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ABSTRACT. In this work, we provide a review of recent
results on the mathematical analysis of space-time varia-
tional bilinear forms associated to transient boundary inte-
gral operators for the wave equation. Most of the results will
be proven directly in the time domain and compared to sim-
ilar results (most of them obtained in the Laplace domain)
that can be found in the literature.

1. Introduction. Time domain boundary integral equations for
wave propagation problems (TDBIEs), also called retarded potential
methods in 3D, have been initially used for the numerical approxi-
mation of time domain scattering problems. Rather recently, they
have also been used, in association to volumic methods, for the de-
sign of transparent boundary conditions: this is, in fact, the target
application we had in mind when writing this paper. The recent
progress of rapid algorithms for the inversion of matrices originated
from the discretization of boundary integral equations (see, for instance,
[4, 8, 9, 31, 36, 44]), such methods have now become in a number of
cases a credible alternative to more standard methods such as local ab-
sorbing boundary conditions [28, 29, 35] or perfectly matched layers
[14, 50]. Moreover, with respect to the above-mentioned methods, the
boundary integral equations present the clear advantage of authorizing
non convex computational domains. For instance, in [1], a method has
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been proposed based on the coupling between a discontinuous Galerkin
approach to the volumic part of the problem and a space-time varia-
tional approach to boundary integral equations. On the other hand,
in [11], the authors looked at the coupling between a finite element
method for the discretization of the volumic equations and a convolu-
tion quadrature approach to boundary integral equations.

As originally used by engineers [43, 47], their discretization was
based on collocation methods that present some advantages in terms
of the simplicity of their implementation. However, such methods are
known to face some reliability and stability problems [24, 25]. Space-
time variational approaches, as well as associated Galerkin approxima-
tions, were designed in the 1980’s [5, 6, 13, 33, 34] as an alternative
to collocation methods [24, 25, 43, 44, 47]. Although rather difficult
to implement [49] (as far as the effective computation of the matrices
involved in the discrete problem), those methods benefit from uncon-
ditional stability properties which make them quite attractive. More
recently, convolution quadrature methods have gained interest in the
community of applied mathematicians for their application to wave
propagation problems [7, 48]. Such methods also benefit in general
from unconditional stability, and their numerical analysis (convergence
analysis and error estimates) is more or less completely understood
[10, 19, 37]. As a matter of fact, in such methods, the time discretiza-
tion of integral equations can be seen as exact boundary conditions (or
transparent boundary conditions in the case of the coupling with an
interior problem) once the exterior problem has been semi-discretized
in time using an unconditional implicit numerical scheme (a multi-step
or Runge-Kutta method). As a consequence, the analysis of convolu-
tion quadrature methods benefits from well-known properties of these
schemes.

On the other hand, the space-time variational approach benefits from
some nice properties that are not shared by the convolution quadrature
approach. For instance, the method does not introduce any numerical
dissipation (nor dispersion) since the exact Green’s kernel of the wave
equation is used. Moreover, it naturally takes into account finite
propagation velocity or Huygens principle (in 3D). However, compared
to the convolution quadrature approach, numerical analysis of space-
time boundary element methods is less advanced. For instance, one
can hardly find articles reporting on the error analysis of such methods,
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even though some (unpublished) results in this direction can be found
in the habilitation thesis of Ha-Duong [32]. As a consequence, the
theoretical analysis in [1] is less advanced than that in [11].

In 2003, in a review article devoted to time domain integral equations
[23], Costabel wrote that “the theory of error estimates for the BEM
(Boundary Element Method) in the hyperbolic case is still incomplete.”
To our knowledge, this assertion is still valid in 2016. One explanation
is that the analysis of variational methods naturally relies on the
mathematical properties of involved space-time bilinear forms (think
typically to the application, or adaptation, of Cea’s or Strang’s type
lemmas [27]). Since the pioneering results of Bamberger and Ha-Duong
[5, 6], known results on the coercivity/continuity of these bilinear forms
rely on Laplace transform (in time) methods, Plancherel’s theorem
and causality properties (in order to derive finite time coercivity and
continuity estimates). However, the use of such properties for the
analysis of Galerkin methods faces difficulties related to the following
facts:

(1) The coercivity result is obtained for a weighted (with a decreasing
exponential in time) version of the bilinear forms. As a conse-
quence, a too naive adaptation of “classical” methods would pro-
vide a result for a space-time method that does not coincide with
the methods which are implemented in practice, which do not in-
volve any weight. On the other hand, the interest of developing
(theory driven) numerical methods with a weighted bilinear form
are far from obvious:

• the choice of the decay rate of the exponential weight is
somewhat arbitrary. Looking at finite time estimates, it seems
that it should be chosen as a function of the final time T , which
would represent practical drawbacks.

• After time discretization, due to the presence of the weight,
the matrix to be inverted at each time step would depend
upon the time step considered, which would greatly affect the
practical efficiency of the resulting algorithm.

(2) Even if one looks at weighted bilinear forms, in the results obtained
by the Laplace method, there is a gap between the (space-time
Sobolev) coercivity norm (i.e., the norm for which the coercivity
holds) and the continuity norm (the norm of the space in which the
bilinear form is proven to be continuous) which is strictly stronger.
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As a consequence, as far as the error analysis is concerned, this
must be paid (through the use of inverse inequalities [20, 27]) in
terms of the powers of h (the space step) or ∆t (the time step) and
in terms of the required regularity of the solution: this is at least
what appears in the unpublished results of Ha-Duong [32].

The main goal of this paper is to provide a state of the art of recent
results concerning the mathematical analysis of space time variational
bilinear forms associated to space-time integral operators. We shall
put the emphasis on a direct time domain approach to these results
(by opposition to Fourier-Laplace methods) in the spirit of what has
been done in [26]. Such approaches should be, we think, of interest
for the numerical analysis of Galerkin methods. In particular, we shall
address the following questions related to the above points (1) and (2):

• As far as the coercivity results mentioned in point (1) are
concerned, it is not clear at first glance whether or not the
presence of a weight is needed for ensuring coercivity (it could
be a priori due to the technique); we shall see that this is
nevertheless the case. Moreover, we shall see that coercivity
results can be derived in an elementary way for a large class of
weights including the decreasing exponentials.

• As far as the coercivity results and continuity results (men-
tioned in point (2)) are concerned, it is not clear at all that
the results obtained by the Laplace method are sharp. First,
in Section 3, we shall see that direct time domain approaches
bring a small improvement to the above results. Then we shall
study in more detail two particular situations, similar to those
previously considered in [2], which are quite academic but nev-
ertheless very instructive:

– In the case of a flat surface in dimension d ≥ 2, we shall
see that the use of a more “micro-local” (space-time) ap-
proach analysis leads to an improvement of coercivity and
continuity estimates. In particular, it would justify the
use of discontinuous finite elements in time, an important
feature in the method in [1].

– In the case of the 1D wave equation, we shall provide
optimal coercivity and continuity results. In this case,
there is no longer any gap between the coercivity and
continuity norms, which opens the door to an optimal and
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complete numerical analysis of the method in [1]. (This
will be the subject of future work).

2. Motivation: Solving the wave equation on unbounded
domains. Let us consider the transient wave propagation problem

(2.1)

∣∣∣∣∣∣∣∣∣∣∣∣

1

ρc2
∂p

∂t
+ divv = f in Rd × [0, T ],

ρ
∂v

∂t
+∇p = 0 in Rd × [0, T ],

p(x, 0) = p0(x) in Rd,
v(x, 0) = v0(x), in Rd.

In these equations ρ(·) and c(·) are, respectively, the density of the fluid
and sound velocity that are assumed to satisfy

0 < ρmin ≤ ρ(x) ≤ ρmax <∞

and

0 < cmin ≤ c(x) ≤ cmax <∞.

We suppose that there exists a smooth open, connected (for simplicity)
and bounded set Ωi ⊂ Rd, that will be called the interior domain,
outside of which (i.e., in the exterior domain Ωe = Rd \Ωi) the fluid is
homogeneous and does not support any source term or initial condition,
i.e., (see Figure 1 on the left) for all (x, t) ∈ Ωe × [0, T ],

(2.2)
ρ(x) = ρ0, c(x) = c0,

v0(x) = 0, p0(x) = f(x, t) = 0.

Let us denote the interface between both domains that will be assumed
to be smooth (of class C∞) by Γ = ∂Ωi ≡ ∂Ωe. Our goal is to artificially
bound the computational domain, restricting the computations to the
domain Ωi and the boundary Γ. To this end, several techniques can be
used, such as, for example, perfectly matched layers [14, 50], absorbing
boundary conditions [28, 29, 35] or infinite elements [3, 15]. In [1], we
proposed to use transparent boundary conditions based on boundary
integral equations that we recall below.
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Figure 1. Left: geometry of the problem (in gray, the support of the
heterogeneities, initial conditions and sources). Right: definitions of the
sets ΩT (Γ) and Ol

T (Γ), l ∈ {i, e}.

First, one formulates an artificial transmission problem between Ωi
and Ωe equivalent to equation (2.1). Denoting (pi,vi) (respectively,
(pe,ve)) the restriction of (p,v) to Ωi× [0, T ] (respectively, Ωe× [0, T ])
it is well known that ((pi,vi), (pe,ve)) is solution of the transmission
problem:

(2.3)

∣∣∣∣∣∣∣∣∣∣∣∣

1

ρc2
∂pi
∂t

+ divvi = f in Ωi × [0, T ],

ρ
∂vi
∂t

+∇pi = 0 in Ωi × [0, T ],

pi(x, 0) = p0(x) in Ωi,

vi(x, 0) = v0(x) in Ωi,

(2.4)

∣∣∣∣∣∣∣∣∣∣∣∣

1

ρ0c20

∂pe
∂t

+ divve = 0 in Ωe × [0, T ],

ρ0
∂ve
∂t

+∇pe = 0 in Ωe × [0, T ],

pi(x, 0) = 0 in Ωe,

vi(x, 0) = 0 in Ωe,
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equations that are coupled through the transmission conditions

(2.5)

∣∣∣∣∣ ve · n = vi · n on Γ,

pe = pi on Γ,

where n is the unit normal vector to Γ, outgoing with respect to Ωi.
Reciprocally, if ((pi,vi), (pe,ve)) is a solution of the above transmission
problem, the field (p,v) obtained by concatenation of (pi,vi) and
(pe,ve) is the solution of equation (2.1).

The next step is to replace equation (2.4) by a set of boundary
integral equations defined on Γ whose unknowns are the traces of the
exterior solution, i.e., the functions (ψ,φ) := (pe|Γ,ve|Γ · n). This
formulation will be obtained in subsection 2.3. The integral operators
and associated bilinear forms needed on this process are introduced in
the following sections. For simplicity, we suppose that time and space
units are chosen in such a way that

(2.6) ρ0 = 1 and c0 = 1.

2.1. Integral operators and associated bilinear forms: Ab-
stract definitions. Before introducing the boundary integral oper-
ators let us introduce some notation concerning traces, jumps, mean
values and Green’s formula that will be useful for the sequel. For any
function defined in Rd, we set

fe := f|Ωe
, fi := f|Ωi

.

Next, for any function q ∈ L2(Rd) ∩ H1(Ωi ∪ Ωe), we introduce the
jumps and the mean values on Γ by

(2.7)
[[q]]Γ := qe|Γ − qi|Γ ∈ H1/2(Γ),

{{q}}Γ :=
1

2

(
qe|Γ + qi|Γ

)
∈ H1/2(Γ).

Analogously, for w ∈ [L2(Rd)]n ∩ H(div; Ωi ∪ Ωe), we introduce the
normal jumps and mean values

(2.8)
[[w · n]]Γ := we · n|Γ −wi · n|Γ ∈ H−1/2(Γ),

{{w · n}}Γ :=
1

2

(
wi · n|Γ +we · n|Γ

)
∈ H−1/2(Γ).

We now recall the following Green’s formula.
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Lemma 2.1. For any q ∈ H1(Ωi ∪ Ωe) and w ∈ H(div; Ωi ∪ Ωe), one
has

(2.9) −
∫
Rd\Γ

(
divw q +w · ∇q

)
dx

=

∫
Γ

(
[[q]]Γ{{w · n}}Γ + {{q}}Γ[[w · n]]Γ

)
dγ.

Proof. Since n is exterior to Ωi we have

−
∫
Ωi

divw q dx =

∫
Ωi

w · ∇q dx−
∫
Γ

wi · n qi dγ.

