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Abstract. Andreev’s Theorem studies the existence of compact hyperbolic
polyhedra of a given combinatorial type and given dihedral angles, all of them acute.
In this paper we consider the same problem but without any restriction on the dihe-
dral angles. We solve it for the descendants of the tetrahedron, i.e. those polyhedra
that can be obtained from the tetrahedron by successively truncating vertices; for
instance, the first of them is the triangular prism.

1. Introduction.

Andreev’s Theorem arises in the context of hyperbolic reflection groups. For these
groups, a fundamental domain is given by a hyperbolic polyhedron with dihedral angles
of the form π/n with n an integer greater than 1. Then, a classification of these groups
may be given by determining all these polyhedra. Andreev’s theorem solves this problem
(see [1], [2]): it determines the space of dihedral angles of (compact or finite volume)
hyperbolic polyhedra with the restriction that all the dihedral angles are not greater
than π/2. Another reason to describe polyhedra from their dihedral angles is that, for
hyperbolic trivalent polyhedra (those with exactly three faces incident to each vertex),
dihedral angles uniquely determine the polyhedra. This is mainly deduced from Cauchy’s
lemmas ([4], see also [10]).

We are interested on the generalization of Andreev’s theorem: given the combinato-
rial type of a polyhedron and some real numbers αij ∈ (0, π) assigned to its edges, find
necessary and sufficient conditions on the αij so that there exists a geometric (spherical
or hyperbolic) polyhedron of the given combinatorial type and with dihedral angles the
given αij .

Such a generalization is easily established for the tetrahedron (see [11] or [9], or also
[6]). In this paper we generalize Andreev’s Theorem for some kind of polyhedra, the
so called tetrahedron’s descendants. These are the polyhedra obtained from the tetrahe-
dron by successively truncating vertices. For example the triangular prism is the first
tetrahedron’s descendant. We give the explicit description of the space of dihedral angles
of the triangular prism (Theorems 3.1, 3.5), that appears quite complicated. For the
remaining tetrahedron’s descendants we explain an algorithm that provides the desired
generalization of Andreev’s Theorem (Theorem 4.3).

Our approach consists in using the Gram matrices of the polyhedra. The Gram ma-
trix of a geometric polyhedron is a symmetric matrix whose entries are in correspondence
with pairs of faces of the polyhedron. If two faces are adjacent, then the corresponding
entry is equal to minus the cosine of the dihedral angle at the common edge. Thus, the
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Gram matrix contains all the information about the dihedral angles, and some extra in-
formation. In [6] we characterized the space of Gram matrices of hyperbolic polyhedra of
a given combinatorial type (actually the result there was more general: for d-polytopes
in any geometric space), as a subset of certain RN . To obtain the space of dihedral
angles we must eliminate the entries of the Gram matrix not corresponding to dihedral
angles. This corresponds to doing a certain projection from the space of Gram matrices.
The conditions obtained in [6] describing the space of Gram matrices are polynomial
equalities or inequalities in the entries of the Gram matrix, and therefore this space is
a real semialgebraic set. By the Tarski-Seidenberg theorem (see for instance [3]), the
projection of a real semialgebraic set is again real semialgebraic, although, in general, it
is difficult to find its explicit description. In this paper we explicitly perform this pro-
jection for the triangular prism, so we obtain the space of (cosines of) dihedral angles,
described by polynomial equalities and inequalities.

As a corollary of the proofs of our results we obtain an alternative proof of the fact
that a tetrahedron’s descendant is uniquely determined by its dihedral angles (which we
knew a priori since tetrahedron’s descendants are trivalent).

We remark that the method used here to describe the space of dihedral angles gets
considerably more complicated for other simple examples of polyhedra, like the cube.
We refer to [6] for a partial solution for the cube.

The paper is organized as follows: in Section 2 we review some basic definitions and
state the characterization of the Gram matrices of polyhedra; we also give some geometric
interpretations. Sections 3 and 4 contain the generalization of Andreev theorem for the
triangular prism, and for the remaining tetrahedron’s descendants, respectively.

The content of this paper forms part of the author’s doctoral dissertation. I would
like to thank J. M. Montesinos for proposing this problem to me and E. Arrondo for
many helpful discussions and comments.

2. Polyhedra and Gram matrices.

An affine polyhedron is a bounded subset P ⊂ R3 defined as the intersection of
finitely many closed halfspaces. The combinatorial type P of the polyhedron P is the
lattice consisting of the set of vertices, edges and faces of P . We use roman capital letters
P, F,C, V, . . . for affine polyhedra and their faces and calligraphic letters P,F ,C ,V , . . .

for the corresponding elements of the combinatorial type of the polyhedron. An oriented
cycle of P is an ordered family C1,C2,C3 of three faces of P so that C1,C2 are adjacent
(meeting along an edge of P) and the three of them are incident to a vertex V . A
maximal oriented cycle is a family C1,C2,C3,C4 so that C1,C2,C3 is an oriented cycle
incident to a vertex V and C4 does not contain V . An oriented cycle or maximal oriented
cycle induces an orientation on the boundary of P , which is a topological 2-sphere. We
say that two oriented cycles (or maximal oriented cycles) have the same orientation if
they induce the same orientation on this 2-sphere (see [6] for more details).

Let f be any non-degenerate quadratic form in the vector space R4. We call the
pair (R4, f) a geometric space. This includes two particular cases defining spherical and
hyperbolic spaces. If f is the usual euclidean inner product, then f−1(1) is S3. To
obtain a model of hyperbolic space, we take f of signature (3, 1). More precisely, let
(x1, x2, x2, x4) be the coordinates of the vector x with respect to the canonical basis of



A generalization of Andreev’s Theorem 335

R4 and let f be the quadratic form defined by f(x) = x2
1 + x2

2 + x2
3 − x2

4. Then, the
hyperbolic space is the upper sheet of the hyperboloid f−1(−1):

H3 = {x ∈ R4 | f(x) = −1, x4 > 0}.

