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We highlight selected results of recent development in the area of rigorous computations
which use interval arithmetic to analyse dynamical systems. We describe general ideas and
selected details of different ways of approach and we provide specific sample applications
to illustrate the effectiveness of these methods. The emphasis is put on a topological
approach, which combined with rigorous calculations provides a broad range of new
methods that yield mathematically reliable results.
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1. Introduction

Considerable progress has been recently achieved in various applications of
rigorous numerical methods using interval arithmetic to the study of dynamical
systems. In particular, the combination of the interval arithmetic and some topo-
logical and graph algorithm techniques appears to be very successful for revealing
global aspects of dynamics in both ODEs and iterates of maps in a mathematically
rigorous manner. This article illustrates selected methods of this type and their
applications done by the authors and their collaborators.

In the subsequent sections, we discuss the following topics: In Section 2, we
show how a certain invariant set consisting of a periodic orbit and heteroclinic orbits
of a concrete three-dimensional system of ODEs can be captured by a topological
method using so-called h-sets and their covering relation. In Section 3, we describe
a constructive method which uses the Conley index theory for proving existence
of periodic orbits in ODE systems. Sections 4, 5 and 6 are devoted to the study

∗Z. Arai was partially supported by Grant-in-Aid for Scientific Research (No. 17740054).
†H. Kokubu was partially supported by Grant-in-Aid for Scientific Research (No. 17340045).
‡P. Pilarczyk was partially supported by the JSPS Postdoctoral Fellowship (No. P06039) at

the Department of Mathematics, Kyoto University, and by Grant-in-Aid for Scientific Research
(No. 1806039).



394 Z. Arai, H. Kokubu and P. Pilarczyk

of iterates of maps. In Section 4, we outline a method for giving a combinatorial
outer-approximation of the dynamics of iterates of maps, from which one can easily
obtain rigorous bounds on various types of dynamical information such as Morse
decomposition, the number of attractors, the Conley index of isolated invariant
sets, and bifurcations. A similar combinatorial representation can also be used to
prove the hyperbolicity of the dynamics, if the method is applied to the induced
maps on the tangent bundle, as illustrated in Section 5 in the case of the Hénon
map family. A variant of the combinatorial representation which also takes into
account the derivative of the map is described in Section 6 where it is applied to one-
dimensional quadratic maps to prove uniform expansion outside some neighborhood
of the critical point.

Throughout the paper, it is emphasized that the use of topological approach
is crucial, and, in particular, an algebraic topological method known as the homo-
logical Conley index theory provides a powerful tool, especially that this index can
be efficiently computed with the publically available CHomP software package [8]
which is based on the theory introduced in [20, 29, 36] (see also references therein).

Needless to say, the interval arithmetic is used as a basic tool for constructing
a rigorous outer enclosure of a map on subsets of the phase space, but for ODEs
only advanced integrators (like those included in the CAPD software package [7])
based on interval arithmetic yield satisfactory results.

Finally, the software implementation of most algorithms described here is freely
available for download with the source code distributed under the terms of the GNU
General Public License; see Sections 3, 4, 6 and references therein for the details.

Since the research on dynamical systems involves a wide variety of techniques
from various branches of mathematics, it would be impossible to gather all of the
recent achievements in the applications of rigorous numerics to this area in a short
survey paper. Therefore, we purposely omit some subjects and focus on the selected
ones. Moreover, we would like to point out that in addition to the discussed results,
there are also other important works in similar spirit which we do not mention here,
for example, [4, 11, 18]. See also a survey article of K. Mischaikow [28].

Acknowledgement. The results presented here have been achieved within
the framework of or inspired by our long-term collaboration with Konstantin
Mischaikow (Rutgers University, U.S.A.), Marian Mrozek (Jagiellonian University,
Poland) and several other scientists. We are grateful to all of them for joint work
and fruitful discussions.

2. Cocoon bifurcation for the Michelson system

We begin the overview by introducing a rigorous computational method for a
system of ODEs which involves both elementary application of interval arithmetic,
and advanced rigorous integration of trajectories as well. Combined with topologi-
cal arguments, this method can be used to prove the existence of an infinite cascade
of bifurcations of certain type.
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The Michelson system [25]

ẋ = y,

ẏ = z,

ż = c2 − y − 1
2
x2

(1)

is known as the travelling wave equation of the Kuramoto–Sivashinsky PDE, and
it also arises as the limit family of an unfolding of a codimension three nilpotent
vector field singularity (see [12]).

The Michelson system (1) satisfies the following as its basic properties:
• The time-reversiblity with respect to the involution R(x, y, z) = (−x, y,−z).
• Two equilibrium points for c > 0 at x± = (±

√
2c, 0, 0), both of which are of

saddle-focus type with dim(Wu(x+)) = dim(W s(x−)) = 2.
McCord [26] proved that there exists a unique transverse heteroclinic orbit

connecting x+ and x− in (1) for sufficiently large c, and that the equilibrium points
together with the heteroclinic orbit form the maximal bounded invariant set of (1).

When the parameter c decreases, it is numerically observed in [25, 24] that
(1) exhibits an infinite sequence of heteroclinic bifurcations due to the tangency of
Wu(x+) and W s(x−), each of which creates a pair of new transverse heteroclinic
orbits. Also numerically, the sequence of values of c for which these bifurcations
occur converges to c̄ ≈ 1.2662, at which there appears a saddle-node bifurcation
that creates a periodic orbit γ∗. These sequences of bifurcations were numerically
studied by Lau [24] who called them the “cocoon” bifurcation.

Later, Dumortier, Ibáñez and the second author of this paper [13] studied the
cocoon bifurcation, and proved that its occurrence can be explained by the presence
of a special invariant set called the cusp-transverse heteroclinic chain, which is
defined below. However, the question of whether the Michelson system indeed has
the cusp-transverse heteroclinic chain remained open until very recently [23]. In
this section, we show how such a question can be answered by the use of rigorous
numerical computation.

Theroughout this section, let Xλ be a one-parameter family of vector fields
on R

3 having the same basic properties as (1); namely, the time-reversibility with
respect to the involution R and the presence of the saddle-focus equilibrium points
x±. (See (H1) and (H2) in [13] for the detail.)

Definition 2.1 (see [13, Definition 1.3]). We say that the family Xλ exhibits
a cocooning cascade of heteroclinic tangencies centered at λ∗, if there exists a closed
solid torus T with x± /∈ T and a monotone infinite sequence of parameters λn

converging to λ∗, for which the corresponding vector field Xλn
has a tangency of

Wu(x+) and W s(x−) such that the heteroclinic tangency orbit intersects with T

and has its length within T tending to infinity as n → ∞.
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Definition 2.2 (see [13, Definition 1.4]). The family Xλ has a cusp-
transverse heteroclinic chain (CTHC for short) at λ = λ0, if the following three
conditions hold:
(C1) Xλ0 has a saddle-node periodic orbit γ∗ which is symmetric under the in-

volution R. Here the saddle-node periodic orbit is meant by a periodic orbit
whose Poincaré map has the unity as its eigenvalue. Under the presence of the
reversibility, this implies that the other eigenvalue of the linearized Poincaré
map is also the unity.