In the same way, −n being exterior to Ωe,

−
∫
Ωe

divw q dx =

∫
Ωe

w · ∇q dx+

∫
Γ

we · n qe dγ.

Adding the last two equalities leads to equation (2.9) while observing
that

we · n qe −wi · n qi = [[q]]Γ{{w · n}}Γ + {{q}}Γ[[w · n]]Γ.

This concludes the proof. �

In what follows, for any D ⊂ Rd and I ⊂ R (for instance D = Γ, Ωi
or Ωe and I = R or [0, T ]), we shall set (the index c stands for “causal”)

(2.10) C∞
c (D × I) = {g ∈ C∞(D × I)/g(x, t) = 0 for t ≤ 0}.

Assuming that (ψ,φ) belongs to C∞
c (Γ×R)2, we introduce (pψ,φ,vψ,φ)

as the unique solution of the transmission problem

(2.11)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂pψ,φ
∂t

+ divvψ,φ = 0 in Rd \ Γ× R+, (a)

∂vψ,φ
∂t

+∇pψ,φ = 0 in Rd \ Γ× R+, (b)

[[pψ,φ]]Γ = ψ on Γ× R+, (c)

[[vψ,φ · n]]Γ = φ on Γ× R+, (d)

pψ,φ(x, 0) = 0 in Rd \ Γ, (e)

vψ,φ(x, 0) = 0 in Rd \ Γ, (f)
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that has the regularity (with obvious notation, the letters e and i are
set here as superscripts for convenience):

(2.12)
(piψ,φ,v

i
ψ,φ) ∈ C∞

c (Ωi × R)×
(
C∞
c (Ωi × R)

)d
,

(peψ,φ,v
e
ψ,φ) ∈ C∞

c (Ωe × R)×
(
C∞
c (Ωe × R)

)d
.

This allows us to define a boundary operator that associates to the
jumps of (pψ,φ,vψ,φ), namely, (ψ,φ), the corresponding mean values
of the traces of (pψ,φ,vψ,φ):

MΓ

(
ψ
φ

)
≡MΓ

(
[[pψ,φ]]Γ

[[vψ,φ · n]]Γ

)
:=

(
{{pψ,φ}}Γ

{{vψ,φ · n}}Γ

)
.

In order to exhibit a block decomposition of MΓ we use linearity of
(ψ,φ) 7→ (pψ,φ,vψ,φ) to write

vψ,φ = vψ,0 + v0,φ and pψ,φ = pψ,0 + p0,φ,

so that we can rewrite

(2.13) MΓΦ =

(
WΓ ZΓ

YΓ W∗
Γ

)(
ψ
φ

)
where Φ =

(
ψ
φ

)
,

where the operators are defined by

(2.14)

∣∣∣∣∣ ZΓφ := {{p0,φ}}Γ (a), WΓψ := {{pψ,0}}Γ (b),

W∗
Γφ := {{v0,φ · n}}Γ (c), YΓψ := {{vψ,0 · n}}Γ (d).

For the purpose of writing the coupled DG-BEM formulation of the
problem (2.3)–(2.5), it is also useful to introduce the operator BΓ

defined by

(2.15) BΓ :=

(
0 I
I 0

)
MΓ ≡

(
YΓ W∗

Γ

WΓ ZΓ

)
so that

BΓ

(
[[pψ,φ]]Γ

[[vψ,φ · n]]Γ

)
=

(
{{vψ,φ · n}}Γ
{{pψ,φ}}Γ

)
.

Given a finite interval [0, T ], we introduce the associated bilinear form

(setting Φ = (ψ,φ), Φ̃ = (ψ̃, φ̃))

(2.16) bT (Φ, Φ̃) :=

∫ T

0

∫
Γ

(BΓΦ, Φ̃) dγ dt.
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Using the block decomposition for BΓ, we obtain

(2.17) bT ((ψ,φ), (ψ̃, φ̃)) = bYT (ψ, ψ̃)+b
W∗

T (φ, ψ̃)+bWT (ψ, φ̃)+bZT (φ, φ̃),

where
(2.18)∣∣∣∣∣∣∣∣
bYT (ψ, ψ̃) =

∫ T

0

∫
Γ

YΓψ ψ̃ dγ dt, bW
∗

T (φ, ψ̃) =

∫ T

0

∫
Γ

W∗
Γφ ψ̃ dγ dt,

bWT (ψ, φ̃)=

∫ T

0

∫
Γ

WΓψ φ̃ dγ dt, bZT (φ, φ̃) =

∫ T

0

∫
Γ

ZΓφ φ̃dγ dt.

We also see from equations (2.11) and (2.14) that

(2.19) bT
(
(ψ,φ), (ψ̃, φ̃)

)
=

∫ T

0

∫
Γ

(
[[pψ̃,φ̃]]Γ{{vψ,φ · n}}Γ + {{pψ,φ}}Γ[[vψ̃,φ̃ · n]]Γ

)
dγ dt.

This last formula clearly emphasizes the link between the bilinear form
bT (·, ·) and Green’s formula (2.9) and explains the introduction of the
operator BΓ.

2.2. Integral operators and associated bilinear forms: Explicit
expressions. Since the system in equation (2.11) has constant coef-
ficients, it can be solved using the fundamental solution of the wave
equation. As a consequence, for any (x, t) ∈ Rd\Γ×R+, one can obtain
the expressions of pψ,φ(x, t) and vψ,φ(x, t) as integrals on Γ× [0, T ] in-
volving φ and ψ. One can then obtain expressions for ZΓφ, WΓψ, W∗

Γφ
and YΓψ by computing the interior and exterior traces of pψ,φ(x, t) and
vψ,φ(x, t) and using equation (2.14). These expressions depend upon
d, the space dimension.

Below we give the analytic expressions of the bilinear forms in (2.18)
on the 3D case, which is the physically relevant one, and for the
1D case, for the purpose of the 1D analysis that will be presented
in subsection 4.1.

2.2.1. The 3D case. Let us state the corresponding formulas in the
following proposition (we refer the reader to [32] for the proof).
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Proposition 2.2. For any T ≥ 0 and smooth enough functions

φ, φ̃, ψ, ψ̃ : Γ× R+ → R, one has the formulas
(2.20)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bZT (φ, φ̃) =

∫ T

0

∫
Γ

∫
Γ

φ̇(y, τ)

4π|x− y|
φ̃(x, t) dγy dγx dt,

bWT (ψ, φ̃) =

∫ T

0

∫
Γ

∫
Γ

ny · (x− y)

4π|x− y|

(
ψ(y, τ)

|x− y|2

+
ψ̇(y, τ)

c0|x− y|

)
φ̃(x, t) dγy dγx dt,

bW
∗

T (φ, ψ̃) =

∫ T

0

∫
Γ

∫
Γ

nx · (x− y)

4π|x− y|

(
φ(y, τ)

|x− y|2

+
φ̇(y, τ)

c0|x− y|

)
ψ̃(x, t) dγy dγx dt,

bYT (ψ, ψ̃) = −
∫ T

0

∫
Γ

∫
Γ

ψ(y, τ)
˙̃
ψ(x, t)

4π|x− y|
nx · ny dγx dγy dt

−
∫ T

0

∫
Γ

∫
Γ

∫ t
0
rotΓψ(y, σ) ds·rotΓψ̃(x, t)

4π|x−y|
dγx dγy dt,

where τ = t − |x − y| and σ = s − |x − y| are retarded times, rotΓ is
the tangential curl operator (see [33, 45, 46]) and φ̇ holds for the time
derivative of φ.

2.2.2. The 1D case. This case is very degenerate from the geometrical
point of view since we have for some a < b,

Ωi = (a, b) and Ωe = R \ [a, b],

the common boundary to both sub-domains being reduced to two
points, Γ = {a}∪{b}. For any function µ defined on Γ, we introduce the
notation µ(c) = µc, c ∈ {a, b}. The solution to the auxiliary problem
(2.11) is obtain through the method of characteristics and is given by
(2.21)

pψ,φ(x, t) = − sign(x− a)

2
ψa(t− |x− a|) + sign(x− b)

2
ψb(t− |x− b|)

+
1

2
φa(t− |x− a|) + 1

2
φb(t− |x− b|),
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(2.22)

vψ,φ(x, t) =
1

2
ψb(t− |x− b|)− 1

2
ψa(t− |x− a|)

+
sign(x− a)

2
φa(t− |x− a|) + sign(x− b)

2
φb(t− |x− b|).

Thus, using equation (2.14), one gets the expressions:

(2.23)

(
ZΓφ

)
a
(t) =

1

2
φa(t) +

1

2
φb(t− |b− a|),(

ZΓφ
)
b
(t) =

1

2
φa(t− |b− a|) + 1

2
φb(t),(

WΓψ
)
a
(t) = −1

2
ψb(t− |b− a|),(

WΓψ
)
b
(t) = −1

2
ψa(t− |b− a|),(

W∗
Γφ

)
a
(t) =

1

2
φb(t− |b− a|),(

W∗
Γφ

)
b
(t) =

1

2
φa(t− |b− a|),(

YΓψ
)
a
(t) =

1

2
ψa(t)−

1

2
ψb(t− |b− a|),(

YΓψ
)
b
(t) = −1

2
ψa(t− |b− a|) + 1

2
ψb(t).

The corresponding bilinear forms are given by
(2.24)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bZT (φ, φ̃) =
1

2

∫ T

0

(
φa(s)φ̃a(s)

+φb(s)φ̃b(s)+φb(s−|b−a|)φ̃a(s)+φa(s−|b−a|)φ̃b(s)
)
ds,

bWT (ψ, φ̃) = −1

2

∫ T

0

(
ψb(s− |b− a|)φ̃a(s) + ψa(s− |b− a|)φ̃b(s)

)
ds,

bW
∗

T (φ, ψ̃) =
1

2

∫ T

0

(
φb(s− |b− a|)ψ̃a(s) + φa(s− |b− a|)ψ̃b(s)

)
ds,

bYT (ψ, ψ̃) =
1

2

∫ T

0

(
ψa(s)ψ̃a(s) + ψb(s)ψ̃b(s)

− ψb(s− |b− a|)ψ̃a(s)− ψa(s− |b− a|)ψ̃b(s)
)
ds.
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2.3. Applications to BEM/DGFEM couplings. As will be re-
called in subsection 3.2, the equations on Ωe, see equation (2.4), can
be replaced by the system of boundary integral equations:

(2.25)

∣∣∣∣∣∣∣
1

2
ψe = WΓψe + ZΓφe on Γ,

1

2
φe = YΓψe +W∗

Γφe on Γ,

where the unknowns (ψe, φe) ≡ (pe|Γ, (ve · n)|Γ) designate the traces

of the exterior solution (pe,ve). Using this notation, the transmission
conditions (2.5) can be reformulated as:

(2.26)

∣∣∣∣φe = vi · n, on Γ,

ψe = pi, on Γ.

As a consequence, the coupled PDE system (2.3)–(2.5) is equivalent to
the coupled integro-differential system given by (2.3), (2.25) and (2.26).
Notice that the latter is set on a bounded domain.

In what follows, we recall the weak formulation of this problem on
which the BEM-FEM coupling in [1] was based. For simplicity, this
formulation is presented in a nonrigorous way without paying attention
to the correct functional spaces.

2.3.1. Space variational formulation in Ωi. This weak formula-
tion is obtained in the spirit of that used for the derivation of discon-
tinuous Galerkin methods for first order PDE systems using central
fluxes. To do so, we multiply the first two equations in (2.3) by the
corresponding test functions (p̃i, ṽi) (assumed to be sufficiently smooth
functions of the space variables) and integrate in Ωi to obtain∫

Ωi

(
1

ρc2
∂pi
∂t

+ divvi

)
p̃i dx =

∫
Ωi

(fp̃i dx),∫
Ωi

(
ρ
∂vi
∂t

+∇pi
)
· ṽi dx = 0.

Splitting the terms involving differential operators in space into two
identical parts and integration by parts on one of them, we obtain the
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following formulation for the interior problem:

(2.27)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
Ωi

(
1

ρc2
∂pi
∂t

p̃i +
1

2
divvi p̃i −

1

2
∇p̃i · vi

)
dx

+
1

2

∫
Γ

vi · n p̃i dγ =

∫
Ωi

f p̃i dx,∫
Ωi

(
ρ
∂vi
∂t

· ṽi +
1

2
∇pi · ṽi −

1

2
div ṽi pi

)
dx

+
1

2

∫
Γ

ṽi · n pi dγ = 0.

