Hardy's inequalities for Laguerre expansions

By Makoto Satake

(Received May 6, 1998)

Abstract

For the real Hardy spaces, we shall establish Hardy's inequalities with respect to Laguerre expansions. The inequalities for the Hardy spaces with exponents smaller than one will be discussed.

1. Introduction.

The well-known Hardy inequality for the Fourier transforms says that

$$
\begin{equation*}
\int_{-\infty}^{\infty}|\hat{f}(\xi)|^{p}|\xi|^{p-2} d \xi \leq C\|f\|_{H^{p}(\boldsymbol{R})}^{p} \tag{1}
\end{equation*}
$$

$0<p \leq 1$ (see Garcia-Cuerva and Rubio de Francia [3, ch. III, Corollary 7.23], Stein [7, p. 128]). Here $H^{p}(\boldsymbol{R}), 0<p \leq 1$, is the real Hardy space of the boundary distributions $f(x)=\mathfrak{R} F(x)$, where $F(z)$ is an element of the Hardy space $H^{p}\left(\boldsymbol{R}_{+}^{2}\right)$, that is, $F(z)$ is analytic on the upper half plane $\boldsymbol{R}_{+}^{2}=\{z=x+i y ; y>0\}$ with the norm

$$
\|f\|_{H^{p}(\boldsymbol{R})}=\|F\|_{H^{p}\left(\boldsymbol{R}_{+}^{2}\right)}=\sup _{y>0}\left(\int_{-\infty}^{\infty}|F(x+i y)|^{p} d x\right)^{1 / p}
$$

In this paper, we shall establish the Hardy inequalities with respect to the Laguerre expansions.

The Laguerre function $\mathscr{L}_{n}^{\alpha}(x), \alpha>-1$ is defined by

$$
\mathscr{L}_{n}^{\alpha}(x)=\tau_{n}^{\alpha} L_{n}^{\alpha}(x) e^{-x / 2} x^{\alpha / 2}
$$

where $\tau_{n}^{\alpha}=(\Gamma(n+1) / \Gamma(n+\alpha+1))^{1 / 2}$ and $L_{n}^{\alpha}(x)=(n!)^{-1} x^{-\alpha} e^{x}(d / d x)^{n}\left\{x^{n+\alpha} e^{-x}\right\}$ is the Laguerre polynomial of degree n and of order α. Then $\left\{\mathscr{L}_{n}^{\alpha}\right\}_{n=0}^{\infty}$ is a complete orthonormal system on the interval $[0, \infty)$ with respect to $d x$ (see Szegö [8, 5.7]). We have the formal expansion

$$
f(x) \sim \sum_{n=0}^{\infty} c_{n}^{\alpha}(f) \mathscr{L}_{n}^{\alpha}(x)
$$

of a function $f(x)$ on $[0, \infty)$, where

$$
c_{n}^{\alpha}(f)=\int_{0}^{\infty} \mathscr{L}_{n}^{\alpha}(x) f(x) d x
$$

[^0]is the n-th Fourier-Laguerre coefficient. The Hardy inequality was originally one of inequalities with respect to the Fourier coefficients (see Zygmund [9, ch. VII, (8.7)]), and the inequality for the Fourier transforms followed. Recently, Kanjin [4] changed the role of the Fourier transforms for that of the Laguerre coefficients and got the Hardy type inequality for $H^{1}(\boldsymbol{R})$ by using Askey's transplantation theorem (see [1]) for the Laguerre coefficients. The aim of this paper is to extend the Hardy inequality of the Laguerre expansions to $H^{p}(\boldsymbol{R})$ with p smaller than one by estimating the derivatives of $\mathscr{L}_{n}^{\alpha}(x)$ precisely.

Our theorem is as follows:
Theorem. Let $\alpha \geq 0$. Suppose $\alpha / 2 \neq$ integer and $(\alpha / 2+1)^{-1}<p \leq 1$. Then for $f \in H^{p}(\boldsymbol{R})$ supported in $[0, \infty)$, the Fourier-Laguerre coefficients $c_{n}^{\alpha}(f)$ are well-defined and satisfy

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left|c_{n}^{\alpha}(f)\right|^{p}}{(n+1)^{2-p}} \leq C_{\alpha}\|f\|_{H^{p}(\boldsymbol{R})}^{p} \tag{2}
\end{equation*}
$$

with some constant C_{α} independent of f. If $\alpha / 2=0,1,2, \ldots$, then the above statement holds for each p with $0<p \leq 1$.

