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ABSTRACT. We will prove the well-posedness of certain
second order ordinary and partial integro-differential equa-

tions with an integral term of the form
∫ t

0
m(ϕ(t− s))ϕ̇(s) ds,

where m is given and ϕ is the solution. The new aspect is
the dependence of the kernel on the solution. In addition,
for the ordinary integro-differential equation, the asymptotic
behavior of the solution is described for some kernels.

1. Introduction. In this paper we first will investigate the system
of ordinary integro-differential equations (OIDE)

(1)

λϕ̈(t) + ϕ̇(t) + ϕ(t) +

∫ t

0

m(ϕ(t − s))ϕ̇(s) ds = f(t),

ϕ(0) = ϕ0,

ϕ(0) = ϕ1,

where ϕ(t) ∈ Rd, λ > 0 and the kernel m is a matrix-valued mapping
defined on Rd. The function f and the initial values ϕ0, ϕ1 are given.
Here we wish to emphasize that we have a convolution of a function
depending upon ϕ with ϕ̇.

Equations of this kind appear in the theory of glass-forming systems;
they are obtained due to the use of the mode-coupling theory (a
derivation can be found in [4]) and the components of the solution
ϕ are correlation functions. The kernel is mostly assumed as at least
a quadratic polynomial function ([1, 8, 13]), but in some special cases
a linear one is also used ([12]). Approaches other than the standard
mode-coupling theory lead to an additional explicit time-dependence
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of the kernel ([2, 7]) or to complex valued equations ([3]). For these
physical applications, ϕ0 = 1 and ϕ1 = 0 are given.

For λ = 0 and absolute monotone kernels the global existence is
shown in [5], but the proof cannot be adopted for our system, because
it leads to a completely monotone solution and taking the kernel as a
sufficiently large constant would cause a contradiction.

In general, the studies of nonlinear OIDEs are concentrated on cases
where the integral term contains the solution ϕ or its derivatives
only in dependence upon the parameter s. The results of those
theories may not be applied directly, but we can carry over one of
the main ideas: that the convolution is a compact perturbation of
a diffeomorphism. Under the assumption that the kernel m and the
function f are continuous this is easy to show. If now, in addition,
the operator describing the OIDE is a weakly coercive mapping with a
pointwise injective derivative, the Fredholm-theory tells us that also the
perturbed equation is a diffeomorphism and thus there exists a global
solution for any given ϕ0, ϕ1 and f . The injectivity will be given for
C1-kernels and an a priori estimate for the solution provides the weakly
coerciveness, if the kernel is at most of linear growth. From here on we
can show that, for any C1-kernel, there is at least a local solution.

For kernels which behave like O(|x|α) for α > 1 as x tends to
zero we will define a sequence of solutions to a linearized equation
and deduce the convergence, if some additional smallness condition
holds. In contrast to the first method, the exponential stability of the
zero solution is also obtained. The long-term asymptotic behavior is
important in the theory of glass-transition. If it is zero, the correlation
functions belong to a fluid; in the other case, we have a glassy state
(values less than zero for the components of ϕ are not expected in the
physical application).

The OIDEs appear in the mode-coupling theory after applying a
Fourier-transformation to a complicated partial differential equation
and carrying out some approximations. This means that there is a
partial integro-differential equation (PIDE) linked to the problem and
it is of interest to know how to solve such a PIDE, where the kernel
also depends upon the solution. To get an idea we consider, without
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an actual physical background, the equation

(2) λutt(t, x) + ut(t, x) + u(t, x)−Δu(t, x)

+

∫ t

0

m(u(t− s, x))us(s, x) ds = f(t, x),

u(0, x) = u0(x),

ut(0, x) = u1(x),

for t ∈ (0, T ), x ∈ Rd. Again the kernel’s dependence upon the
solution denies a direct application of the existence result already given
for PIDEs as in [6, 9]. A Faedo-Galerkin method will work, where
we make use of the theory of OIDEs. Therefore, we will need that
the multiplication of the equation with a function lying in Hk (the
standard Sobolev space for k ∈ N), where 2k > d holds for using
Sobolev’s embedding theorem, gives an OIDE of which we know the
solvability. This implies that f has to be a continuous mapping in time
onto Hk(Rd) and, to get enough regularity, we assume that the kernel
is in Ck+1(R,R) and that the initial data u0 and u1 are accordingly
in Hk+1 and Hk. Under these preliminaries we can show the local in
time existence of a solution.

Replacing the us in the integral by Δu still allows us to use the Faedo-
Galerkin method, but there are some technical problems. We will only
point out how to solve them without showing all the details.

Trying to carry out this approach for the same equation, but now
in a bounded domain with Dirichlet boundary conditions, is not im-
mediately possible because of non-vanishing boundary integrals. In-
stead we solve a corresponding linear problem and give conditions for
a better regularity of the solution. Within the proof we need elliptic
regularity, and so we can only handle the convolution with us. In the
one-dimensional case we now can define a sequence, which converges in
an initial time interval to a solution of the nonlinear problem.