2.3.2. Space-time variational formulation on Γ. In order to ob-
tain a space-time variational formulation of (2.25), these equations are

multiplied by test functions (φ̃e, ψ̃e) and integrated in space and time
as ∣∣∣∣∣∣∣∣∣

1

2

∫ T

0

∫
Γ

ψe φ̃e dγ dt =

∫ T

0

∫
Γ

(
WΓψe + ZΓφe

)
φ̃e dγ dt,

1

2

∫ T

0

∫
Γ

φe ψ̃e dγ dt =

∫ T

0

∫
Γ

(
YΓψe +W∗

Γφe

)
ψ̃e dγ dt.

Adding both equations, one gets

(2.28)
1

2

∫ T

0

∫
Γ

(
ψe φ̃e dγ + φeψ̃e

)
dγ dt = bT ((ψe, φe), (ψ̃e, φ̃e)).

2.3.3. Coupled formulation. It remains to couple equations (2.27)
and (2.28) using the transmission conditions in (2.26). In [1], we first
proposed replacing ψe (respectively φe) by pi (respectively vi · n) on
the left hand side in equation (2.28). Next, in the boundary terms of
(2.27), we proposed replacing pi (respectively vi ·n) by ψe (respectively
φe). This led to:
(2.29)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
Ωi

(
1

ρc2
∂pi
∂t

p̃i +
1

2
divvi p̃i −

1

2
∇p̃i · vi

)
dx = −1

2

∫
Γ

φe p̃i dγ

+

∫
Ωi

f p̃i dx,∫
Ωi

(
ρ
∂vi
∂t

· ṽi +
1

2
∇pi · ṽi −

1

2
div ṽi pi

)
dx = −1

2

∫
Γ

ṽi · nψe dγ,

bT ((ψe, φe), (ψ̃e, φ̃e)) =
1

2

∫ T

0

∫
Γ

(
pi φ̃e dγ + vi · n ψ̃e

)
dγ dt.
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2.3.4. Space-time discretization. In [1], we proposed a space-time
discretization method based on

• space discontinuous Galerkin approximation in space and a
explicit centered finite difference method in time for the interior
unknowns,

• space-time finite elements (discontinuous in time) for the
boundary unknowns ψe and φe.

One of the key points of the method lay in the way the coupling integral
terms in Γ were taken into account at the discrete level. This was done
in order to ensure the conservation of some discrete energy (refer to
[1] for the details). The well posedness of the discrete problem as well
as the stability were established using some of the properties of the
bilinear for bT (·, ·) that will be presented in subsection 3.3. However,
the complete convergence and error analysis remains an open question.

3. General properties of the integral operators. We recall or
establish in this section the main mathematical results that play a role
in the justification and the analysis of the coupled problem, as well
as in the numerical analysis of the method of subsection 2.3. The
results of subsections 3.1 and 3.2 are not really original but are recalled
here, with elementary proofs, for completeness. They are time domain
counterparts of well-known results in the time harmonic case or can be
found in the literature (most often for the second order wave equation
rather than for the first order system version).

The results of subsections 3.3, 3.4 and 3.5 are new for most of them,
either by their own content or by the method used for obtaining them,
directly in the time domain, which make them easier to extend to
discretized problems.

3.1. Calderon projector properties.

Proposition 3.1. The operator MΓ satisfies M2
Γ = (1/4)I, which is

equivalent to

(3.1)
W2

Γ + ZΓYΓ =
1

4
I, WΓZΓ + ZΓW∗

Γ = 0,

YΓWΓ +W∗
ΓYΓ = 0, YΓZΓ +W∗

Γ
2 =

1

4
I.
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As a consequence, the operators (1/2)I ±MΓ are projectors.

Proof. Let (ψ,φ) ∈ C∞
c (Γ× R)2, by definition of MΓ, we have

(ψ1, φ1) :=MΓ(ψ,φ) =
(
{{pψ,φ}}Γ, {{vψ,φ · n}}Γ

)
,

(ψ2, φ2) :=M2
Γ(ψ,φ) =MΓ(ψ1, φ1) =

(
{{pψ1,φ1}}Γ, {{vψ1,φ1 · n}}Γ

)
.

We have to prove that (ψ2, φ2) = (ψ/4, φ/4). Let us define (paψ,φ,v
a
ψ,φ)

in Rd \ Γ× R+ by

(paψ,φ,v
a
ψ,φ)|Ωe

= (pψ,φ,vψ,φ)|Ωe
,

(paψ,φ,v
a
ψ,φ)|Ωi = −(pψ,φ,vψ,φ)|Ωi .

By linearity, (paψ,φ,v
a
ψ,φ) obviously solves the wave equation (2.11) (a),

(b) with zero initial conditions. Moreover, by definition of the mean
and jump operators (2.7), we have:

[[paψ,φ]]Γ = 2 {{pψ,φ}}Γ = 2ψ1,

[[vaψ,φ · n]]Γ = 2 {{vψ,φ · n}}Γ = 2φ1.

By well-posedness of the transmission problem (2.11), we thus deduce
that (paψ,φ,v

a
ψ,φ) = 2 (pψ1,φ1 ,vψ1,φ1). Therefore, again using the mean

and jump operators, we get

ψ2 = {{pψ1,φ1}}Γ =
1

2
{{paψ,φ}}Γ =

1

4
[[pψ,φ]]Γ =

ψ

4
,

φ2 = {{vψ1,φ1 · n}}Γ =
1

2
{{vaψ,φ · n}}Γ =

1

4
[[vψ,φ · n]]Γ =

φ

4
.

This shows the first part of the theorem. Finally, we remark that(
1

2
I ±MΓ

)2

=
1

4
I +M2

Γ ±MΓ =
1

2
I ±MΓ,

as claimed. �

3.2. Transparent conditions. We wish to characterize the subset of
C∞
c (Γ × R)2 of functions (ψe, φe) which are traces on Γ of a solution

(pe,ve) of the wave equation in the exterior domain Ωe with zero initial
conditions, that is, solution of (2.4).

Let us denote (p,v) as the extension of (pe,ve) by 0 inside Ωi. By
construction, [[p]]Γ = ψe, [[v · n]]Γ = φe, while {{p}}Γ = ψe/2, {{v · n}}Γ =
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φe/2. Since (p,v) obviously satisfies equation (2.11) (a), (b), (e) and
(f), we have

(3.2) MΓ

(
ψe
φe

)
=

1

2

(
ψe
φe

)
⇐⇒

(
ψe
φe

)
∈ Ker

(
1

2
I −MΓ

)
,

which means that (ψe, φe) are related by the linear equations

(3.3) (a)
1

2
ψe = WΓψe + ZΓφe, (b)

1

2
φe = YΓψe +W∗

Γφe.

Since each of conditions (3.3) (a) and (3.3) (b) are satisfied by any
couple of traces of the solution of a homogeneous wave equation, we
call them transparent conditions. In fact, only one of them is sufficient
to characterize the kernel of I/2 − MΓ. This is a consequence of
Proposition 3.1 and the injectivity of the operators ZΓ and YΓ (that
will be demonstrated in subsection 3.4, see Remark 3.12).

Proposition 3.2. The two transparent conditions (3.3) (a) and (3.3) (b)
are equivalent. Moreover, each is equivalent to saying that (ψe, φe) are
traces on Γ of a solution (pe,ve) of the wave equation in the exterior
domain Ωe with zero initial conditions, that is, equation (2.4).

Proof. We show that equation (3.3) (a) implies equation (3.3) (b),
the reverse statement being proved in the same way.

Let us remark that the first two identities of (3.1) can be rewritten:

(3.4)

1

2
I −WΓ =

(
1

2
I −WΓ

)2

+ ZΓYΓ,

ZΓ =

(
1

2
I −WΓ

)
ZΓ + ZΓ

(
1

2
I −W∗

Γ

)
.

Then, we observe that

(3.3) (a) ⇐⇒
(
1

2
I −WΓ

)
ψe −ZΓ φe = 0

=⇒
(
1

2
I −WΓ

)2

ψe + ZΓYΓ ψe −
(
1

2
I −WΓ

)
ZΓ φe

−ZΓ

(
1

2
I −W∗

Γ

)
φe = 0 (by (3.4))
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⇐⇒
(
1

2
I −WΓ

)((
1

2
I −WΓ

)
ψe −ZΓ φe

)
+ ZΓ

(
YΓ ψe −

(
1

2
I −W∗

Γ

)
φe

)
= 0

=⇒ ZΓ

(
YΓ ψe −

(
1

2
I −W∗

Γ

)
φe

)
= 0

(by (3.3) (a)) =⇒ (3.3) (b) (by injectivity of ZΓ).

Next, assume that (ψe, φe) satisfies (3.3) (a) and introduce (pe,ve) as
the solution of the wave equation in the exterior domain Ωe with zero
initial conditions (that is, (2.4)) and Dirichlet condition pe|Γ = ψe.
Letting φ′

e := ve · n|Γ, we know (see first part of this section) that
ψe/2 = WΓψe +ZΓφ

′
e. Taking the difference of this last equation with

(3.3) (a), we get ZΓ(φ
′
e − φe) = 0. Therefore, by injectivity of ZΓ,

φe = φ′
e = ve · n|Γ. �

3.3. Basic properties of b(·, ·). Our first result concerns the positiv-
ity of the bilinear form bT (·, ·), which appears to be a straightforward
consequence of the energy identity for the wave equation.

Proposition 3.3. For any T > 0, the bilinear form bT (·, ·) is non-
negative: for any (ψ,φ) : Γ× R+ 7→ R× R,

(3.5) bT
(
(ψ,φ), (ψ,φ)

)
=

1

2

∫
Rd\Γ

(
|pψ,φ(x, T )|2 + |vψ,φ(x, T )|2

)
dx,

where (pψ,φ,vψ,φ) is the solution of (2.11).

Proof. Take the inner product in R3 of (2.11) (b) with vψ,φ, multiply
(2.11) (a) by pψ,φ, add the two equalities and integrate the result over
Ωi ∪ Ωe. One obtains

(3.6)
1

2

d

dt

∫
Rd\Γ

(
|pψ,φ|2 + |vψ,φ|2

)
dx

+

∫
Rd\Γ

(
divvψ,φ pψ,φ + vψ,φ · ∇pψ,φ

)
dx = 0.
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Then, using Green’s formula (2.9) yields

(3.7)
1

2

d

dt

∫
Rd\Γ

(
|pψ,φ|2 + |vψ,φ|2

)
dx

=

∫
Γ

(
[[pψ,φ]]Γ{{vψ,φ · n}}Γ + {{pψ,φ}}Γ[[vψ,φ · n]]Γ

)
dγ.

Substituting (2.11) (c), (d) and (2.15) into (3.7) then gives

(3.8)
1

2

d

dt

∫
Rd\Γ

(
|pψ,φ|2 + |vψ,φ|2

)
dx

=

∫
Γ

(
ZΓφφ+WΓψ φ+W∗

Γφψ + YΓψ ψ
)
dγ.

Finally, integrating (3.8) in time between 0 and T leads to (3.5), taking
into account (2.17), (2.19) and the initial conditions (2.11) (e), (f). �

A natural subsequent question to Proposition 3.3 is to know whether
bT ((ψ,φ), (φ,ψ)) is positive definite, in other words, whether it defines
the square of a norm.

Curiously, addressing this question is far from obvious and one has
two different results depending on the fact whether the time T is small
or large. Let us begin with a positive result when T is small enough.
For this, we need to introduce some notation. For each T > 0, we
introduce the set of points in Rd whose distance to Γ is less than T , as
well as its complement in Rd (see Figure 1 on the right):

(3.9)
ΩT (Γ) :=

{
x ∈ Rd \ Γ/d(x,Γ) < T

}
,

OT (Γ) := Rd \ ΩT (Γ),

which obviously satisfy
(3.10)

ΩT (Γ) = ΩeT (Γ) ∪ ΩiT (Γ), ΩℓT (Γ) = ΩT (Γ) ∩ Ωℓ, ℓ ∈ {i, e},

OT (Γ) = O e
T (Γ) ∪ O i

T (Γ), Oℓ
T (Γ) = OT (Γ) ∩ Ωℓ, ℓ ∈ {i, e}.

