L%
Clhym#m7-3"%e, 07,7/ =m'=3;

C{ RS~ (m=a/a+ass) 0/ sm'—3, j=m-2;
=
~10<k>—<<m~5~2+2+f'>, 0sjsm =3, j=m-2;
C<ky™m, j=j =m=2. (3.23)

Combining and [3.23), we obtain (3.20). The statement for L.(x, y)
follows by integration. (Q.E.D.)

The estimate is of course not enough to conclude that L(x, y) satisfies
the criterion [3.4). We dig up the extra decay property in the variable |x|+
|y| by performing the integration by parts by the variable £ in [3.10):

(=il 2| F Iy D Lux, 3) = | {(@d/dR™ e ==L T (x5, B)kdk
= 3 (D (/AR e RO A /AR (T (5, 3, BB heo (3.20)

(="t fd ey N (T, 3, BRAE =" Le (s, ),
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where, for /=1, ---, m’

L.(x, )= (=D U=([x|F |yI)™"(d/dR)}'Tu(x, y, B)|1=0 (3.25)

are boundary terms and L. ,'.,(x, y) are the integral terms. Adding L.(x, y)
to both sides of (3.24) and dividing the resulting equation by 14+(—:i(}x|F
[y )™ *!, we obtain

_ La(x, )+ 2L (%, ) _ mat
Li(x: .')’)— 1+(’Z(‘xl'+—'|yl))m’+l - E)Z:t,l(xy y)’ (3'26)

where Z. (x, y)= {1+(—i(lx|F|y|)™*} L. (x, ), =0, -+, m"+1, and
L. x, y)=L.(x, y).

PROPOSITION 3.2. Z. x, v) and Z. n.:(x, v) satisfy the criterion (3.4) and
are integral kernels of bounded operators in LP(R™).

For the proof, we use the following elementary lemma whose proof is
omitted here.

LEMMA 3.6. Let 1</ and let j+j'<m—+1 and j, j’<<l. Then

sup SRm<|xl FlyDTHxY™yy  mdx < oo,

yERm

sup Samﬂﬂ FlyTE ™ yy mdy < oo

zER™

PROOF OF PROPOSITION 3.2, Recall m’=(m+1)/2. In virtue of and
(3.26), we have

[ Zso(x, )] < Cx|[Flylp- M g)m-D/Ryymm=DI/2, (3.27)
implies that Z. ((x, y) satisfy [3.4). On the other hand, (3.20)
yields that

!Li,m’+1(X, y)[ = C|S:e—ik(lxlxlyI)(d/dk)m'ﬂ(Ti(x, y, k)k)dkt
< C<x>—(m—l)/2<y>—(m—l)/z,

and |Z. a.1(x, y)| are bounded by the right hand side of as well. Thus
Z . mii(x, y) likewise satisfy [3.4). (Q.E.D.)

We next examine Z. ,(x,y) for 1</<m’. Recall and compute
(d/dR)'T.i(x, y, k)| =0 by Leibniz’s formula. Plugging the result into (3.25),
we write Z. (x, y) in the form:

(=D —=i(lx £y I)™" ! mr (111
I+(—i(|x | F |y )H™'*  a+pig=1-15.57=0 a'ﬂ'r'

XC;CiKNOWF% 50,4 VFES jr.0,20. (3.28)
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We show that most terms of Z. ,(x, v) in satisfy the criterion (3.4
using 3.6 and the following
LEMMA 3.7. Let a+B+y=m’—1 and 05, j'sm’—2. Then:
KN )V F5 50y, VEF 00,201 £ C ¥ 7map?m, (3.29)

PrROOF. We may assume 0=<;=pf and 0<;'<y as otherwise the lemma is
obvious. The proof is similar to that of Proposition 3.1 but here we use the
bound |V(x)|<CL{x>~®m/»*2"¢ as well. Take and fix p and g¢;, j=0, ---, m’—2,
as in Lemma 3.5 We write

(NOOWF5, 049 VF{j02)
=M, ;NOOM,_g-M25VF% .0y, MZLVES ji02).