A polyhedral cone in the vector space R4 is a subset of the form

P̂ =
n⋂

i=1

Ĥ−
i ,

where Ĥ−
i is a closed halfspace bounded by the linear hyperplane Ĥi, and such that the

intersection of the hyperplanes Ĥi is the origin of R4. There exists an affine hyperplane
A such that P̂ ∩A is bounded, and therefore a polyhedron. The vertices, edges and faces
of a polyhedral cone P̂ are defined to be the cone over the vertices, edges and faces of
the polyhedron P̂ ∩A, and the combinatorial type of P̂ is defined to be that of P̂ ∩A.

We denote by H−
i the intersection of Ĥ−

i with either S3 or H3. Then, the inter-
section of the polyhedral cone P̂ = ∩Ĥ−

i with either S3 or H3 will be, respectively, a
spherical or hyperbolic polyhedron P = ∩H−

i . When P is hyperbolic, a vertex is called
finite if the corresponding vectorial ray in P̂ intersects H3.

Let P̂ = ∩n
i=1Ĥ

−
i be a polyhedral cone such that no Ĥi is lightlike (that is, f

restricted to Ĥi is non-degenerate). The outward normal vector to the halfspace Ĥ−
i (or

to H−
i ) is the unique vector ei with f(ei) = ±1 and satisfying

Ĥ−
i = {x ∈ R4 | f(x, ei) ≤ 0}

(we are using the notation f for both the quadratic form and its associated bilinear
form). The Gram matrix of P̂ (or of P ) is defined to be the matrix of inner products of
the outward normal vectors to the halfspaces Ĥ−

i , that is

G(P̂ ) = G(P ) = (f(ei, ej))i,j=1,...,n.

In [6], we characterized the Gram matrices of polyhedral cones in (R4, f) of a given
combinatorial type. We state here the results.

Notation. Given a matrix G, we will denote by G
[
i1...ir

j1...js

]
the submatrix of G

obtained by taking the rows i1 . . . ir and the columns j1 . . . js; for square submatrices
we will denote by G

(
i1...ir

j1...jr

)
the determinant of that submatrix. For short, we will write

G[i1 . . . ir] = G
[
i1...ir

i1...ir

]
and Gi1...ir

= G
(
i1...ir

i1...ir

)
.

Theorem 2.1 (Theorem 4.1 in [6], for d = 3). Let P be the combinatorial type of
a polyhedron with n ordered faces C1, . . . ,Cn; let (R4, f) be a geometric space and let G

be a real symmetric matrix of order n and rank 4. Suppose that the signature of G equals
the signature of f and that gii = ±1 for all i = 1, . . . , n. Then there exists a polyhedral
cone P̂ ⊂ (R4, f) with the combinatorial type of P and with Gram matrix G(P̂ ) equal
to G if and only if the following conditions hold :
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(R) (Rank) Given any vertex of P and all the faces Ci1 , . . . ,Cim
incident to it, the

submatrix G[i1 . . . im] has rank less than or equal to 3.
(P4) (Principal minors of order 4) If Ci1 , . . . ,Ci4 is a maximal oriented cycle of P,

then Gi1...i4 det f > 0.
(M4) (Mixed minors of order 4) If Ci1 , . . . ,Ci4 and Cj1 , . . . ,Cj4 are two maximal oriented

cycles with the same orientation, then G
(

i1...i4
j1...j4

)
det f > 0.

Moreover, if these conditions hold, the polyhedral cone P̂ is unique up to an orthogonal
transformation of (R4, f).

Furthermore, in the hyperbolic case, the polyhedron P = P̂ ∩H3 is compact if and
only if the following conditions hold :

(P3) (Principal minors of order 3) If Ci,Cj ,Ck are faces of P incident to a vertex, then
Gijk > 0.

(M3) (Mixed minors of order 3) If Ci1 ,Ci2 ,Ci3 and Cj1 ,Cj2 ,Cj3 are oriented cycles of
P with the same orientation, then G

(
i1i2i3
j1j2j3

)
> 0.

(Here, if the signature of f is (s+, s−), then detf = (−1)s− .)
We remark that conditions (M4) and (M3) contain, respectively, conditions (P4)

and (P3). We state them separately because they have different geometric meaning (see
below).

2.1. Geometric interpretation of the minors of the Gram matrix.
The quadratic form f in R4 determines a non degenerate quadratic form

∧m
f in∧m

R4 defined by

( m∧
f

)
(u1 ∧ . . . ∧ um, v1 ∧ . . . ∧ vm) = det(f(ui, vj))i,j=1,...,m.

We can obtain some geometric interpretation of the conditions in Theorem 2.1 by
studying the geometric spaces (

∧4
R4,

∧4
f) and (

∧3
R4,

∧3
f).

(a) Since
∧4

R4 has dimension one and
∧4

f is not degenerate, the inner product
of two vectors is zero if and only if one of the vectors is zero. Expressed in terms of
determinants of submatrices of the Gram matrix, we have that

G
(

i1...i4
j1...j4

)
= 0 if and only if Gi1...i4 = 0 or Gj1...j4 = 0.