(C2) The saddle-node periodic orbit γ∗ is generic and generically unfolded in Xλ

under the reversibility with respect to R. Here the genericity means that some
of the derivatives of the Poincaré map for the saddle-node periodic orbit are
non-zero, see [13] for more details.

(C3) Wu(γ∗) and W s(x−), as well as W s(γ∗) and Wu(x+), intersect transversely,
where Wu(γ∗) and W s(γ∗) stand for the stable and unstable sets of the non-
hyperbolic periodic orbit γ∗.

Fig. 1. The stable and unstable set of the saddle-node periodic orbit on the Poincaré

section.

Theorem 2.3 (see [13, Theorem 1.5]). Let Xλ be a smooth family of re-
versible vector fields on R

3 as above. Suppose that at λ = λ0 the corresponding
vector field Xλ0 has a cusp-transverse heteroclinic chain. Then the family exhibits
a cocooning cascade of heteroclinic tangencies centered at λ0.

In order to prove the existence of a CTHC in (1), one has to verify the con-
ditions (C1)–(C3). All but (C3) are relatively easy to check by computation with
the interval arithmetic, but rigorous enclosure of the stable and unstable sets is
not enough to verify the transversality in (C3). Nevertheless, we can prove the
existence of a CTHC and obtain the following theorem:
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Theorem 2.4 (see [23]). The Michelson system (1) exhibits a cocooning
cascade of heteroclinic tangencies centered at a

c∞ ∈ [1.2662323370670545, 1.2662323370713253].

The main idea of the proof of this theorem is to replace the condition (C3) by
its topological version:
(C3t) Wu(γ∗) and W s(x−), as well as W s(γ∗) and Wu(x+), intersect. Moreover,

these intersections are topologically transverse.
Notice that the proof of Theorem 2.3 in [13, Theorem 1.5] uses topological argu-
ments, like the intermediate value theorem, and hence it remains valid even if
(C3) is replaced by (C3t). Therefore, once we verify the weaker condition (C3t),
we can conclude the existence of a cocooning cascade of heteroclinic tangencies
centered at c∞.

For the verification of (C1, C2, C3t), we use rigorous numerical methods devel-
oped by the CAPD group [7, 41, 42]. The main tool for the verification is a method
involving so-called h-sets and their covering relations. An h-set is a box-like struc-
ture which carries topological information of dynamics similar to the hyperbolicity.
The covering relation from one h-set to another guarantees that the hyperbolic-like
behavior can be carried over between these h-sets. See [40] and references therein
for more details about the h-sets and covering relations. Fig. 2 shows some of the
h-sets used in the proof. Notice that the figure is drawn on a cross section of the
saddle-node periodic orbit which corresponds to the point v∞.

Fig. 2. The h-sets T , H1, H2. The curve indicates the unstable set W u(v∞) of the saddle-

node periodic point v∞ of the Poincaré map which forms a horizontal disk in H2.

For the verification of the existence of a CTHC, one constructs h-sets that
contain pieces of the stable and unstable manifolds of the equilibrium points and
the saddle-node periodic orbit in such a way that these h-sets satisfy good covering
relations that lead to a nice transverse intersection. Since the saddle-node periodic
orbit is not hyperbolic, it is not straightforward how to carry out this strategy. For
this purpose, we use two additional ideas in [23]: h-sets with cones and a Lyapunov
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function near the saddle-node periodic orbit. The former carries the information on
the derivative of the dynamics in the form of cones, and thus controls how a piece of
stable or unstable manifolds can be mapped nicely to the next h-set. The latter can
give some monotonicity property of a piece of the stable and unstable sets of the
non-hyperbolic saddle-node periodic orbit, which helps to prove that these pieces
are properly contained in the constructed h-sets. Combining this information, we
can prove that certain part of the stable manifold of the hyperbolic equilibrium
point x− intersects topologically transversely, in an h-set, with the unstable set of
the saddle-node periodic point, as it is shown in Fig. 3. See [23] for the detailed
proof and related information.

Fig. 3. Numerical illustration of topologically transverse intersections of intermediate
h-sets H2, H3, H4 and W s(x−) under the Poincaré map P 4(c∞, · ) along the

saddle-node periodic orbit, which is one of the essential steps for the proof of

Theorem 2.4.

Finally, we remark that the above methods are general and can be applied to
other systems which exhibit a similar bifurcation.

3. Periodic trajectories in ODEs

Advanced numerical methods for rigorous integration of ODEs combined with
topological tools (in particular, the Conley index) can be used to develop construc-
tive methods for proving the existence of certain types of invariant sets for flows.
In this section we describe an approach introduced in [33, 34, 35] for proving the
existence of periodic trajectories.

3.1. Introduction
Assume we have an ordinary differential equation

ẋ = f(x), (2)

where f is a C1-class vector field in R
n. Suppose that numerical simulations indicate

the existence of a periodic trajectory which seems to be a hyperbolic orbit, and we
would like to prove the existence of a periodic trajectory near the observed orbit.
A rough approximation of this trajectory is a starting point for an algorithm which
constructs a possibly small neighborhood of this set satisfying certain assumptions
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used further to prove that it contains a periodic trajectory indeed. As it will be
pointed out in the sequel, limited amount of input is necessary from the user, and
all the remaining computations are performed automatically. The theoretical part
involves the Conley index theory [9] and will be explained below.

3.2. Preliminaries
If f : R

n → R
n is a C1-class vector field which is bounded by a linear function

for large arguments then the equation (2) induces a flow ϕ on R
n. We can make

this assumption without loss of generality, because we are only interested in the
dynamics on some bounded region in R

n.
A set S ⊂ R

n is called invariant with respect to the (continuous or discrete)
dynamical system ϕ if ϕ(S, T ) = S, where T = R or Z, respectively. The invariant
part of a set N ⊂ R

n, denoted as inv(N,ϕ), is defined as its largest invariant subset
with respect to ϕ. If ϕ is a discrete dynamical system (with T = Z) and f = ϕ( · , 1)
is its generator then inv(N,ϕ) is also denoted as inv(N, f). The set N is called an
isolating neighborhood if N is compact and inv(N,ϕ) ⊂ int N .