The paper is organized as follows. In Section 2 we deal with the
system of OIDEs and prove the well-posedness and asymptotics under
the conditions mentioned above. In Section 3 we will use some of the
results for OIDEs to show the local well-posedness of the PIDE. In an
appendix we list inequalities needed in Section 3.
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2. Ordinary integro-differential equations. In this chapter we
discuss the system

(3)

λϕ̈(t) + ϕ̇(t) + ϕ(t) +

∫ t

0

m(ϕ(t − s))ϕ̇(s) ds = f(t),

ϕ(0) = ϕ0,

ϕ̇(0) = ϕ1,

of OIDEs for t ∈ [0, T ] (T > 0). The function f ∈ C0([0,∞),Rd)
and the initial values ϕ0, ϕ1 ∈ Rd are given. Our first theorem on the
existence of a solution is

Theorem 1. Let m ∈ C1(Rd,Rd×d). Then, for any given ϕ0, ϕ1 ∈
Rd and f ∈ C0([0,∞),Rd), there exists some T > 0 and a unique
solution ϕ ∈ C2([0, T ],Rd) of (l). T is arbitrary if

(V 1) There exists c > 0 for all x, y ∈ Rn : |m(x)y| ≤ c(1 + |x|)|y|

holds.

To prove the well-posedness under condition (V1), the Fredholm-
theory as presented in [15] is used, for which we need to introduce
the operator A : C2([0, T ],Rd) → C0([0, T ],Rd)×Rd ×Rd =: X for
T > 0 arbitrary as

(4) A(ϕ) :=

⎛
⎝λϕ̈+ ϕ̇+ ϕ+m(ϕ) ∗ ϕ̇

ϕ(0)
ϕ(0)

⎞
⎠ .

Here m(ϕ) denotes the composition m ◦ ϕ and ∗ the convolution of a
matrix-valued function with a vector-valued function. We will show
that the operator is invertible and that A−1 is continuous.

A can be divided into a linear part L and a nonlinear part N :

L(ϕ) :=
⎛
⎝λϕ̈+ ϕ̇+ ϕ

ϕ(0)
ϕ̇(0)

⎞
⎠ , N (ϕ) :=

⎛
⎝m(ϕ) ∗ ϕ̇

0
0

⎞
⎠ .
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It is known that L is a C∞-diffeomorphism from C2([0, T ],Rd) onto X
(so L is a Fredholm-operator of index 0), so a perturbation result for
Fredholm-operators yields that A is a Ck-diffeomorphism (1 ≤ k ≤ ∞),
ifA is weakly coercive, the derivativeA′(ϕ) is for any ϕ ∈ C2([0, T ],Rd)
injective and if N is a compact Ck-mapping.

Lemma 2. Let m ∈ Ck(Rd,Rd×d) (1 ≤ k ≤ ∞). Then N is a
compact Ck-operator with the derivative

(5)

N ′(ϕ) : C2([0, T ],Rd) −→ X,

N ′(ϕ)h =

⎛
⎝ (m′(ϕ)h) ∗ ϕ̇+m(ϕ) ∗ ḣ

0
0

⎞
⎠ .

Proof. The product- and chainrule for the Fréchet-derivative pro-
vide directly that N is a Ck-operator. The compactness follows
from the Arzelà-Ascoli theorem. If a sequence (ϕn)n is bounded in
C2([0, T ],Rd), there exists a C1([0, T ],Rd) converging subsequence
(ϕn′)n′ . Since N is continuous from C1([0, T ],Rd) onto X , the se-
quence (N (ϕn′ ))n′ converges.

Lemma 3. Let m ∈ Ck(Rd,Rd×d) (1 ≤ k ≤ ∞) and ϕ ∈
C2([0, T ],Rd). Then A′(ϕ) is injective.

Proof. We have to show that A′(ϕ)h = 0 for h ∈ C2([0, T ],Rd)
implies h = 0.

A′(ϕ)h = 0 gives, on the one hand h(0) = 0 = ḣ(0) and, on the other
hand,

0 = λḧ+ ḣ+ h+ (m′(ϕ)h) ∗ ϕ+m(ϕ) ∗ ḣ.

Multiplication with ḣ and integration leads, for some constant c > 0,
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to
1

2
h(t)2 +

1

2
λḣ(t)2 ≤ −

∫ t

0

ḣ2(s) ds

+ c

(∫ t

0

∫ s

0

|ḣ(s)h(s− r)| dr ds

+

∫ t

0

∫ s

0

|ḣ(s)ḣ(r)| dr ds
)

≤ −
∫ t

0

ḣ2(s) ds

+ cT

(∫ t

0

ḣ(s)2 +

∫ t

0

h(s)2 ds

)
.

Applying Gronwall’s inequality gives h = ḣ = 0.

Lemma 4. Let m ∈ Ck(Rd,Rd×d) (1 ≤ k ≤ ∞), and assume that
(V1) holds. Then A is weakly coercive.

Proof. Let ϕ ∈ C2([0, T ],Rd) and⎛
⎝ f
ϕ0

ϕ1

⎞
⎠ := A(ϕ) =

⎛
⎝λϕ̈ + ϕ̇+ ϕ+m(ϕ) ∗ ϕ

ϕ(0)
ϕ(0)

⎞
⎠ .

A is weakly coercive if and only if the image of an unbounded set
is unbounded. For this it is sufficient to show that ϕ is bounded by
A(ϕ). Let ε > 0 be arbitrary. The continuity of ϕ and m guarantees
the existence of some T ′ with |m(ϕ(t))| ≤ |m(ϕ(0))| + ε =: k1 for
t ∈ [0, T ′]. With T0 := min{T ′, 1/2k1}, we have for t ∈ [0, T0],

ϕ(t)2 + λϕ̇(t)2 ≤ ϕ2
0 + λϕ2

1 +

∫ t

0

f(s)2 ds

−
∫ t

0

ϕ̇(s)2 ds+ 2

∫ t

0

∫ s

0

|m(ϕ(s− r))ϕ̇(r)ϕ̇(s)| dr ds

≤ ϕ2
0 + λϕ2

1 +

∫ t

0

f(s)2 ds−
∫ t

0

ϕ̇(s)2 ds

+ 2k1T0

∫ t

0

ϕ̇(s)2 ds
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≤ ϕ2
0 + λϕ2

1 +

∫ T0

0

f(s)2 ds =: c21.