In the spherical case
∧4

f is positive definite, while in the hyperbolic case
∧4

f is
negative definite. In both cases, the condition G

(
i1...i4
j1...j4

)
det f > 0 means that the vectors

ei1∧· · ·∧ei4 and ej1∧· · ·∧ej4 are in the same vectorial ray of
∧4

R4. Therefore, condition
(M4) of Theorem 2.1 means that the vectors in

∧4
R4 corresponding to maximal oriented

cycles of P with the same orientation are all in the same vectorial ray. As an immediate
consequence, this condition can be reduced: if there are N maximal oriented cycles in
P, it is enough to consider N − 1 convenient maximal cycles.

(b) If f has signature (3, 1),
∧3

R4 has signature (1, 3). Then, now (
∧3

f)−1(1) is
a hyperboloid of two sheets. Condition (P3) in Theorem 2.1 imposes the condition that
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some vectors of
∧3

R4 (those corresponding to vertices of the polyhedron) be in this
hyperboloid. And condition (M3) imposes the condition that all these vectors be in the
same sheet of the hyperboloid. As a consequence, condition (M3) can also be reduced.
By the same argument, we can prove: if two minors Gi1i2i3 and Gj1j2j3 of G are positive
and there exists another non negative minor Gk1k2k3 , then G

(
i1i2i3
j1j2j3

)
> 0 if and only if

G
(

i1i2i3
k1k2k3

)
G

(
j1j2j3
k1k2k3

)
> 0.

Finally, we remark that, given an orientation of R4, the Hodge star operators are
isomorphisms ∗ between

∧m
R4 and

∧4−m
R4. For m = 4, ∗(u1 ∧ · · · ∧ u4) is equal to

the determinant of the matrix of coordinates of the vectors u1, . . . , u4 with respect to
any orthonormal and positively oriented basis. For m = 3, the ∗ operator is a direct
generalization of the vector product in R3, and we recall here some properties (see [8] or
[6]).

Lemma 2.2. Let u, u1, u2, u3, v, v1, v2, v3 ∈ R4; then:

(a) f(∗(u1 ∧ u2 ∧ u3), v) = ∗(u1 ∧ u2 ∧ u3 ∧ v)
(b) (

∧3
f)(u1 ∧ u2 ∧ u3, v1 ∧ v2 ∧ v3) = (det f) ∗ (u1 ∧ u2 ∧ u3 ∧ ∗(v1 ∧ v2 ∧ v3))

(c) (
∧3

f)(u1 ∧ u2 ∧ u3, v1 ∧ v2 ∧ v3) = (det f) f(∗(u1 ∧ u2 ∧ u3), ∗(v1 ∧ v2 ∧ v3)).

If Ci, Cj , Ck is an oriented cycle of P , we define vijk = ∗(ei ∧ ej ∧ ek). In [6] we
proved that: if we consider an oriented cycle incident to each vertex of P so that all
these cycles have the same orientation, then either the set of vectors vijk or the set of
their opposite vectors determine the vertices of P .

Using this fact and Lemma 2.2, we can directly obtain some geometric relations for
polyhedra from minors of their Gram matrices:

Lemma 2.3. Let P ∈ H3 be a polyhedron and let G be its Gram matrix.

(a) Let Ci1 , Ci2 , Ci3 and Cj1 , Cj2 , Cj3 be oriented cycles with the same orientation
incident to finite vertices Vi1i2i3 , Vj1j2j3 . Then the distance between these vertices
is given by

− cosh
(
d(Vi1i2i3 , Vj1j2j3)

)
=

−G
(

i1i2i3
j1j2j3

)
√

Gi1i2i3

√
Gj1j2j3

.

(b) Let Vijk be a finite vertex of P and let Cl be a face not containing this vertex.
Then the distance between them is given by

sinh 2
(
d(Vijk, Cl)

)
=
−Gijkl

Gijk
.

Sylvester identities.
In the proofs in this paper we will use some matrix relations obtained from the so

called Sylvester identity (see [7]). We state here this identity.
Let G be a square matrix of order n. Let us fix an order p submatrix of G, for

example the square submatrix G[1 2 . . . p]. We construct the matrix B = G
∥∥1 2...p

1 2...p

∥∥ by
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bordering the submatrix G[1 2 . . . p] with one row and one column among the remaining
rows and columns of G and collecting their determinants; that is, B is a square matrix
of order n− p whose entries are of the form

bij = G
(
1 2...p i
1 2...p j

)
,

where p + 1 ≤ i ≤ n and p + 1 ≤ j ≤ n.
With the above notation, the Sylvester identity for B states that

detG
∥∥1 2...p

1 2...p

∥∥ = G
(
1 2...p
1 2...p

)n−p−1
detG.

3. The triangular prism.

Let P be the combinatorial type of a triangular prism, with the faces labeled as
in Figure 1. If the faces Ci,Cj are adjacent, we denote by Eij the common edge. Let
αij ∈ (0, π) be arbitrary numbers associated to the edges Eij . In this section we answer
the following question: is there a compact hyperbolic (resp. spherical) triangular prism
with dihedral angles the given numbers?

Figure 1. Triangular prism.

The method we will use to work out this problem is simple: we collect the given
numbers to construct the matrix

G =




1 a12 a13 a14 a15

a12 1 a23 a24 a25

a13 a23 1 a34 a35

a14 a24 a34 1 u

a15 a25 a35 u 1




, (1)

with aij = − cos αij , and u an unknown. By imposing the condition that the rank of G

be equal to 4, we obtain at most two solutions for u. For each of these solutions we check
whether the resulting matrix satisfies the conditions in Theorem 2.1 for the triangular
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prism. In practice, nevertheless, this process is long and quite technical.
We order the numbers aij according to a fixed ordering of the edges of P. Then

we regard (aij) as a point in R9, and we denote by A CH the subset of those points
(aij) corresponding to dihedral angles of compact hyperbolic triangular prisms; we refer
to it as the space of dihedral angles of compact hyperbolic triangular prisms (regardless
that, actually, the numbers aij are minus the cosines of the dihedral angles, rather than
the dihedral angles themselves). Answering the question above is, then, describing the
subset A CH . We do that in the Theorem 3.1.