Here and below constants ($C, c_{1}, C_{\alpha}, C_{\alpha, p}$, etc.) may vary from inequality to inequality. They are always independent of f, n, etc. but may depend on α, p or other explicitly indicated parameters.

We shall give two lemmas (Lemma 1 and Lemma 2) in §2, and a proof of Theorem in $\S 3$, first for (p, ∞)-atoms $a(x)$ supported in $[0, \infty)$ (Lemma 3), and next for $f(x) \in$ $H^{p}(\boldsymbol{R})$ supported in $[0, \infty)$. The atomic decomposition characterization of $H^{p}(\boldsymbol{R}), 0<$ $p \leq 1$ will play an essential role. For convenience, we state the characterization. Let $0<p \leq 1$ and $N=[1 / p-1]$, where $[u]$ denotes the greatest integer not exceeding u. A (p, ∞)-atom is a real-valued function $a(x)$ on \boldsymbol{R} such that (i) $a(x)$ is supported in an interval $[b, b+h]$, (ii) $|a(x)| \leq h^{-1 / p}$ a.e. x, and (iii) $\int_{R} x^{k} a(x) d x=0$ for all $k=0,1$, $2, \ldots, N$. An element $f(x)$ of $H^{p}(\boldsymbol{R})$ is characterized by the decomposition

$$
f(x)=\sum_{j=1}^{\infty} \lambda_{j} a_{j}(x)
$$

where each a_{j} is a (p, ∞)-atom and $\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{p}<\infty$, and

$$
c_{1}\|f\|_{H^{p}(\boldsymbol{R})} \leq \inf \left\{\left(\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{p}\right)^{1 / p}: f=\sum_{j=1}^{\infty} \lambda_{j} a_{j}\right\} \leq c_{2}\|f\|_{H^{p}(\boldsymbol{R})}
$$

with two positive constants c_{1} and c_{2} independent of f (see Garcia-Cuerva and Rubio de Francia [3, III.3], Stein [7, p. 107]). Further, the series $\sum_{j=1}^{\infty} \lambda_{j} a_{j}$ converges in H^{p} norm, consequently, also in the sense of tempered distributions. We shall deal with the elements $f \in H^{p}(\boldsymbol{R})$ supported in the interval $[0, \infty)$. These elements are also characterized by $f(x)=\sum_{j=1}^{\infty} \lambda_{j} a_{j}(x)$ with (p, ∞)-atoms supported in $[0, \infty)$ and

$$
c_{1}\|f\|_{H^{p}(\boldsymbol{R})} \leq \inf \left(\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{p}\right)^{1 / p} \leq c_{2}\|f\|_{H^{p}(\boldsymbol{R})}
$$

where the infimum is taken over all such decompositions of f (see Miyachi [5], [6]).

2. Two Lemmas.

To prove Theorem we need orders of the m-th derivatives $\left(\mathscr{L}_{n}^{\alpha}\right)^{(m)}(x)$ with respect to n. Lemma 1 will be assigned to estimate the derivatives $\left(\mathscr{L}_{n}^{\alpha}\right)^{(m)}(x)$ for $m \leq \alpha / 2$ if $\alpha / 2 \neq$ integer and for all m if $\alpha / 2=0,1,2, \ldots$. Further, if $\alpha / 2 \neq$ integer, $M=[\alpha / 2]$ and $\delta=\alpha / 2-M$, then the bounds of the Lipschitz δ-norm of $\left(\mathscr{L}_{n}^{\alpha}\right)^{(M)}(x)$ are necessary, which will be given in Lemma 2 .