A compact subset Ξ of an (n − 1)-dimensional hyperplane P is called a local
section for the flow ϕ on R

n induced by the equation (2) if the vector field f is
transverse to P on Ξ . A local section Ξ is called a Poincaré section for ϕ in an
isolating neighborhood N if Ξ ∩ N is closed and for every x ∈ N there exists t > 0
such that ϕ(x, t) ∈ Ξ . If such a section exists for N then we say that N admits a
Poincaré section.

3.3. The Conley index
The definition of the Conley index [9] for flows (valid also for semiflows in

which only forward trajectories are well-defined) is based on the notion of an index
pair (see Fig. 4).

Fig. 4. Sample index pairs for some fixed points in R
2. P2 is indicated in dark gray,

P1 \ P2 in light gray.

Definition 3.1. Let ϕ be a flow on R
n. The pair of compact sets (P1, P2)

such that P2 ⊂ P1 is called an index pair if the following properties hold true:
(1) if x ∈ P1 and ϕ(x, s) 	∈ P1 for some s > 0 then there exists t ≥ 0 such that

ϕ(x, [0, t]) ⊂ P1 and ϕ(x, t) ∈ P2,
(2) if x ∈ P2 and ϕ(x, [0, t]) ⊂ P1 then also ϕ(x, [0, t]) ⊂ P2,
(3) inv(cl(P1 \ P2), ϕ) ⊂ int(P1 \ P2).
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The Conley index of the index pair (P1, P2) is the homotopy type of the pointed
quotient space (P1/P2, [P2]). This index is independent of the choice of the index
pair for the isolated invariant set S := inv(cl(P1 \ P2), ϕ), and thus one can speak
of the Conley index of an isolated invariant set (or of an isolating neighborhood).
Among many useful properties of the index, the most basic one is that if the index
is non-trivial then S 	= ∅.

By applying the cohomology functor to the Conley index, one obtains the
cohomological Conley index which is the relative cohomology H∗(P1, P2) of the
index pair. If both P1 and P2 are compact polyhedra then without loss of generality
one can compute the simpler homology of (P1, P2) instead, and this can be done
by efficient algorithms and software [7, 8, 20] if P1 and P2 are sets of special type
(cubical sets, see Section 3.5).

In the case of discrete dynamical systems, there are several generalizations of
the definition of the Conley index. Below we introduce a definition based on [30]
with the index pairs as defined in [38] (this definition is also valid for semidynamical
systems, see Section 4):

Definition 3.2. Let ϕ be a discrete dynamical system on R
n, and f :=

ϕ( · , 1) its generator. The pair of compact sets (P1, P2) such that P2 ⊂ P1 is called
an index pair if the following properties hold true:
(1) f(P1 \ P2) ⊂ P1,
(2) f(P2) ∩ P1 ⊂ P2,
(3) inv(cl(P1 \ P2), f) ⊂ int(P1 \ P2).

The properties (1) and (2) ensure that the map

fP : (P1, P2) → (P1 ∪ f(P2), P2 ∪ f(P2))

is well defined and that the excision property (P1 ∪ f(P2)) \P1 = (P2 ∪ f(P2)) \P2

holds true. As a consequence, the inclusion map

iP : (P1, P2) → (P1 ∪ f(P2), P2 ∪ f(P2))

is an excision for the Alexander–Spanier cohomology, which implies that i∗P is an
isomorphism, and therefore, the index map

I∗P := f∗
P ◦ (i∗P )−1 : H∗(P1, P2) → H∗(P1, P2)

is well defined. The cohomological Conley index of (P1, P2) is defined as the Leray
reduction (see [30]) of (H∗(P1, P2), I∗P ).

As in the case of flows, the remark on computing the homological (instead
of cohomological) Conley index is also valid here. Note that the algorithms in [8,
29, 36] are capable of computing the homomorphism induced in homology by a
continuous map between cubical sets.
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3.4. The time-t discretization of a flow
Given t > 0, the time-t discretization of the flow ϕ on R

n is the discrete
dynamical system defined as

ϕt : R
n × Z � (x, τ) → ϕ(x, τt) ∈ R

n. (3)

Efficient rigorous numerical methods exist for integrating vector fields in R
n

which can be used to compute an outer approximation of ϕt(Q) for a rectangular
set Q ⊂ R

n; see [7] for a sample effective implementation of such methods.
The following two results, proved in a more general setting in [32] as Theorem 1

and Corollary, state the correspondence between isolated invariant sets with respect
to the flow ϕ and its time-t discretization ϕt, and relate their Conley indices:

Theorem 3.3. For a flow ϕ in R
n and S ⊂ R

n the following three conditions
are equivalent:
(1) S is an isolated invariant set with respect to ϕ,
(2) S is an isolated invariant set with respect to ϕt for all t > 0,
(3) S is an isolated invariant set with respect to ϕt for some t > 0.

Theorem 3.4. The cohomological Conley index of an isolated invariant set
with respect to a flow ϕ coincides with the corresponding index with respect to the
discrete dynamical system ϕt for any t > 0.

Moreover, the following lemma proved in [33] indicates an important feature
of isolating neighborhoods for the time-t discretization of a flow:

Lemma 3.5. Let N be an isolating neighborhood with respect to a discretiza-
tion ϕt of the flow ϕ. Then N is an isolating neighborhood with respect to the flow
ϕ and inv(N,ϕt) = inv(N,ϕ).

These results imply that the problem of finding an isolating neighborhood for a
flow and computing its Conley index can be replaced by the same task for its time-t
discretization. In what follows, it will be shown that the latter can be completed
algorithmically in a constructive way.

3.5. Cubical sets and combinatorial maps
A class of algorithmically representable subsets of R

n can be defined with the
use of a rectangular grid in R

n. For fixed positive numbers d1, . . . , dn, the set

H := {[d1k1, d1(k1 + 1)] × · · · × [dnkn, dn(kn + 1)] : ki ∈ Z} (4)

is formally called a grid in R
n, and elements of H are n-dimensional hypercubes,

further called cubes for short.
If A ⊂ H is finite then the union of the elements of A is denoted by |A| and is

called a cubical set. We say that A ⊂ H represents |A| ⊂ R
n. A minimal cover of

an arbitrary set A ⊂ R
n is defined as {Q ∈ H : Q ∩ A 	= ∅}; if A is bounded then

its minimal cover represents a cubical set.
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If X ,Y ⊂ H are finite then any multivalued map F : X � Y (which maps each
element of X to a subset of Y) is called a combinatorial map. Such a map is called
a representation of a continuous map f : |X | → |Y| if for all Q ∈ X

f(Q) ⊂ int|F(Q)|. (5)

The notion of an index pair can be carried over to the combinatorial setting.

Definition 3.6. Let F be a combinatorial map. The pair (P1,P2) of finite
subsets of H such that P2 ⊂ P1 is called a combinatorial index pair if the following
properties hold true:
(1) F(P1 \ P2) ⊂ P1,
(2) F(P2) ∩ P1 ⊂ P2.

