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1. Introduction

We consider a scalar semi-linear parabolic partial differential equation ut =
uxx +f(u) (0 ≤ t, 0 ≤ x ≤ 1) with the Dirichlet boundary condition u = 0 on x = 0
and x = 1, where f : R → R is a smooth function. It is known (see, [4, 8, 10, 11])
that a solution with a large initial data blows up in finite time, if an appropriate
growth condition on f as u → ∞ is imposed. We are concerned in this paper
with a question as to how a finite difference scheme can reproduce the blow-up
phenomena. By studying various papers, we found that many interesting problems
for numerical analysis of the parabolic blow-up problem are left unsolved. And we
would like to solve some of them in the present paper.

Let us recall a pioneering paper by Nakagawa [12]. With f(u) = u2, Naka-
gawa [12] considered a finite difference scheme, where a uniform mesh was used for
the spatial variable and a certain adaptive mesh was used for the time variable. He
then showed that his finite difference solutions blow up in finite time if a certain
largeness condition on the initial data is assumed and that the numerical blow-up
time converges to the ‘real’ blow-up time if the mesh size tends to zero. Let T > 0
be the blow-up time. Then it is not difficult to prove that the finite difference
scheme converges in 0 ≤ t ≤ T̃ for any prescribed T̃ < T . This is a classical result,
but Nakagawa did much more. His result is important in that he proved the con-
vergence up to the blow-up time. Later, a finite element analogue was considered
by Nakagawa and Ushijima [13]. Quite general blow-up conditions were established
for semi-discretized equations by T.K. Ushijima [16]. See also [1, 2]. Recently a
substantial generalization was made on the convergence of the blow-up time by
Abia and others [3]. A different approach was proposed by Hirota and Ozawa [9].

A new direction was explored by Chen [6], who considered the equation with
f(u) = u1+α and proved, among others, that some numerical solutions can blow
up at more than one point, while a one-point blow-up is known to occur in the
continuous problem. Thus, a finite difference scheme with a spatially uniform mesh
does not correctly reproduce the blow-up phenomena. Correct meaning will be
stated later.
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The purpose of the present paper is to provide clues to those problems which
were left unanswered or untouched in these papers.

More sophisticated schemes than are studied in these papers have been pro-
posed by many researchers, see for instance [14, 16] and the references therein.
For practical computations of blow-up phenomena, such schemes with spatially
adaptive meshes are highly recommended, but they are, at the same time, hardly
amenable to rigorous convergence proof. We are interested in those results in which
mathematically rigorous analysis can be carried out. In this reason, we focus our
attention to the simplest case. Tabata’s scheme in [15] is rather simple and at the
same time very useful in improving the stability, but, for the same reason, we do
not consider it, either.

Although the details are explained in the subsequent sections, we here outline
what we are going to study: Let us recall a result of Nakagawa [12]. He considered
ut = uxx +u2 in 0 ≤ x ≤ 1 with the Dirichlet boundary condition u = 0 on x = 0, 1.
He then divided [0, 1] into N subintervals of equal length. With h = 1/N we define
the discrete Lp-norm (1 ≤ p <∞) for w = (w1, w2, . . . , wN−1) as

‖w‖p =

{
h

N−1∑
k=1

|wk|p
}1/p

.

We also define

‖w‖∞ = max
1≤k≤N−1

|wk|.

Nakagawa considered the following finite difference scheme:

un+1
j − un

j

Δtn
=
un

j+1 − 2un
j + un

j−1

h2
+ (un

j )2
(
n = 0, 1, . . . ,
j = 1, 2, . . . , N − 1

)
, (1)

Δtn = τ min
{

1,
1

‖un‖2

}
, (2)

where τ is a prescribed positive parameter, un
j is an approximation for u(tn, jh),

un = (un
1 , u

n
2 , . . . , u

n
N−1), and ‖un‖2 denotes the discrete L2-norm. Nodal points

tn are defined as tn =
∑n−1

j=0 Δtj , t0 = 0. The boundary condition un
0 = un

N = 0
is imposed. Here, by the rule (2) he intends that the uniform mesh Δtn = τ is
employed while the data is so small that ‖un‖2 ≤ 1 and that an adaptive mesh is
used in the case where un is so large that ‖un‖2 > 1. The numerical blow-up time
is defined as

T (τ, h) =
∞∑

j=0

Δtj = lim
n→∞ tn.

He proved under a certain stability condition that T (τ, h) tends to T , the blow-up
time of u, as τ ↓ 0 and h ↓ 0. We remark, however, that he did not derive a
convergence rate of |T (τ, h) − T |.
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The following questions may naturally arise:
1. Can we have an error estimate such as |T−T (τ, h)| = O(τs) with some positive

s > 0?
2. Why did he choose the definition of Δtn as in (2)? Can we equally use

Δtn = τ min
{

1,
1

‖un‖γ
p

}
,

where p ∈ [1,∞] and γ > 0 is a positive constant different from 1.
We wanted to answer these questions but we found that the question 1 was rather
difficult. Accordingly, what we can answer in the subsequent sections is partial.
On the other hand, the question 2 can be better answered. In fact, Abia et al. [3]
proved the convergence in the case where L∞-norm was used and γ = 1. We prove
in the next section that not only general p but also γ’s of some range can be used
in the definition of Δtn without destroying the convergence.

As we will show soon, our knowledge on the convergence rate for partial dif-
ferential equations (PDEs) is quite incomplete. On the other hand, we can prove
a rather complete theorem for a scalar ordinary differential equation (ODE). We
therefore devote one section for scalar ODEs. The result for ODE is also important
in its vital role when we consider the convergence for PDE.

Remark 1.1. When we actually compute, it is better to define Δtn as

Δtn = τ min
{
c0,

1
‖un‖2

}

with another constant c0 than to define it by (2). But this is unimportant in the
subsequent mathematical analysis, and we always set c0 = 1.

Next, let us recall a result of Chen [12]. He considered ut = uxx + u1+α in
0 ≤ x ≤ 1 mainly with the Neumann boundary condition ux = 0 on x = 0, 1 and
the initial data u0(x) which satisfies the following two conditions:
(i) u0(x) is symmetric about x = 1/2;
(ii) u0(x) is monotone increasing in [0, 1/2].
He then considered a Nakagawa-like scheme with

Δtn = τ min
{

1,
1

‖un‖α
1

}
.

We now make the following definition:

Definition 1.1. If limn→∞ un
j = ∞, we call xj a numerical blow-up point.

The set of all numerical blow-up points is called the numerical blow-up set.

Chen showed that when α > 1, the only numerical blow-up point is the mid-point
x = 1/2, and that the finite difference solutions blow up at more than one point if
α ≤ 1. This is an interesting phenomena in view of the fact that the solutions of
the corresponding PDE blow up only at one point x = 1/2 for any 0 < α <∞.



134 C.-H. Cho, S. Hamada and H. Okamoto

After having read his paper, the following questions naturally occurred to us.
1. Although he proved that the numerical solutions blow up at exactly three

point if α = 1 and at least at three points if 0 < α < 1, the blow-up set was
not completely determined in the case of 0 < α < 1. Can we determine the
blow-up set exactly?

2. What happens in the case of other nonlinear terms, say, e.g., f(u) =
u1+α[log(1 + u)]β with a positive constant β?

As we will show soon, we can determine the numerical blow-up set for the
above nonlinear term. Further, we can prove an interesting phenomena in the case
of f(u) = u{log(1+u)}β that there is an unsurmountable discrepancy between the
numerical blow-up set and the blow-up set of the corresponding PDE.

2. Scalar ODE

We consider in this section a scalar ODE u̇ = G(u) and its finite difference
approximation. Throughout this section, we impose the following assumptions
on G;
1. G : [0,∞) → [0,∞) is continuously differentiable;
2. G(s) > 0 for s > 0;
3. G is strictly monotone increasing;
4.