Similarly, we denote by A S the space of dihedral angles of spherical triangular
prisms, and we describe this subset in Theorem 3.5

Theorem 3.1. Let P be a triangular prism with labeled faces. Let α12, . . . , α35 ∈
(0, π) and aij = − cos αij. Then, there exists a compact hyperbolic triangular prism
P ⊂ H3 with dihedral angles αij at the edges Eij if and only if (a12, . . . , a35) is in the
subset A CH = S H

0 ∩S C
0 ∩ (R+ ∪R−), where

S H
0 =

{
−1 < aij < 1

G1234 < 0, G1235 < 0

}
,

S C
0 =

{
G124 > 0, G134 > 0, G234 > 0, G125 > 0, G235 > 0, G135 > 0

G
(
124
234

)
> 0, G

(
124
143

)
> 0, G

(
152
135

)
> 0, G

(
152
253

)
> 0

}
,

R+ = {G123 ≥ 0} ∩S12 ∩S13 ∩S23,

R− = {G123 < 0} ∩ (S12 ∪S ′
12) ∩ (S13 ∪S ′

13) ∩ (S23 ∪S ′
23);

the subsets S12,S ′
12, . . . are

S12 =

{
G

(
123
124

)
G

(
123
152

)
> 0

G
(
123
124

)
(G124G1235 −G125G1234) < 0

}
,

S ′
12 =

{
G

(
123
124

) ≤ 0, G
(
123
152

) ≥ 0

G
(
123
124

)2
+ G

(
123
152

)2
> 0

}
;

and the remaining subsets are similar : first, we rewrite the expression G124G1235 −
G125G1234 in S12 as G124G1523−G152G1243; then S13 is obtained from S12 by changing
the indices 124 to 143 and 152 to 135; and S23, S ′

13, etc. are obtained in an analogous
way.

It is clear that the subset S H
0 consists just of the obvious restrictions on the aij

and the restrictions coming from condition (P4) of Theorem 2.1. Also, the subset S C
0

corresponds to the conditions (P3) and (M3) of that theorem. Then, what is left is to
analyse how the conditions (R) and (M4) are translated into some subset of R9. This is
the main part of the proof.
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3.1. Proof of the necessary conditions.
Suppose that P ⊂ H3 is a compact hyperbolic triangular prism, let G = G(P ) be

its Gram matrix, and let A = (aij) ∈ R9, with aij equal to minus the cosines of the
dihedral angles of P . Then, G satisfies the conclusions of Theorem 2.1. From conditions
(P4), (P3) and (M3) of that theorem, we immediately see that the point (aij) belongs to
S H

0 and to S C
0 (we just need to check the orientation of the cycles in Figure 1).

Next, we study the consequences obtained from condition (M4) in Theorem 2.1, that
is, the signs of some particular mixed minors of G of order 4. In the remaining of the
proof we will show that the condition G

(
1243
1245

)
< 0 implies that A belongs to the subset

{G123 ≥ 0} ∩S12 or to the subset {G123 < 0} ∩ (S12 ∪S ′
12). Studying in an analogous

way the implications of the conditions G
(
1432
1435

)
< 0 and G

(
2341
2345

)
< 0 we complete the

proof.
Since the minor G

(
1243
1245

)
contains the entry u = G(4, 5), we first determine the value

of u. By (R), we have det G = 0, and therefore, u is a root of the polynomial

detG = −G123u
2 − 2G

(
1234
1235

)
|u=0

u + detG|u=0 .

We split the analysis in two subcases.

Case A: G123 6= 0; then we have

u =
G

(
1234
1235

)
|u=0

±√G1234G1235

−G123

(the factorization of the discriminant comes from the Sylvester identity G123G12345 =
G

(
1234
1235

)2 − G1234G1235). Notice that, by condition (P4) of Theorem 2.1, G1234G1235 >

0, and therefore u is a well defined real number. Moreover, we can also determine
the sign without ambiguity: since the cycles C1,C2,C4 and C1,C5,C2 of P have the
same orientation, condition (M4) in Theorem 2.1 implies that G

(
1234
1235

)
> 0. From this

inequality we obtain that −G123u < G
(
1234
1235

)
|u=0

(expanding G
(
1234
1235

)
as a polynomial in

u), and this finally implies that

u =
G

(
1234
1235

)
|u=0

−√G1234G1235

−G123
.

Expanding G
(
1243
1245

)
as a polynomial in u and substituting u by the value obtained

above (and using a suitable Sylvester identity), we get that

G
(
1243
1245

)
=

G
(
123
152

)
G1234 + G

(
123
124

)√
G1234G1235

−G123
. (2)

We still consider two subcases, according to G123 being negative or positive. Then,
Lemma 3.2 below shows that, in the first case, A ∈ S12 ∪S ′

12, and in the second case,
A ∈ S12 (for the second part, notice that the conditions G

(
1243
1523

)
< 0 and G

(
124
152

)
> 0 are

included in conditions (M4) and (M3), respectively).
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Case B: G123 = 0. We first notice that, in this case, the value of u is equal to
det G|u=0

2G(1234
1235)|u=0

, where the denominator is different from zero: indeed, G
(
1234
1235

)
|u=0

= G
(
1234
1235

)
,

and G
(
1234
1235

) 6= 0 because G1234, G1235 are both different from zero (see Section 2.1(a)).
Then, Lemma 3.3 below shows that A ∈ S12.

Lemma 3.2. Let G be a matrix as in (1). Suppose that G123 6= 0 and that

G1234, G1235 are negative, and let u =
G(1234

1235)|u=0
−√G1234G1235

−G123
.