By construction, the sets O e
T (Γ) and O i

T (Γ) decrease when T increases.
Since Ωe is unbounded, O e

T (Γ) itself remains unbounded for all T > 0,
and thus non-empty. For O i

T (Γ) this is only true for T small enough,
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which is why we introduce:

(3.11) T ∗(Ωi) = sup
{
T > 0/O i

T (Γ) ̸= ∅},

that satisfies 0 < T ∗(Ωi) ≤ diam (Ωi), (note that T ∗(Ωi) = diam (Ωi)
when Ωi is a ball).

Proposition 3.4. For any 0 < T < 2T ∗(Ωi), the bilinear form bT (·, ·)
is positive definite:

bT
(
(ψ,φ), (ψ,φ)

)
= 0 =⇒ φ(x, t) = ψ(x, t) = 0,(3.12)

x ∈ Γ, t ∈ [0, T ].

Proof. The idea of the following proof has been suggested to us by
Lebeau [38]. According to equation (3.5), we have to show that

pψ,φ(x, T ) = 0, vψ,φ(x, T ) = 0, for all x ∈ Rd \ Γ,
=⇒ φ(x, t) = ψ(x, t) = 0, x ∈ Γ, t ∈ [0, T ].

We first note that, due to the finite propagation velocity of the wave
equation

supp pψ,φ(·, t) ∪ suppvψ,φ(·, t) ⊂ Ωt(Γ), for all t > 0.

Similarly, by time reversibility, changing t in T − t and using pψ,φ(x, T )
= 0, vψ,φ(x, T ) = 0, for all x ∈ R3 \ Γ, we have

supp pψ,φ(·, t) ∪ suppvψ,φ(·, t) ⊂ ΩT−t(Γ), for all t ∈ ]0, T [ .

Therefore, for all t ∈ ]0, T [,

supp pψ,φ(·, t) ∪ suppvψ,φ(·, t) ⊂ Ωt(Γ) ∩ ΩT−t(Γ),

and in particular, for all t ∈ ]0, T [,

(3.13) supp pψ,φ(·, t) ∪ suppvψ,φ(·, t) ⊂ ΩT/2(Γ).

Let us consider p̃ψ,φ(x, t) : R3\Γ×R → R and ṽψ,φ(x, t) : R3\Γ×R →
R3 defined for all times by extension by 0:

p̃ψ,φ(x, t) = pψ,φ(x, t) if t ∈ ]0, T [,

p̃ψ,φ(x, t) = 0 if t ∈ ]−∞, 0[ ∪ ]T,+∞[,

ṽψ,φ(x, t) = vψ,φ(x, t) if t ∈ ]0, T [,

ṽψ,φ(x, t) = 0 if t ∈ ]−∞, 0[ ∪ ]T,+∞[.
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Since ψ and φ are traces of p̃ψ,φ and ṽψ,φ, the proof will be achieved
if we show that p̃ψ,φ and ṽψ,φ vanish identically.

Because of the zero initial (t = 0) and final (t = T ) conditions
satisfied by (pψ,φ,vψ,φ), (p̃ψ,φ, ṽψ,φ) satisfy equations (2.11) (a), (b)
in Rd \ Γ× R. Thus, the Fourier transforms in time of p̃ψ,φ and ṽψ,φ,
namely,

p̂ψ,φ(x, τ) =

∫ +∞

−∞
p̃ψ,φ(x, t)e

−iτt dt,

v̂ψ,φ(x, τ) =

∫ +∞

−∞
ṽψ,φ(x, t)e

−iτt dt,

satisfy, for each τ ∈ R,
(3.14){
div v̂ψ,φ + iτ p̂ψ,φ = 0 in R3 \ Γ,
∇p̂ψ,φ + iτ v̂ψ,φ = 0 in R3 \ Γ.

=⇒ ∆ p̂ψ,φ+τ
2p̂ψ,φ = 0, in R3\Γ.

On the other hand, we deduce from equation (3.13) that for all τ ∈ R,

supp p̂ψ,φ(·, τ) ⊂ ΩT/2(Γ).

In particular, p̂ψ,φ vanishes in O e
T/2(Γ) and O i

T/2(Γ), which are both

nonempty open sets since T < 2T ∗(Ωi). As Ωi and Ωe are connected, we
can use a unique continuation argument (Holmgren’s theorem [21, 22])
to assert that:

p̂ψ,φ = 0, in R3 \ Γ, which implies (cf., (3.14)) v̂ψ,φ = 0, in R3 \ Γ.

This concludes the proof. �

Remark 3.5. Proposition 3.4 plays an important role in the numerical
analysis of the method developed in [1] and that we briefly recalled in
subsection 2.3.4. Indeed, the well posedness of the discrete problem
relies on the positive definiteness of b∆t(·, ·), where ∆t is the time step.
Thus, Proposition 3.4 gives an upper bound for the time step (whatever
the space discretization) to be satisfied in order to ensure the well
posedness of the method (also see [34] for analogous discussions).

Remark 3.6. Once we know that, for T < 2T ∗(Ωi), (ψ,φ) 7→
bT ((ψ,φ), (ψ,φ)) defines the square of a norm, it is natural to wonder
whether this norm is equivalent to a more standard norm, of Sobolev
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type for instance. Except in the case of the dimension 1, as we shall
see in subsection 4.1, the answer is negative. It can be shown, at least
in the case of a flat boundary Γ, that this is a very weak norm in the
sense that it cannot be bounded from below by any (even arbitrarily
negative) Sobolev norm (see [2] for instance).

As stated earlier, the fact that T must be small enough to ensure
that bT is positive definite is not only a technical convenience. This is
also a necessary condition. Let us set:

(3.15) P =
{
T > 0/bT (·, ·) is positive definite

}
.

By definition of P,

T ∈ R+ \ P ⇐⇒ N (bT ) :=
{
(ψ,φ)|[0,T ]/bT

(
(ψ,φ), (ψ,φ)

)
= 0

}
(kernel of bT ) is different from {0}.

According to the proof of Proposition 3.4, we know that the kernel
N (bT ) is also defined by
(3.16)
N (bT ) =

{
(ψ,φ)|[0,T ]/pψ,φ(x, T ) = 0, vψ,φ(x, T ) = 0 for all x ∈ R3\Γ

}
.

It is clear that, for T2 > T1, N (bT2) ⊃ N (bT1) (note that, if (ψ,φ) ∈
N (bT1), then (ψ∗, φ∗), the extension of (ψ,φ) by 0 in ]T1, T2], belongs
to N (bT2)). Thus, there exists Tmax(Ωi) > 0 such that

(3.17) P = ]0, Tmax(Ωi)[ .

From Proposition 3.4, we know that

(3.18) Tmax(Ωi) ≥ 2T ∗(Ωi).

The question of obtaining a good upper bound for Tmax(Ωi) > 0 is
clearly related to the boundary controllability theory for the wave
equation inside Ωi. Let us recall that the wave equation in Ωi is
controllable from the boundary with Dirichlet data in time T if and
only if, for any initial data (p0,v0), there exists a boundary data ψ
defined on Γ × [0, T ] such that (pψ,vψ), the solution of the following
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problem ∣∣∣∣∣∣∣∣∣∣∣∣∣

∂pψ
∂t

+ divvψ = 0 in Ωi × [0, T ],

∂vψ
∂t

+∇pψ = 0 in Ωi × [0, T ],

pψ = −ψ on Γ× [0, T ],
pψ(x, 0) = p0 in Ωi,
vψ(x, 0) = v0 in Ωi,

satisfies (pψ(T ),vψ(T ))) = (0,0). We can then introduce

(3.19)

Tc(Ωi) = inf
{
T > 0/the wave equation in Ωi is controllable in

time T from Dirichlet data on Γ
}
.

It is well known that Tc(Ωi) is linked to the geometry of Ωi and that,
in particular, Tc(Ωi) ≥ diam (Ωi), cf., [39, 12].

Proposition 3.7. For any T > Tc(Ωi), the kernel N (bT ) of the bilinear
form bT (·, ·) is non trivial, namely, Tmax(Ωi) ≤ Tc(Ωi).

Proof. Indeed, let T0 > 0 and ψ0 : Γ × [0, T0] → R with ψ0 ̸= 0.
Let (pψ0 ,vψ0) : Ωi × [0, T0] → R × Rd be the solution of the wave
equation (2.11) (a), (b) inside Ωi × [0, T0] with zero initial data and
non homogeneous Dirichlet condition pψ0 = −ψ0 on Γ× [0, T0]. Let us
denote the solution at the final time t = T0 as

p0(x) := pψ0(x, T0), v0(x) := vψ0(x, T0), for all x ∈ Ωi.

By definition of Tc(Ωi), one can find a Dirichlet boundary control
ψc0 : Γ×[T0, T0+Tc(Ωi)] → R such that (pc0,v

c
0) : Ωi×[T0, T0+Tc(Ωi)] →

R × Rd, defined as the solution of wave equation (2.11) (a), (b) in
Ωi × [T0, T0 + Tc(Ωi)] with initial data (p0,v0) at t = T0 and Dirichlet
condition pc0 = −ψc0 on Γ× [T0, T0 + Tc(Ωi)], vanishes at the final time
T0 + Tc(Ωi):
(3.20)
pc0
(
x, T0 + Tc(Ωi)

)
= 0, vc0

(
x, T0 + Tc(Ωi)

)
= 0, for all x ∈ Ωi.

Let (ψ,φ) : Γ× [0, T0+Tc(Ωi)] be defined (note that ψ0 ̸= 0 ⇒ (ψ,φ) ̸=
0) by

ψ|[0,T0] = ψ0, ψ|[T0,T0+Tc(Ωi)] = ψc0,

φ|[0,T0] = −vψ0 · n|Γ, φ|[T0,T0+Tc(Ωi)] = −vc0 · n|Γ,
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and let (p,v) : Rd × [0, T0 + Tc(Ωi)] be defined by
p|Ωi×[0,T0] = pψ0 , v|Ωi×[0,T0] = vψ0 ,

p|Ωi×[T0,T0+Tc(Ωi)] = pc0, v|Ωi×[T0,T0+Tc(Ωi)] = vc0,

p|Ωe×[0,T0+Tc(Ωi)] = 0, v|Ωe×[0,T0+Tc(Ωi)] = 0.

By construction, (p, v) satisfies the wave equation (2.11) (a), (b) in
Rd \ Γ× [0, T0 + Tc(Ωi)] with jump conditions

[[p]]Γ = ψ, [[v · n]]Γ = φ, t ∈ [0, T0 + Tc(Ωi)],

which means that p = pψ,φ and v = vψ,φ. Then equation (3.20) reads
pψ,φ(x, T0 + Tc(Ωi)) = 0, vψ,φ(x, T0 + Tc(Ωi)) = 0, i.e., according to
equation (3.16), shows that (ψ,φ) ∈ N (bT ) with T = T0 + Tc(Ωi).
Thus, T0 + Tc(Ωi) belongs to [Tmax(Ωi),+∞[. As this is true for any
T0 > 0, the proof is complete. �

3.4. The weighted bilinear form and its properties. Let us
introduce a positive weight function

(3.21) ω(t) ∈ C1(0, T ), ω(t) > 0, for all t ∈ [0, T ], ω(0) = 1,

and let us set

(3.22) µ(t) := −ω′(t).

We then define the corresponding weighted bilinear form associated to
the operator BΓ (denoting Φ = (ψ,φ)) by

(3.23) bω,T (Φ, Φ̃) :=

∫ T

0

∫
Γ

(BΓΦ, Φ̃)ω(t) dγ dt,

or equivalently, (see subsection 2.1)
(3.24)

bω,T
(
(ψ,φ), (ψ̃, φ̃)

)
=

∫ T

0

∫
Γ

(
YΓψ ψ̃ +W∗

Γφ ψ̃ +WΓψ φ̃+ ZΓφ φ̃
)
ω(t) dγ dt

=

∫ T

0

∫
Γ

(
[[pψ̃,φ̃]]Γ{{vψ,φ · n}}Γ+{{pψ,φ}}Γ[[vψ̃,φ̃ · n]]Γ

)
ω(t) dγ dt.

Of course, when ω(t) ≡ 1, one obtains bω,T ≡ bT . We now state an
extension of Proposition 3.3:
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Proposition 3.8. For any (ψ,φ) : Γ× R+ 7→ R× R,
(3.25)

bω,T
(
(ψ,φ), (ψ,φ)

)
=

1

2
ω(T )

∫
Rd\Γ

(
|pψ,φ(x, T )|2 + |vψ,φ(x, T )|2

)
dx

+
1

2

∫ T

0

∫
Rd\Γ

(
|pψ,φ(x, t)|2+|vψ,φ(x, t)|2

)
µ(t) dxdt,

where (pψ,φ,vψ,φ) is the solution of equation (2.11).