∫∞
1
G(s)−1 ds <∞.

Also we consider only those solutions with u(0) > 0. Our assumptions imply that
any solution of u̇ = G(u) with u(0) > 0 is increasing and convex in t and that it
blows up in finite time. The blow-up time of u is obviously

∫∞
u(0)

G(s)−1 ds, which
will be denoted by T .

Let us consider the following finite difference scheme:

vn+1 − vn

Δtn
= G(vn) (n = 0, 1, 2, . . . ), (3)

where we assume that v0 = u(0) > 0, and Δtn is defined by

Δtn = τ min
{

1,
1

H(vn)

}
. (4)

Here H = H(s) is another function which is assumed to be positive for positive s, to
be monotone increasing, and to satisfy lims→∞H(s) = +∞. τ > 0 is a parameter.
For later use we define t0 = 0 and tn =

∑n−1
j=0 Δtj . We now define the ‘numerical

blow-up time’:

Definition 2.1. We define

T (τ) =
∞∑

n=0

Δtn = lim
n→∞ tn

and call it the numerical blow-up time.
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At this stage the possibility that T (τ) = ∞ is not excluded. But we can prove
that it is finite under certain assumptions on G and H.

Theorem 2.1. In addition to the assumptions above, we assume that

z �→ z + τ
G(z)
H(z)

(5)

is monotone increasing in H−1(1) < z <∞. We also assume that
∫ ∞

H−1(1)

G′(z)
G(z)H(z)

dz <∞. (6)

We then have

T < T (τ) < T + cτ, (7)

where c is a positive constant depending only on G and u(0).

Proof. We first show that H(vj) > 1 for all sufficiently large j. To this
end, we note first that {vn} is monotone increasing. It therefore tends to a limit
v∞ ≤ ∞. We are done if v∞ > H−1(1). Let us therefore assume on the contrary
that v∞ ≤ H−1(1) (<∞). But this implies that Δtn = τ for all n, which together
with (3) gives us v∞ = v∞ + τG(v∞). This, however, cannot hold because of our
positivity assumption on G. We accordingly have

vn+1 = vn + τ
G(vn)
H(vn)

for sufficiently large n’s. We now repeat the same argument to obtain

lim
n→∞ vn = +∞. (8)

We now prove that T < T (τ). To see this, we note that

T =
∫ ∞

u(0)

ds
G(s)

and

T (τ) =
∞∑

j=0

Δtj =
∞∑

j=0

vj+1 − vj

G(vj)
.

We then have T < T (τ) by (8), v0 = u(0), and Fig. 1.
In order to prove the other inequality, we take the non-negative integer m such

that Δtj = τ/H(vj) for all j ≥ m and that Δtj = τ for j < m. We then define a
function of y as follows:

φ(y) = G−1

(
1
y

)
+

τ

yH(G−1(1/y))
(0 < y <∞),
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Fig. 1.

where G−1 denotes the inverse function (not 1/G(s)). Note that this function
satisfies φ(1/G(vj)) = vj+1 for all j ≥ m. Note also that the assumption (5) with
a substitution z = G−1(1/y) implies that φ is monotone decreasing in 0 < y <

1/G(vm). With these observations, we see from Fig. 2 that

n−1∑
j=m

vj+1 − vj

G(vj)
≤
∫ 1/G(vm)

1/G(vn−1)

φ(y) dy − vm

(
1

G(vm)
− 1
G(vn−1)

)
+
vn − vm

G(vn−1)

=
∫ vn−1

vm

[
z +

τG(z)
H(z)

]
G′(z)
G(z)2

dz +
vn

G(vn−1)
− vm

G(vm)

= − z

G(z)

∣∣∣∣
vn−1

vm

+
∫ vn−1

vm

dz
G(z)

+ τ

∫ vn−1

vm

G′(z) dz
G(z)H(z)

+
vn

G(vn−1)
− vm

G(vm)

=
∫ vn−1

vm

dz
G(z)

+ τ

∫ vn−1

vm

G′(z) dz
G(z)H(z)

+
vn − vn−1

G(vn−1)

=
∫ vn−1

vm

dz
G(z)

+ τ

∫ vn−1

vm

G′(z) dz
G(z)H(z)

+
τ

H(vn−1)
.

We therefore have

tn − tm ≤
∫ vn−1

vm

dz
G(z)

+ τ

∫ vn−1

vm

G′(z)
G(z)H(z)

dz +
τ

H(vn−1)
. (9)
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Fig. 2.

We next note that the solution u(t) of u̇ = G(u) is increasing and convex in
t. Then

u(t1) = u(0) +
∫ t1

0

G(u(s)) ds > u(0) + t1G(u(0)) = v1.

It is then easy to prove by induction that

u(tn) ≥ vn. (10)

(This is true whatever the definition of Δtn may be.)
A classical result on the convergence of finite difference schemes says that a

finite difference solution converges with an order O(τ) to the solution of ODE,
so long as the solution is smooth. This fact and (10) imply that u(tm) − cτ ≤
vm ≤ u(tm), where c is a positive constant depending only on G and u0. Since

tm =
∫ u(tm)

u(0)
ds

G(s) , we have

0 < tm −
∫ vm

u(0)

ds
G(s)

< c′τ,

where c′ is another positive constant. Combining this with (9), we obtain

tn ≤
∫ vn−1

u(0)

dz
G(z)

+ τ

∫ vn−1

vm

G′(z)
G(z)H(z)

dz +
τ

H(vn−1)
+ c′τ,

which implies that

T (τ) ≤
∫ ∞

u(0)

dz
G(z)

+ τ

∫ ∞

vm

G′(z)
G(z)H(z)

dz + c′τ

≤ T +
(∫ ∞

H−1(1)

G′(z)
G(z)H(z)

dz + c′
)
τ. (11)
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Therefore we are done. �

Corollary 2.1. For all l ≥ m, it holds that

T (τ) ≤ tl +
∫ ∞

vl

dz
G(z)

+ τ

∫ ∞

vl

G′(z)
G(z)H(z)

dz.

The proof is obvious if we note that (9) holds true if we replace m with l.

Corollary 2.2. Suppose that G(u) = u1+α and H(s) = sγ , where α > 0
and γ > 0 are positive constants. We then have T < T (τ) < T + cτ if 0 < γ ≤
1 + α+ τ−1. Also,

0 < T (τ) − T <
(1 + α)τ
γ(vm)γ

+ c′τ ≤ (1 + α)τ
γ

+ c′τ. (12)

Proof. In order to verify the monotonicity (5), we note that z+τG(z)/H(z) =
z + τz1+α−γ , whose derivative is 1 + τ(1 + α − γ)zα−γ . This is positive for all
z > 1 = H−1(1) if 1 + τ(1 + α− γ) ≥ 0, i.e., γ ≤ 1 + α+ τ−1. We easily see that

∫ ∞

vm

G′(z)
G(z)H(z)

dz =
(1 + α)τ
γ (vm)γ . �

Remark 2.1. In view of (12), one might be tempted to conclude that the
larger γ is, the more accurate the numerical blow-up time becomes; hence, γ =
1+α+ τ−1 is the best choice. However, this is not the case. For, first, the estimate
(12) is only an upper bound. Second, we should, at the same time, worry about the
number of computer operations required. In fact, the larger γ is, the more computer
operations are required (since Δtn becomes smaller). Accordingly, a large γ is not
necessarily a good choice. We will come back to this issue at the end of the next
section.

3. A generalization of Nakagawa’s result

In this section, we consider a PDE

∂u

∂t
=
∂2u

∂x2
+ f(u) (0 ≤ t, 0 ≤ x ≤ 1) (13)

with the Dirichlet boundary condition

u(t, 0) = u(t, 1) = 0 (14)

and an initial condition

u(0, x) = u0(x). (15)

We assume that the initial data u0(x) is non-negative everywhere in [0, 1]. We
impose the following assumptions on f : [0,∞) → [0,∞);
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1. f is continuously differentiable;
2. f(s) > 0 for s > 0;
3. f is strictly monotone increasing and convex;
4.