Lemma 1. Let $\alpha \geq 0$. If we set $M=[\alpha / 2]$, then for each non-negative integer $m \leq$ M, the m-th derivative $\left(\mathscr{L}_{n}^{\alpha}\right)^{(m)}(x)$ of $\mathscr{L}_{n}^{\alpha}(x)$ with respect to x has an estimate,

$$
\begin{equation*}
\left|\left(\mathscr{L}_{n}^{\alpha}\right)^{(m)}(x)\right| \leq C_{\alpha, m} n^{m}, \quad m \leq M . \tag{3}
\end{equation*}
$$

Furthermore, if $\alpha / 2=0,1,2, \ldots$, then

$$
\begin{equation*}
\left|\left(\mathscr{L}_{n}^{\alpha}\right)^{(m)}(x)\right| \leq C_{\alpha, m} n^{m}, \quad m=0,1,2, \ldots . \tag{4}
\end{equation*}
$$

Here $C_{\alpha, m}$ are positive constants independent of n.
Proof. Let $m \leq M$. If we differentiate $\left(\mathscr{L}_{n}^{\alpha}\right)^{(m)}(x) m$-times with respect to x, then we have an expression

$$
\begin{equation*}
\left(\mathscr{L}_{n}^{\alpha}\right)^{(m)}(x)=\sum_{0 \leq j+k \leq m} c_{j, k}^{m} \varphi_{n, j, k}^{m}(x), \tag{5}
\end{equation*}
$$

where $c_{j, k}^{m}$ are some constants and

$$
\begin{equation*}
\varphi_{n, j, k}^{m}(x)=\tau_{n}^{\alpha} L_{n-j}^{\alpha+j}(x) e^{-x / 2} x^{\alpha / 2-k} \tag{6}
\end{equation*}
$$

Then it is enough to show $\left|\varphi_{n, j, k}^{m}(x)\right| \leq C_{\alpha} n^{j+k}$. We divide the matter into two cases $n x \geq 1$ and $n x<1$. First we argue the case $n x \geq 1$. We have

$$
\left|\varphi_{n, j, k}^{m}(x)\right|=\tau_{n}^{\alpha}\left(\tau_{n-j}^{\alpha+j}\right)^{-1} \tau_{n-j}^{\alpha+j}\left|L_{n-j}^{\alpha+j}(x)\right| e^{-x / 2} x^{(\alpha+j) / 2} x^{-j / 2-k}
$$

We use two estimates

$$
\begin{equation*}
c_{1} l^{-\beta / 2} \leq \tau_{l}^{\beta} \leq c_{2} l^{-\beta / 2} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\mathscr{L}_{l}^{\beta}(x)\right| \leq c_{3}, \quad x>0, \quad \beta \geq 0 \tag{8}
\end{equation*}
$$

(see the table on p. 699 of [2]) where c_{1}, c_{2} and c_{3} are constants independent of l. It follows that

$$
\left|\varphi_{n, j, k}^{m}(x)\right| \leq C_{\alpha} n^{-\alpha / 2}(n-j)^{(\alpha+j) / 2} x^{-j / 2-k} .
$$

We have $\left|\varphi_{n, j, k}^{m}(x)\right| \leq C_{\alpha,} n^{j+k}$ by $x^{-1} \leq n$.

Let $0<n x<1$. Since

$$
\begin{equation*}
\left|L_{l}^{\beta}(x)\right| \leq C_{\beta} l^{\beta}, \quad 0<l x \leq 1, \tag{9}
\end{equation*}
$$

(see [8, (7.6.8)]), it follows that

$$
\begin{aligned}
\left|\varphi_{n, j, k}^{m}(x)\right| & =\tau_{n}^{\alpha}\left|L_{n-j}^{\alpha+j}(x)\right| e^{-x / 2} x^{\alpha / 2-k} \\
& \leq C_{\alpha} n^{-\alpha / 2}(n-j)^{\alpha+j} x^{\alpha / 2-k} \\
& \leq C_{\alpha} n^{\alpha / 2+j} x^{\alpha / 2-k} .
\end{aligned}
$$

We have $\left|\varphi_{n, j, k}^{m}(x)\right| \leq C_{\alpha} n^{j+k}$, by $x \leq 1 / n$, which completes the proof of (3).
Next we deal with the case that $\alpha / 2=0,1,2, \ldots$. Since $\left(x^{\alpha / 2}\right)^{(l)}=0, l>\alpha / 2$, we see easily $\left(\mathscr{L}_{n}^{\alpha}\right)^{(m)}$ has the same order, which completes the proof of Lemma 1 .