Proof. Take the inner product in R3 of equation (2.11) (b) with
vψ,φ ω(t), multiply equation (2.11) (a) by pψ,φω(t), add the two equal-
ities and integrate the result over Ωi ∪ Ωe. One obtains

(3.26)
1

2

∫
Rd\Γ

∂

∂t

(
|pψ,φ|2 + |vψ,φ|2

)
ω(t) dx

+

∫
Rd\Γ

(
divvψ,φpψ,φ + vψ,φ · ∇pψ,φ

)
ω(t) dx = 0,

which gives, using Green’s formula (2.9),

(3.27)
1

2

d

dt

∫
Rd\Γ

(
|pψ,φ|2 + |vψ,φ|2

)
ω(t) dx

+
1

2

∫
Rd\Γ

(
|pψ,φ|2 + |vψ,φ|2

)
µ(t) dx

=

∫
Γ

(
[[pψ,φ]]Γ{{vψ,φ · n}}Γ + {{pψ,φ}}Γ[[vψ,φ · n]]Γ

)
ω(t) dγ,

that is to say, using equations (2.11) (c), (d) and (2.15),

(3.28)
1

2

d

dt

∫
Rd\Γ

(
|pψ,φ|2 + |vψ,φ|2

)
ω(t) dx

+
1

2

∫
Rd\Γ

(
|pψ,φ|2 + |vψ,φ|2

)
µ(t) dx

=

∫
Γ

(
ZΓφφ+WΓψ φ+W∗

Γφψ + YΓψ ψ
)
ω(t) dγ.

Integrating equation (3.28) in time between 0 and T leads to equa-
tion (3.25), thanks to equation (3.24). �
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Examples. Let us consider two particular examples of weight
functions:

(1) Linearly decaying function: ω(t) = 1 − t/T . In that case
µ(t) = 1/T , ω(T ) = 0 and equation (3.25) gives
(3.29)

bω,T
(
(ψ,φ), (ψ,φ)

)
=

1

2T

∫ T

0

∫
Rd\Γ

(
|pψ,φ(x, t)|2+|vψ,φ(x, t)|2

)
dx dt.

The reader may easily verify that equation (3.29) is easily recovered
from equation (3.5) after having noticed that

bω,T (·, ·) ≡
1

T

∫ T

0

bt(·, ·) dt.

(2) Exponentially decaying weight: ω(t) = e−2ηt, η > 0. In that
case µ(t) = 2ηe−2ηt and equation (3.25) give

(3.30)

bω,T
(
(ψ,φ), (ψ,φ)

)
=

1

2
e−2ηT

∫
Rd\Γ

(
|pψ,φ(x, T )|2 + |vψ,φ(x, T )|2

)
dx

+ η

∫ T

0

∫
Rd\Γ

(
|pψ,φ(x, t)|2+|vψ,φ(x, t)|2

)
e−2ηt dx dt.

This choice for ω(t) is the one used to recover the results obtained from
the analysis based on the use of the Laplace transform in time. The
parameter η is somewhat arbitrary. Its determination will be discussed
later, cf., equation (3.48).

An immediate consequence of the previous result is the next corol-
lary.

Corollary 3.9. Assume that the function ω(t) is decreasing, namely,
that µ(t) ≥ 0, for all t ∈ [0, T ]. Then the quadratic form associated to
bω,T (·, ·) is positive for all (ψ,φ):

(3.31) Γ× R+ 7−→ R× R, bω,T
(
(ψ,φ), (ψ,φ)

)
≥ 0.

If ω(t) is strictly decreasing, namely, µ(t) > 0, for all t ∈ [0, T ], this
quadratic form is positive definite:

(3.32) bω,T
(
(ψ,φ), (ψ,φ)

)
= 0 =⇒ (ψ,φ) = 0.
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We end this section with a coercivity result. What follows really
makes sense when d ≥ 2. The special case d = 1 will be discussed in
more detail in subsection 4.1.

Notation and functional spaces. X denoting any Banach space,
Hr
c (0, T ;X), r ∈ R is the subspace of distributions φ ∈ Hr(0, T ;X)

whose extension by 0 for t < 0, denoted φ̃, belongs to Hr(−∞, T ;X)
(the subscript c refers to causal functions). It is equipped with a Hilbert
space norm given by

(3.33) ∥φ∥Hr
c (0,T ;X) := ∥φ̃∥Hr(−∞,T ;X).

It is well known [40] that Hr
c (0, T ;X) differs from Hr(0, T ;X) only for

r ≥ 1/2. Moreover, introducing the space

C∞
c (0, T ;X) = {φ = φ∗|[0,T ], φ

∗ ∈ C∞
c (R;X)},

where C∞
c (R;X) is the set of causal and indefinitely differentiable

functions of the time variable with values in the Banach space X, it is
dense in Hr

c (0, T ;X).

Let us introduce the sets

(3.34) ΩT := Ω× ]0, T [ and ΣT := Γ× ]0, T [ ,

where Ω = Rd\Γ. We now introduce some adequate anisotropic Sobolev
spaces [41] of causal functions of the form Hr,s

c (ΣT ), r, s ∈ R, where
the first index r refers to time regularity and the second index s to
space regularity. More precisely, let us set

Hr,s
c (ΣT ) = Hr

c

(
0, T ;L2(Γ)

)
∩ L2

(
0, T ;Hs(Γ)

)
,

naturally equipped with a Hilbert space structure with the norm

(3.35) ∥φ∥2r,s,ΣT
:= ∥φ∥2Hr

c (0,T ;L2(Γ)) + ∥φ∥2L2(0,T ;Hs(Γ)).

We shall use the (obvious) fact that H
1/2,1/2
c (ΣT ) ⊂ H1/2(ΣT ) (the

usual isotropic Sobolev space) and, therefore, that

(3.36) H−1/2(ΣT ) ≡ H−1/2,−1/2(ΣT ) ⊂ H1/2,1/2
c (ΣT )

′.
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Note also that, due to Poincaré inequality, the trace map u 7→ u|ΣT

satisfies the following continuity property for all

uj ∈ L2
(
0, T ;H1(Ωj)

)
∩H1

c

(
0, T ;L2(Ωj)

)
,(3.37)

uj ∈ H1/2,1/2
c (ΣT ) and ∥uj∥1/2,1/2,ΣT

≤ CT |u|H1(ΩT ),

j = i, e,

where, by definition

|u|2H1(ΩT ) :=

∫ T

0

∫
Ωi∪Ωe

(
|∂tu|2 + |∇u|2

)
dx dt.

We shall also use the following trace inequality that does not seem
to be so standard and whose proof is postponed to the Appendix (see
Section A).

Lemma 3.10. Assume that d ≥ 2. There exists a constant CT > 0
such that, for j = i, e and any wj ∈ C∞

c (Ωj× [0, T ]) which has compact
support,

(3.38) ∥wj · n∥2H1/2(0,T ;H−1/2(Γ)) ≤ CT |wj |21,div,Ωj ,T ,

where we have defined
(3.39)

|wj |21,div,Ωj ,T :=
(
∥∂twj∥2L2(0,T ;L2(Ωj))

+ ∥divwj∥2L2(0,T ;L2(Ωj))

)
.

A coercivity result. Let us adopt, for any φ ∈ L1
loc(R+;X), the

notation

(3.40) ∂−1
t φ(t) :=

∫ t

0

φ(s) ds.

Proposition 3.11. Assume that the function ω(t) is strictly decreasing
and that µ(t) = −ω′(t) satisfies

(3.41) µT := inf
t∈[0,T ]

µ(t) > 0.
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Then the quadratic form associated to bω,T (·, ·) satisfies the following
coercivity inequality, for some αT > 0: for all (ψ,φ) ∈ C∞

c (Γ× [0, T ]),
(3.42)
bω,T

(
(ψ,φ), (ψ,φ)

)
≥ αT

(
∥∂−1
t ψ∥21/2,1/2,ΣT

+∥∂−1
t φ∥2H1/2(0,T ;H−1/2(Γ))

)
.

Proof. The proof relies on Proposition 3.8 (identity (3.25)) combined
with trace inequalities (3.37) and (3.38).

Indeed, let us introduce Pψ,φ(x, t) = ∂−1
t pψ,φ(x, s) and Vψ,φ(x, t) =

∂−1
t vψ,φ, which satisfy

(3.43)


∂tPψ,φ + divVψ,φ = 0,

∂tVψ,φ +∇Pψ,φ = 0 in Rd \ Γ× [0, T ] (i),

[[Pψ,φ]]Γ(·, t) = ∂−1
t ψ(·, t),

[[Vψ,φ · n]]Γ(·, t) = ∂−1
t φ(·, t) on Γ× [0, T ] (ii).

From inequality (3.37) applied to ui = P iψ,φ and ue = P eψ,φ, we have,
since ∂tPψ,φ = pψ,φ and ∇Pψ,φ = −∂tVψ,φ = −vψ,φ,

(3.44)
∥∂−1
t ψ∥21/2,1/2,ΣT

≤ CT
(
∥∂tPψ,φ∥2L2(ΩT ) + ∥∇Pψ,φ∥2L2(ΩT )

)
= CT

(
∥pψ,φ∥2L2(ΩT ) + ∥vψ,φ∥2L2(ΩT )

)
.

Applying equation (3.38) to wi = Vi
ψ,φ and we = Ve

ψ,φ, we deduce,
since ∂tVψ,φ = vψ,φ and divVψ,φ = −∂tPψ,φ = − pψ,φ,
(3.45)
∥∂−1
t φ∥2H1/2(0,T ;H−1/2(Γ)) ≤ 2CT

(
∥∂tVψ,φ∥2L2(ΩT ) + ∥divVψ,φ∥2L2(ΩT )

)
≤ 2CT

(
∥pψ,φ∥2L2(ΩT ) + ∥vψ,φ∥2L2(ΩT )

)
.

Since, according to equations (3.25) and (3.41),
(3.46)

bω,T
(
(ψ,φ), (ψ,φ)

)
≥ µT

2

∫ T

0

∫
Rd\Γ

(
|pψ,φ(x, t)|2+|vψ,φ(x, t)|2

)
dx dt,

it suffices to combine equations (3.44) and (3.45) with (3.46) to conclude
with αT = (µT /8)min(C−1

T ,C−1
T ). �

The reader will observe that the coercivity result (3.42) fits quite well
with the one that can be obtained with the Laplace transform method,
see for instance, [11, Lemma 4.1], with, however, a slight improvement



166 PATRICK JOLY AND JERÓNIMO RODRÍGUEZ

that can be interpreted as a gain of 1/2 order of regularity in time.
Indeed, equation (3.42) may be rewritten as

bω,T
(
(ψ,φ), (ψ,φ)

)
≥ αT

(
∥∂−1
t ψ∥2L2(0,T ;H1/2(Γ)) + ∥∂−1

t ψ∥2
H

1/2
c (0,T ;L2(Γ))

+ ∥∂−1
t φ∥2H1/2(0,T ;H−1/2(Γ))

)
while, in the particular case ω(t) = exp(−2ηt), [11, Lemma 4.1] reads
as

bω,T
(
(ψ,φ), (ψ,φ)

)
≥αT

(
∥∂−1
t ψ∥2L2(0,T ;H1/2(Γ))+∥∂−1

t φ∥2L2(0,T ;H−1/2(Γ))

)
.

However, we shall see in the two particular examples in Section 4 that,
even the coercivity result (3.42) is not optimal.

Returning to the examples.

(1) Linearly decaying function: ω(t) = 1 − t/T . Inequality (3.46)
becomes (µT = 1/T )
(3.47)

bω,T
(
(ψ,φ), (ψ,φ)

)
≥ 1

2T

∫ T

0

∫
Rd\Γ

(
|pψ,φ(x, t)|2+|vψ,φ(x, t)|2

)
dx dt.

(2) Exponentially decaying weight: ω(t) = e−2ηt, η > 0. In this
case µT = 2ηe−2ηT . This quantity can be maximized by choosing
η = 1/(2T ), leading to
(3.48)

bω,T
(
(ψ,φ), (ψ,φ)

)
≥ 1

2eT

∫ T

0

∫
Rd\Γ

(
|pψ,φ(x, t)|2+|vψ,φ(x, t)|2

)
dx dt.