∫∞
1
f(s)−1 ds <∞.

These assumptions imply that for a ‘large’ initial data u0(x) the solution of (13)
(14) (15) blows up in finite time, see e.g., [4, 8, 10, 17]. We denote the blow-up
time of u by T . Before entering the main contents, we prove the following:

Lemma 3.1. For any b ∈ (0, 1) and any K > 0, there exists a constant s0 > 0
such that

bf(s) +Ks ≤ f(s)

holds true for all s ≥ s0.

Proof. The convexity of f implies that f ′ is increasing. We actually have
lims→∞ f ′(s) = ∞. In fact, if f ′ is bounded, say f ′(s) ≤ c, then we have f(s) ≤
cs + c′ with a constant c′. But this contradicts the assumption 4. Accordingly,
there exists s1 such that

2K
1 − b

≤ f ′(s) (s1 ≤ s).

The integration gives us

f(s1) − 2Ks1
1 − b

+
2Ks
1 − b

≤ f(s).

On the other hand, if we choose an s0 ≥ s1 such that

0 ≤ f(s1) − 2Ks1
1 − b

+
Ks0
1 − b

,

then, it holds, for all s ≥ s0, that f(s) ≥ Ks/(1− b), which is to be shown. �

Let us consider the following finite difference scheme:

un+1
j − un

j

Δtn
=
un

j+1 − 2un
j + un

j−1

h2
+ f(un

j ), (16)

with the following boundary condition

un
0 = un

N = 0 (n = 0, 1, 2, . . .) (17)

and the initial condition

u0
j = u0(xj) (j = 1, . . . , N − 1), (18)

where h = 1/N , and xj = jh are spatial grid points (j = 0, 1, . . . , N). We define
Δtn by

Δtn = τ min
{

1,
1

g(‖un‖p)

}
.



140 C.-H. Cho, S. Hamada and H. Okamoto

Here, 1 ≤ p ≤ ∞, and g : [0,∞) → [0,∞) is a function which satisfies certain
properties specified below. Note that Δtn ≤ τ for all un. We also define tn by

t0 = 0, tn =
n−1∑
i=0

Δti,

and the numerical blow-up time of (16) (17) (18) by

T (τ, h) = lim
n→∞ tn =

∞∑
i=0

Δti.

Before studying the blow-up of {un
j }, we prove that all the solutions of (16)

converge to the corresponding solution of (13) as far as the smoothness of u is
guaranteed.

Theorem 3.1. Let {un
j } be the solution of (16) (17) (18). Let λ be defined

by λ = τ/h2 and assume that 0 < λ ≤ 1/2. Let T denote the blow-up time of u
and let T0 be an arbitrary number such that 0 < T0 < T . Then there exists positive
constants C and h0, depending only on T0 and u0, such that

max
1≤j≤N−1

|un
j − u(tn, xj)| ≤ Ch2

holds so far as tn ≤ T0 and 0 < h ≤ h0.

Proof. Although this theorem is essentially proved in Nakagawa [12], we out-
line a proof for reader’s convenience and for the reason that our scheme is more
general than his.

Let εn
j = un

j − u(tn, xj). By the Taylor expansion theorem, we have

u(tn+1, xj) − u(tn, xj)
Δtn

=
∂u

∂t
(tn, xj) +

Δtn
2

∂2u

∂t2
(tn + θ1Δtn, xj)

and

u(tn, xj+1) − 2u(tn, xj) + u(tn, xj−1)
h2

=
∂2u

∂x2
(tn, xj) +

h2

24

{
∂4u

∂x4
(tn, xj + θ2h) +

∂4u

∂x4
(tn, xj − θ3h)

}
,

where 0 ≤ θi ≤ 1 (i = 1, 2, 3). Also, by the mean-value theorem,

f(un
j ) − f(u(tn, xj)) = f ′(u(tn, xj) + θ4ε

n
j ) · εn

j

for some θ4 ∈ [0, 1]. These equations are combined to yield

εn+1
j − εn

j

Δtn
=
εn
j+1 − 2εn

j + εn
j−1

h2
+ f ′(u(tn, xj) + θ4ε

n
j )εn

j + rn
j , (19)
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where

rn
j = −Δtn

2
∂2u

∂t2
(tn + θ1τn, xj) +

h2

24

{
∂4u

∂x4
(tn, xj + θ2h) +

∂4u

∂x4
(tn, xj + θ3h)

}
.

Put

En = max
1≤j≤N−1

|εn
j |, U = max

(t,x)∈[0,T0]×[0,1]
|u(t, x)|, K = f ′(U + 1),

R =
λ

2
max

0≤t≤T0
0≤x≤1

∣∣∣∣∂2u

∂t2
(t, x)

∣∣∣∣+ 1
12

max
0≤t≤T0
0≤x≤1

∣∣∣∣∂4u

∂x4
(t, x)

∣∣∣∣.
Then, as far as En ≤ 1, (19) gives us En+1 ≤ (1 +KΔtn)En + h2RΔtn. From this
inequality, we obtain

En+1 ≤ eKT0(E0 + h2RT0) = eKT0h2RT0. (20)

If h is sufficiently small, then the right hand side of (20) is smaller than 1. Hence
(20) holds true for all n. �

From now we consider the blow-up of (16). Our goal in this section is to
generalize Nakagawa’s convergence theorem in the following way.

Theorem 3.2. Suppose that g : [0,∞) → [0,∞) satisfies
(i) g(s) > 0 for s > 0;
(ii) g is monotone increasing;
(iii) g(s) → ∞ as s→ ∞;
(iv) the function

z �→ z + τ
f(z)
g(z)

(21)

is monotone increasing in g−1(1) < z <∞. We also assume that

∫ ∞

g−1(1)

f ′(s)
f(s)g(s)

ds <∞. (22)

We finally assume that τ/h2 ≤ 1/2. Then we have

T (τ, h) <∞ and lim
h→0

T (τ, h) = T. (23)

Remark 3.1. Since τ/h2 ≤ 1/2, h → 0 implies that τ → 0. However, as far
as τ/h2 ≤ 1/2 is satisfied, τ ’s approach to zero is arbitrary.

Remark 3.2. Nakagawa [12] proved this theorem in a special case where
f(u) = u2, g(s) = s, p = 2. Chen [6] proved a similar theorem in a special case
where f(u) = u1+α, g(s) = sα, p = 1. A generalization of these theorems is given
in [3] in the case of p = ∞ with a particular g.
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We first recall Lemma 3.1, which we use with b = 1/2 and K = π2 to obtain

π2s+
1
2
f(s) ≤ f(s) (s0 ≤ s). (24)

Let {un
j } be a solution of (16) (17) (18). By analogy with a classical functional

π
2

∫ 1

0
u(t, x) sin(πx) dx, we define a discrete functional Ih[ · ] by

Ih[un] =
1

σ(h)

N−1∑
j=1

hun
j sin(πxj),

where h = 1/N , xj = jh and σ(h) = h
∑N−1

j=1 sin(πxj). Since σ(h) is the trapezoidal

approximation to
∫ 1

0
sin(πx) dx, the following inequality holds true:

2
π
− π

4
h2 ≤ σ(h) ≤ 2

π
.

(See, for instance, [7]. The right hand side is true since sin(πx) is concave in
0 ≤ x ≤ 1.) We remark that there exists a positive constant c0 such that for all
p ∈ [1,∞] and sufficiently small h,

‖un‖p ≥ c0Ih[un]. (25)

In fact, it holds that

Ih[un] =
1

σ(h)

N−1∑
k=1

hun
k sin(πxk) ≤ 1

2
π − π

4h
2

N−1∑
k=1

hun
k

=
1

2
π − π

4h
2
‖un‖1 ≤ 1

2
π − π

4h
2
‖un‖p.