If $\alpha / 2$ is not an integer, in order to prove Theorem, we need more precise estimates which are given by the following lemma.

Lemma 2. Let $\alpha \geq 0$ and let $\alpha / 2$ be not an integer. We put $\alpha / 2=M+\delta, 0<\delta<$ 1. Then for the M-th derivative $\left(\mathscr{L}_{n}^{\alpha}\right)^{(M)}(x)$ of $\mathscr{L}_{n}^{\alpha}(x)$ with respect to x, we have an estimate

$$
\begin{equation*}
\left|\left(\mathscr{L}_{n}^{\alpha}\right)^{(M)}(x+h)-\left(\mathscr{L}_{n}^{\alpha}\right)^{(M)}(x)\right| \leq C_{\alpha} n^{\alpha / 2} h^{\delta} \tag{10}
\end{equation*}
$$

where C_{α} is a constant independent of n.
Proof. By (5), we see that it is enough to show

$$
\begin{equation*}
\left|\varphi_{n, j, k}^{M}(x+h)-\varphi_{n, j, k}^{M}(x)\right| \leq C_{\alpha} n^{j+k+\delta} h^{\delta} \tag{11}
\end{equation*}
$$

with some constant C_{α} independent of n, x and h, where $0 \leq j+k \leq M$. If $n h \geq 1$ and $n x \geq 1$, then

$$
\begin{aligned}
\left|\varphi_{n, j, k}^{M}(x+h)\right| & =\tau_{n}^{\alpha}\left|L_{n-j}^{\alpha+j}(x+h)\right| e^{-(x+h) / 2}(x+h)^{\alpha / 2-k} \\
& =\tau_{n}^{\alpha}\left(\tau_{n-j}^{\alpha+j}\right)^{-1}\left|\mathscr{L}_{n-j}^{\alpha+j}(x+h)\right|(x+h)^{-j / 2-k} .
\end{aligned}
$$

Thus by (7) and (8), we have

$$
\left|\varphi_{n, j, k}^{M}(x+h)\right| \leq C_{\alpha} n^{-\alpha / 2}(n-j)^{(\alpha+j) / 2}(x+h)^{-j / 2-k}
$$

which is bounded by $C_{\alpha} n^{j+k}$, since $n(x+h) \geq 2$. By $n h \geq 1$, we have $\left|\varphi_{n, j, k}^{M}(x+h)\right| \leq$ $C_{\alpha} n^{j+k+\delta} h^{\delta}$. Similarly, we have $\left|\varphi_{n, j, k}^{M}(x)\right| \leq C_{\alpha} n^{-\alpha / 2}(n-j)^{(\alpha+j) / 2} x^{-j / 2-k}$. Since $n x \geq$ 1 and $n h \geq 1$, it follows that $\left|\varphi_{n, j, k}^{M}(x)\right| \leq C_{\alpha} n^{j+k+\delta} h^{\delta}$. Therefore we have (11) for this case.

If $n h \geq 1$ and $n x \leq 1$, then $n(x+h) \geq 1$, and as in the preceding case ($n x \geq 1$), we have

$$
\left|\varphi_{n, j, k}^{M}(x+h)\right| \leq C_{\alpha} n^{j+k+\delta} h^{\delta} .
$$

By (7) and (9), we have

$$
\begin{aligned}
\left|\varphi_{n, j, k}^{M}(x)\right| & =\tau_{n}^{\alpha}\left|L_{n-j}^{\alpha+j}(x)\right| e^{-x / 2} x^{\alpha / 2-k} \\
& \leq C_{\alpha} n^{-\alpha / 2}(n-j)^{\alpha+j} x^{\alpha / 2-k} \\
& \leq C_{\alpha} n^{j+\alpha / 2} x^{\alpha / 2-k-\delta} x^{\delta} .
\end{aligned}
$$