Thus, ϕ(t) and ϕ̇(t) are bounded by a constant c1 for t ∈ [0, T0]. For
t ∈ [T0, 2T0], it follows that∫ t

0

∫ s

0

|m(ϕ(s− r))ϕ̇(r)ϕ̇(s)| dr ds

=

∫ T0

0

∫ s

0

|m(ϕ(s− r))ϕ̇(r)ϕ̇(s)| dr ds

+

∫ t

T0

∫ s

0

|m(ϕ(s− r))ϕ̇(r)ϕ̇(s)| dr ds

≤ 1

2
k1c

2
1

∫ T0

0

∫ s

0

dr ds

+

∫ t

T0

∫ T0

0

|m(ϕ(s− r))ϕ̇(r)ϕ̇(s)| dr ds

+

∫ t

T0

∫ s

T0

|m(ϕ(s− r))ϕ̇(r)ϕ̇(s)| dr ds

≤ 1

2
k1c

2
1T

2
0 + c1

∫ t

T0

∫ T0

0

c(1 + |ϕ(s− r)|)|ϕ̇(s)| dr ds

+
1

2
k1

∫ t

T0

∫ s

T0

ϕ̇(r)2 + ϕ̇(s)2 dr ds

≤ 1

2
k1c

2
1T

2
0 + k1

∫ t

T0

ϕ̇(s)2 ds

+
1

2
cc1(t−T0)

∫ t

T0

ϕ̇(s)2 ds+c1c

∫ t

T0

∫ T0

0

1+ϕ(s−r)2dr ds

≤ 1

2
k1c

2
1T

2
0 + c1cT

2
0

+

(
k1 +

1

2
cc1T0

)∫ t

0

ϕ̇(s)2 ds+ c1cT0

∫ t

0

ϕ(s)2 ds

=⇒ ϕ(t)2 + λϕ̇(t)2

≤ ϕ2
0 + λϕ2

1 +

∫ t

0

f(s)2 ds+ k1c
2
1T

2
0 + 2c1cT

2
0

+ (2k1 + cc1T0)

∫ t

0

ϕ̇(s)2 ds+ 2c1cT0

∫ t

0

ϕ(s)2 ds.
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By Gronwall’s inequality, we get a bound c2 for ϕ(t), ϕ̇(t) in [0, 2T0]
and a bound k2 for m(ϕ(t)). This leads analogously to an estimate for
t ∈ [0, 4T0] and so successively to a bound for ϕ and ϕ̇ in [0, T ].

The integro-differential equation provides the boundedness of ϕ̈, so
A is weakly coercive.

Up to now we have proved for m ∈ Ck(Rd,Rd×d) (1 ≤ k ≤ ∞) with
(V 1) that A is for any T > 0 a Ck-diffeomorphism from C2([0, T ],Rd)
onto X ; hence, there is a unique solution of (1).

The existence of a local solution for kernels without (V1) can be
derived from this global existence result by cutting off the kernel
appropriately and solving the equation with a bounded one. This leads
to a solution which fulfills the original equation in some initial time
interval. Therefore, let k1 > |ϕ0| and k2 > k1 be arbitrary but fixed.
Define m̃ ∈ C1(Rd,Rd×d) by

m̃(x) :=

{
0 |x| ≥ k2

m(x) |x| ≤ k1

and continuously differentiable extended on {x ∈ Rd|k1 ≤ |x| ≤ k2}.
Then m̃ is bounded, m̃ ∈ C1(Rd,Rd×d), and thus there is a global

solution ϕ to

λϕ̈(t) + ϕ̇(t) + ϕ(t) +

∫ t

0

m̃(ϕ(t − s))ϕ̇(s) ds = f(t),

ϕ(0) = ϕ0,

ϕ̇(0) = ϕ1.

It is |ϕ(0)| < k1 and ϕ is continuous, so there exists some T > 0
with |ϕ(t)| < k1 for all t ∈ [0, T ]. This implies m̃(ϕ(t)) = m(ϕ(t)) for
t ∈ [0, T ]; hence, ϕ is a local solution to the problem.

To show the uniqueness of such a solution, we only need a locally
Lipschitz continuous kernel.

Lemma 5. Let T > 0 be arbitrary, and let m ∈ C0(Rd,Rd×d) be
locally Lipschitz continuous. Then, for any given ϕ0, ϕ1 ∈ Rn and
f ∈ C0([0, T ],Rd), there exists at most one solution ϕ ∈ C2([0, T ],Rd)
of (1).
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Proof. For two solutions u, v, let w = u − v. Then we have
w(0) = 0 = ẇ(0) and

0 = λẅ(t) + ẇ(t) + w(t) +

∫ t

0

m(u(t− s))u̇(s)−m(v(t − s))v̇(s) ds.

This leads to

1

2
λ
d

dt
(ẇ(t))2 +

1

2

d

dt
(w(t))2

= −ẇ(t)2 − ẇ(t)

∫ t

0

m(u(t− s))u̇(s)−m(v(t− s))v̇(s) ds.

By the continuity of u and v, we can find some c > 0 with ‖u‖∞ ≤ c
as well as ‖v‖∞ ≤ c. The constant can be chosen in such a way that,
additionally, ‖m(u)‖∞ ≤ c holds.