Accordingly we may take c0 = 1/π, h0 = 2/π. Then (25) holds true for 0 < h < h0.
For the proof of Theorem 3.2, we need the following

Lemma 3.2. If u0(x) is chosen large enough in such a way that

2s0 <
π

2

∫ 1

0

u0(x) sin(πx) dx, (26)

where s0 is the number appearing in (24), then it holds for all n and sufficiently
small h that

Ih[un+1] − Ih[un]
Δtn

≥ 1
2
f (Ih[un]) .

Proof of Lemma 3.2. We first note that

Ih[u0] → π

2

∫ 1

0

u0(x) sin(πx) dx as h→ 0.



Finite Difference Approximation for a Parabolic Blow-Up Problem 143

So if u0(x) satisfies the condition (26), then we may assume for all sufficiently small
h that s0 < Ih[u0].

Note next that

Ih[un+1] − Ih[un]
Δtn

=
1

σ(h)

N−1∑
k=1

h sin(πxk)
un+1

k − un
k

Δtn

=
1

σ(h)

N−1∑
k=1

h sin(πxk)
{
un

k+1 − 2un
k + un

k−1

h2
+ f(un

k )
}
.

We then compute in a way similar to integration by parts as follows:

h

N−1∑
k=1

1
h2

(un
k+1 − 2un

k + un
k−1) sin(πxk)

=
N−1∑
k=1

1
h

(un
k+1 − un

k ) sin(πxk) −
N−2∑
k=0

1
h

(un
k+1 − un

k ) sin(πxk+1)

=
N−1∑
k=0

1
h

(un
k+1 − un

k )[sin(πxk) − sin(πxk+1)]

=
N−1∑
k=1

un
k

h
[sin(πxk−1) − 2 sin(πxk) + sin(πxk+1)]

= −4 sin2

(
πh

2

)N−1∑
k=1

un
k

h
sinπxk ≥ −π2σ(h)Ih[un].

On the other hand, we have by Jensen’s inequality,

1
σ(h)

N−1∑
k=1

h sin(πxk)f(un
k ) ≥ f(Ih[un])

Hence, we obtain

Ih[un+1] − Ih[un]
Δtn

≥ −π2Ih[un] + f(Ih[un]).

Since Ih[u0] ≥ s0, it holds that f(Ih[u0])−π2Ih[u0] ≥ 1
2f(Ih[u0]) > 0. This implies

that Ih[u1] ≥ s0, whence f(Ih[u1]) − π2Ih[u1] ≥ 1
2f(Ih[u1]) > 0. By induction, we

see that

Ih[un+1] − Ih[un]
Δtn

≥ 1
2
f(Ih[un])

for all n. �

Corollary 3.1. If Ih[u0] ≥ s0, then limn→∞ ‖un‖p = ∞.
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Proof. Ih[un] is monotone increasing in n. If it tends to infinity, so does
‖un‖p by virtue of (25). If it tends to a finite limit, (since it is easily excluded that
Δtn = τ for all n) we have

Ih[un+1] − Ih[un] ≥ τf(Ih[un])
2g(‖un‖p)

,

whence 1/g(‖un‖p) → 0, which can be true if and only if ‖un‖p → ∞. �

Lemma 3.3. Under the same assumption as in the previous lemma, we have
for all sufficiently large n

‖un+1‖p − ‖un‖p

Δtn
≥
(
− 2
h2

− f(0)
)
‖un‖p + f(‖un‖p). (27)

Proof. We first consider the case of p = ∞. In (16), let i be such that
un

i = max1≤j≤N−1 u
n
j . Then, by the positivity of un

j , we have

‖un+1‖∞ = un+1
i ≥

(
1 − 2Δtn

h2

)
un

i + Δtnf(un
i )

=
(

1 − 2Δtn
h2

)
‖un‖∞ + Δtnf(‖un‖∞),

which claims more than (27).
Suppose next that 1 ≤ p < ∞. Multiply (16) by h(un

j )p−1 and take the
summation with respect to j. Since un

j are positive, we have

h

N−1∑
j=1

un+1
j (un

j )p−1 − h

N−1∑
j=1

(un
j )p ≥ −2Δtnh

h2

N−1∑
j=1

(un
j )p + Δtnh

N−1∑
j=1

f(un
j )(un

j )p−1.

By Hölder’s inequality and the positivity of f , this can be written as

‖un+1‖p ‖un‖p−1
p ≥ (1 − 2λn)‖un‖p

p + Δtnh
N−1∑
j=1

(f(un
j ) − f(0))(un

j )p−1,

where we have set λn = Δtn/h2. The last term of the right hand side is estimated
as follows. Let ψ be defined by ψ(x) = (f(x1/p) − f(0))x(p−1)/p. We can verify in
an elementary way that ψ is convex. In fact,

ψ′′(x) =
1
p2
f ′′(x1/p) +

p− 1
p2

x−1/p−1{x1/pf ′(x1/p) − f(x1/p) + f(0)}.

f ′′ is nonnegative because of the convexity. Also,

f(u) = f(0) +
∫ u

0

f ′(t) dt ≤ f(0) + uf ′(u).
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Therefore ψ′′ ≥ 0. Now, Jensen’s inequality gives us

1
N

N∑
k=1

ψ((un
k )p) ≥ ψ

(
1
N

N∑
k=1

(un
k )p

)
= ψ(‖un‖p

p) = [f(‖un‖p) − f(0)] ‖un‖p−1
p .

Summing up, we obtain

‖un+1‖p ‖un‖p−1
p ≥ (1 − 2λn)‖un‖p

p + Δtn(f(‖un‖p) − f(0))‖un‖p−1
p ,

from which follows

‖un+1‖p − ‖un‖p ≥ −2Δtn
h2

‖un‖p + Δtnf(‖un‖p) − Δtnf(0).

Since ‖un‖p tends to infinity, it eventually becomes greater than one. Hence we
have (27). �

We now apply Lemma 3.1 with b = 1/2 and K = 2h−2 + f(0). Then, there
exists a constant s0 = s0(h) such that if ‖un1‖p ≥ s0(h) it holds for all n ≥ n1 that

‖un+1‖p − ‖un‖p

Δtn
≥ 1

2
f (‖un‖p) .

Because of 3.1, such an n1 exists.

Proof of Theorem 3.2. We set

T∗ = lim inf
h→0

T (τ, h) and T ∗ = lim sup
h→0

T (τ, h),

both of which may be infinite at this stage. We will prove the convergence by
showing T∗ ≥ T and T ∗ ≤ T .

First, we assume that T∗ < T and derive a contradiction. This part of the
proof is actually the same as in [12]. If T∗ < T , then there exists an h and a τ such
that τ/h2 ≤ 1/2, h is smaller than any prescribed positive number, and

T (τ, h) ≤ T + T∗
2

.

Let {un
k (τ, h)} denote the solution corresponding to the parameter (τ, h). Accord-

ingly we have tn(τ, h) ≤ (T + T∗)/2 < T for all n. On the other hand, by Corol-
lary 3.1, we have ‖un

k (τ, h)‖p → ∞ as n→ ∞, which contradicts Theorem 3.1, since
the theorem guarantees that {un

k (τ, h)} converge to u on [0, (T +T∗)/2], where u is
smooth. We therefore have T ≤ T∗.

Proof of T ∗ ≤ T . Let us assume that T ∗ > T . Take a (τ, h) such that τ/h2 ≤
1/2, h is smaller than any prescribed positive number, and

T (τ, h) >
T + T ∗

2
. (28)
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Now, let an arbitrary M > 0 is given. Then Theorem 3.1 guarantees, by
choosing smaller h and τ are chosen if necessary, the existence of an ñ such that

tñ < T, ‖un(τ, h)‖p ≥M (ñ ≤ ∀n).