Since $\alpha / 2-k-\delta>0$ and $n x \leq 1$, it follows that

$$
\begin{equation*}
\left|\varphi_{n, j, k}^{M}(x)\right| \leq C_{\alpha} n^{j+\alpha / 2} n^{-\alpha / 2+k+\delta} x^{\delta}=C_{\alpha} n^{j+k+\delta} x^{\delta} \tag{12}
\end{equation*}
$$

which is bounded by $C_{\alpha} n^{j+k+\delta} h^{\delta}$ since $x \leq h$. Therefore we have (11) for the case $n h \geq$ 1 and $n x \leq 1$.

Let $n h \leq 1$. We divide the case into two cases $x \leq h$ and $x \geq h$. We first treat the case $x \leq h$. Then we have $n x \leq 1$ and thus we have also (12) for this case. Further, since $n(x+h) \leq 2$, we have (12) with $x+h$ instead of x.

We shall treat the case $n h \leq 1$ and $x \geq h$. To get the inequality (11), we shall estimate

$$
\begin{equation*}
I_{n}=\tau_{n}^{\alpha}\left|L_{n-j}^{\alpha+j}(x+h)-L_{n-j}^{\alpha+j}(x)\right| e^{-(x+h) / 2}(x+h)^{\alpha / 2-k} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{n}=\tau_{n}^{\alpha}\left|L_{n-j}^{\alpha+j}(x)\right|\left|e^{-(x+h) / 2}(x+h)^{\alpha-k}-e^{-x / 2} x^{\alpha / 2-k}\right| \tag{14}
\end{equation*}
$$

Let us first deal with I_{n}. By the mean value theorem, we have

$$
\begin{align*}
I_{n}= & \tau_{n}^{\alpha}\left|L_{n-j-1}^{\alpha+j+1}(x+\theta h)\right| h e^{-(x+h) / 2}(x+h)^{-\alpha / 2-k} \tag{15}\\
= & \tau_{n}^{\alpha}\left(\tau_{n-j-1}^{\alpha+j+1}\right)^{-1}\left|\mathscr{L}_{n-j-1}^{\alpha+j+1}(x+\theta h)\right| e^{-(1-\theta) h / 2} \\
& \times h\left(\frac{x+h}{x+\theta h}\right)^{\alpha / 2}(x+\theta h)^{-(j+1) / 2}(x+h)^{-k}
\end{align*}
$$

where θ is some constant with $0<\theta<1$. Since $x \geq h$, it follows $1 \leq(x+h) /(x+\theta h)$ ≤ 2. If $n x \geq 1$, then we have $(x+\theta h)^{-(j+1) / 2} \leq n^{(j+1) / 2}$ and $(x+h)^{-k} \leq n^{k}$. Thus, by (7) and (8) we have

$$
\begin{aligned}
I_{n} & \leq C_{\alpha} n^{(j+1) / 2} n^{(j+1) / 2} n^{k}=C_{\alpha} n^{j+k}(n h) \\
& \leq C_{\alpha} n^{j+k+\delta} h^{\delta} .
\end{aligned}
$$

For the last inequality, we used $n h \leq 1$. If $n x \leq 1$, then applying (9) to (15) we get

$$
\begin{equation*}
I_{n} \leq C_{\alpha} n^{-\alpha / 2}(n-j-1)^{\alpha+j+1} h e^{-(x+h) / 2}(x+h)^{\alpha / 2-k} \tag{16}
\end{equation*}
$$

Since $x \geq h$ and $n x \leq 1$, it follows that $(x+h)^{\alpha / 2-k} \leq(2 / h)^{\alpha / 2-k}$. We have

$$
\begin{equation*}
I_{n} \leq C_{\alpha} n^{j+k}(n h) \leq C_{\alpha} n^{j+k+\delta} h^{\delta} \tag{17}
\end{equation*}
$$

