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The last decade has witnessed very intense activity in the field of
boundary integral equations applied to evolutionary processes. By
Time Domain Boundary Integral Equations (TDBIE) we understand
the use of layer potential theory based on the full dynamical problem
(parabolic or hyperbolic), using either the time domain fundamental
solution or the fundamental solution for the resolvent operator, as
opposed to uses of static BIE combined with time stepping procedures
for evolutionary processes.

The engineering and mathematical literature of TDBIEs goes back
well into the 20th century, with the appearance of methods based on the
heat kernel boundary representation of solutions of transient linear dif-
fusive processes, or practical uses of Kirchhoff’s formula for wave prop-
agation problems. The mathematical literature on the topic typically
credits the two-part article of Alain Bamberger and Tuong Ha-Duong
[2, 3] with the eclosion of a rich literature on theory and applications
of TDBIE for wave propagation problems. This happened very much
at the same time that the hidden coercivity of the single layer poten-
tial for the heat equation [1] was uncovered, which sparked a wealth
of discretization methods for space-time parabolic boundary integral
equations. Discretization methods for the TDBIE for hyperbolic prob-
lems were mainly based on Galerkin-in-space discretization combined
with weighted Galerkin-in-time time stepping, although it was clear
from the beginning that the weight was an annoyance introduced by
the theoretical analysis and its elimination led to practicable schemes.
Christian Lubich’s Convolution Quadrature (CQ) method was orig-
inally devised in another two-part paper [9, 10] as a discretization
method for abstract causal convolution processes. Since TDBIEs are
Volterra-Fredholm integral equations (convolutional Volterra in time,
to be more precise), it was natural that CQ would soon be applied for
TDBIE, first of parabolic [12] and then of hyperbolic type [11].
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In 2003, two review papers by Tuong Ha-Duong [7] and Martin
Costabel [5]1 set the state-of-the-art for Boundary Integral Equations
for dynamical problems. For many years, they were the only math-
ematically oriented surveys of the area, and they remain dependable
resources for the concepts of TDBIE and the ‘early’ literature. It can be
said, though, that the mathematical literature of TDBIE was slightly
dormant at the time of the arrival of the new millenium, while inter-
est in applications in engineering and applied sciences persisted in the
work of several computational groups in solid mechanics and electro-
magnetism. Like their frequency domain or steady-state counterparts,
TDBIEs remain complicated-to-code methods that work excellently for
a precise but very relevant family of problems. Even their stronger pro-
ponents seem to agree that they will never become the paradigm for
easy numerical schemes, but their strength is well understood and ap-
preciated.

Several papers restarted the interest of the mathematical community
in theory and implementation of TDBIE, but it is possible that the
work of Wolfgang Hackbusch, Wendy Kress, and Stefan Sauter [6] was
one of the first to show the way forward. The Convolution Quadrature
technique gained momentum, and the realm of applications as well as
the depth of the mathematical literature grew rapidly. It was only
a matter of time (not long) until Galerkin TDBIE came back on the
publishing stage. CQ and Galerkin approaches now share the spotlight
with alternative old and new time-stepping tools and novel space-and-
time methods.

As the topic has matured and the community of practitioners and
theorists has grown, more tutorial work is available. Two recent papers
[4, 8] can be used as practical introductions to Convolution Quadrature
based TDBIE for wave propagation problems, and the equally CQ-
based wave-equation-focused monograph [13] collects part of the old
and new theoretical approaches to the subject. (In the interest of full
disclosure, one of the editors of this special issue is involved in the
authorship of the monograph and of one of the tutorial papers.)

In this special issue, we collect six articles with surveys, comparisons,
and novel results on the general topic of TDBIEs. Without going into
the details of what each has to offer, let us give a short description of
the topics that are covered in them.
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• (Davies and Duncan) Volterrá convolutional equations of the
first kind with singular or discontinuous kernels are a prototype
of the difficulties for time-stepping of TDBIEs. Spline con-
volutional techniques are studied as low-dispersion high-order
scheme for their numerical treatment.

• (Aimi, Diligenti, and Guardasoni) A simple model for wave
propagation with damping in a one-dimensional domain is
used as a testing field for comparison of different discretization
techniques, posing the Galerkin TDBIE (also referred to as
energetic BEM when no weight is used) as a competitor of
Finite Element and Finite Difference discretizations.

• (Gimperlein, Maischak, and Stephan) Adaptive treatment of
TDBIEs is an area of very recent development. Ideas on
the time-and-space mesh adaptation for Galerkin schemes for
an acoustic wave propagation problems are presented in the
context of engineering applications.

• (Melenk and Rieder) A transient BEM-FEM scheme is pre-
sented for a linear Schrödinger equation, with the novelty that
the Runge-Kutta CQ method is analyzed using time domain
techniques instead of Laplace domain (resolvent) estimates.

• (Hassell, Qiu, Sánchez-Vizuet, and Sayas) A new approach to
the analysis of semidiscrete TDBIEs is shown using theory of
evolutionary equations, by rewriting the problem as a first order
in space and time evolution equation in a Hilbert space.

• (Joly and Rodŕıguez) Finally, Galerkin BEM for acoustics are
reviewed, with general arguments on the need for weights in
the time stepping process and with full computation for the
one-dimensional operators. This paper can be used as a very
nicely presented tutorial on the topic.

We hope that the present volume will offer the reader a collection of
papers offering the state-of-the-art of TDBIE as of the end of 2016.

ENDNOTES

1. A new edition of the Stein, De Boorst and Hughes, Encyclopedia
of computational mechanics has been in the works for some time. This
will contain a revised version of [5].
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