Remark 3.12. If one denotes the operator (ψ,φ) 7→ ω(t)(ψ,φ) by Tω,
one has bω,T ((ψ,φ), (ψ,φ)) = bT (Tω(ψ,φ), (ψ,φ)). As a consequence,
the result of Proposition 3.11, for instance, can be reformulated as the
Tω-coercivity of b(·, ·) in the sense defined as in [16, 17], which also
corresponds to an inf-sup condition. A particular consequence is the
injectivity of operator BΓ and thus the injectivity of the two operators
ZΓ and YΓ.
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3.5. Continuity properties of the operator BΓ. We now state
continuity results for the four operators ZΓ, W∗

Γ, YΓ and WΓ in
anisotropic space time Sobolev spaces. We shall restrict ourselves to
establish continuity estimates for smooth (ψ,φ), but the reader should
understand that, even if it is not explicitly mentioned, the statements
of the theorem also mean that these operators can be extended by
continuity and density to the adequate functional spaces. Throughout
this section, CT will represent a non negative constant which depends
only upon T but whose value may vary from one line to the other.

Proposition 3.13. We have the continuity estimates:
(3.49)

(i) ∥ZΓφ∥1/2,1/2,ΣT
≤ CT

(
∥∂tφ∥−1/2,−1/2,ΣT

+ ∥∂2t φ∥−1/2,−1/2,ΣT

)
,

(ii) ∥W∗
Γφ∥H1/2

c (0,T ;H−1/2(Γ))

≤ CT

(
∥∂tφ∥−1/2,−1/2,ΣT

+ ∥∂2t φ∥−1/2,−1/2,ΣT

)
,

(iii) ∥YΓψ∥H1/2
c (0,T ;H−1/2(Γ))

≤ CT

(
∥∂tψ∥H−1/2(0,T ;H1/2(Γ)) + ∥∂2t ψ∥H−1/2(0,T ;H1/2(Γ))

)
,

(iv) ∥WΓψ∥1/2,1/2,ΣT

≤ CT

(
∥∂tψ∥H−1/2(0,T ;H1/2(Γ)) + ∥∂2t ψ∥H−1/2(0,T ;H1/2(Γ))

)
.

Proof of (i). Let p = p0,φ; we have, with Ω = Rd \ Γ,

∂2t p−∆p = 0 in Ω× R+, [[∂np]]Γ = −∂tφ, [[p]]Γ = 0,

and ZΓφ = {{p}}Γ. Thus, we have the standard energy identity

1

2

∫
Rd\Γ

(
|∂tp|2 + |∇p|2

)
dx =

∫ t

0

∫
Γ

∂tφ∂tpdσ ds

(3.50)

= −
∫ t

0

∫
Γ

∂2t φp dσ ds+

∫
Γ

(
∂tφp

)
dσ.

Integrating equality (3.50) between 0 and T gives
(3.51)

1

2
|p|2H1(Ω×[0,T ]) = −

∫ T

0

∫
Γ

(T − t)∂2t φp dσ ds+

∫ T

0

∫
Γ

∂tφp dσ dt.
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Next, we observe that, first using the duality between H−1/2,−1/2(ΣT )
and H1/2,1/2(ΣT ), see equation (3.36), then the trace inequality (3.37),
(3.52)∣∣∣∣ ∫ T

0

∫
Γ

(T − t)∂tφp dσ ds

∣∣∣∣ ≤ ∥∂2t φ∥−1/2,−1/2,ΣT
∥(T − t)p∥1/2,1/2,ΣT

≤ CT ∥∂2t φ∥−1/2,−1/2,ΣT
|p|H1(Ω×[0,T ]).

In the same way,

(3.53)

∣∣∣∣ ∫ T

0

∫
Γ

∂tφp dσ dt

∣∣∣∣ ≤ CT ∥∂tφ∥−1/2,−1/2,ΣT
|p|H1(Ω×[0,T ]).

Substituting equations (3.52) and (3.53) into equation (3.51), we obtain

(3.54) |p|H1(Ω×[0,T ]) ≤ CT

(
∥∂tφ∥−1/2,−1/2,ΣT

+ ∥∂2t φ∥−1/2,−1/2,ΣT

)
.

Again using inequality (3.37):

∥ZΓφ∥1/2,1/2,ΣT
≡ ∥{{p}}Γ∥1/2,1/2,ΣT

≤ CT

(
∥∂tφ∥−1/2,−1/2,ΣT

+ ∥∂2t φ∥−1/2,−1/2,ΣT

)
.

�

Proof of (ii). Let v = v0,φ, so that W∗
Γφ = {{v · n}}Γ. We have

∂tv = −∇p,divv = −∂tp, so that

|p|2H1(Ω×[0,T ]) = |v|21,div,Ω,T :=

∫ T

0

∫
Ω

(
|∂tv|2 + |divv|2

)
dx dt.

By the trace Lemma 3.10,

∥W∗
Γφ∥2H1/2(0,T ;H−1/2(Γ)) = ∥{{v · n}}Γ∥2H1/2(0,T ;H−1/2Γ) ≤ CT |v|21,div,Ω,T

≡ CT |p|2H1(Ω×[0,T ]).

We then conclude thanks to (3.54). �

Proof of (iii). Let v = vψ,0. We have, with Ω = Rd \ Γ,

∂2t v −∇
(
divv) = 0 in Ω× R+,

[[divv]]Γ = −∂tψ, [[v · n]]Γ = 0,
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and YΓψ = {{v · n}}Γ. Again, we have the energy identity

1

2

∫
Rd

(
|∂tv|2 + |divv|2

)
(·, t) dx

=

∫ t

0

∫
Γ

∂tψ ∂t(v · n) dσ ds(3.55)

= −
∫ t

0

∫
Γ

∂2t ψ (v · n) dσ ds+
∫
Γ

(
∂tψ (v · n)

)
(·, t) dσ.

Integrating equality (3.55) between 0 and T gives

(3.56)

|v|21,div,Ω,T = −
∫ T

0

∫
Γ

(T − t) ∂2t ψ (v · n) dσ ds

+

∫ T

0

∫
Γ

(
∂tψ (v · n)

)
(·, t) dσ.

Using trace Lemma 3.10 and the inclusion H−1/2(0, T ;H1/2(Γ)) ⊂
H

1/2
c (0, T ;H−1/2(Γ))′, we obtain as in the proof of point (i) (we omit

the details)
(3.57)

|v|1,div,Ω,T ≤ CT

(
∥∂tψ∥H−1/2(0,T ;H1/2(Γ)) + ∥∂2t ψ∥H−1/2(0,T ;H1/2(Γ))

)
.

We conclude by applying Lemma 3.10 again. �

Proof of (iv). Let p = pψ,0, so that WΓψ = {{p}}Γ. We have
∂tp = −divv, ∇p = −∂tv so that |p|H1(Ω×[0,T ]) = |v|1,div,Ω,T . We
conclude with trace inequality (3.37). �

It is interesting to compare the above continuity results to the
“standard” results obtained by the Fourier-Laplace method, as they
are recalled for instance in [11, Section 3], see also [37]. With respect
to the operators V , KT , K, W introduced in [11], it is easy to check
the correspondence

ZΓ ≡ ∂tV, W∗
Γ ≡ KT , WΓ ≡ K, ∂tYΓ ≡W.

It appears that both results fit quite well with some slight differences,
however. For instance, for ZΓ, the standard result can be rewritten as

(3.58) ∥ZΓφ∥L2(0,T ;H1/2(Γ)) ≤ CT ∥φ∥H2(0,T ;H−1/2(Γ)),
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while our inequality (3.49) (i) can be rephrased as

(3.59) ∥ZΓφ∥L2(0,T ;H1/2(Γ)) + ∥ZΓφ∥H1/2(0,T ;L2(Γ))

≤ CT
(
∥φ∥H2(0,T ;H−1/2(Γ)) + ∥φ∥H3/2(0,T ;L2(Γ))

)
.

In inequality (3.59), we get more but we also ask for more. However,
as we shall see in particular examples in Section 4, none of these
results is sharp. In particular, they are quite demanding concerning
the time regularity of the functions (ψ,φ) and thus do not explain why,
in practice, discontinuous finite elements in time can be used for the
numerical approximation as can be demonstrated in a very pedestrian
way, as in [1] (for instance, also see [30, 34]).

Remark 3.14. Concerning the other three operators, the “classical”
results can be reformulated as

∥W∗
Γφ∥H1/2(0,T ;H−1/2(Γ)) ≤ CT ∥φ∥H2(0,T ;H−1/2(Γ)),

∥YΓψ∥H1/2(0,T ;H−1/2(Γ)) ≤ CT ∥ψ∥H3/2(0,T ;H1/2(Γ)),

∥WΓψ∥L2(0,T ;H1/2(Γ)) ≤ CT ∥ψ∥H3/2(0,T ;H1/2(Γ)),

while those obtained in Proposition 3.13 imply

∥W∗
Γφ∥H1/2(0,T ;H−1/2(Γ)) ≤ CT

(
∥φ∥H2(0,T ;H−1/2(Γ))

+∥φ∥H3/2(0,T ;L2(Γ))

)
,

∥YΓψ∥H1/2(0,T ;H−1/2(Γ)) ≤ CT ∥ψ∥H3/2(0,T ;H1/2(Γ)),

∥WΓψ∥L2(0,T ;H1/2(Γ)) + ∥WΓψ∥H1/2(0,T ;L2(Γ)) ≤ CT ∥ψ∥H3/2(0,T ;H1/2(Γ)).

4. Study of two particular cases.

4.1. The 1D case. For any smooth enough function ψ defined on
ΣT = Γ× [0, T ] = {a, b} × [0, T ], we introduce

∥ψ∥2L2(ΣT ) := ∥ψa∥2L2([0,T ]) + ∥ψb∥2L2([0,T ]).

The next positivity property and L2(ΣT )-coercivity results follow for
T small enough.
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Proposition 4.1. Let (ψ,φ) be a pair of smooth enough causal func-
tions defined on Γ× R+. Then

(4.1) bT ((ψ,φ), (ψ,φ)) ≥ 0.

Moreover, if 0 < T < |b− a|, there exists a constant C > 0 such that

(4.2) bT ((ψ,φ), (ψ,φ)) ≥ C
(
∥ψ∥2L2(ΣT ) + ∥φ∥2L2(ΣT )

)
.

Proof. Positivity of the bilinear form is given by the general result in
equation (3.3). Nevertheless, it is interesting to provide another proof
of the result that directly uses the expressions for the bilinear form.

From equations (2.17) and (2.24) with (ψ̃, φ̃) = (ψ,φ) one can see that

bT ((ψ,φ), (ψ,φ)) = I(ψ,φ) + J(ψ,φ),

with

(4.3) I(ψ,φ) =
1

2

∫ T

0

(
ψ2
a(s) + ψ2

b (s) + φ2
a(s) + φ2

b(s)
)
ds,

and
(4.4)

J(ψ,φ) =
1

2

∫ T

0

(
φb(s− |b− a|)φa(s) + φa(s− |b− a|)φb(s)

)
ds

− 1

2

∫ T

0

(
ψb(s− |b− a|)ψa(s) + ψa(s− |b− a|)ψb(s)

)
ds

− 1

2

∫ T

0

(
ψb(s− |b− a|)φa(s) + ψa(s− |b− a|)φb(s)

)
ds

+
1

2

∫ T

0

(
φb(s− |b− a|)ψa(s) + φa(s− |b− a|)ψb(s)

)
ds.

If t < |b−a|, then J(ψ,φ) = 0 since all the integrals involve terms with
delay that vanish due to causality. In consequence,

bT ((ψ,φ), (ψ,φ)) = I(ψ,φ),

and one obtains the L2(ΣT )-coercivity result with C = 1/2.
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In order to obtain the positivity result for an arbitrary time, J(ψ,φ)
is rewritten as

J(ψ,φ) =
1

2

∫ T

0

(µa(s) + λa(s)) (µb(s− τ)− λb(s− τ))

+ (µb(s) + λb(s)) (µa(s− τ)− λa(s− τ)) ds,

where τ = |b− a|. Using the identity 2xy = (x+ y)2 − x2 − y2, the last
expression for J(µ, λ) can be transformed into

J(ψ,φ) =
1

4

∫ T

0

[(
φa(s) + φb(s− τ)

)
+
(
ψa(s)− ψb(s− τ)

)]2
ds

− 1

4

∫ T

0

(
φa(s) + ψa(s)

)2
ds

− 1

4

∫ T−τ

0

(
φb(s)− ψb(s)

)2
ds

+
1

4

∫ T

0

[(
φb(s) + φa(s− τ)

)
+

(
ψb(s)− ψa(s− τ)

)]2
ds

− 1

4

∫ T

0

(
φb(s) + ψb(s)

)2
ds

− 1

4

∫ T−τ

0

(
φa(s)− ψa(s)

)2
ds.