We shall estimate J_{n}. It follows

$$
\begin{aligned}
J_{n} \leq & \tau_{n}^{\alpha}\left|L_{n-j}^{\alpha+j}(x)\right|\left|\left(e^{-(x+h) / 2}-e^{-x / 2}\right)(x+h)^{-\alpha-k}\right| \\
& +\tau_{n}^{\alpha}\left|L_{n-j}^{\alpha+j}(x)\right| e^{-x / 2}\left|(x+h)^{-\alpha / 2-k}-x^{-\alpha / 2-k}\right| \\
= & J_{n}^{(1)}+J_{n}^{(2)}, \quad \text { say. }
\end{aligned}
$$

For $J_{n}^{(1)}$, by (7) and the mean value theorem we have

$$
\begin{align*}
J_{n}^{(1)} & =\tau_{n}^{\alpha}\left|L_{n-j}^{\alpha+j}(x)\right| e^{-(x+\theta h) / 2} h(x+h)^{-\alpha / 2-k} \tag{18}\\
& \leq C_{\alpha} n^{-\alpha / 2}\left|\mathscr{L}_{n-j}^{\alpha+j}(x)\right| e^{-\theta h / 2} h\left(\frac{x+h}{x}\right)^{\alpha / 2} x^{-j / 2}(x+h)^{-k}
\end{align*}
$$

for some θ with $0<\theta<1$. If $n x \geq 1$, then $(x+h)^{-1} \leq n$. Since we have already assumed $h \leq x$, the inequality $1 \leq(x+h) / x \leq 2$ holds. Thus by (8) we have $J_{n}^{(1)} \leq$ $C_{\alpha} n^{j+k}(n h) \leq C_{\alpha} n^{j+k}(n h)^{\delta} \leq C_{\alpha} n^{j+k+\delta} h^{\delta}$. If $n x \leq 1$, then we apply (9) to (18) and get

$$
\begin{aligned}
J_{n}^{(1)} & \leq C_{\alpha} n^{\alpha / 2+j} h x^{\alpha / 2-k} \leq C_{\alpha} n^{\alpha / 2+j} h n^{-\alpha / 2-k} \\
& \leq C_{\alpha} n^{j+k} n h \leq C_{\alpha} n^{n+j+\delta} h^{\delta} .
\end{aligned}
$$

Last we estimate $J_{n}^{(2)}$. Let $n x \geq 1$. If $\alpha / 2-k \geq 1$, then by the mean value theorem

$$
\begin{align*}
J_{n}^{(2)} & =\tau_{n}^{\alpha}\left|L_{n-j}^{\alpha+j}(x)\right| e^{-x / 2} h(x+\theta h)^{\alpha / 2-k-1} \tag{19}\\
& =\left|\mathscr{L}_{n-j}^{\alpha+j}(x)\right|\left(\frac{x+\theta h}{x}\right)^{(\alpha+j) / 2}(x+\theta h)^{\alpha / 2-k-1} \\
& \leq C_{\alpha} n^{j+k+\delta} h^{\delta} .
\end{align*}
$$

If $0<\alpha / 2-k<1$, then $j=0, \delta=\alpha / 2-k$, and

$$
\begin{equation*}
J_{n}^{(2)}=\left|\mathscr{L}_{n}^{\alpha}(x)\right| x^{\alpha / 2}\left|(x+h)^{\alpha / 2-k}-x^{\alpha / 2-k}\right| \leq C_{\alpha} n^{\alpha / 2} h^{\delta} \tag{20}
\end{equation*}
$$

because x^{δ} is of $\operatorname{Lip} \delta(0<\delta<1)$. Let $n x \leq 1$. If $\alpha / 2-k \geq 1$, then we apply (9) to (19) and obtain

$$
\begin{aligned}
J_{n}^{(2)} & \leq C_{\alpha} n^{-\alpha / 2}(n-j)^{\alpha+j} h\left(\frac{1}{n}\right)^{\alpha / 2-k-1} \\
& \leq C_{\alpha} n^{j+k+\delta} h^{\delta} .
\end{aligned}
$$

If $0<\alpha / 2-k<1$, then $j=0, \delta=\alpha / 2-k$ and by (9) and the fact x^{δ} is of $\operatorname{Lip} \delta$ we have $J_{n}^{(2)} \leq C_{\alpha} n^{k+\delta} h^{\delta}$ which completes the proof of Lemma 2.