Because of the local Lipschitz continuity ofm and the boundedness of
u and v there is some L > 0 with |m(u(t))−m(v(t))| ≤ L|u(t)− v(t)|.
Now the integral can be estimated by∫ t

0

|m(u(t− s))u̇(s)−m(v(t − s))v̇(s)| ds

≤ c

∫ t

0

|ẇ(s)| ds+ cL

∫ t

0

|w(s)| ds.

Using this, we obtain

1

2
λ(ẇ(t))2 +

1

2
(w(t))2

≤
(
1

2
cLT + cT − 1

)∫ t

0

ẇ(s)2 ds+
1

2
cLT

∫ t

0

w(s)2 ds.

Gronwall’s inequality now gives w = ẇ = 0, and thus we get ẅ = 0.

Analogously, the continuous dependence on the data follows.

To extend the class of kernels giving a global solution, we will use a
different approach. Let x ∈ C0([0,∞),Rl) (l ∈ N) be a solution to

(6)

x(t) = Ψ(t)x0 +Ψ(t)

∫ t

0

Ψ(−s)
∫ s

0

M(s− r)x(r) dr ds

+Ψ(t)

∫ t

0

Ψ(−s)f(s) ds,
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with given functions Ψ ∈ C0(R,Rl×l), M ∈ C0([0,∞),Rl×l). By
carrying out the method above for this equation, we obtain that, for a
local Lipschitz continuous M , there is a unique global solution, which
is in C1([0,∞),Rl) for Ψ ∈ C1(R,Rl×l).

Theorem 6. Let |Ψ(t)x0|≤ e−c0t|x0| for t∈ [0,∞), |M(s−r)x(r)|≤
ke−c1(s−r)|x(r)| for s, r ∈ [0,∞), s ≥ r, |∫ t

0
Ψ(−s)f(s) ds| ≤ k1 for

some k1 > 0 independent of t and c1 > c0. Then

|x(t)| ≤ (|x0|+ k1)e
−(c0−(k/c1−c0))t

holds for the solution x of (6). Especially we have in the case c0 −
(k/c1 − c0) > 0 an exponentially decaying solution.

Proof. We have

ec0t|x(t)| ≤ |x0|+ k1 + k

∫ t

0

∫ s

0

e−(c1−c0)(s−r)ec0r|x(r)| dr ds

= |x0|+ k1 + k

∫ t

0

∫ t

r

e−(c1−c0)(s−r)ec0r|x(r)| ds dr

≤ |x0|+ k1 +
k

c1 − c0

∫ t

0

ec0r|x(r)| dr.

Gronwall’s inequality gives

ec0t|x(t)| ≤ (|x0|+ k1)e
t·k/c1−c0 .

Now we turn back to nonlinear equation (1). After a transformation
to a first order system with

A :=

(
0 1
− 1

λ − 1
λ

)
, M(x(t− s)) :=

(
0 0
0 m(x1(t− s))

)

and F (t) = (0, f(t)) the equation for x = (x1, x2) = (ϕ, ϕ̇) reads as

ẋ(t) = Ax(t) − 1

λ

∫ t

0

M(x(t− s))x(s) ds + F (t),

x(0) = (ϕ0, ϕ1) =: x0.
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Variation of constants along with Ψ(t) := eAt leads to the integral
equation

x(t) = Ψ(t)x0 − 1

λ
Ψ(t)

∫ t

0

Ψ(−s)
∫ s

0

M(x(s− r))x(r) dr ds

−Ψ(t)

∫ t

0

Ψ(−s)f(s) ds.

We define a sequence (xn)n of functions by
(7)

xn(t) = Ψ(t)x0 − 1

λ
Ψ(t)

∫ t

0

Ψ(−s)
∫ s

0

M(xn−1(s− r))xn(r) dr ds

−Ψ(t)

∫ t

0

Ψ(−s)F (s) ds

with x0(t) := x0e
−c1t, where c1 > 0 will be chosen later. For all n ∈ N,

there is a solution xn ∈ C1([0,∞),R2d) and thus the sequence is well-
defined.

By calculating the eigenvalues of A we get |Ψ(t)x0| ≤ e−c0 |x0| with
c0 = Re (1−√

1− 4λ)/2λ.

Theorem 7. Assume that

(V 2) There exist α > 1, v1 > 0, k1 > 0

with for all x, z ∈ Rd, |z| ≤ |x0| + k1 : |m(z)x| ≤ v1|z|α|x| and for

all t ∈ R : |∫ t

0
Ψ(−s)F (s) ds| ≤ k1 holds. Then there is a constant

k = k(α, c0) > 0 such that, if v1(|x0| + k1)
α ≤ k is fulfilled, we can

choose a c1 > 0 such that

(8) |xn(t)| ≤ (|x0|+ k1)e
−c1t

holds for all n ∈ N.

Proof. Set k := λ(α− 1)2/4αc20 and c1 := (α+ 1/2α)c0. For n = 0,
the statement is trivial.
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So let |xn−1(t)| ≤ (|x0|+ k1)e
−c1t. We obtain

|M(xn−1(s− r))xn(r)| ≤ v1|xn−1(s− r)|α|xn(r)|
≤ v1(|x0|+ k1)

αe−αc1(s−r)|xn(r)|
≤ ke−αc1(s−r)|xn(r)|.

It is αc1 = (α+ 1/2)c0 > c0 and, applying Theorem 6, yields

|xn(t)| ≤ (k1 + |x0|)e−(c0−(k/λ)(1/αc1−c0))t

with

c0 − k

λ

1

αc1 − c0
= c0 − k

λ

2

(α+ 1)c0 − 2c0
= c0 − 2(α− 1)2c20

4α(α− 1)c0

= c0 − (α− 1)c0
2α

=
(α+ 1)c0

2α
= c1.