Proposition 3.7 (see [35]). If F is a representation of f := ϕ( · , 1) for
some discrete dynamical system ϕ, and (P1,P2) is a combinatorial index pair for
F then (|P1|, |P2|) is an index pair for ϕ.

If F satisfies some additional assumptions then F can be used to compute the
homomorphism induced in homology by the map f on the index pair (see [29, 36]),
and thus to compute the homological Conley index with respect to f . In [33, 35], an
algorithm is developed for the construction of a combinatorial index pair (P1,P2)
such that P1 \ P2 contains an apriori given set Q ⊂ H.

3.6. Main results
The main theorem upon which the result of this approach is based is a special

case of Corollary 1.4 in [27]:

Theorem 3.8. Assume N is an isolating neighborhood for the flow ϕ which
admits a Poincaré section. If N has the cohomological Conley index of some hyper-
bolic periodic orbit then inv(N,ϕ) contains a periodic orbit.

Given an approximate rough covering Q ⊂ H of a hypothetic periodic tra-
jectory observed in numerical simulations, one can use the algorithm for the con-
struction of a combinatorial index pair containing Q mentioned in Section 3.5 for
a representation F of the map ϕt computed with the use of the software [7] for
some apriori chosen t > 0. If the algorithm succeeds then it constructs a combina-
torial index pair (P1,P2) such that N := |P1 \P2| is an isolating neighborhood with
respect to ϕt, and the homological Conley index of N with respect to ϕt can be
automatically computed with algorithms available in [8, 29, 36]. By Lemma 3.5, N

is an isolating neighborhood also for the flow ϕ, and S := inv(N,ϕt) = inv(N,ϕ).
Moreover, the computed Conley index coincides with the Conley index of S with
respect to the flow ϕ. If this index is the same as the index of some hyperbolic
periodic orbit then it only suffices to verify the admittance of a Poincaré section to
conclude the existence of a periodic trajectory with respect to ϕ contained in N .
The latter stage of computations needs some additional input from the user and is
described in [33, 34, 35].
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The effectiveness of this approach for proving existence of periodic trajectories
in ODEs is illustrated in [33, 34, 35] by several examples, including the well-known
Vanderpol equations, Rössler equations, and Lorenz equations (see Fig. 5). For
the parameter values for which either attracting or unstable periodic trajectories
are numerically observed, an index pair is automatically constructed as described
above, the homological Conley index of this index pair is computed, and a Poincaré
section is defined and verified.

Fig. 5. Isolating neighborhoods constructed for a few stable periodic trajectories: One in

the Lorenz equations (left), and two in the Rössler equations for different param-

eter values (middle and right) where a period doubling bifurcation is observed.

3.7. Remarks and comments
Among the benefits of the method described in this section it is worth to

mention that it is stable with respect to small perturbations of the vector field.
Even more, the vector field itself does not need to be known exactly, a relatively
tight rigorous estimate is also sufficient. As a result of using this method, a bound
for the location of the periodic trajectory whose existence is proved is obtained
explicitly in terms of its isolating neighborhood in R

n, unlike in methods based on
the analysis of a Poincaré section alone.

Unfortunately, the stability type of the actual orbit whose existence is proven
with this approach cannot be determined, but this is a general feature of topological
methods. Another drawback of this method is its relatively high cost in terms of
computation time and memory usage, especially if applied to unstable periodic
orbits. Also the choice of various parameters of computations, like the grid sizes
di > 0 and the time t > 0, may be difficult and in general must be done by the
method of trial and error.

4. Combinatorial analysis of dynamics

The idea of subdividing a rectangular area in R
n into a finite number of blocks

using a rectangular grid and representing a continuous map in terms of a multi-
valued map on grid elements (see Section 3.5) gives means to represent such a map
as a graph, and then to apply fast graph algorithms for the automatic analysis of
dynamics. In particular, the dynamics can be easily decomposed into recurrent
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structures and the gradient-like part which allows further analysis of asymptotic
dynamics. The automatization of this process allows one to scan large sets of
parameters of a given family of dynamical systems to determine changes in dynamics
automatically and to search for “interesting” regions of parameters worth further
attention. In particular, [3] is a large project which benefits from these features,
and we are going to describe it in this section.

4.1. Introduction
Assume we have a family of continuous maps

f : R
n × R

d � (x, λ) �→ fλ(x) ∈ R
n (6)

and we are interested in the analysis of global dynamics generated by these maps
as the parameter λ is varied over R

d. Since we do not assume that the maps fλ

are homeomorphisms, we must work in a more general setting of a semidynamical
system in which only forward iterations are well-defined, and backward trajectories
may be either ambiguous or undefined.

With typical applications in mind, we restrict our attention to bounded rec-
tangular regions R ⊂ R

n and Λ ⊂ R
d, and we introduce finite rectangular grids H

and L in them (see Section 3.5). Then for each L ∈ L, a common combinatorial
representation FL valid for fλ on R for all λ ∈ L can be computed with the direct
use of interval arithmetic. In what follows, we describe how the dynamics repre-
sented by FL is analysed, and how the relations between results of this analysis for
FL and FK for adjacent parameter boxes L,K ∈ L are automatically determined to
provide a global overview of the dynamics of (6) for the entire parameter region Λ.

4.2. Graphs
Since graphs are going to be used to represent various structures throughout

this section, let us recall the definition of a graph. The pair G = (V,E) is called
a (directed) graph if V is a finite set and E ⊂ V × V . Elements of V are called
vertices, and elements of E are called edges. We say that the edge (v, w) goes from
v to w. In illustrations, edges are indicated as arrows pointing from an object that
represents v to the one for w. A path in the graph G is a finite sequence of vertices
v1, . . . , vn such that (vi, vi+1) ∈ E for all i = 1, . . . , n + 1. One can also speak of an
undirected graph if (v, w) ∈ E implies (w, v) ∈ E for all v, w ∈ V .

4.3. Conley–Morse decompositions
In a generic gradient flow on a 2-dimensional surface, the dynamics is very

simple to describe: There are several isolated critical points (stable and unstable
fixed points), and the remaining trajectories join one critical point with another.
It turns out that every dynamical system on a compact invariant subset of R

n can
be described in a similar way, but instead of critical points one must use (possibly
larger) isolated invariant sets:

Definition 4.1 (see [9]). Let ϕ : X × T+ → X be a semidynamical system.
A Morse decomposition of X is a finite collection of disjoint isolated invariant
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sets S1, . . . , Sn (called Morse sets) with strict partial ordering ≺ on the index set
{1, . . . , n} such that for every x ∈ X and every complete orbit γ through x there
exist indices i ≺ j such that γ(t) → Si and γ(−t) → Sj as t → ∞.