(a) Suppose that G123 < 0; then G
(
1243
1245

)
< 0 if and only if A ∈ S12 ∪S ′

12.
(b) Suppose that G123 > 0; then G

(
1243
1245

)
< 0 if and only if A ∈ S12 ∪S ′′

12, where

S ′′
12 =

{
G

(
123
124

) ≥ 0, G
(
123
152

) ≤ 0

G
(
123
124

)2
+ G

(
123
152

)2
> 0

}
.

Furthermore, if G12 > 0, G
(
1243
1523

)
< 0 and G

(
124
152

)
> 0, then G

(
1243
1245

)
< 0 implies

that A ∈ S12.

Proof. (a) From the expression (2) for G
(
1243
1245

)
, in the case G123 < 0 we have

that G
(
1243
1245

)
< 0 is equivalent to

G
(
123
124

)√
G1234G1235 < −G

(
123
152

)
G1234, (3)

so we will prove that (3) is equivalent to A ∈ S12 ∪S ′
12. If A ∈ S ′

12, then (3) is readily
satisfied. If A ∈ S12, then we still have to consider the cases where G

(
123
124

)
and G

(
123
152

)
are

both positive or both negative. Taking into account that G1234 and G123 are negative,
and using some Sylvester inequalities, we easily obtain the result.

The proof of the converse is also straightforward by studying the different possibili-
ties of signs for G

(
123
124

)
and G

(
123
152

)
.

(b) The first part is proved in a completely analogous way as part (a). Then, it
is enough to prove that, with the conditions we have added, G

(
1243
1245

)
< 0 implies that

G
(
123
124

)
G

(
123
152

)
> 0. This is clearly obtained from the equality

G
(
123
152

)
G

(
124
123

)
= −G12G

(
1243
1523

)
+ G123G

(
124
152

)
,

which is a modification (by changing files and columns) of a Sylvester identity. ¤

Lemma 3.3. Suppose that G12 > 0, G123 = 0, G1234 < 0, G1235 < 0 and G
(
1234
1235

)
>

0 and let u = det G|u=0

2G(1234
1235)|u=0

. Then G
(
1243
1245

)
is negative if and only if A ∈ S12.

Proof. From a Sylvester identity and from G123 = 0, we get that G12G
(
1234
1235

)
=

G
(
123
124

)
G

(
123
152

)
. By the hypothesis on the signs, we have that G

(
123
124

)
G

(
123
152

)
> 0. To finish,

we will prove that G
(
1243
1245

)
< 0 is equivalent to G

(
123
124

)
(G124G1235 −G125G1234) < 0. Let

us denote F1 = G124G1235 −G125G1234.
Substituting u by its value in G

(
1243
1245

)
and using that G

(
1234
1235

)
|u=0

> 0, we have that
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G
(
1243
1245

)
< 0 is equivalent to

−G
(
123
124

)
detG|u=0 + 2G

(
1234
1235

)
|u=0

G
(
1243
1245

)
|u=0

< 0. (4)

Let us call r to the last expression, which is the resultant, when G123 = 0, of the
polynomials detG and G

(
1243
1245

)
with respect to u. Calling R1 to the resultant of detG

and G
(
1243
1245

)
with respect to u, we have that (see Lemma 3.4 below)

R1 = −G123G
(
1243
1245

)2

|u=0
−G

(
123
124

)
r.

On the other hand, we show in Lemma 3.4 below that R1 factorizes as R1 = G1234F1.
Then, under our hypothesis G123 = 0 and G1234 < 0, we have that r < 0 is equivalent to
G

(
123
124

)
F1 < 0. Therefore we have proved the desired result. ¤

Lemma 3.4.

(a) Let F1 = G124G1235 −G125G1234. Then the following identity holds:

F1 = G
(
123
125

)
G

(
1234
1245

)
+ G

(
123
124

)
G

(
1235
1245

)
.

(In particular, the right-hand expression does not depend on u.)
(b) Let R1 be the resultant of detG and G

(
1243
1245

)
with respect to u. Then R1 = G1234F1.

Proof. (a) To prove the first identity we use some standard Sylvester identities:

G
(
123
125

)
G

(
1234
1245

)
+ G

(
123
124

)
G

(
1235
1245

)

= G
(
123
125

)G
(
123
124

)
G

(
124
125

)−G
(
123
125

)
G124

G12
+ G

(
123
124

)G
(
123
124

)
G125 −G

(
123
125

)
G

(
125
124

)

G12

=
−G

(
123
125

)2
G124 + G

(
123
124

)2
G125

G12
= G124G1235 −G125G1234 = F1.

(b) We compute the resultant R1 as the determinant of the Sylvester matrix




−G123 −2G
(
1234
1235

)
|u=0

det G|u=0

−G
(
123
124

)
G

(
1243
1245

)
|u=0

0

0 −G
(
123
124

)
G

(
1243
1245

)
|u=0


 .