We may assume without losing generality that g(‖un‖p) ≥ 1 for all n ≥ ñ. We then
consider the following finite difference equation

vn+1 − vn

Δτn
=
τf(vn)
2g(vn)

, (ñ ≤ n); vñ = ‖uñ‖p. (29)

Now, by Lemma 3.3 we have for all n ≥ ñ

‖un+1(τ, h)‖p ≥ ‖un(τ, h)‖p +
1
2

τ

g(‖un‖p)
f(‖un(τ, h)‖p). (30)

It can be easily checked by the monotonicity (assumption (iv) of the present theo-
rem) that vn ≤ ‖un‖p for all n ≥ ñ.

We now have

T (τ, h) = tñ +
∞∑

k=0

τ

g(‖uñ+k‖p)

≤ tñ +
∞∑

k=0

τ

g(vñ+k)

< T + 2
∫ ∞

M

ds

f(s)
+ τ

∫ ∞

M

f ′(s)
f(s)g(s)

ds. (31)

Here use has been made of Corollary 2.1. Since M can be arbitrarily large, we may
assume that

2
∫ ∞

M

ds

f(s)
+ τ

∫ ∞

M

f ′(s)
f(s)g(s)

ds <
T ∗ − T

2
.

Thus, (31) implies that T (τ, h) < (T + T ∗)/2, which contradicts (28).

Since we have proved T ≤ T∗ ≤ T ∗ ≤ T , we are done. �

We now consider a special case that f(s) = s1+α and g(s) = sγ . L2-norm is
used. In [12], Nakagawa chose γ = 1 (when α = 1) and Chen chose γ = α in [6].
Let us see whether their choices were the best choice or not.

Corollary 2.2 shows that the upper bound of the error decreases as γ increases.
Therefore one might be tempted to conclude that a larger γ is better. This view
may be strengthened by the following fact, which can be proved without difficulty:
the numerical blow-up time becomes infinite if uniform time-mesh is used. Namely
T (τ, h) = ∞, hence the error is infinite, if γ = 0. However, we must be particularly
careful in this issue. In fact, the larger γ becomes, the smaller the time-mesh size
becomes. Consequently, the computation becomes unnecessarily slow. Let us show
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an experiment: In it, we put α = 1 and u(0, x) = 100 sin(πx) and set a large
threshold U0 = 106, and we stop the computation when ‖un‖2 > U0. The n where
we stopped is denoted by n(∞). Then our experiments gave Table 1. The number
of steps needed to achieve ‖un‖2 > U0 remarkably increases with γ. Therefore
the best γ may be determined by the balance of error and cost. We have so far no
evidence that γ = α is the best, nor do we have anything which suggests that γ = α

is not the best. In fact, how to measure the suitability of γ is itself a problem.

Table 1. γ vs. T (τ) and n(∞) with initial data u0(x) = 100 sin(πx). α = 1, p = 2,

λ = 0.3, h = 0.01

γ T (τ) n(∞)
0.5 0.010992052 5228
0.6 0.010988277 9255
0.7 0.010986278 16752
0.8 0.010985189 31190
0.9 0.010984581 60193
1.0 0.010984235 121563
1.1 0.010984035 259646
1.2 0.010983918 592340
1.3 0.010983849 1452938
1.4 0.010983808 3836344
1.5 0.010983783 10852257

Finally, we consider the dependence of T (τ, h) on h and τ . In the case of ODE,
Theorem 2.1 tells us that T (τ) converges to T from above as τ ↓ 0. Actually, our
numerical experiments shows that T (τ) decreases monotonically as τ ↓ 0. In the
case of PDE, however, our numerical experiments (Table 2) seem to suggest that
T (τ, h) ↑ T as h ↓ 0. We do not know the reason.

Table 2. h vs. T (τ) with some initial data. p(x) = 50 sin(3πx) + 200x(1 − x)

T (τ)
N = 1/h u0(x) = 100 sin(πx) u0(x) = 400x(1 − x) u0(x) = p(x)

16 0.010975079567 0.010821160594 0.023026708637
32 0.010981629673 0.010823094329 0.023287362291
64 0.010983747246 0.010824043459 0.023342085859
128 0.010984380128 0.010824380585 0.023357220435
256 0.010984567576 0.010824492970 0.023360793794
512 0.010984618838 0.010824524941 0.023361750438
1024 0.010984628834 0.010824531271 0.023361987222

Remark 3.3. In the present paper we focus our attention to the Dirichlet
boundary condition. However, we can handle the Neumann boundary condition
ux(t, 0) = ux(t, 1) = 0 in quite the same way, if we follow the proof of Chen [6].
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4. Asymptotic behavior of the numerical solution when f(u) = u1+α

In this section, we consider the equation (13) with the nonlinear term f(u) =
u1+α. The difference scheme (16) is accordingly written as

un+1
j − un

j

Δtn
=
un

j+1 − 2un
j + un

j−1

h2
+ (un

j )1+α. (32)

We consider this with the Dirichlet boundary condition (17). We define

Δtn = τ min
{

1,
1

‖un‖α
p

}
,

where 1 ≤ p ≤ ∞ is a fixed parameter.
From now on until the end of the present paper, we assume that the initial

data satisfies the following conditions:
(A1) u0(x) is spatially symmetric about the point x = 1/2.
(A2) u0(x) is monotone increasing in [0, 1/2].
We always assume that u0(x) ≥ 0 everywhere.

Remark 4.1. Under the assumptions (A1) and (A2), once a solution blows
up, the single-point blow-up occurs to the solution of (13) (14) (15). Specifically
we have

lim
t→T

u

(
t,

1
2

)
= ∞, and lim sup

t→T
u(t, x) <∞ for x �= 1

2
.

For proof, see [8], [17].

Henceforth we assume that N is even and set N = 2m, so that xm = 1/2.

Remark 4.2. Let {un
j } be a solution of (32) with (17). If u0(x) satisfies (A1)

and (A2), then
(i) un

m−j = un
m+j (j = 1, . . . ,m, n = 0, 1, . . . );

(ii) 0 < un
j < un

j+1 (j = 1, . . . ,m− 1, n ≥ m− 1).
These facts will be used later.

Since un
m is the largest among {un

j }, we have limn→∞ un
m = +∞ if {un

j }
blows up.

Theorem 4.1. Let {un
j } be a solution of (32) and (17) and suppose that the

initial data is large enough for un
m to blow up. Assume that (A1) and (A2) hold.

Then un
m−1 is bounded by a constant depending only on u0 and h if α > 1, while

limn→∞ un
m−1 = +∞ if α ≤ 1. Moreover, un

m−2 remains bounded by a constant
depending only on u0 and h if α = 1.

This theorem was discovered and proved by Chen [6] in the case of the Neumann
boundary condition and p = 1, and in the case of the Dirichlet boundary condition
and p = 2. We are now going to generalize his theorem in the following way.
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Theorem 4.2. Under the assumptions of Theorem 4.1. Let k be any positive
integer and assume that

1
k + 1

< α ≤ 1
k
.

Then the solution blows up exactly at the central 2k+ 1 points and it is bounded at
all the other points. Namely,

lim
n→∞un

j = ∞ if and only if |j −m| ≤ k.

In order to prove this theorem, we use two sequences {an} and {bn} defined
as follows:

an =
un

m−1

un
m

, bn =
(un

m)α

‖un‖α
p

.

We begin our analysis with the following lemmas.

Lemma 4.1. If 0 < α ≤ 1, then limn→∞ un
m−1 = limn→∞ un

m+1 = ∞.

Lemma 4.2. For any α > 0, we have

lim
n→∞ an = 0 (33)

and

lim
n→∞ bn = h−α/p. (34)

These two lemmas were proved in Chen [6] in the case of the Neumann boundary
condition and p = 1. In fact, the proof in Chen [6] is valid in our general case,
too. We may therefore omit the proof. In what follows, we set λn = Δtn/h2 for
notational convenience. (Recall that λ = τ/h2.)