A Morse decomposition can be represented in terms of a directed graph G =
(V,E) where V = {S1, . . . , Sn} and (Si, Sj) ∈ E iff j ≺ i. This graph is called a
Morse graph. If each Morse set is assigned its Conley index then such a structure
is called a Conley–Morse decomposition, and the corresponding graph is called a
Conley–Morse graph. In order to represent the computed Morse decomposition in
a compact way, it is convenient to plot a Morse graph whose edges are determined
by the transitive reduction of the relation ≺ which is a minimal relation ≺′ whose
transitive closure retrieves ≺. This representation is used in Fig. 6.

4.4. Graph representation of dynamics
For each L ∈ L, a combinatorial representation FL : H � H of fλ in (6) can be

represented by means of a directed graph G = (V,E) where V = H and (v, w) ∈E iff
w ∈F(v). The analysis of G provides information on the asymptotic dynamics of fλ

represented by FL. For instance, each combinatorial invariant set defined as a set
S ⊂ H for which S ⊂ F(S)∩F−1(S) represents an isolating neighborhood |S| with
respect to fλ. Moreover, a combinatorial attractor defined as a set A⊂H such that
F(A) ⊂ A represents an isolating neighborhood |A| whose invariant part is stable
in the sense of Conley [9]: Every positive semitrajectory starting in some open
neighborhood of A (actually, in int|A|) approaches A (dist(fn

λ , A) → 0 as n → ∞).

4.5. Combinatorial Morse decompositions
Extensive analysis of the dynamics via the graph G can be obtained by com-

puting the strongly connected components of G, that is, maximal sets of vertices
C ⊂ V such that for each v, w ∈ C there exists a path from v to w with vertices
in C and also a path in the opposite direction (from w to v) through C. In [21] it
is shown that all the strongly connected components of G form isolating neighbor-
hoods for the union of all the chain recurrent sets of the dynamical system, and
thus can serve as a combinatorial Morse decomposition {Mi : i = 1, . . . , k}, for some
k > 0, which represents a family of isolating neighborhoods |Mi|. The sets Mi are
called combinatorial Morse sets. A partial order ≺ between the computed com-
binatorial Morse sets can be determined by the analysis of paths in G connecting
those sets: i ≺ j if i 	= j and there exists a path in G from any vertex in Mj to any
vertex in Mi. With the use of the graph G, a combinatorial Morse decomposition
can be computed by algorithms introduced in [3, 5] based on the standard DFS
(“depth-first search”) strategy. The complexity of these algorithms is linear (i.e.,
they are very fast).

The combinatorial Morse sets Mi can be used directly for the computation of
the Conley index using the approach introduced in [29] and refined in [36], where
each Mi gives rise to the pair (Mi∪F(Mi),F(Mi)\Mi) satisfying the conditions
for a combinatorial index pair (Definition 3.6) with respect to FL. In this way, a
combinatorial Conley–Morse decomposition can be effectively computed.
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Note that due to overestimates introduced in the map FL, the invariant part
of some isolating neighborhoods |Mi| may be empty; such sets are called spurious
Morse sets. An attempt in the algorithms is being made to find and eliminate these
sets by taking a refinement of the grid H and verifying whether the invariant part
of |Mi| computed with this refinement can be proved to be empty indeed.

4.6. Continuation and bifurcations
Let

(
M1

1, . . . ,M1
k1

,≺1
)

be a combinatorial Morse decomposition for FL1 and
let

(
M2

1, . . . ,M2
k2

,≺2
)

be a combinatorial Morse decomposition for FL2 , where
L1, L2 ⊂ Λ are such that L1 ∩ L2 	= ∅. We say that these decompositions are
equivalent if k := k1 = k2 and there exists a bijection b of the set {1, . . . , k} onto
itself such that M1

i ∩M2
j 	= ∅ iff j = b(i), and for no i, j one has i ≺1 j and

b(j) ≺2 b(i). In this situation we talk about continuation of combinatorial Morse
decompositions.

This definition provides a very weak notion of continuation; it is, in fact, the
continuation of isolating neighborhoods in the sense of Conley (see [9]). In partic-
ular, the lack of continuation suggests a substantial change in dynamics, but does
not necessarily imply one, because the perception of the dynamics is limited to the
finite resolution of the grid. Nevertheless, one can use the Conley index and trace
sequences of changes in combinatorial Morse sets over series of adjacent parameter
boxes in order to detect behaviors resembling certain types of bifurcations, like
period doubling or a saddle-node bifurcation, taking place at the level of isolating
neighborhoods.

4.7. Applications
The practicality of the approach based on the analysis of combinatorial Morse

decompositions is illustrated in [3] with the application of this method to the
2-dimensional overcompensatory Leslie population model and f : R

2 × R
4 → R

2

in (6) given by

f(x1, x2; θ1, θ2, κ, p) =
(
θ1x1 + θ2x2e−κ(x1+x2), px1

)
. (7)

This model and its biological relevance is discussed in [39] where detailed numerical
studies were conducted which indicate that this system exhibits a wide variety of
dynamical behaviors.

In [3], a bounded rectangular region R ⊂ R
2 is fixed which is proven in [39]

to contain the dynamics of interest, and bounded ranges of parameters θ1, θ2 and
p are considered. The parameter κ is a rescaling factor, so it is arbitrarily set to
0.1, like in [39]. The numerical analysis of the model done in [39] fixes p = 0.7 and
assumes θ1 = θ2 varying in the interval [10, 35] so that f defines a one-parameter
family of discrete semidynamical systems. In contrast to this, the method discussed
here allows to analyze the dynamics over full ranges of all paramters at the same
time, without the limitations of the ad hoc assumptions.

A sample result of computations with this method is illustrated in Fig. 6.
The parameter space (θ1, θ2) ∈ [10, 50]2 was subdivided into 64× 64 equal squares,
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and the other parameters were fixed as p = 0.7, κ = 0.1. The region R was sub-
divided into 4096 × 4096 rectangles of the same size, and a combinatorial Conley–
Morse decomposition was computed for each parameter box using this grid. In
the picture, adjacent boxes in the parameter space (θ1, θ2) with equivalent Morse
decompositions are plotted in the same shade of gray. The transitive reduction of
the Morse graph is illustrated for all the regions; a square indicates an attractor,
a filled circle corresponds to a Morse set with a nontrivial Conley index, and a
hollow circle indicates a Morse set with the trivial Conley index. In addition to the
information shown, the actual computations also provide the constructed isolating
neighborhoods |Mi|, rigorous estimates for the location of connecting orbits, upper
and lower bounds for the attraction basins of attractors, and the Conley indices of
all the constructed Morse sets.

Fig. 6. Sample result of computations for the Leslie population model discussed in

Section 4.7.