Then

R1 = −G123G
(
1243
1245

)2

|u=0
+ G

(
123
124

)(− 2G
(
1234
1235

)
|u=0

G
(
1243
1245

)
|u=0

+ G
(
123
124

)
det G|u=0

)

=(i) −G123

(
G1234G1245|u=0

−G124 detG|u=0

)

+G
(
123
124

)(
2G1234G

(
1235
1245

)
|u=0

−G
(
123
124

)
detG|u=0

)
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= G1234

(
−G123G1245|u=0

+ 2G
(
123
124

)
G

(
1235
1245

)
|u=0

)

+det G|u=0

(
G123G124 −G

(
123
124

)2
)

=(ii) G1234

(
G

(
123
125

)
G

(
1234
1245

)
|u=0

+ G
(
123
124

)
G

(
1235
1245

)
|u=0

−G12 detG|u=0

)

+det G|u=0G12G1234

= G1234

(
G

(
123
125

)
G

(
1234
1245

)
|u=0

+ G
(
123
124

)
G

(
1235
1245

)
|u=0

)

=(iii) G1234F1,

where we have used several Sylvester identities, some of them easily recognizable; the
others are: for (i) we have used the identity

−G
(
123
124

)
G12345 = −G1234G

(
1235
1245

)
+ G

(
1234
1245

)
G

(
1235
1234

)
,

which is obtained by applying the Sylvester identity to the submatrix G
[
123
124

]
of the matrix

G[12345]; for (ii) we have used the identity

G12G12345 = G123G1245 −G
(
123
124

)
G

(
1235
1245

)
+ G

(
123
125

)
G

(
1234
1245

)
,

which is obtained by applying the Sylvester identity to G[12] as a submatrix of G. Finally,
(iii) is obtained from (a). ¤

3.2. Proof of the sufficient conditions.
Let now A = (a12, . . . , a35) be a point in A CH . We begin by constructing a matrix

G as (1), where u has either the value given in Lemma 3.2 or in Lemma 3.3, depending
on G123 being different from or equal to zero. In both cases the hypothesis A ∈ S H

0

implies that the value given to u is a well defined real number.
Next, we will check that the matrix G satisfies all the conditions in Theorem 2.1;

this will guarantee the existence of the desired prism.
(I) First, by the choice of u, we have that detG = 0. Since A ∈ S H

0 , we have the
signs of minors G12 > 0 and G1234 < 0, which imply that the signature of G is (3, 1).

(II) Conditions (P4) and (M4) are equivalent to the matrix
∧4

G of minors of order
4 of G having the following signs (see Figure 1 to check the orientations of the maximal
cycles).

1234 1235 1245 1345 2345
1234 − + + − +
1235 + − − + −
1245 + − − + −
1345 − + + − +
2345 + − − + −

By the hypothesis A ∈ S H
0 , we have G1234 < 0 and G1235 < 0; on the other hand,
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since det G = 0, the matrix
∧4

G has rank 1, and therefore we can find out the signs of
all its entries from the signs of some of them. For instance, it is enough to prove that

G
(
1243
1245

)
< 0

(
equivalent to G

(
1234
1245

)
> 0

)

G
(
2341
2345

)
< 0

(
equivalent to G

(
1234
2345

)
> 0

)

G
(
1435
1432

)
< 0

(
equivalent to G

(
1345
1234

)
< 0

)

G
(
1523
1524

)
< 0

(
equivalent to G

(
1235
1245

)
< 0

)
.

By the symmetries of the prism, it is enough to show one of the above inequalities.
We will prove that G

(
1243
1245

)
< 0. If G123 6= 0, then this is obtained from Lemma 3.2.

If G123 = 0, to apply Lemma 3.3, we first need to have G
(
1234
1235

)
> 0. But this holds

because, since G123 = 0, then G
(
1234
1235

)
=

G(123
152)G(124

123)
G12

and A ∈ S12.
(III) Since A ∈ S C

0 , all principal minors corresponding to vertices of P are positive.
This implies condition (P3).

(IV) To prove (M3), by the geometric interpretation of Section 2.1(b), it is enough
to show that the mixed minors G

(
124
234

)
, G

(
124
143

)
, G

(
152
135

)
, G

(
152
253

)
and G

(
124
152

)
are all positive.

This is true for the first four minors since A ∈ S C
0 . We study the sign of the remaining

minor G
(
124
152

)
. We distinguish two cases, depending whether A is in R+ or in R−.

Case A: A ∈ R+. We use the identity

2G
(
123
124

)
G

(
124
125

)
G

(
125
123

)
= −G12G123G1245 + G125G

(
123
124

)2
+ G124G

(
123
125

)2
,

which is obtained applying the Sylvester identity to the submatrix G[12] of G and using
that detG = 0. We already know that G12, G125, G124 are positive, G1245 ≤ 0, and
G123 ≥ 0; since A ∈ S12, we have that G

(
123
124

)
and G

(
123
125

)
are not zero. Therefore, the

right-hand side of the previous expression is strictly positive. On the other hand, also
since A ∈ S12, we have G

(
123
124

)
G

(
123
152

)
> 0, and therefore G

(
124
152

)
must be positive.

Case B: A ∈ R−. We expand G
(
124
125

)
= −G

(
124
152

)
as a polynomial in u and substitute

u by its value:

G
(
124
125

)
=

G12G
(
1234
1235

)
|u=0

−G12

√
G1234G1235 −G123G

(
124
125

)
|u=0

−G123
.

Since −G123 > 0, we must show that the numerator in the previous expression is negative.
Using a Sylvester identity, this is equivalent to

−G
(
123
125

)
G

(
124
123

)
< G12

√
G1234G1235. (5)

The right-hand side of the last expression is positive. We study the sign of the left-hand
side in the cases A ∈ S12 and A ∈ S ′

12.
B(i) If A ∈ S ′

12, then G
(
124
123

) ≤ 0 and −G
(
123
125

) ≥ 0, so that (5) is automatically
satisfied.
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B(ii) If A ∈ S12, then −G
(
123
125

)
G

(
124
123

)
> 0, so that (5) is equivalent to

G
(
123
125

)2
G

(
124
123

)2
< G2

12G1234G1235.

So we must prove that the expression F2 = G2
12G1234G1235 −G

(
123
125

)2
G

(
124
123

)2
is positive.