Corollary 4.1. For any α > 0, we have

lim
n→∞

un
m

un+1
m

=
1

1 + τh−α/p
. (35)

Proof. We have by (32)

un+1
m = 2λnu

n
m−1 + (1 − 2λn + τbn)un

m. (36)

The present corollary can be easily derived from (36) by letting n→ ∞. �

Lemma 4.3. For any α > 0, we have

lim
n→∞

un+1
m−1 − {1 − 2λn + Δtn(un

m−1)
α}un

m−1

un+2
m−1 − {1 − 2λn+1 + Δtn+1(un+1

m−1)α}un+1
m−1

= (1 + τh−α/p)α−1. (37)
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Proof. By (34) and (35), we have

lim
n→∞

λn

λn+1
= lim

n→∞
‖un+1‖α

p

‖un‖α
p

= lim
n→∞

(
un+1

m

un
m

)α

= (1 + τh−α/p)α. (38)

This relation, (33), and (35) yield

un+1
m−1 − {1 − 2λn + Δtn(un

m−1)
α}un

m−1

un+2
m−1 − {1 − 2λn+1 + Δtn+1(un+1

m−1)α}un+1
m−1

=
λn(un

m + un
m−2)

λn+1(un+1
m + un+1

m−2)

=
λn

λn+1
·
(
un

m

un+1
m

+
un

m−2

un+1
m

) / (
1 +

un+1
m−2

un+1
m

)

→ (1 + τh−α/p)α · 1
1 + τh−α/p

= (1 + τh−α/p)α−1. �

Lemma 4.4. For all α > 0, limn→∞ un
m−1/u

n+1
m−1 exists and is equal to (1 +

τh−α/p)min{1,α}−1.

Proof. We use (32) with j = m− 1:

un+1
m−1 = λnu

n
m + λnu

n
m−2 + (1 − 2λn + Δtn(un

m−1)
α)un

m−1, (39)

which is written as

1 = λn
un

m

un+1
m−1

+ λn
un

m−2

un+1
m−1

+ (1 − 2λn + τbna
α
n)
un

m−1

un+1
m−1

. (40)

Since un
m tends to infinity, it holds that

λnu
n
m

un+1
m−1

=
λbn(un

m)1−α

un+1
m−1

→ 0 as n→ ∞

if α > 1. If α = 1, then un
m−1, too, tends to infinity and we have the same result.

By letting n→ ∞ in (40), the present lemma in the case of α ≥ 1 follows.
We now assume that α < 1. In this case, (40) is of no help, and we use

Lemma 4.3 instead. For notational convenience, we set wn = un
m−1/u

n+1
m−1. We

note that, for sufficiently large n, we have

0 < wn < 1.

In fact, we have by (39) un+1
m−1 − un

m−1 ≥ λn(un
m − 2un

m−1), the right hand side of
which is positive for sufficiently large n’s by virtue of (33). We now write (37) as

lim
n→∞wn+1

1 − (1 + γn)wn

1 − (1 + γn+1)wn+1
= (1 + τh−α/p)α−1, (41)
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where γn = −2λn + Δtn(un
m−1)

α = −2λn + τbna
α
n satisfies limn→∞ γn = 0. The

conclusion of the present lemma follows easily from this, once we have shown that
limn→∞ wn exists and is less than one.

We follow Chen’s recipe, and assume that

lim inf
n→∞ wn < lim sup

n→∞
wn.

Let r be any number such that lim infn→∞ wn < r < lim supn→∞ wn. Then there
exists a subsequence {nk} such that

wnk
≤ r and r < wnk+1.

This implies that

unk+1
m−1 −{1− 2λnk

+ Δtnk
(unk

m−1)
α}unk

m−1 ≥ {1− r+ 2rλnk
− rΔtnk

(unk
m−1)

α}unk+1
m−1

(42)
and

unk+2
m−1 − {1 − 2λnk+1 + Δtnk+1(unk+1

m−1 )α}unk+1
m−1

< (1 − r + 2rλnk+1)unk+2
m−1 − Δtnk+1(unk+1

m−1 )1+α

< (1 − r + 2rλnk+1)unk+2
m−1 .

These two inequalities give us

unk+1
m−1 − {1 − 2λnk

+ Δtnk
(unk

m−1)
α}unk

m−1

unk+2
m−1 − {1 − 2λnk+1 + Δtnk+1(unk+1

m−1 )α}unk+1
m−1

>
{1 − r + 2rλnk

− rΔtnk
(unk

m−1)
α}unk+1

m−1

(1 − r + 2rλnk+1)unk+2
m−1

.

Note that Δtnk
(unk

m−1)
α = τbnk

aα
nk

→ 0 as k → ∞, which together with Lemma 4.3
implies that

(1 + τh−α/p)α−1 ≥ lim sup
k→∞

{1 − r + 2rλnk
− Δtnk

(unk
m−1)

α}unk+1
m−1

(1 − r + 2rλnk+1)unk+2
m−1

= lim sup
k→∞

wnk+1 ≥ r.

On the other hand, we can also find a subsequence {n̄j} such that

wn̄j
> r and wn̄j+1 ≤ r.

In exactly the same way, we obtain r ≤ (1 + τh−α/p)α−1. We therefore have
r = (1 + τh−α/p)α−1. But this is a contradiction because r was chosen arbitrarily
between lim infn→∞ wn and lim supn→∞ wn. Hence, limn→∞ wn exists and 0 ≤
limn→∞ wn ≤ 1.
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Let A = limn→∞ wn. We next prove that A < 1. Assume that A = 1. Then
(41) shows that

lim
n→∞

ξn
ξn+1

= (1 + τh−α/p)α−1 < 1,

where ξn = 1− (1 + γn)wn. We may take a ρ < 1 such that for all sufficiently large
n it holds that ξn/ξn+1 < ρ, i.e., ρ−1ξn < ξn+1. On the other hand, since A = 1,
the sequence ξn tends to zero. This clearly contradicts, and the proof is completed.

�

Corollary 4.2. For all α > 0, we have

lim
n→∞

an+1

an
= (1 + τh−α/p)−min{1,α}.

This is a direct consequence of (35) and Lemma 4.4.

Remark 4.3. We can write (39) as

un+1
m−1

un
m−1

= λbn
(un

m)1−α

un
m−1

+ λn
un

m−2

un
m−1

+ 1 − 2λn + τbna
α
n.

Then Lemma 4.4 implies that, for α < 1,

(un
m)1−α

un
m−1

→ (1 + τh−α/p)1−α − 1
λh−α/p

∈ (0,∞). (43)

This will be used later.

Lemma 4.5. For α ≤ 1/2, we have limn→∞ un
m−2 = ∞.

Proof. We have by (32)

un+1
m−2 = λn(un

m−1 + un
m−3) + {1 − 2λn + Δtn(un

m−2)
α}un

m−2

≥ λnu
n
m−1 + (1 − 2λn)un

m−2. (44)

The first term of the right hand side is written as follows:

λnu
n
m−1 = λbn

{
un

m−1

(un
m)1−α

}α/(1−α)

(un
m−1)

(1−2α)/(1−α).

This and (43) prove that 0 < lim infn→∞ λnu
n
m−1 = M ≤ ∞ if α ≤ 1/2. Then (44)

gives us

lim inf
n→∞ un+1

m−2 ≥M + lim inf
n→∞ un

m−2,

which implies that limn→∞ un
m−2 = ∞. �

Lemma 4.6. For 1/2 < α ≤ 1, {un
m−2}∞n=1 remains bounded.
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To prove this, we need the following lemma, which was used by Chen [6].

Lemma 4.7. Suppose that a positive sequence {xn} satisfies

xn+1 ≤ Anxn +Bn, n = 1, 2, . . .

where the coefficients An and Bn are positive and satisfy

∞∏
n=1

An <∞,

∞∑
n=1

Bn <∞.