The theorem ensures that (xn)n is, for any T > 0, uniformly
bounded in C0([0, T ],R2d) and, by differentiating (7), we obtain this in
C1([0, T ],R2d). So there is a convergent subsequence in C0([0, T ],R2d)
and the derivative of (7) gives the convergence in C1([0, T ],R2d).

Corollary 8. Let m ∈ C1(Rn,Rn×n). Then, for any given
ϕ0, ϕ1 ∈ Rn and f ∈ C0([0,∞),Rn) with (V2), there is a unique global
solution ϕ ∈ C2([0,∞),Rn) of (1). Additionally,

|ϕ̇(t)|+ |ϕ(t)| ≤ (|x0|+ k1)e
−c1t

holds.

When dealing with the PIDE, we will need that a local solution of (1),
which is uniformly bounded in its interval of existence, is extendable
to larger intervals.

Lemma 9. Let m ∈ C1(Rn,Rn×n) and ϕ ∈ C2([0, T ],Rn) be a local
solution of (1) for ϕ0, ϕ1 ∈ Rn, f ∈ C0([0,∞),Rn). If there exists
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some c ≥ 0 with |ϕ(t)| ≤ c for t ∈ [0, T ], then ϕ can be extended to a
solution of (1) in [0, T + ε] for some ε > 0.

Proof. Let δ2 > δ1 > 0 be arbitrary. Let m̃ ∈ C1(Rn,Rn×n) be
defined as

m̃(x) :=

{
m(x) |x| ≤ c+ δ1

0 |x| ≥ c+ δ2

and in {x ∈ Rn|c+ δ1 ≤ |x| ≤ c+ δ2} continuously differentiable. It is
m̃ ∈ C1(Rn,Rn×n) and m̃ is bounded; thus, there is a unique global
solution ψ to

(9)

λψ̈(t) + ψ̇(t) + ψ(t) +

∫ t

0

m̃(ψ(t− s))ψ̇(s) ds = f(t),

ψ(0) = ϕ0,

ψ̇(0) = ϕ1.

In [0, T ], we have m̃(ϕ(t)) = m(ϕ(t)), so ϕ is also a local solution to
(9) and the uniqueness of a solution gives ϕ = ψ in [0, T ].

By the continuity of ψ it follows that, for some ε > 0 and t ∈ [0, T+ε],
|ψ(t)| ≤ c + δ1 holds and this yields m̃(ψ(t)) = m(ψ(t)), so ψ is the
continuation of ϕ onto the interval [0, T + ε].

Remark 10. For kernels also depending continuously upon t and s
and for complex kernels we can proceed in the same way as above.

3. Well-posedness of certain PIDEs. We now turn to the PIDE

(10) λutt(t, x) + ut(t, x) + u(t, x)−Δu(t, x)

+

∫ t

0

m(u(t− s, x))us(s, x) ds = f(t, x)

u(0, x) = u0(x)

ut(0, x) = u1(x)

with t ∈ (0, T ], x ∈ Rd (d ∈ N), and we will show the
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Theorem 11. Let 2k > d and m ∈ Ck+1(R,R). Then, for any
given u0 ∈ Hk+1, u1 ∈ Hk and f ∈ C0([0,∞), Hk), there exists some
T > 0 and a unique solution

u ∈ C2([0, T ], Hk−1) ∩C1([0, T ], Hk) ∩ C0([0, T ], Hk+1)

to (10).

Proof (Uniqueness). For T > 0 arbitrary, let u and v be solutions with
the above regularity, w := u− v. Then we have w ∈ C2([0, T ], Hk−1)∩
C1([0, T ], Hk) ∩C0([0, T ], Hk+1), w(0) = 0 = wt(0) and

λwtt(t) + wt(t) + w(t) −Δw(t)

+

∫ t

0

m(u(t− s))us(s)−m(v(t− s))vs(s) ds = 0.

Multiplication by wt(t) in L2 and integration leads for 0 < T ′ < T
arbitrary to

λ‖wt(T
′)‖2L2 + ‖w(T ′)‖2L2 + ‖∇w(T ′)‖2L2

≤ −2

∫ T ′

0

‖wt(t)‖2L2 dt

+

∫ T ′

0

t

∫ t

0

‖m(u(t− s))us(s)−m(v(t − s))vs(s)‖2L2 ds

+ ‖wt(t)‖2L2 dt.

Because of 2k > d, we have u(t), vt(t) ∈ C0
b (R

d,R) for t ∈ [0, T ], and
thus

‖m(u(t− s))us(s)−m(v(t − s))vs(s)‖L2

≤ c(‖us(s)− vs(s)‖L2 + ‖m(u(t− s))−m(v(t − s))‖L2),

where c > 0 is independent of t. m(u(s))−m(v(s)) can be rewritten as

‖m(u(s))−m(v(s))‖L2

=

∥∥∥∥
∫ 1

0

m′(ru(s) + (1− r)v(s))(u(s) − v(s)) dr

∥∥∥∥ ≤ c‖w(s)‖L2 .
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This gives

λ‖wT (T
′)‖2L2 + ‖w(T ′)‖2L2 + ‖∇w(T ′)‖2L2

≤ −
∫ T ′

0

‖wt(t)‖2L2 dt+ cT 2

∫ T ′

0

‖w(t)‖2L2 + ‖wt(t)‖2L2 dt

and Gronwall’s inequality yields w = 0.

To show the existence of a solution we need a certain kind of regularity
of the mapping u �→ m(u) ∗ ut.