First, we use Sylvester identities to change mixed minors into principal minors, and we
get

F2 = G123(−G123G124G125 + G12G124G1235 + G12G125G1234) = G123R2,

where we have denoted by R2 the expression into brackets.
On the other hand, under the hypothesis that G123 < 0 and G124, G125 > 0, we have

that

R2 < R2 −G123G124G125 = −G124G
(
123
125

)2 −G125G
(
123
124

)2
,

where again we have used Sylvester identities. Then, we obtain that R2 < 0, and
therefore, F2 > 0.

This completes the proof of the sufficient conditions and hence of Theorem 3.1.

3.3. Spherical triangular prisms.
In the spherical case the result is as follows.

Theorem 3.4. The space of (cosines) of dihedral angles of spherical triangular
prisms is the subset A S = S S

0 ∩ (S ′′
12∪S ′′′

12 )∩ (S ′′
13∪S ′′′

13 )∪ (S ′′
23∪S ′′′

23 ) where we have
denoted by S S

0 , S ′′
12, etc., the following sets:

S S
0 =

{
aij ∈ (−1, 1)

G124 > 0, G1234 > 0, G1235 > 0

}
,

S ′′
12 =

{
G

(
123
124

) ≥ 0, G
(
123
152

) ≤ 0

G
(
123
124

)2
+ G

(
123
152

)2
> 0

}
,

S ′′′
12 =

{
G

(
123
124

)
G

(
123
152

)
> 0

G
(
123
124

)
(G124G1235 −G125G1234) > 0

}
;

and the other sets in an analogous way.

Proof. The proof is similar to the one of the Theorem 3.1. The entry u of

the Gram matrix has now the value u =
G(1234

1235)|u=0
+
√

G1234G1235

−G123
, and we must use an

appropriate modification of Lemma 3.2. ¤

3.4. Geometric comments.
In the previous theorems the necessary condition can also be proved by geometric

means: suppose, for instance, that P is a compact hyperbolic triangular prism; we will
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prove that the point A corresponding to its dihedral angles is in A CH . Conditions in
S H

0 ∩S C
0 are clear from Theorem 2.1.

Suppose that G123 ≥ 0. This means that the planes containing the faces C1, C2, C3

intersect in a finite or infinite point O of H3. There are two possibilities: either the
point O is “closer” to the face C4 than to the face C5 or it is “farther”.

Suppose we are in the first case. By looking at Figure 1, we can check that the cycles
C1,C2,C3 and C1,C2,C4 (and C1,C5,C2) have the same orientation, and then G

(
123
124

)
and

G
(
123
152

)
are positive, by Theorem 2.1 applied to the tetrahedra of faces C1,C2,C3,C4 and

C1,C2,C3,C5. Also, it is geometrically clear that the distance from the vertex V124 to
the face C3 is smaller than the distance from V152 to the same face. By Lemma 2.3(b),
we have that −G1243

G124
< −G1523

G152
, and this is equivalent to G124G1523 − G152G1243 < 0.

Therefore, A ∈ S12.
In the second case, C1,C2,C3 has different orientation than C1,C2,C4 (and

C1,C5,C2). Then, now G
(
123
124

)
and G

(
123
152

)
are negative; on the other hand, now we

have G124G1523 −G152G1243 > 0, so again A ∈ S12.
If G123 < 0, now the three planes above have a common orthogonal plane Π. If

this plane intersects the closed segment V124V152 then A ∈ S ′
12; otherwise we still have

A ∈ S12.
We can do the same study for the other edges E23 and E13, to get the complete

result.

3.5. Example.
We show a three dimensional slice of the space of dihedral angles (not the cosines)

of compact hyperbolic triangular prisms: we consider α12 = α23 = α31 = α, α41 = α42 =
α43 = β, and α51 = α52 = α53 = γ, and we analyze the conditions in Theorem 3.1. The
inequalities G1234 < 0 and G1235 < 0 are equivalent to

cos α >
1− 3 cos2 β

2
and cos α >

1− 3 cos2 γ

2
,

respectively. By the symmetry of this example of triangular prism, the subsets
S12,S13,S23 are equal, and so are S ′

12,S
′
13,S

′
23.

We can easily check that

S12 =
{

β >
π

2
, γ <

π

2
, β + γ < π

}
∪

{
β <

π

2
, γ >

π

2
, β + γ < π

}

S ′
12 =

{
0 ≤ β, γ ≤ π

2
, (β, γ) 6=

(
π

2
,
π

2

)}
.

The condition that G123 be negative, zero or positive is equivalent to 3α being respectively
less than, equal to or greater than π. Similarly, G124 > 0 and G125 > 0 (the remaining
minors in S C

0 are equal to these two) are equivalent to α + 2β > π and α + 2γ > π.
Finally, in the particular case we are studying, the conditions about the mixed minors in
S C

0 are automatically implied by G1234 < 0 and G1235 < 0.
In Figure 2 we show the subset of R3 obtained. It is apparent in this figure that the

space of dihedral angles is not convex. This illustrates the general result proved in [5]
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Figure 2. Three dimensional slice of the space of dihedral angles of compact
hyperbolic triangular prisms; the Andreev region is the inverted pyramid marked
in boldface.

that the space of dihedral angles of hyperbolic polyhedra of any fixed combinatorial type
is not convex. We can also see in Figure 2 that the region corresponding to α, β, γ ≤ π/2
is convex, as proved in Andreev’s Theorem.