Then the sequence {xn} is bounded.

We omit the proof since it is elementary.

Proof of Lemma 4.6. From the difference scheme (32) and un
m−3 ≤ un

m−2,
we have

un+1
m−2 = λnu

n
m−1 + (1 − 2λn)un

m−2 + λnu
n
m−3 + Δtn(un

m−2)
α+1

≤ λnu
n
m−1 + {1 + Δtn(un

m−2)
α}un

m−2

≤ λnu
n
m−1 + (1 + τbna

α
n)un

m−2

≤ λnu
n
m−1 + (1 + τh−α/paα

n)un
m−2 ≡ Bn +Anu

n
m−2. (45)

By Corollary 4.2, we have
∑∞

n=0 a
α
n <∞. Consequently,

∞∏
n=0

An ≤
∞∏

n=0

exp(τh−α/paα
n) = exp

(
τh−α/p

∞∑
n=0

aα
n

)
<∞.

The inequality
∑∞

n=1Bn <∞ is proved by Corollary 4.1 and Lemma 4.4 as follows:

lim
n→∞

Bn+1

Bn
= lim

n→∞
(un

m)α

(un+1
m )α

un+1
m−1

un
m−1

= (1 + τh−α/p)−α(1 + τh−α/p)1−α

= (1 + τh−α/p)1−2α < 1,

for 1/2 < α ≤ 1. Thus, the desired result follows from Lemma 4.7. �

By the preceding two lemmas, we have shown that there are exactly three blow-
up points if 1/2 < α ≤ 1 while there are at least five blow-up points for α ≤ 1/2. We
naturally wonder about the exact number of blow-up points for α ≤ 1/2. To study
this, it is necessary to know the relationship of un

m−1 and un
m−2 when α ≤ 1/2.

We define cn by cn = un
m−2/u

n
m−1 for n = 0, 1, 2, . . . and prove the following:

Lemma 4.8. For α < 1, we have limn→∞ cn = 0.

Proof. The inequality (45) implies that

cn+1 ≤ λn
un

m−1

un+1
m−1

+ {1 + Δtn(un
m−2)

α}u
n
m−1

un+1
m−1

cn.
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Then, by Lemma 4.4,

lim sup
n→∞

cn+1 ≤ 0 + (1 + τh−α/p)α−1 lim sup
n→∞

cn,

which implies that lim supn→∞ cn = 0, since α < 1. �

With the help of this lemma, we can prove the following lemma in exactly the
same way as before.

Lemma 4.9. If α ≤ 1/3, we have limn→∞ un
m−3 = ∞. If 1/3 < α ≤ 1/2,

{un
m−3}∞n=1 remains bounded.

The process above can be continued further, and we can prove Theorem 4.2
by induction:

Proof of Theorem 4.2. We show by induction on k that, for α ≤ 1/k, the
following results [R1] and [R2] hold true:
[R1] For each j = 1, 2, . . . , k.

lim
n→∞un

m−j = ∞, (46)

lim
n→∞

un
m−j

un+1
m−j

= (1 + τh−α/p)min{1,jα}−1, (47)

[R2] Except in the case that j = k and α = 1/k, it holds that

lim
n→∞

(un
m−j)

1−(j−1)α
1−jα

un
m−j+1

exists, and 0 < lim
n→∞

(un
m−j)

1−(j−1)α
1−jα

un
m−j+1

<∞, (48)

and

lim
n→∞

un
m−j−1

un
m−j

= 0. (49)

The ‘if’ part of Theorem 4.2 follows from (46). Also, the ’only if’ part, namely the
boundedness of un

j for 1 ≤ j ≤ m− k− 1 when 1/(k+ 1) < α will be proved in the
course of the proof of (46)–(49). This completes the proof.

The relations (46)–(49) are valid for k = 1 by Theorem 4.1, Lemmas 4.4, 4.8
and Remark 4.3. Assume that they hold for k − 1. We will show that the results
also hold for k as far as α ≤ 1/k. In fact, by virtue of (32), we have

un+1
m−k ≥ λnu

n
m−(k−1) + (1 − 2λn)un

m−k

= λbn

{
(un

m−1)
1

1−α

un
m

}α

×
{

(un
m−2)

1−α
1−2α

un
m−1

} α
1−α

× · · ·

×
⎧⎨
⎩ (un

m−k+1)
1−(k−2)α
1−(k−1)α

un
m−k+2

⎫⎬
⎭

α
1−(k−2)α

(un
m−k+1)

1−kα
1−(k−1)α + (1 − 2λn)un

m−k.



Finite Difference Approximation for a Parabolic Blow-Up Problem 155

We then apply (46) and (48) for 1 ≤ j ≤ k − 1 to obtain

lim inf
n→∞ un+1

m−k ≥M + lim inf
n→∞ un

m−k

for some 0 < M ≤ ∞. This implies that lim infn→∞ un
m−k = ∞, thus (46) holds

for k.
To prove (47) for j = k, we note (see (38)) that

un+1
m−k − {1 − 2λn + Δtn(un

m−k)α}un
m−k

un+2
m−k − {1 − 2λn+1 + Δtn+1(un+1

m−k)α}un+1
m−k

=
λn(un

m−k+1 + un
m−k−1)

λn+1(un+1
m−k+1 + un+1

m−k−1)

→ (1 + τh−α/p)kα−1

as n → ∞, since (47) and (49) are valid for k − 1. In exactly the same manner
as in Lemma 4.4, we can show that limn→∞ un

m−k/u
n+1
m−k exists and is equal to

(1 + τh−α/p)kα−1. Thus (47) was proved for k.
By (32), we have

1 = λn

un
m−k+1

un+1
m−k

+ λn

un
m−k−1

un+1
m−k

+ (1 − 2λn)
un

m−k

un+1
m−k

+ τbn
(un

m−k)α

(un
m)αun+1

m−k

,

which shows that

lim
n→∞λn

un
m−k+1

un+1
m−k

= 1 − (1 + τh−α/p)kα−1. (50)

Note that

λn

un
m−k+1

un+1
m−k

=λbn

{
(un

m−1)
1

1−α

un
m

}α

×
{

(un
m−2)

1−α
1−2α

un
m−1

} α
1−α

× · · ·

×
⎧⎨
⎩ (un

m−k+1)
1−(k−2)α
1−(k−1)α

un
m−k+2

⎫⎬
⎭

α
1−(k−2)α

· (un
m−k+1)

1−kα
1−(k−1)α

un
m−k

· u
n
m−k

un+1
m−k

.

Since (47) with k has been proved and we can use (48) for j = k − 1, we see that
(48) holds for j = k. (This argument is invalid if α = 1/k, since the right hand side
of (50) is zero in the case.)

Before proving (49) with j = k, we claim that un+1
m−k−1 is bounded in n if

α > 1/(k + 1). In fact, we have by (32)

un+1
m−k−1 ≤ λnu

n
m−k + {1 + Δtn(un

m−k−1)
α}un

m−k−1

≤ λnu
n
m−k + {1 + τbna

α
n}un

m−k−1

≤ λnu
n
m−k + {1 + τh−α/paα

n}un
m−k−1 ≡ Bn +Anu

n
m−k−1.
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By (47), we have

Bn+1

Bn
=
(
un

m

un+1
m

)αun+1
m−k

un
m−k

= (1 + τh−α/p)−α−min{1,kα}+1 < 1 for α >
1

k + 1
,

and thus
∑∞

n=0Bn < ∞. On the other hand, by the same argument as is used in
the proof of Lemma 4.6, we have

∏∞
n=0An < ∞. Hence, by Lemma 4.7, we see

that {un+1
m−k−1}∞n=0 is bounded if α > 1/(k + 1).