Lemma 12. Let 2k > d, T > 0 arbitrary and m ∈ Ck+1(R,R).
Let (u(n))n ⊂ C0([0, T ], Hk+1)∩C1([0, T ], Hk), u ∈ C0([0, T ], Hk+1)∩
C1([0, T ], Hk), and let u(n) → u in C0([0, T ], Hk+1) ∩ C1([0, T ], Hk).

⇒. m(u(n)) ∗ u(n)t → m(u) ∗ ut in L2((0, T ), Hk).

Proof. We have

‖m(u(n)) ∗ u(n)t −m(u) ∗ ut‖2L2((0,T ),Hk)

≤ 2

∫ T

0

t

∫ t

0

‖(m(u(n)(t− s))−m(u(t− s)))u(n)s (s)‖2Hk ds dt

+ 2

∫ T

0

t

∫ t

0

‖m(u(t− s))(u(n)s (s)− us(s))‖2Hk ds dt.

In the following, c denotes constants being independent of t.

Because of Sobolev’s embedding theorem we can use Moser-type
inequalities (see Appendix) to estimate the L2-norm of ∇α(m(u(t −
s))(u

(n)
s (s)− us(s))) by

‖∇α(m(u(t− s))(u(n)s (s)− us(s)))‖L2

≤ c
(
‖m(u(t− s))‖∞‖∇|α|(u(n)s (s)− us(s))‖L2

+‖u(n)s (s)− us(s)‖∞‖∇|α|m(u(t− s))‖L2

)
≤ c

(
‖∇|α|(u(n)s (s)− us(s))‖L2

+‖u(n)s (s)− us(s)‖∞‖∇|α|m(u(t− s))‖L2

)
.
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We get the L2-norm of ∇|α|m(u(t− s)) for |α| ≥ 1 by

‖∇|α|m(u(t− s))‖L2 ≤ c‖∇|α|u(s− r)‖L2‖u(s− r)‖j−1
∞ .

Sobolev’s embedding theorem yields ‖u(n)s (s)− us(s)‖∞ ≤ c‖u(n)s (s)−
us(s)‖Hk and u ∈ C0([0, T ], Hk+1) then implies ‖u(t)‖∞ ≤ c.

=⇒ ‖m(u(t− s))(u(n)s (s)− us(s))‖Hk ≤ c‖u(n)s (s)− us(s)‖Hk .

It is m ∈ Ck+1(R,R); thus, we get

m(u(n)(t− s))−m(u(t− s))

= (u(n)(t− s)− u(t− s))

∫ 1

0

m′(ru(n)(t− s) + (1− r)u(t− s)) dr,

and similarly to the estimate for ‖∇α(m(u(t− s))(u
(n)
s (s)− us(s)))‖L2 ,

we obtain

‖(m(u(n)(t−s))−m(u(t−s)))u(n)s (s)‖Hk ≤c‖u(n)(t−s)−u(t−s)‖∞
+ c

∑
1≤|α|≤k

‖∇|α|((u(n)(t− s)− u(t− s))

×
∫ 1

0

m′(ru(n)(t− s) + (1− r)u(t − s)) dr)‖L2 .

Moreover, the estimate∥∥∥∇|α|(u(n)(t−s)−u(t−s))
∫ 1

0

m′(ru(n)(t−s)+(1−r)u(t−s)) dr)
∥∥∥
L2

≤ c‖u(n)(t− s)− u(t− s)‖∞
×
∥∥∥∥∇|α|

∫ 1

0

m′(ru(n)(t− s) + (1− r)u(t− s)) dr

∥∥∥∥
L2

+ c

∥∥∥∥
∫ 1

0

m′(ru(n)(t− s) + (1− r)u(t − s)) dr

∥∥∥∥
∞

× ‖∇|α|(u(n)(t− s)− u(t− s))‖L2

≤ c‖u(n)(t− s)− u(t− s)‖Hk

×
∥∥∥∥∇|α|

∫ 1

0

m′(ru(n)(t− s) + (1− r)u(t− s)) dr

∥∥∥∥
L2

+ c‖∇|α|(u(n)(t− s)− u(t− s))‖L2
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holds. The sequence is convergent; hence, the term ‖∇|α|(u(n)(t− s)−
u(t− s))‖L2 is uniformly bounded. This yields

∥∥∥∇|α|
∫ 1

0

m′(ru(n)(t− s) + (1− r)u(t− s)) dr
∥∥∥
L2

≤
∫ 1

0

c‖∇|α|(ru(n)(t− s) + (1− r)u(t − s))‖L2

× ‖ru(n)(t− s) + (1− r)u(t− s)‖|α|−1
∞ dr

≤ c =⇒ ‖(m(u(n)(t− s))−m(u(t− s)))u(n)s (s)‖Hk

≤ c‖u(n)(t− s)− u(t− s)‖Hk .

Altogether, we have

‖m(u(n)) ∗ u(n)t −m(u) ∗ ut‖L2((0,T ),Hk)

≤ c

∫ T

0

‖u(n)(t)− u(t)‖2Hk + ‖u(n)t (t)− ut(t)‖2Hk dt

−→ 0 (n→ ∞).

Proof of Theorem 13 (Existence). We first additionally assume that
m and its derivatives up to order k+1 are bounded. Let (ϕn)n ⊂ Hk+1

be a basis of Hk and 〈ϕi|ϕj〉Hk = δij .

Let Vn := span {ϕj : 1 ≤ j ≤ n} with the norm ‖·‖Hk+1 . Let
Pn : Hk+1 → Vn and Πn : Hk → Vn be the orthogonal projections.