3. Proof of Theorem.

Now we shall prove Theorem. Because finite linear combinations of (p, ∞)-atoms are dense in $H^{p}(\boldsymbol{R})$, the following lemma is essential, which will be proved by using the lemmas in the previous section.

Lemma 3. Suppose $\alpha \geq 0, \alpha / 2 \neq$ integer and $1 / p-1<\alpha / 2(2 /(\alpha+2)<p \leq 1)$. Then

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left|c_{n}^{\alpha}(a)\right|^{p}}{(n+1)^{2-p}} \leq C_{\alpha} \tag{21}
\end{equation*}
$$

for all (p, ∞)-atoms $a(x)$ supported in $[0, \infty)$.
If $\alpha / 2=0,1,2, \ldots$, then the above inequality holds for all p with $0<p \leq 1$.
Proof. Let $M=[\alpha / 2]$ and $N=[1 / p-1]$. We put $\alpha / 2=M+\delta$. Let $\alpha / 2 \neq$ integer. We shall first deal with the case $N=M$. Let $I=[b, b+h]$ be an interval defining a (p, ∞)-atom $a(x)$. The Taylor expansion of $\mathscr{L}_{n}^{\alpha}(x)$ in x at $x=b$ leads to

$$
\begin{align*}
c_{n}^{\alpha}(a) & =\frac{1}{M!} \int_{b}^{b+h} a(x)\left(\mathscr{L}_{n}^{\alpha}\right)^{(M)}(b+\theta(x-b))(x-b)^{M} d x \tag{22}\\
& =\frac{1}{M!} \int_{b}^{b+h} a(x) \times\left\{\left(\mathscr{L}_{n}^{\alpha}\right)^{(M)}(b+\theta(x-b))-\left(\mathscr{L}_{n}^{\alpha}\right)^{(M)}(b)\right\}(x-b)^{M} d x
\end{align*}
$$

for some θ with $0<\theta<1$. The last equality follows from the cancellation property of a (p, ∞)-atom $a(x)$. We have by (10)

$$
\begin{equation*}
\left|c_{n}^{\alpha}(a)\right| \leq \frac{1}{M!}\left(\int_{b}^{b+h}|a(x)|(x-b)^{M+\delta} d x\right) n^{M+\delta} \tag{23}
\end{equation*}
$$

and thus we have

$$
\begin{aligned}
\left|c_{n}^{\alpha}(a)\right| & \leq C_{\alpha} \frac{1}{M!}\|a\|_{2}\left(\int_{b}^{b+h}(x-b)^{2(M+\delta)} d x\right)^{1 / 2} n^{M+\delta} \\
& \leq C_{\alpha} n^{M+\delta} h^{M+\delta+1 / 2}\|a\|_{2}
\end{aligned}
$$

Since (p, ∞)-atoms satisfy $h \leq\|a\|_{2}^{-2 p /(2-p)}$, it follows that

$$
\begin{equation*}
\left|c_{n}^{\alpha}(a)\right| \leq C_{\alpha} n^{M+\delta}\|a\|_{2}^{1-(2 /(2-p))(M+\delta+1 / 2)} \tag{24}
\end{equation*}
$$

Let $R=\|a\|_{2}^{2 p /(2-p)}$. It follows from the above inequality that

$$
\begin{equation*}
\sum_{n \leq R} \frac{\left|c_{n}^{\alpha}(a)\right|^{p}}{(n+1)^{2-p}} \leq C_{\alpha}^{p}\|a\|_{2}^{p\{1-(2 p /(2-p))(M+\delta+1 / 2)\}} \sum_{n \leq R} n^{p(M+\delta)-2+p} \tag{25}
\end{equation*}
$$