Since [<x)>? PV (x)| < Cmin {x)2-m=8-CD (g~ min-2-f-¢/D} by the assumption,
we have by

IM72sF 5 5.0 yll295 = CyY* ™, M2 VEFS oo ol < CCx)yd=m,

On the other hand, p—8, po—r>a-+(1/2) implies as in the proof of
3.1 that M, ;N“(0)M,_5 is bounded from L% to the dual space (L%')* of L%’,
Combining these two estimates, we obtain the lemma. (Q.E.D.)

PROPOSITION 3.3. Let 1<I<m’. Then, all summands in (3.28) for Z. (x, y)
except two, one with a=f=j7=0, y=;'=I[-1 and the other with a=y=;'=0,
B=7=1-1, satisfy the criterion (3.4) and are kernels of LP(R™)-bounded
operators. In particular all summands for Z. . (x, y) satisfy (3.4).

ProoOF. By all terms in [(3.28) are bounded by C<{|x|F|y|>~**
Lxyrti-myyrti'-m  Note that j+7'+4<2m’ = m+1 for non-vanishing terms.
Hence, in virtue of all terms except those with either [—1<7<m’
—2 or [—1 < j* < m’—2 satisfy the criterion [3.4)] Since a+p+y=1[—1 and
Fg.;0,:=0 unless B=j, the exceptional terms are exactly those mentioned in
the proposition. (Q.E.D.)

Finally we estimate the contribution to L(x, y)=(L.(x, y)—L_(x, y))/ix of
the exceptional terms mentioned in [Proposition 3.3. Note that we need to deal
with the terms with 1 </<m’—1 and that Fi,,.(y)=|x—y|*™ and

Fiii 10 :(0=I—DYx—y|*""™ do not depend on the sign +. Hence, if we
define K. (x, y) by

K, x, y) = (—DCCKNOW [ y—- 177", V]x—-[1*7),
K_(x, )= (=D"ULCCoKNOWV [y — - P70, Vg —- 277,
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then, their contribution to L.(x, y)—L_(x, y) is given explicitly by

o I G €7 el 1) Gl (G 2D i
12_1 {1+(_Z'(|x|__|y[)>m'+1 1+(_Z-(lx‘+|y|)>mr+1 }K-q-.l(X, _y)

(=il x| =]y )™
(== [y )™

(=i %] +1y )™
(=il + 1y

—(=D

+ 21

}K_,L(x, y).

(3.30)

Thus the proof of the L? boundedness of L will be completed if we show
the following

PROPOSITION 3.4. The function (3.30) satisfies the criterion (3.4).

PrROOF. We denote the functions in the braces in front of K. ,(x, y) by
Je(x, ). In virtue of we have |K, (x, y)|SCxm(yrm
and [K_ (x, y)| S CLx)™yyt*-™ Elementary estimations imply | /. (x, )l
SCx| =1y > x|+ 1y > x><{y> and

et 901 = {2

It follows that | ] :(x, K. (%, )| < Cmin {<xp 77y ™, x)* ™y "< x| —
[y|>~? and for 2</<m’—1:
| Je1(x, MK, (x, 3)] < CapWPHmmy G-l x| — |y >,
| J-(x, K o(x, y)| < C{y>MP*Hmy M= m x| — [y | >t
J:a(x, y)K. (x, y) satisfies the criterion since
su S dx _ S dy < oo
P Jem ™ Ky>™ x| —y]>? 2 Vam ™M= ™ Klx| =y ]>? ’

and so does J. (x, K. (x, y), 2<I<m’—1, in virtue of Lemma 3.6l Hence
the function (3.30) satisfies as well and the proof is completed. (Q.E.D.)

Fxl=1y Dl +1y 7, 2l m—L,

4. W¥* P.boundedness of W..

In this section, we give the extra argument which is necessary to prove
that W. is in fact bounded in W*?, k=1, --- , [, if the assumption of Theorem
1 is satisfied with [=1. We prove W,.B(W"?) only as the other cases may
be proved by repeating the following argument.

We begin with the case that [F({x)>?V)| m, is small. In what follows C,
is the constant appeared in [Theorem 2.1l.