As for (49), it is trivial in the case of 1/(k + 1) < α ≤ 1/k since un
m−k tends

to infinity while un
m−k−1 remains bounded as n tends to infinity. If α ≤ 1/(k + 1),

we have by (32)

un+1
m−k−1

un+1
m−k

≤ λn

un
m−k

un+1
m−k

+ {1 + Δtn(un
m−k−1)

α}u
n
m−k−1

un
m−k

· u
n
m−k

un+1
m−k

≤
[
λn + (1 + τbna

α
n)
un

m−k−1

un
m−k

]
· u

n
m−k

un+1
m−k

,

and then (47) with j = k yields that

lim sup
n→∞

un+1
m−k−1

un+1
m−k

≤ (1 + τh−α/p)kα−1 lim sup
n→∞

un
m−k−1

un
m−k

.

This implies that lim supn→∞ un
m−k−1/u

n
m−k = 0. Namely, (49) holds ford k. �

Remark 4.4. Theorem 4.2 says in some sense that the numerical blow-up
set does not precisely correspond to the blow-up set of original PDE. However,
note that as h → 0 all the numerical blow-up points tends to x = 1/2. It simply
shows that a single experiment is not sufficient to see quantitative results. So, this
is not against a common sense of numerical computations. The example in the next
section is, however, somewhat deeper.

5. Asymptotic behavior in the case of f(u) = u[log(1 + u)]β

In this section, we consider equation (13) with nonlinear term f(u) = u[log(1+
u)]β . Since no blow-up occurs if β ≤ 1, we assume that 1 < β. The difference
scheme is rewritten as

un+1
j − un

j

Δtn
=
un

j+1 − 2un
j + un

j−1

h2
+ un

j [log(1 + un
j )]β , (51)

Δtn is now defined as

Δtn = τ min
{

1,
1

[log(1 + ‖un‖p)]β

}
.

We are going to show that the scheme (51) results in a curious asymptotic
behavior, which is essentially different from those in the previous section. Friedman
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and McLeod [8] considered the PDE with f(u) = u[log(1+u)]β in the case of β > 2,
and they found that its blow-up set consisted, under a certain assumption, only of
one point x = 1/2. Later Lacey [11] studied the case of 1 < β ≤ 2, and showed
that its blow-up set was the whole interval (0, 1) if β < 2. We study the numerical
blow-up set of (51) and compare it with the blow-up set of PDE.

Theorem 5.1. Suppose that β > 1. Let {un
j } be a solution of (51) with the

boundary condition (17) and an appropriate initial data such that {un
j } blows up.

Assume that (A1) and (A2) hold. Then for all j = 1, 2, . . . , N − 1, it holds that

lim
n→∞un

j = ∞.

Note that the conclusion is true for all 1 < β <∞.
For the proof of Theorem 5.1, we prove two limit relations:

lim
n→∞

log(1 + un
m)

log(1 + ‖un‖p)
= 1, (52)

lim
n→∞

un
m

un+1
m

=
1

1 + τ
. (53)

To prove (52), we note that ‖un‖p ≤ ‖un‖∞ ≤ h−1/p‖un‖p. Since ‖un‖∞ = un
m,

we have

1 ≤ log(1 + un
m)

log(1 + ‖un‖p)
≤ log h−1/p

log(1 + ‖un‖p)
+ 1.

By letting n→ ∞, we obtain (52).
We next note that for sufficiently large n

un+1
m

un
m

= 2λn
un

m−1

un
m

+ 1 − 2λn + τ

[
log(1 + un

m)
log(1 + ‖un‖p)

]β

. (54)

This and (52) yields (53).
The relation (53) shows that c(1 + un

m) ≤ 1 + un+1
m ≤ C(1 + un

m), where c and
C are independent of n. This implies that

lim
n→∞

log(1 + un+1
m )

log(1 + un
m)

= 1. (55)

We are now in a position to prove Theorem 5.1.

Proof of Theorem 5.1. We show inductively in j = m− 1, . . . , 1 that

lim
n→∞un

j = ∞, (56)

lim
n→∞

log(1 + un+1
j )

log(1 + un
j )

= 1, (57)

lim
n→∞

log(1 + un
j )

log(1 + un
j+1)

= 1. (58)
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This is sufficient for the proof.
We first prove (58) for j = m−1. The equation (51) shows that un+1

m−1 ≥ λnu
n
m

for all sufficiently large n. Therefore 1 + un+1
m−1 ≥ λn(1 + un

m). Consequently we
obtain

log(1 + un+1
m−1) ≥ log λn + log(1 + un

m)

≥ log λ− β log{log(1 + ‖un‖p)} + log(1 + un
m)

Further, by (52) and (55), we have

1 ≥ log(1 + un+1
m−1)

log(1 + un+1
m )

≥ log λ
log(1 + un+1

m )
− β · log(1 + ‖un‖p)

log(1 + un+1
m )

· log{log(1 + ‖un‖p)}
log(1 + ‖un‖p)

+
log(1 + un

m)
log(1 + un+1

m )

→ 1 as n→ ∞.

Thus we have (58) for j = m−1. Since limn→∞ un
m = ∞, (58) for j = m−1 implies

(56) for j = m− 1.
To prove (57) for j = m− 1, note that

log(1 + un+1
m−1)

log(1 + un
m−1)

=
log(1 + un+1

m−1)
log(1 + un+1

m )
log(1 + un+1

m )
log(1 + un

m)
log(1 + un

m)
log(1 + un

m−1)
.

Since we already know that each fraction of the right hand side tends to unity, we
have proved (57) for j = m− 1. Thus we have shown (56)–(58) for j = m− 1.

For j < m− 1, we proceed quite similarly. Suppose that (56)–(58) holds true
for j + 1. Then note that un+1

j ≥ λnu
n
j+1 for sufficiently large n, which yields that

log(1 + un+1
j )

log(1 + un+1
j+1 )

≥ log λ
log(1 + un+1

j+1 )
− β

log{log(1 + ‖un‖p)}
log(1 + un+1

j+1 )
+

log(1 + un
j+1)

log(1 + un+1
j+1 )

.

The first and last terms of the right hand side tend to zero and unity, respectively,
by the assumption of the induction. The second term is:

log{log(1 + ‖un‖p)}
log(1 + un+1

j+1 )
=

log(1 + un+1
j+2 )

log(1 + un+1
j+1 )

log(1 + un+1
j+3 )

log(1 + un+1
j+2 )

· · · log{log(1 + ‖un‖p)}
log(1 + un+1

m )
.

All the terms except for the last tends to unity, and the last tends to zero. We have
therefore proved (58) for j. From this immediately follows (56) for j. As for (57),
simply note that

log(1 + un+1
j )

log(1 + un
j )

=
log(1 + un+1

j )

log(1 + un+1
j+1 )

log(1 + un+1
j+1 )

log(1 + un
j+1)

log(1 + un
j+1)

log(1 + un
j )

,
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the right hand side of which tends to one. �

Remark 5.1. Theorem 5.1 shows that in the case of β > 2, the numerical
blow-up set cannot faithfully reproduce that of the corresponding PDE. It suggests
that with ‘weak’ nonlinearity, the asymptotic behavior of the numerical solution
(with uniform spatial grids) near the blow-up time cannot simulate the asymptotic
behavior of the solution of PDE.

6. Concluding remarks

Though we believe that we have made a substantial progress, we are unable to
answer three questions. The first one is: In the case of f(u) = u1+α we proved that
limn→∞ un

m−1/u
n
m = 0. We expect, based on our numerical experiments, that the

same is true in the case of f(u) = u[log(1 + u)]β , too. We are, however, unable to
prove this. The second, more important question is to derive a convergence rate for
|T (t, h) − T | in the case of PDE. This seems to require inequalities more accurate
than those used in the present paper. Finally, when f(u) = u1+α and g(s) = sγ in
Section 3, we would like to determine the best choice of γ. These questions are left
to the future study.
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