Since $1 / p-1<\alpha / 2=M+\delta$, it follows that $p(M+\delta)-2+p>-1$. Thus, we have

$$
\begin{equation*}
\sum_{n \leq R} \frac{\left|c_{n}^{\alpha}(a)\right|^{p}}{(n+1)^{2-p}} \leq C_{\alpha, p} \tag{26}
\end{equation*}
$$

where $C_{\alpha, p}$ depends only on α and p. For the sum over $n>R$, we have

$$
\begin{align*}
\sum_{n>R} \frac{\left|c_{n}^{\alpha}(a)\right|^{p}}{(n+1)^{2-p}} & \leq C\left(\sum_{n>R}\left|c_{n}^{\alpha}(a)\right|^{2}\right)^{p / 2}\left(\sum_{n>R} \frac{1}{n^{2}}\right)^{(2-p) / 2} \tag{27}\\
& \leq C\|a\|_{2}^{p} R^{-(2-p) / 2} \leq C
\end{align*}
$$

Therefore (26) and (27) give (21).

Next we shall prove the case $N<M$. In this case, applying (3) to (22) with $N+1$ instead of M, we have (23) with $\delta=0$ and $N+1$ instead of M, and thus (24) with $\delta=0$ and $N+1$ instead of M holds. Thus we have (21) in the same way.

For the case $\alpha / 2=0,1,2, \ldots$, we apply (4) to (22) with $N+1$ instead of M and easily get the desired inequality (21). This completes the proof of Lemma 3.

Now we shall finish the proof of Theorem. Let f be a general element in $H^{p}(\boldsymbol{R})$ such that $\operatorname{supp} f \subset[0, \infty)$. Then there exist real numbers λ_{j} and (p, ∞)-atoms a_{j} with $\operatorname{supp} a_{j} \subset[0, \infty), j=1,2, \ldots$ such that $f=\sum_{j=1}^{\infty} \lambda_{j} a_{j}$ and

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{p} \leq C_{p}\|f\|_{H^{p}}^{p} \tag{28}
\end{equation*}
$$

We put $f_{J}=\sum_{j=1}^{J} \lambda_{j} a_{j}$. Since $0<p \leq 1$, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left|c_{n}^{\alpha}\left(f_{J}\right)\right|^{p}}{(n+1)^{2-p}}=\sum_{n=0}^{\infty} \frac{\left|\sum_{j=1}^{J} \lambda_{j} c_{n}^{\alpha}\left(a_{j}\right)\right|^{p}}{(n+1)^{2-p}} \leq \sum_{j=1}^{J}\left|\lambda_{j}\right|^{p} \sum_{n=0}^{\infty} \frac{\left|c_{n}^{\alpha}\left(a_{j}\right)\right|^{p}}{(n+1)^{2-p}} . \tag{29}
\end{equation*}
$$

Thus, Lemma 3 leads to

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left|c_{n}^{\alpha}\left(f_{J}\right)\right|^{p}}{(n+1)^{2-p}} \leq C_{\alpha, p}\|f\|_{H^{p}}^{p} \tag{30}
\end{equation*}
$$

By the density arguement, we see that $c_{n}^{\alpha}(f)$ are well-defined and the inequality (2) holds.

References

[1] R. Askey, A transplantation theorem for Jacobi coefficients, Pacific J. Math. 21 (1967), 393-404.
[2] R. Askey and S. Wainger, Mean convergence of expansions in Laguerre and Hermite series, Amer. J. Math. 87 (1965), 695-708.
[3] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, NorthHolland, Amsterdam, 1985.
[4] Y. Kanjin, Hardy's inequalities for Hermite and Laguerre expansions, Bull. London Math. Society 29 (1997), 331-337.
[5] A. Miyachi, H^{p} spaces over open subsets of \boldsymbol{R}^{n}, Studia Math. 95 (1990), 205-228.
[6] A. Miyachi, personal communication.
[7] E. M. Stein, Harmonic analysis, real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, New Jersey, 1993.
[8] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloquium Publications, 1975.
[9] A. Zygmund, Trigonometric Series, 2nd. ed., Vols. I, II, Cambridge Univ. Press, London, New York, 1968.

Makoto Satake
Kanazawa Gakuin College
Kanazawa 920-1392 Japan satake@kanazawa-gu.ac.jp

[^0]: 1991 Mathematics Subject Classification. Primary 42C10; Secondary 42B30, 33C45
 Keywords and Phrases. Hardy's inequality, Hardy space, Laguerre expansion