PROPOSITION 4.1. For n=1, .-, k=1, -, n and j=1, .-, m, let X,,; be
defined by
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1

Xonsf = 5| _(RAA—i0)V )~ RiA—i0)XD,V)RyG—i0)V Ri(2+i0)"* f 2

4.1)
Then, X,.; is bounded in L? for any 1<p=<co and

[Xarifller < CiColl FLxD VI Lma) " F XD DV)ll Ll f 1122 (4.2)

where C, and C, are the constants appeared in (2.12).

PROOF. When V& C3, Proposition 2.2 implies (4.2). For general V we ap-
proximate it by a sequence V,=S such that V.,eC3 and Sarsi| FLxY DV —
Vlllime—0 as 7—co. (4.2) follows as in the proof of [Theorem 2.1 (Q.E.D))

LEMMA 4.1. Let fEW*?. ThenW,f&W*? and D,Wof—W D, =S Xnssf-

PrROOF. Take V,=S8 as in the proof of [Proposition 4.1 and define W by
(2.11) with V, in place of V. We have, for g&C5%,

W f, Dig) = 5= VARG—OV )" RAA+0)F, Ro3+i0Dsg>d2,

where <-, -> should be considered as the coupling between suitable function
spaces. Then, since R, (A+:0) and D; commute, V,€8 and [D;, V,J=D,V,, it
is easy to see that

DWEf= RXWFAWED,S, (4.3)

where X&; is X,,; with V; in place of V,. In virtue of [Proposition 4.1 and
fTheorem 2.1, we have for any 1<p<oco that

}:i_’rg”ng)j-Xnkj”B(Lp) =0, lirgllwﬁi)—wn’lﬂ(Lp) =0.

It follows by taking the limit 7—oco in (4.3) that D,W,f=> X, f+W.D,f<
L?. This proves the lemma. (Q.E.D.)

Combining [Proposition 4.1 and [Lemma 4.1, we have the following.

THEOREM 4.1. For n=1, ---, W, is bounded in W'?, 1<p=< oo and

IWallgart 7y < C(Coll FLx V) e N F (L2 VI e | F XD DV ) 2m4)

(4.4)
where the constants are independent of n.

It clearly follows from that, if |F(x)°V)| < C3?, the series

Sia=oW, in fact converges in the operator norm of B(W"?) and that W, &
BW?*?), '
When ||F({x>°V)||.m« is not small, it suffices to show that L =L, of
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Section 3 is bounded in W' ? if V satisfies Assumption 1.1, (2) with /=1 and 0
is not an eigenvalue or resonance of H. Recall that

(Lnf, 8) = 5r | (VRSVI™ “R-(VRO™ “V (Ri—~Ri) f, Rig)dh, (45)
where we used the notation Ri=R,(4+:0) and R-=R(A—i0) for the brevity.
Let feW"?, Then following the argument in the proof [Lemma 4.1, we have
that

m+1
DJLf—LD]f:YOJf+k§1Yk]f7 ]:1, '“;m7 (4'6)

where (Y, f, g), k=1, ---, m, is equal to the RHS of (4.5) with D,V in place
of k-th V; and (Y,;f, g) is equal to the RHS of (4.5) with —R~D;V R~ in place
of R~. It is clear that the proof of L? boundedness of L in Section 3 implies
that Y,;, k=1, --- is bounded in L?. On the other hand, it is easy to see that
remains valid when M,N,. _,(k)M, is replaced by

M {Ry(R*—i0)V}™ T R(k*—i0)(D,;V)R(k*—10){V Ry(k*—i0)} ™ ~* M.

Hence, the argument in Section 3 implies that Y,; also is bounded in L°?.

Thus, implies L is bounded in W'"?. This completes the proof of
[Theorem 1.1|.
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Note Added in Proof. The author has recently succeed in generalizing

to the case when the spatial dimension is even m=4 and V is
not necessarily small. The details will appear in “The WF# ?-continuity of
wave opertors for Schrodinger operators III, Even dimensional Cases m=4",
Journal of Mathematical Sciences, University of Tokyo.
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