Next we use the identity 2(x2 + y2) = (x+ y)2 + (x− y)2 to transform
I(ψ,φ) into

I(φ,ψ) =
1

4

∫ T

0

(
φa(s) + ψa(s)

)2
ds+

1

4

∫ T

0

(
φa(s)− ψa(s)

)2
ds

+
1

4

∫ T

0

(
φb(s) + ψb(s)

)2
ds+

1

4

∫ T

0

(
φb(s)− ψb(s)

)2
ds.

Using both results, one gets

bT ((ψ,φ), (ψ,φ))

=
1

4

∫ T

T−τ

[(
φa(s)− ψa(s)

)2
+
(
φb(s)− ψb(s)

)2]
ds

+
1

4

∫ T

0

[(
φa(s) + φb(s− τ)

)
+
(
ψa(s)− ψb(s− τ)

)]2
ds(4.5)
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+
1

4

∫ T

0

[(
φb(s) + φa(s− τ)

)
+
(
ψb(s)− ψa(s− τ)

)]2
ds,

leading to the positivity. �

For T large enough, Proposition 3.7 shows that the bilinear form
bT (·, ·) is no longer L2(ΣT )-coercive. Let us prove this result for the
one-dimensional case explicitly using the expressions of the bilinear
form. We have the next result (the proof is inspired from [2, Theorem
2.1]):

Proposition 4.2. If T > |b − a|, there exist non vanishing (ψ,φ) ∈
(L2(ΣT ))

2 such that

(4.6) bT ((ψ,φ), (ψ,φ)) = 0.

More precisely, the quadratic form

(4.7) (ψ,φ) ∈
(
L2([0, T ])

)4 −→ bT ((ψ,φ), (ψ,φ)) ∈ R+,

has a infinite-dimensional kernel.

Proof. As a first step, let us assume that T = N L for some integer
N > 0 (where we have introduced the notation L = |b − a|). From
equation (4.5), one obtains

bT ((ψ,φ), (ψ,φ))

=
1

4

∫ N L

(N−1)L

(
φa(s)− ψa(s)

)2
+
(
φb(s)− ψb(s)

)2
ds

+
1

4

N−1∑
k=0

∫ (k+1)L

kL

(
φa(s) + φb(s− τ) + ψa(s)− ψb(s− τ)

)2
ds

+
1

4

N−1∑
k=0

∫ (k+1)L

kL

(
φa(s− τ) + φb(s) + ψb(s)− ψa(s− τ)

)2
ds.

Next, we introduce the following scalar functions indexed by the
integer k ∈ {−1, 0, . . . , N − 1}

φk(c, s) := φc(s+ kL), ψk(c, s) := ψc(s+ kL),(4.8)

(c, s) ∈ {a, b} × [0, L].
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Notice that, due to causality, φ−1(c, s) = ψ−1(c, s) = 0. It is also useful
to introduce the vector-valued functions consisting of the concatenation
of φk and ψk, k ∈ {0, . . . , N − 1},

(4.9)
φ(c, s) :=

(
φ0(c, s), . . . , φN−1(c, s)

)
,

ψ(c, s) := l
(
ψ0(c, s), . . . , ψN−1(c, s)

)
.

A change of variable (consisting of a shift) allows us to write all the
integrals in the interval [0, L] as follows:

bT ((ψ,φ), (ψ,φ))

=
1

4

∫ L

0

[
φN−1(a, s)− ψN−1(a, s)

]2
+

[
φN−1(b, s)− ψN−1(b, s)

]2
ds

+
1

4

∫ L

0

N−1∑
k=0

[
φk(a, s) + φk−1(b, s) + ψk(a, s)− ψk−1(b, s)

]2
ds

+
1

4

∫ L

0

N−1∑
k=0

[
φk−1(a, s) + φk(b, s) + ψk(b, s)− ψk−1(a, s)

]2
ds.

Next, we introduce the quadratic form Q : RN×RN×RN×RN → R,
defined by

Q(φ,φ, ψ, ψ) :=
1

4

N∑
k=0

[
φk+φk−1+ψk−ψk−1]2

+
[
φk−1+φk+ψ

k−ψk−1
]2
,

where, by convention, φN = φN = ψN = ψ
N

= 0. We clearly have
that

bT ((ψ,φ), (ψ,φ)) =

∫ L

0

Q(φ(a, s), φ(b, s), ψ(a, s), ψ(b, s)) ds.

The next step is to compute the kernel of Q. Introducing the notation

uk = φk + ψk, xk = φk + ψ
k
,

vk = ψ
k − φk, yk = ψk − φk,

the quadratic form can be written as:

Q(φ,φ, ψ, ψ) :=
1

4

N∑
k=0

[uk − vk−1]2 + [xk − yk−1]2.
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In consequence, Q(φ,φ, ψ, ψ) = 0 if and only if

vk−1 = uk, yk−1 = xk, for all k ∈ {0, . . . , N − 1}.

Setting vN = 0 and yN = 0 and considering vk and yk, k ∈
{0, . . . , N − 1} as parameters, the following expressions for φk, φk,
ψk and ψk are found

(4.10)

∣∣∣∣∣ φk = 1
2 (v

k−1 + yk), φk = 1
2 (y

k−1 + vk),

ψk = 1
2 (v

k−1 − yk), ψk = 1
2 (y

k−1 − vk).

Finally, for any vk ∈ L2([0, L]) and yk ∈ L2([0, L]), k ∈ {0, . . . , N − 1},
using equations (4.10) and (4.8), one gets

(4.11)

∣∣∣∣∣∣∣∣∣
φa(s+ kL) = 1

2 (v
k−1(s) + yk(s)),

φb(s+ kL) = 1
2 (y

k−1(s) + vk(s)),

ψa(s+ kL) = 1
2 (v

k−1(s)− yk(s)),

ψb(s+ kL) = 1
2 (y

k−1(s)− vk(s)),

for s ∈ [0, L]. Notice that, if φa(·), φb(·), ψa(·) and ψb(·) are given,
then the corresponding functions vk(·) and yk(·) can be built from the
last equalities. In consequence, one concludes that the kernel of the
bilinear form bt(·, ·) is isomorphic to L2([0, L])2(N−1).

When one has an arbitrary time T > |b − a| = L, we consider
T ∗ = [(b − a)/L]L (where [·] represents the integer part operator),
and we split the time interval [0, T ] into [0, T ∗] ∪ [T ∗, T ]. Next one
builds functions ψ∗

a(·), ψ∗
b (·), φ∗

a(·) and φ∗
b(·) for s ∈ [0, T ∗] such that

bT∗((ψ∗, φ∗), (ψ∗, φ∗)) = 0 using the fact that T ∗ = NL, N ∈ N, and
extends them by 0 to obtain ψa(·), ψb(·), φa(·) and φb(·) defined for
s ∈ [0, T ]. Clearly, bT ((ψ, λ), (ψ, λ)) = 0. �

Let us study the situation when an arbitrary weight is considered.
In this case, similar computations to those presented in the proof of
Proposition 4.1 lead to the expression
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(4.12)
bω,T ((ψ,φ), (ψ,φ))

=
1

4

∫ T

T−τ

[(
φa(s)− ψa(s)

)2
+

(
φb(s)− ψb(s)

)2]
χ(s) ds

+
1

4

∫ T

0

[(
φa(s) + φb(s− τ)

)
+
(
ψa(s)− ψb(s− τ)

)]2
ω(s) ds

+
1

4

∫ T

0

[(
φb(s) + φa(s− τ)

)
+
(
ψb(s)− ψa(s− τ)

)]2
ω(s) ds,

where

(4.13) χ(s) =

{
ω(s) s ∈ [t− τ, t],

ω(s)− ω(s+ τ) s ∈ [0, t− τ ].

This allows us to establish the next proposition.

Proposition 4.3. Let (ψ,φ) be a pair of smooth enough causal func-
tions defined on Γ× R+, and assume that

• ω(s) ≥ ω∗ > 0, s ∈ [0, T ],
• ω(s)− ω(s+ τ) ≥ α > 0,s ∈ [0, T ].

Then there exists a constant C > 0 such that

(4.14) bω,T ((ψ,φ), (ψ,φ)) ≥ Cmin(ω∗, α)
(
∥ψ∥2L2(ΣT ) + ∥φ∥2L2(ΣT )∥

)
.

Proof. First of all, we introduce the continuous operator:

A :
(
L2([0, T ])

)4 −→
(
L2([0, T ])

)4
(ψ,φ) 7−→ A(ψ,φ) := (µ, λ),

where

(4.15)

µa(s) := φa(s)− ψa(s),

λa(s) := φa(s) + φb(s− τ) + ψa(s)− ψb(s− τ),

µb(s) := φb(s)− ψb(s),

λb(s) := φb(s) + φa(s− τ) + ψb(s)− ψa(s− τ).



VARIATIONAL BOUNDARY INTEGRAL EQUATIONS 177

Clearly, equation (4.12) leads to

bω,T ((ψ,φ), (ψ,φ)) ≥ min
(
α, ω∗

)
∥A(ψ,φ)∥2(L2([0,T ]))4 .

Since

ψa(s) =
1

2

(
λa(s)− µa(s)− µb(s− τ)

)
,

φa(s) =
1

2

(
λa(s) + µa(s)− µb(s− τ)

)
,

ψb(s) =
1

2

(
λb(s)− µb(s)− µa(s− τ)

)
,

φb(s) =
1

2

(
λb(s) + µb(s)− µa(s− τ)

)
,

the operatorA is bijective and with continuous inverse. In consequence,
from equation (4.15), one obtains equation (4.14). �

It is worth mentioning that the weight ω(·) can eventually be
piecewise smooth (differentiability is not a priori needed).

Finally, the L2(ΣT )-continuity of the bilinear form bω,T (·, ·) trivially
holds for ω ∈ L∞(R+) (in particular for ω(·) ≡ 1). This leads to the
next proposition.

Proposition 4.4. Let (ψ,φ) and (ψ̃, φ̃) be pairs of smooth enough
causal functions defined on Γ × R+, and assume that ω(·) ∈ L∞(R+).
Then there exists a constant C > 0 such that

(4.16) bω,T ((ψ,φ), (ψ̃, φ̃))

≤ C∥ω∥L∞(R+)

(
∥ψ∥L2(ΣT )+∥φ∥L2(ΣT )

)(
∥ψ̃∥L2(ΣT )+∥φ̃∥L2(ΣT )∥

)
.

4.2. The case of Γ in a hyperplane in Rd. Again, the results
of this section have been mainly motivated by the work of Aimi et
al. [2], which seems to have received too little attention, and of which
we give a slightly different presentation (concerning continuity results)
and extension (concerning the coercivity result).

In this section, we set Rd = {(x′, xd), x′ ∈ Rd−1, xd ∈ R},
d ≥ 2, assume that Γ = {(x′, 0),x′ ∈ Rd−1} and concentrate ourselves
on the operator ZΓ (which is the one more demanding in terms of
time regularity) and the corresponding bilinear form bZT (·, ·) (and its
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weighted version with ω(t) = exp(−2ηt) denoted bZη,T (·, ·)) to address
the following questions:

(i) What is the smallest value of s, if any, for which the bilinear
form bZT (·, ·) is continuous in L2(0, T ;Hs((Γ)))?

(ii) What is the largest value of s, if any, for which the bilinear
form bZη,T (·, ·) is coercive L2(0, T ;Hs(Γ)))?

The reader will note that question (i) is equivalent to:

(i)′ What is the smallest value of s for which ZΓ maps L2(0, T ;Hr(Γ))
continuously into L2(0, T ;Hr−2s((Γ))?