4. Descendants of the tetrahedron.

Let P be an affine polyhedron and let V be a vertex of P . Consider a plane H

that intersects each edge incident to V in an interior point, and let H− be the closed
halfspace determined by H not containing V . Then we say that the polyhedron P ∩H−

is obtained from P by truncating V .
A tetrahedron’s descendant is a polyhedron P that can be obtained from a tetra-

hedron by successively truncating vertices. That is, there exists a chain of polyhedra
P4, P5, . . . , Pn = P where P4 is a tetrahedron and so that Pk is obtained from Pk−1 by
truncating a vertex. We call P4, P5, . . . , Pn a generating path for P . We label the faces of
P as C1, . . . , Cn, so that C1, . . . , C4 are the faces of P4 (labeled in some arbitrary way),
C5 is the new face appearing in P5 in the truncating process, etc.

We remark that a tetrahedron’s descendant is trivalent and that adjacent faces in
Pr are still adjacent in Pr+1. We will use the following lemma.

Lemma 4.1. Let P be a tetrahedron’s descendant, and P1, . . . , Pn a generating
path. Then, each r = 5, . . . , n determines uniquely four indices ir, jr, kr, sr smaller
than r so that the faces Cir

, Cjr
, Ckr

, Cr are pairwise adjacent, and so are the faces
Cir

, Cjr
, Ckr

, Csr
.

Proof. Clearly, Cir , Cjr , Ckr are the three faces incident to the vertex V of Pr−1

that is truncated to obtain Pr. If V was a vertex of the original tetrahedron, then Csr
is

the fourth face of that tetrahedron. Otherwise, V has appeared in the trucation process:
one of the faces incident to V , say Ckr

, is the truncating face, and the other two were
incident to the vertex that is truncated. In this case, Csr is the third face incident to
this vertex. ¤

If P is the combinatorial type of a tetrahedron’s descendant with n faces and αij ∈
(0, π) are numbers assigned to its edges, we construct the n× n symmetric matrix G =
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G(α, x̄) whose entry (i, j) is equal to: − cos αij if the faces Ci,Cj of P are adjacent; an
unknown xij , otherwise.

Proposition 4.2. Let P be the combinatorial type of a tetrahedron’s descendant
and let αij ∈ (0, π) be numbers assigned to its edges. With the notation of Lemma 4.1,
suppose that for each r ≥ 4, it holds Girjrkrr < 0 (where for r = 4 we set i4 = 1, j4 =
2, k4 = 3). Then there exists at most one value x̄0 for the vector of unknowns such that

(i) the matrix G(α, x̄0) has rank 4 and signature (3, 1);
(ii) for each r > 4 then G

(
irjrkrr
irjrkrsr

)
> 0.

Proof. (i) Consider r = 5, . . . , n. By Lemma 4.1, the submatrix G[irjrkrsrr] has
exactly one unknown, namely xsrr. In the same way as we did for the triangular prism
(see Section 3.2), we assign a value to xsrr with the condition that the determinant of
G[irjrkrsrr] be equal to zero. Explicitly:

• if Girjrkr = 0, the unique possible value is:

xsrr =
Girjrkrlrsr|xsr=0

2G
(

irjrkrr
irjrkrsr

)
|xsrr=0

;

• if Girjrkr
6= 0, there are two possible values for xsrr, but only one of them satisfies

the further condition G
(

irjrkrr
irjrkrsr

)
> 0, given in (ii). This value is

xsrr =
G

(
irjrkrs
irjrkrr

)
|xsrr=0

−√
GirjrkrsGirjrkrr

−Girjrkr

.

(In both cases the value assigned is a well defined real number because Girjrkrsr and
Girjrkrr are strictly negative.)

There are still some unknowns in G. Assuming we have assigned a value to all the
unknowns of the submatrix G[1 . . . r− 1], then for each t < r, t 6= ir, jr, kr, sr, we assign
to the unknown xtr the unique value so that G

(
irjrkrsr r
irjrkrsr t

)
= 0, that is

xtr =
−G

(
irjrkrsr r
irjrkrsr t

)
|xtr=0

Girjrkrsr

. ¤

Once we have the matrix G(α, x̄0) constructed above, to decide the existence of a
hyperbolic polyhedron with the combinatorial type of P and with dihedral angles αij , we
just need to check whether this matrix satisfies or not all the conditions in Theorem 2.1.
Thus, we have

Theorem 4.3. Let P be the combinatorial type of a tetrahedron’s descendant and
let αi ∈ (0, π) be numbers assigned to its edges. Then there exists P ⊂ H3 with the same
combinatorial type as P and with dihedral angles αij if and only if

(i) for each r ≥ 4, Girjrkrr < 0;
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(ii) the matrix G constructed in Proposition 4.2 satisfies the conditions in Theorem
2.1 referred to P.

Moreover, the polyhedron P is unique up to hyperbolic isometry.

Proof. We only need to prove that if P is a hyperbolic polyhedron realizing
P and with dihedral angles αij , then its Gram matrix G(P ) coincides with the matrix
G(α, x̄0) constructed in Proposition 4.2, and this will follow if G(P ) satisfies conditions
(i) and (ii) of that proposition.

Clearly, G(P ) satisfies (i), but we remark that (ii) is not automatically deduced from
condition (M4) of Theorem 2.1 because, in general, neither the faces Cir

,Cjr
,Ckr

,Cr nor
Cir

,Cjr
,Ckr

, Csr
are maximal oriented cycles. Therefore, we need the following extra

argument.
For the given polyhedron P = H−

1 ∩ · · · ∩H−
n , we consider the auxiliary polyhedron

P ′ = H−
ir
∩ H−

jr
∩ H−

kr
∩ H−

sr
∩ H−

r ; then, P ′ is a (not necessarily compact) triangular
prism, with sr, r the indices of the non-adjacent faces. Therefore, by Theorem 2.1 applied
to P ′, it holds G

(
irjrsrkr

irr jrkr

)
< 0; hence, changing rows and columns we have the result. ¤
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