We now construct a sequence (u(n))n of solutions u(n)(t)=
∑n

j=1gnj(t)ϕj

with gnj ∈ C2([0, T ],R) to the equation after projecting it on the finite
dimensional subspaces Vn. For this, we define

Φn := (〈ϕi, ϕj〉Hk )1≤i,j≤n,

Ψn := (〈∇ϕi,∇ϕj〉Hk )1≤i,j≤n,

Fn(t) := (〈f(t), ϕi〉Hk)1≤i≤n

and
gn(t) := (gnj(t))1≤j≤n, Mn(gn(t− s))

:=

(〈
m

( n∑
l=1

gnl(t− s)ϕl

)
ϕj , ϕi

〉
Hk

)
1≤i,j≤n

.
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The standard Faedo-Galerkin approach gives for n ∈ N, an OIDE for
gn:

λΦng̈n(t) + Φnġn(t) + (Φn +Ψn)gn(t)

+

∫ t

0

Mn(gn(t− s))ġn(t) = Fn(t)(11)

+

n∑
j=1

gnj(0)〈ϕj , ϕi〉 = 〈Pnu0, ϕi〉 (1 ≤ i ≤ n)

n∑
j=1

ġnj(0)〈ϕj , ϕi〉 = 〈Πnu1, ϕi〉 (1 ≤ i ≤ n).

The mapping Mn : Rn → Rn×n is well defined, since we can estimate∥∥∥∥∇α

(
m

( n∑
l=1

zlϕl

)
ϕj

)∥∥∥∥
L2

for any z = (z1, . . . , zn) ∈ Rn as before. Mn is continuously differen-
tiable, m ∈ Ck+1(R,R) allows estimation of terms of the form∥∥∥∥∇α

(
ϕim

′
( n∑

l=1

zlϕl

)
ϕj

)∥∥∥∥
L2

,

and f ∈ C0([0,∞), Hk) provides Fn ∈ C0([0,∞),Rn).

By using the theory of OIDEs we can conclude that, for any n ∈ N,
the existence of some Tn > 0 such that there is a unique solution gn ∈
C2([0, Tn],R

n), so we have u(n) ∈ C2([0, Tn], H
k+1). If the sequence

(u(n))n is uniformly bounded in H1((0, T ), Hk) ∩ L2((0, T ), Hk+1) for
some T > 0, we can deduce the weak convergence of a subsequence in
that space.

Multiplication of (11) by ġn leads to

(12) λ
∑
|α|≤k

‖∇αu
(n)
t (t)‖2L2 + ‖∇αu(n)(t)‖2L2 + ‖∇∇αu(n)(t)‖2L2

≤
∑
|α|≤k

λ‖∇αu1‖2L2 + ‖∇αu0‖2H1

+

∫ t

0

‖∇αf(s)‖2L2 + (t− 1)

∫ t

0

‖∇αu(n)s (s)‖2L2 ds

+

∫ t

0

∫ s

0

‖∇α(m(u(n)(s− r))u(n)r (r))‖2L2 dr ds.



SOME NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS 121

C denotes different constants independent of t and n.

The L2-norm of ∇α(m(u(n)(s − r))u
(n)
r (r)) can be estimated for

1 ≤ |α| ≤ k by

‖∇α(m(u(n)(s− r))u(n)r (r))‖L2

≤ C
(
‖∇|α|u(n)r (r)‖L2 + ‖u(n)r (r)‖∞‖∇|α|m(u(n)(s− r))‖L2

)
,

and the boundedness of m in Ck(R,R) gives for ∇|α|m(u(n)(s − r))
(1 ≤ |α| ≤ k)

‖∇|α|m(u(n)(s− r))‖L2 ≤ C‖∇|α|u(n)(s− r)‖L2‖u(n)(s− r)‖|α|−1
∞ .

We have ‖u(n)(t)‖2∞≤C‖u(n)(t)‖2Hk and ‖u(n)t (t)‖2∞≤C‖u(n)t (t)‖2Hk , so
it follows

‖m(u(n)(s− r))u(n)r (r)‖Hk ≤ C‖u(n)r (r)‖L2

+
∑

1≤|α|≤k

C
(
‖∇|α|u(n)r (r)‖L2 + ‖u(n)r (r)‖∞‖∇mm(u(n)(s− r))‖L2

)

≤ C
(
‖u(n)r (r)‖Hk + ‖u(n)r (r)‖Hk‖u(n)(s− r)‖kHk

)
.

Inserting this into (12), we get

λ‖u(n)t (t)‖2Hk + ‖u(n)(t)‖2Hk + ‖∇u(n)(t)‖2Hk

≤ λ‖u1‖2Hk + ‖u0‖2Hk + ‖∇u0‖2Hk

+

∫ t

0

‖f(s)‖2Hk + (t− 1)

∫ t

0

‖u(n)s (s)‖2Hk ds

+ C

∫ t

0

∫ s

0

‖u(n)r (r)‖2Hk + ‖u(n)r (r)‖2Hk‖u(n)(s− r)‖2kHk dr ds

≤ λ‖u1‖2Hk + ‖u0‖2Hk + ‖∇u0‖2Hk + ‖f‖2L2((0,t),Hk)

+ C

∫ t

0

(
1 + ‖u(n)s (s)‖2Hk + ‖u(n)(s)‖2Hk

)2k

ds.