The proof relies on a detailed study of the Fourier-Laplace symbol

(ξ′, s) ∈ Rd−1 × C 7→ ẐΓ(ξ
′, s)

of ZΓ along the line Re s = η, η > 0 being given. More precisely,
denoting F as the Fourier transform in x′ (with the dual variable ξ′)
and Laplace transform in time (with dual variable s ∈ C), such that,
for any φ ∈ L1(0,+∞;L1(Rd−1)), for all ξ′ ∈ Rd−1, Re s > 0:

(4.17) Fφ(ξ′, s) := 1

(2π)d/2

∫ +∞

0

∫
Γ

φ(x′, t)e−iξ
′·x′

e−st dx′ dt,

one easily computes that

(4.18)

F(ZΓφ)(ξ
′, s) = ẐΓ(ξ

′, s)Fφ(ξ′, s),

ẐΓ(ξ
′, s) :=

s

2

(
|ξ′|2 + s2

)−1/2
,

(where Re z1/2 ≥ 0).

Lemma 4.5. There exist two constants 0 < C− < C+ such that, for
any η > 0,

(4.19) C−(1+|ξ′|2/η2)1/4 ≤ sup
ω∈R

|ẐΓ(ξ
′, η+i ω)| ≤ C+(1+|ξ′|2/η2)1/4.

For any η > 0,

(4.20)
1

2
(1+|ξ′|2/η2)−1/2 ≤ inf

ω∈R
Re ẐΓ(k, η+i ω) ≤ (1+|ξ′|2/η2)−1/2.
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The proof of these estimates is purely computational and postponed
until the Appendix (see Section B). Then, the answer to question (i),
respectively, question (ii), is obtained by looking at the behavior as |ξ′|
goes to +∞ for the bounds in inequality (4.19), respectively, (4.20).
More precisely, using standard tools such as Plancherel’s theorem and
causality arguments, one easily shows the following.

Corollary 4.6. The smallest real number s for which the bilinear form
bZT (·, ·) is continuous in L2(0, T ;Hs((Γ))) is s = 1/4. The largest
value of s for which the weighted bilinear form bZη,T (·, ·) is coercive

L2(0, T ;Hs(Γ)) is s = −1/2.

Remark 4.7. The continuity result of bZT (·, ·) in L2(0, T ;H
1
4 (Γ)) is

due to [2]. The (quite tricky) proof they gave did not use the Laplace-
transform in time and lemma 4.5, but instead the Fourier transform
in time. The proof that we give here is easier and in our sense more
natural. It also proves the optimality of the continuity result.

It is interesting to remark that Corollary 4.6 explains why it is
possible to use piecewise polynomial functions, in both space and time
variables, for the finite element approximation of the operator ZΓ since
such functions belong to L2(0, T ;H1/4(Γ)).

Corollary 4.6 implies, in particular, that, for η > 0 and some positive
constants αT and MT ≥ αT , for all φ ∈ L2(0, T ;H1/4(Γ)):

(4.21) αT ∥φ∥2L2(0,T ;H−1/2(Γ)) ≤ bZη,T (φ,φ) ≤MT ∥φ∥2L2(0,T ;H1/4(Γ)).

In this situation, we say that we have a coercivity-regularity gap which
is 0 in time and 3/4 in space. Let us close this section by mentioning
some open related questions.

• It would be interesting to address the same questions as in (i) and
(ii) after inverting the role of space and time regularity (i.e., replacing
L2(0, T ;Hs(Γ)) by Hs(0, T ;L2(Γ)). There is no difficulty a priori; we
simply did not address this question for the moment.

• The weakness of the results of this section is in that they are
restricted to flat surfaces. It is of course very much tempting to
conjecture that such results should be extendable to smooth (C∞)
surfaces, by adapting, for instance, the technique of [42]. However,
the hyperbolic nature of the wave equation encourages caution.
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APPENDIX

A. Proof of trace Lemma 3.10. We restrict ourselves to giving
the proof the trace estimate in the case where Ωj is the halfspace

Rd+ := {x = (x′, xd),x
′ ∈ Rd−1, xd > 0}

and when T = +∞. The case of a general domain with a smooth
boundary is then obtained as usual (cf., [18]) using local charts for the
parametrization and a partition of unity for passing from local to global
estimates. Obtaining the results for T < +∞ relies an a standard time
localization process. These last two steps will not be detailed in what
follows.

Let w be a vector field in C∞(Rd+ × R) with compact support in

Rd+ × R+. We have

w · n = −wd on Γ := ∂Rd+ ≡ {x = (x′, xd),x
′ ∈ Rd−1, xd = 0}.

Let ŵ(ξ′, xd, τ) be the partial Fourier transform of w in the variables
x′ ∈ Rd−1 (with dual variable ξ′) and t (with dual variable τ). By
definition of the norm in H1/2(0,+∞;H−1/2(Γ))

∥wd∥2H1/2(0,+∞;H−1/2(Γ))

:=

∫ +∞

−∞

∫
Rd−1

(
1 + |τ |2

)1/2(
1 + |ξ′|2

)−1/2|ŵd(ξ′, 0, τ)|2 dξ′ dτ .

We have, for any (ξ′, τ) ∈ Rd−1 × R,

|ŵd(ξ′, 0, τ)|2 = −
∫ +∞

0

∂xd

(
|ŵd(ξ′, xd, τ)|2

)
dxd

≤ 2

∫ +∞

0

∣∣∂xd
ŵd(ξ

′, xd, τ)
∣∣∣∣ŵd(ξ′, xd, τ)∣∣ dxd.

Setting ŵ′ = (ŵ1, . . . , ŵd−1), we thus have (we use ∂xd
ŵd = (∂xd

ŵd +
iξ′ · ŵ′)− iξ′ · ŵ′)

|ŵd(ξ
′, 0, τ)|2 ≤ 2

∫ +∞

0

∣∣(∂xd
ŵd + iξ′ · ŵ′)(ξ′, xd, τ)

∣∣∣∣ŵd(ξ′, xd, τ)∣∣dxd
+ 2

∫ +∞

0

|ξ′|
∣∣ŵ′(ξ′, xd, τ)

∣∣∣∣ŵd(ξ′, xd, τ)∣∣dxd.
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As a consequence, multiplying by (1 + |τ |2)1/2 and using Young’s
inequality, we get(

1 + |τ |2
)1/2|ŵd(ξ′, 0, τ)|2

≤
∫ +∞

0

(∣∣d̂ivw(ξ′, xd, τ)
∣∣2 + (

1 + |τ |2
)∣∣ŵd(ξ′, xd, τ)∣∣2)dxd

+ 2

∫ +∞

0

|ξ′|
(
1 + |τ |2

)1/2∣∣ŵ′(ξ′, xd, τ)
∣∣∣∣ŵd(ξ′, xd, τ)∣∣ dxd.

We then multiply by (1 + |ξ′|2)−1/2 and use |ξ′|(1 + |ξ′|2)−1/2 ≤ 1,
(1 + |ξ′|2)−1/2 ≤ 1 and Young’s inequality again to obtain(

1 + |τ |2
)1/2(

1 + |ξ′|2
)−1/2|ŵd(ξ′, 0, τ)|2

≤
∫ +∞

0

(∣∣d̂ivw(ξ′, xd, τ)
∣∣2 + (

1 + |τ |2
)∣∣ŵd(ξ′, xd, τ)∣∣2)dxd

+

∫ +∞

0

(∣∣ŵ′(ξ′, xd, τ)
∣∣2 + (

1 + |τ |2
)∣∣ŵd(ξ′, xd, τ)∣∣2)dxd.

After integration of the above inequality over (ξ′, τ) ∈ Rd−1 × R, we
obtain, due to Plancherel’s theorem∫ +∞

−∞

∫
Rd−1

(
1 + |τ |2

)1/2(
1 + |ξ′|2

)−1/2|ŵd(ξ′, 0, τ)|2 dξ′ dτ

≤
∫ +∞

0

∫
Ω

(
|w|2 + |∂twd|2 + |divw|2

)
dx dt

+

∫ +∞

0

∫
Ω

(
|w|2 + |∂twd|2

)
dx dt,

which leads finally to:

∥w · n∥2H1/2(0,+∞;H−1/2(Γ))

≤ 2
{
∥w∥2H1(0,+∞;L2(Ω)) + ∥w∥2

L2(0,+∞;H(div;Ω))

}
.

Through a localization process, one can thus obtain the result for a
finite time interval [0, T ]. Finally, when considering causal vector fields
w ∈ C∞

c (R+ × [0, T ]), one easily gets equation (3.38) using a Poincaré
inequality.



182 PATRICK JOLY AND JERÓNIMO RODRÍGUEZ

B. Proof of Lemma 4.5.

Proof of (4.19). One first computes from equation (4.18) that

2 |ẐΓ(ξ
′, η + i ω)|4 =

|η + i ω|4∣∣|ξ′|2 + (η + iω)2
∣∣2 = F

(
|ξ′|2/η2, ω2/η2

)
,

F (x, y) =
(1 + y)2(

y − x
)2

+ 2y + 2x+ 1
> 0.

Let us study the (strictly positive) function

F ∗(x) = sup
y≥0

F (x, y), for x ≥ 0.

We first observe that F (x, y) → 1 when y → +∞ and that F (x, 0) =
(1+x)−2 ≤ 1. Looking at possible local extrema y∗ of y 7→ F (x, y) leads
to the equation ∂yF (x, y

∗) = 0 which gives, after some computation,

x
(
x− y∗ + 3

)
= 0 that is x = 0 or y∗(x) = x+ 3.

Since F (0, y) = 1, we find that

F ∗(x) = max
(
F (x, y∗(x)), 1

)
= 1 +

x

4
.

One deduces that, for x ≥ 0, the function x → F ∗(x)/(1 + x) never
vanishes and tends to 1/4 at infinity. It is then bounded from above
and below by two positive constants, which achieves the proof of (4.19).

Proof of (4.20). First observe that (note that the meaning of the
variables x and y is not the same as in the first part of the proof)

2ẐΓ(ξ
′, η + i ω) =

η + i ω(
|ξ′|2 + (η + iω)2

)1/2 = K

(
|ξ′|
η
,
ω

η

)
with

K(x, y) =
1 + iy(

x2 + (1 + iy)2
)1/2 .

Proving equation (4.20) amounts to obtaining upper and lower bounds
for infy∈R ReK(x, y). Since K(x, 0) = (1 + x2)−1/2, we immediately
have

(B.1) inf
y∈R

ReK(x, y) ≤ (1 + x2)−1/2.
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We now look for a lower bound. Writing (x2 + (1 + iy)2)1/2 =
α+ i β, (α, β) ∈ R, we have

K(x, y) =
(1 + iy)(α− iβ)

(α2 + β2)
,

where α = α(x, y) ∈ R and β = β(x, y) ∈ R are entirely determined by:

(B.2) α2 − β2 = 1 + x2 − y2, αβ = y, α > 0.

In particular,

(B.3) ReK(x, y) =
α+ yβ

(α2 + β2)
=

α2 + y2

α(α2 + β2)
(since αβ = y).

From the first equation of (B.2), we deduce that

2(α2 + y2) = α2 + β2 + (1 + x2 + y2) ≥ α2 + β2.

Therefore, equation (B.3) yields

(B.4) ReK(x, y) ≥ 1/(2α).

A lower bound for y 7→ ReK(x, y) will thus be obtained from an upper
bound for y 7→ α(x, y).

Let us look at what happens when y → ±∞. Since

α2 + β2 =
((
x2 + 1− y2

)2
+ 4y2

)1/2
,

one gets

2α2 =
((
x2 + 1− y2

)2
+ 4y2

)1/2
+
(
x2 − y2 + 1

)
.

Using ((x2 − y2 + 1)2 + 4y2)1/2 = y2 − x2 + 1 + O(y−2) in this last
equality, we deduce that

lim
y→±∞

α(x, y) = 1.

Looking at the local extrema of y 7→ α(x, y) leads to the investigation
of the following system, obtained from differentiation of equation (B.2),{

α∂yα− β∂yβ = −y
α∂yβ + β∂yα = 1,
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which implies that (α2 + β2)∂yα = β − αy. Thus, ∂yα = 0 ⇒ β = αy.
Since, αβ = y, we see that

∂yα = 0 =⇒ (1− α2)y = 0 =⇒ α = 1 or y = 0.

At y = 0, we have α(x, 0) = (1 + x2)1/2 ≥ 1. Thus, since
limy→±∞ α(x, y) = 1, we have proven that supy∈R α(x, y) = (1+x2)1/2.
Finally, equation (B.4) yields

(B.5) inf
y∈R

ReK(x, y) ≥ 1

2
(1 + x2)1/2.

which achieves the proof. �
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