4.8. Remarks and comments
We would like to point out the fact that this method, based on outer ap-

proximations of families of maps, provides results which are stable under small
perturbations, and thus cannot detect features that are not characterized by open
conditions. In particular, the detection of bifurcations is limited, as it was argued
in Section 4.6.

However, this wide and robust approach provides a very effective method for
“scanning” comprehensive parameter ranges in search for changes in global dynam-
ics. An undisputable advantage is also that the family of maps (6) does not even
have to be defined by an explicit formula, a relatively tight rigorous approximation
suffices in this approach. All this decides on the high potential of this approach
and its wide applicability.
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5. Uniform hyperbolicity

Applying the combinatorial techniques developed in the previous section to
the analysis of the dynamics at the tangent bundle allows one to develop a rigor-
ous computational method for proving uniform hyperbolicity of discrete dynamical
systems. We briefly introduce this method in this section, and we refer the reader
to [1] for details.

5.1. Introduction
Consider the problem of determining the set of parameter values for which the

real Hénon map

Ha,b : R
2 → R

2 : (x, y) �→ (a − x2 + by, x) (a, b ∈ R)

is uniformly hyperbolic. If a dynamical system is uniformly hyperbolic, generally
speaking, we can apply the so-called hyperbolic theory of dynamical systems and
obtain many results on the behavior of the system. However, proving hyperbolicity
is a difficult problem even for such simple polynomial maps.

The first mathematical result about the hyperbolicity of the Hénon map was
obtained by Devaney and Nitecki [17]. They showed that for any fixed b, if a

is sufficiently large then the non-wandering set of Ha,b is uniformly hyperbolic
and conjugate to the full horseshoe map. Besides this uniformly hyperbolic full
horseshoe region, Davis, MacKay and Sannami [14] observed that there exist some
parameter regions in which the non-wandering set of the Hénon map is uniformly
hyperbolic. Their observation is based on numerical computations of the stable
and unstable manifolds, and although the mechanism of hyperbolicity is clear by
their observation, no mathematical proof of the uniform hyperbolicity has been
obtained so far.

Applying our method to the real Hénon map, we obtain a computer assisted
proof of the uniform hyperbolicity of Hénon map on many parameter regions in-
cluding those discussed by Davis et al. (see Theorem 1.1 and 1.2 of [1]).

Theorem 5.1 ([1, Theorem 1.1]). There exists a set P ⊂ R
2, which is the

union of 8943 closed rectangles, such that if (a, b) ∈ P then R(Ha,b) is uniformly
hyperbolic. The set P is illustrated in Fig. 7 (shaded regions). The complete list of
these rectangles can be found at http://www.cris.hokudai.ac.jp/arai/.

Here we denote by R(Ha,b) the chain recurrent set of Ha,b. The uniform
hyperbolicity of the chain recurrent set implies the R-stability, and therefore, the
theorem implies that no bifurcation of the chain recurrent set takes place on P .
Hence numerical invariants such as the topological entropy, the number of periodic
points, etc., are constant on each component of P .

Notice that the theorem claims nothing about parameter values outside P ; they
may be hyperbolic or non-hyperbolic. For verifying the hyperbolicity of hyperbolic
parameter values which is not contained in P , we need a longer computation.
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Fig. 7. Uniformly hyperbolic plateaus for the Hénon map.

We remark that Hruska [19] also constructed a rigorous numerical method for
proving hyperbolicity of the complex Hénon map. The main difference between
our method and Hruska’s method is that our method does not prove hyperbolicity
directly. Instead, we prove quasi-hyperbolicity, which is equivalent to uniform hy-
perbolicity under the assumption of chain recurrence. This rephrasing enables us
to avoid the computationally expensive procedure of constructing a metric adapted
to the hyperbolic splitting.

We emphasize that our method can also be applied to higher dimensional
dynamical systems. For example, a conjecture on the topology of the horseshoe
locus of the complex Hénon map has been verified with this method [2].

5.2. Hyperbolicity and quasi-hyperbolicity
First we recall the definition of uniform hyperbolicity. Let f be a diffeo-

morphism on a manifold M and Λ a compact invariant set of f .

Definition 5.2. We say that f is uniformly hyperbolic on Λ if TM |Λ splits
into a direct sum TM |Λ = Es ⊕ Eu of two Tf -invariant subbundles, and there
exist constants c > 0 and 0 < λ < 1 as well as a metric ‖ · ‖ on M , such that
‖Tfn|Es‖ < cλn and ‖Tf−n|Eu‖ < cλn hold for all n ≥ 0.

Unfortunately, this conventional definition is not computation-friendly. Ac-
cording to this definition, we must control constants c, λ and at the same time, we
also need to construct a metric adapted to the hyperbolic splitting.
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To avoid this difficulty, we introduce a weaker notion of hyperbolicity.

Definition 5.3. We say that f is quasi-hyperbolic on Λ if there is no bounded
orbit of Tf : TM |Λ → TM |Λ other than the orbit consisting of zero vectors.

It is easy to see that uniform hyperbolicity implies quasi-hyperbolicity. The
converse is false in general; however, if f |Λ is chain recurrent then they are
equivalent.

Theorem 5.4 ([6, 37]). Assume that f |Λ is chain recurrent, that is,
R(f |Λ) = Λ. Then f is uniformly hyperbolic on Λ if and only if f is quasi-
hyperbolic on it.

Note that the linearity of Tf in fibers implies that if {vi}i∈Z is a non-zero
bounded orbit of Tf , then so is its multiplication {μ · vi}i∈Z where μ is a non-
zero constant. Hence if f is not quasi-hyperbolic, any compact neighborhood N

of the zero-section of TM |Λ contains a non-zero bounded orbit. Therefore, quasi-
hyperbolicity is equivalent to saying that the zero section of TM |Λ is an isolated
invariant set with respect to Tf : TM |Λ → TM |Λ. Consequently, we have the
following more computation-friendly condition for quasi-hyperbolicity.

Proposition 5.5. Assume that N ⊂ TM |Λ is an isolating neighborhood with
respect to Tf : TM |Λ → TM |Λ and N contains the image of the zero-section of
TM |Λ. Then f is quasi-hyperbolic on Λ.

5.3. Algorithm
For simplicity, we assume that M = R

n and consider a family of diffeo-
morphisms fλ : R

n → R
n that depends on a d-dimensional parameter λ ∈ R

d.
We consider regions K ⊂ M = R

n, N ⊂ TM = R
2n and Λ ⊂ R

d, and then put
rectangular grids H, H̃ and L on K, N and Λ, respectively.

For a parameter set L ∈ L, we choose common combinatorial representations
FL and T FL of fλ and Tfλ, which are valid for all λ ∈ L. We denote their graph
representations by G(K,FL) and G(N, T FL). For a directed graph G, the combi-
natorial invariant set and the strongly connected components of G are denoted by
inv G and scc G.

Proposition 5.6. For any λ ∈ L, inv(K, fλ) ⊂ |inv G(K,FL)|. Further-
more, if R(fλ) ⊂ int K holds for all λ ∈ L, then we have R(fλ) ⊂ |scc G(K,FL)|
for all λ ∈ L. The same statements hold for Tfλ and G(N, T FL).

Now we describe our algorithm to prove quasi-hyperbolicity. The algorithm in-
volves the subdivision algorithm [16], that is, if it fails to prove quasi-hyperbolicity,
then it subdivides cubes in K and L to have a better approximation of the invariant
set, and repeats the whole step until it succeeds with the proof.

Algorithm 5.7 (quasi-hyperbolicity verification for a fixed parameter set).
(1) Find K such that R(fλ)⊂ int K holds for all λ∈L, and let N := K×[−1, 1]n.
(2) Replace K with |scc G(K,FL)|.
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(3) Replace N with N ∩ (K × [−1, 1]n).
(4) If |inv G(N, T FL)| ⊂ K × int[−1, 1]n then stop. Otherwise, replace N with

|inv G(N, T FL)| and refine the grids H and H̃ by bisecting all grid elements.
Then goto step (2).

Theorem 5.8. If Algorithm 5.7 stops, then fλ is quasi-hyperbolic on R(fλ)
for every λ ∈ L.

This theorem implies that if L contains a non-quasi-hyperbolic parameter
value, then Algorithm 5.7 never stops. Therefore, if we want to apply the method for
a large family of diffeomorphisms, the algorithm should involve an automatic selec-
tion of parameter values. We can also use the subdivision algorithm to realize such
a procedure. That is, we start with a large parameter set Λ with a trivial gird L =
{Λ}, and then inductively decompose Λ into smaller cubes. On each subdivision
level, we remove the cubes in L on which we have proved quasi-hyperbolicity.

Algorithm 5.9 (with adaptive selection of parameters).
(1) Let L= {Λ} and find K such that R(fλ)⊂ int K holds for all λ∈L. Let N :=

K × [−1, 1]n. Save the data of K and N make a link form Λ to these data.
(2) If L = ∅ then stop. Else, choose a parameter cube L ∈ L according to a certain

“selection rule” and load the data of K and N linked from L.
(3) Apply step (2), and (3) of Algorithm 5.7 once.
(4) If |inv G(N, T FL)| ⊂K × int[−1, 1]n then remove L from L and goto step (2).

Otherwise, bisect L into L0 and L1. Remove L from L, and add L0 and L1

to L. Subdivide the cubes in K and N and save these data. Make links from
L0 and L1 to these data, then goto step (2).

It follows from Theorem 5.8 that if the cube Li is removed in the procedure of
Algorithm 5.9, then Li consists of quasi-hyperbolic parameter values.

We did not specify the “selection rule” that appears in step (2) of Algo-
rithm 5.9. Various rules can be applied and the effectiveness of a rule depends
on a specific case [1].

5.4. Application to the Hénon map
Now we apply the method developed in Section 5.2 and Section 5.3 to the chain

recurrent set of the Hénon map.
To complete the step (1) of Algorithm 5.9, we need to know a priori the size of

R(Ha,b). Further, to apply Theorem 5.4, we also need to check that the dynamics
restricted to R(Ha,b) is chain recurrent. In the case of the Hénon map, this step is
straightforward. Let

R(a, b) :=
1
2
(
1 + |b| +

√
(1 + |b|)2 + 4a

)
,

S(a, b) := {(x, y) ∈ R
2 : |x| ≤ R(a, b), |y| ≤ R(a, b)}.

Then we can prove the following [17].
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Lemma 5.10. The chain recurrent set R(Ha,b) is contained in S(a, b). And
Ha,b restricted to R(Ha,b) is chain recurrent.

Next, we fix the parameter region to be investigated. Note that we only need
to consider the case b ∈ [−1, 1], because the inverse of the Hénon map Ha,b is
conjugate to the Hénon map Ha/b2,1/b, whose Jacobian is 1/b, and the hyperbolicity
of a diffeomorphism is equivalent to that of its inverse. Further, we can restrict our
computation to the case (a, b) ∈ [−1, 12] × [−1, 1], for otherwise it follows from the
proof of [17] that R(Ha,b) is hyperbolic or empty.

Therefore, we start with the parameter set (a, b) ∈ [−1, 12]× [−1, 1]. Let K :=
[−8, 8] × [−8, 8] and L = K × [−1, 1]2. Then Lemma 5.10 implies R(Ha,b) ⊂ int K

holds for these parameter values. By running Algorithm 5.9 with this initial data,
we can prove Theorem 5.1.

6. Rigorous estimates of uniform expansion

Another family of fast graph algorithms can be applied to obtain rigorous
bounds for the uniform expansion exponent in C1 maps of the interval outside
some critical neighborhood. The computed quantity is a rigorous lower bound for
the Lyapunov exponent which gives important information about the map on the
selected interval. An open neighborhood of critical points must be excluded from
these calculations, or otherwise the result is not computable.

The rough idea of this approach is to subdivide the complement of the critical
neighborhood into a finite number of small intervals which are then taken as vertices
in a graph. Edges connecting each pair of vertices related by the map are assigned
weights corresponding to a lower estimate of the derivative exponent for points
mapped from one interval to the other. Then algorithms which compute minimum
path weights or minimum average path weights can be used to obtain a lower bound
for the expansion exponent along trajectories. Details are explained in this section,
based on [15].

6.1. Introduction
Let f : I → I be a continuous map of the interval I ⊂ R, and let D ⊂ I be an

open set such that f is differentiable on I \ D and f ′(x) 	= 0 for x ∈ I \ D. The
set D is called a critical set. Fix some δ > 0 and let Δ be an open δ-neighborhood
of D; in particular, if D = {0} then Δ = (−δ, δ). In what follows, a constructive
computer-assisted method for proving the following theorem is described:

Theorem 6.1. There exist constants C, λ > 0 such that for every x and for
every n such that f i(x) /∈ Δ for all i = 0, . . . , n − 1 we have

|Dfn(x)| ≥ Ceλn. (8)

For the purpose of interval arithmetic computations, a subdivision of I \ Δ
into intervals is introduced. A finite collection of intervals I = {Ij : j = 1, . . . , K} is
called an admissible cover of I \Δ if int(Ii ∩ Ij) = ∅ for i 	= j and I \Δ ⊆

⋃K
j=1 Ij .
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6.2. Graph algorithms and the analysis of f

A directed graph G = (V,E) (see Section 4.2) equipped with the weight func-
tion w : E → R is called a weighted graph. Such a graph is called a representation
of f on I \ Δ if the following conditions are satisfied:
• V = I ∪ {Δ}, where I is an admissible cover of I \ Δ,
• the set of edges E contains all the pairs (I1, I2)∈I×V such that f(I1)∩I2 	= ∅,
• for all I1, I2 ∈ V , if f(I1) ∩ I2 	= ∅ then

w(I1, I2) ≤ min{log|Df(x)| : x ∈ I1 ∩ f−1(I2)}. (9)

Representing f in terms of a graph G satisfying these conditions provides a
straightforward relationship between the weight of a path in G and the derivative
along points whose orbit is described by this path. Namely, given a point x ∈ I \Δ
and a path (I0, . . . , In) in G such that f j(x) ∈ Ij , we have

log|Dfn(x)| =
n−1∑

j=0

log|Df(f j(x))| ≥
n−1∑

j=0

w(Ij , Ij+1). (10)

This observation implies the following result proved in [15]:

Proposition 6.2. If λ ∈ R is not greater than the mean weight of any cycle
in G, then there exists C > 0 such that

|Dfn(x)| ≥ Ceλn (11)

for any n > 0 and x ∈ I such that f i(x) /∈ Δ for all i = 0, . . . , n − 1.

Both λ and C can be computed effectively using known algorithms developed
for the analysis of general weighted graphs. Karp’s algorithm [22] can be used to
determine λ as a lower bound for the minimum mean cycle weight. Then Floyd–
Warshall algorithm [10, Section 25.2] or Johnson’s algorithm [10, Section 25.3]
applied to the graph G with the modified weight function w′(e) := w(e) − λ can
be used to determine log C as the minimum path weight. If the computed value
λ is positive then Theorem 6.1 is proven. Otherwise, either (8) does not hold true
for any positive λ, C, or the expansion is so small that it cannot be detected due
to overestimates introduced both by estimating the logarithm of the derivatives
on entire intervals of the admissible cover I of I \ Δ, and by rounding errors that
appear in the computation of the mean cycle weights in the graph with interval
arithmetic.

6.3. Applications
As an example application of the algorithms introduced in this section, the

well-known family of unimodal maps fa : I → I given by

fa(x) = x2 − a, (12)
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where I = [−2, 2] and a ∈ [1.7, 2], is considered in [15]. First of all, the parameter
value a = 2 is fixed and several computations and comparisons are carried out. Then
other parameters of computations (δ, K, and I) are fixed and the computations are
carried out for several thousand equally spaced parameter values in the parameter
range under consideration.

Since the graph G and the weight function w are both computed using interval
arithmetic for the evaluation of f and f ′, no substantial change in the algorithms
is necessary to obtain results valid for all fa for a in some (small) interval [a1, a2].
Fig. 8 shows the result of these calculations conducted with the software referred
to in [15] to obtain explicit lower bounds for the expansion constant λ(a) in (11)
for all a ∈ [1.5, 2], and thus proving Theorem 6.1 for those values of a for which the
computed value of λ(a) is positive.

Fig. 8. Rigorous lower bound of the expansion exponent λ computed for 4096 adjacent

intervals which fill the parameter interval [1.5, 2] for the quadratic map (12).

6.4. Additional estimates
In [15], additional algorithms are also provided to prove another estimate

similar to Theorem 6.1:

Theorem 6.3. There exists a constant λ0 > 0 such that for every x and for
every n such that f i(x) /∈ Δ for all i = 0, . . . , n − 1, and additionally x ∈ f(Δ) or
fn(x) ∈ Δ, we have

|Dfn(x)| ≥ eλ0n. (13)

This estimate is in some sense stronger than the one provided by Theorem 6.1,
because the positive constant C in (8) can be very small, and C = 1 in (13). How-
ever, this estimate only applies to sections of orbits that either leave or enter the
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critical neighborhood. Obtaining a rigorous estimate for λ0 includes the computa-
tion of a lower bound for the mean average weight of all simple paths, that is, paths
that do not contain any cycle, with the additional condition that they begin at one
of given vertices of the graph (the vertices corresponding to intervals intersecting
f(Δ)), or which end at a given vertex (the vertex corresponding to Δ). An algo-
rithm based on Karp’s algorithm is developed in [15] specifically for that purpose.

6.5. Remarks and comments
We would like to emphasize how little needs to be known on the function f

in order to apply this algorithmic method for computing a lower bound for the
expansion exponent λ and the constant C in (8). In addition to knowing the
interval I and the critical neighborhood Δ, one only needs to be able to find a
covering of f(Ii) by intervals in I for each Ii ∈ I, where I is an apriori fixed
admissible cover of I \ Δ, and also one needs to be able to provide a rigorous
lower bound for the logarithm of the derivative of f on each interval Ii ∈ I for
equation (9), preferably taking into consideration also the preimages of intervals in
I and the preimage of Δ. Note that this does not even require the knowledge of
the exact formula for f , just some reasonable estimates for the above-mentioned
quantities are sufficient. This is a very important feature of this method which
decides on its wide applicability.

It turns out that the choice of the admissible cover I of I \ Δ may have
substantial impact on the accuracy of the results of computations. Some examples
in [15] suggest that smaller intervals in the area in which |f ′| is large help provide
a much better estimate for λ while keeping the total number K of intervals in I
constant, and thus not increasing the cost of computations significantly.

7. Concluding remarks

The results described in this paper illustrate new trends in the numerical
approach to dynamical systems. Numerical simulations contributed to ground-
breaking discoveries in the 60–70s (the detection of chaotic dynamics by Lorenz, for
example) and their importance is still undeniable; however, the increasing power
of contemporary computers prompted the development of more advanced meth-
ods which not only reveal various phenomena but also provide mathematically
confident results.

In the applications described in this paper, one can see two opposite trends of
using interval arithmetic for the analysis of dynamical systems. On the one hand,
one can see the tendency of limiting the usage of rigorous numerics only to generate
input for complicated combinatorial algorithms which provide the results through
extensive computations involving fast graph algorithms and other abstract methods,
like computational algebraic topology. On the other hand, the development of
advanced numerical methods which use interval arithmetic not only to provide
rigorous bounds on images of functions but also their derivatives of several orders,
opens new possibilities of much more thorough analysis of dynamics.
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It will be very interesting to see the directions of future development of applica-
tions of interval arithmetic in dynamical systems, combining rigorous numerics with
variational methods, statistical methods, and other abstract constructs to provide
automatized tools for instant and thorough investigation of dynamical systems.
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[13] F. Dumortier, S. Ibáñez and H. Kokubu, Cocoon bifurcation in three dimensional reversible
vector fields. Nonlinearity, 19 (2006), 305–328.

[14] M.J. Davis, R.S. MacKay and A. Sannami, Markov shifts in the Hénon family. Physica D,
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