This is an inequality of the kind

x(t) ≤ x0 + C

∫ t

0

(1 + x(s))2k ds
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with x0 = λ‖u1‖2Hk + ‖u02Hk+1 + ‖f‖2L2((0,T ′),Hk) (T
′ > 0 arbitrary), so

a nonlinear generalization of Gronwall’s inequality (see Appendix) tells
us that x is bounded by the solution of

ż(t) = C(z(t) + 1)2k,

z(0) = x0.

We easily get, with K := C(x0 + 1)2k−1(2k − 1),

z(t) = −1 + (x0 + 1) (1−Kt)1/1−2k ,

and z exists in the interval [0, (1/K)), so we have for any T < T ′ with
0 < T < 1/K and C1 := z(T ),

‖u(n)t (t)‖2Hk + ‖u(n)(t)‖2Hk+1 ≤ C1

for t ∈ [0, T ]. Using 〈ϕi, ϕj〉Hk=δij , we get gnj(t)= 〈gnj(t)ϕj , ϕj〉Hk =
〈un(t), ϕj〉Hk , and thus we have a bound for gnj(t) in the interval [0, T ]:

|gnj(t)| ≤ ‖un(t)‖Hk‖ϕj‖Hk ≤ C1.

With Theorem 9, we can now extend gn to a solution of (11) in [0, T ].
Therefore, (u(n))n is bounded in C1([0, T ], Hk) ∩ C0([0, T ], Hk+1),
which carries over to a bound in H1((0, T ), Hk) ∩ L2((0, T ), Hk+1),
and we can select a subsequence (without renaming it), which converges
weakly to some u, un ⇀ u in H1((0, T ), Hk) ∩ L2((0, T ), Hk+1). Fur-
thermore, we will conclude the strong convergence in C0([0, T ], Hk+1)∩
C1([0, T ], Hk). Without loss of generality, we assume n ≤ m. For
w(nm) := u(n) − u(m), we have w(nm)(0) = Pnu0 − Pmu0, w

(nm)(0) =
Πnu1 −Πmu1 and

〈λw(nm)
tt (t), w

(nm)
t (t)〉Hk + 〈w(nm)

t (t), w
(nm)
t (t)〉Hk

+ 〈w(nm)(t), w
(nm)
t (t)〉Hk

+

〈∫ t

0

m(u(n)(t−s))u(n)s (s)−m(u(m)(t−s))u(m)
s (s) ds, w

(nm)
t (t)

〉
Hk

− 〈Δw(nm)(t), w
(nm)
t (t)〉Hk =

〈
f(t),

m∑
i=n+1

ġim(t)ϕi

〉
Hk
.
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〈ϕi, ϕj〉 = δij allows the rewriting of the right hand side:

〈
f,

m∑
i=n+1

ġim(t)ϕi

〉
Hk

=

〈 m∑
j=n+1

〈f(t), ϕj〉ϕj , w
(nm)
t (t)

〉
Hk

=: 〈fnm(t), w
(nm)
t (t)〉Hk .

Using the boundedness of the sequence we can find some C = C(T ) > 0
such that, for t ∈ [0, T ],

‖w(nm)
t (t)‖2Hk + ‖w(nm)(t)‖2Hk+1

≤ C
(
‖w(nm)

t (0)‖2Hk + ‖w(nm)(0)‖2Hk+1 +

∫ T

0

‖fnm(s)‖2Hk ds
)

holds. (ϕn)n is a basis in Hk, so for all t ∈ [0, T ], it follows that

‖fnm(t)‖Hk → 0, and we can deduce
∫ T

0
‖fnm(s)‖2Hk ds → 0. Addi-

tionally, the projections give Pnu0 → u0 in Hk+1 and Πnu1 → u1 in
Hk (but not u(0) = u0 yet), so we obtain

sup
t∈[0,T0]

λ‖w(nm)
t (t)‖2Hk + ‖w(nm)(t)‖2Hk+1 −→ 0.

Now we have u ∈ C0([0, T ], Hk+1) ∩ C1([0, T ], Hk), and we can verify
that u is a solution to the problem.

Let h ∈ C∞
0 ([0, T ], Hk+1) with h(t) =

∑l
i=1 hi(t)ϕi, l ∈ N,

hi ∈ C∞
0 ([0, T0],R), and let n ≥ l. These functions are dense in

C∞
0 ([0, T ], Hk+1), and it follows

λ

∫ t

0

〈u(n)ss (s), h(s)〉Hkds+

∫ t

0

〈u(n)s (s), h(s)〉Hkds

+

∫ t

0

〈u(n)(s), h(s)〉Hkds−
∫ t

0

〈Δu(n)(s), h(s)〉Hkds

+

∫ t

0

〈∫ s

0

m(u(n)(s− r))u(n)r (r) dr, h(s)

〉
Hk

ds

=

∫ t

0

〈f(s), h(s)〉Hkds.
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Integration by parts leads to

− λ

∫ t

0

〈u(n)s (s), hs(s)〉Hk ds+

∫ t

0

〈u(n)s (s), h(s)〉Hkds

+

∫ t

0

〈u(n)(s), h(s)〉Hkds+

∫ t

0

〈∇u(n)(s),∇h(s)〉Hkds

+

∫ t

0

〈(m(u(n)) ∗ u(n)s )(s), h(s)〉Hk ds =

∫ t

0

〈f(s), h(s)〉Hk ds.

Applying Lemma 12 gives us that utt exists in L2((0, T ), (Hk+1)′)
((Hk+1)′ denotes the dual-space of Hk+1 with respect to the Hk-norm)
and that u fulfills the integro-differential equation in the weak sense.

On the one hand, we have Pnu0 = u(n)(0) ⇀ u(0) in Hk; on
the other hand, the continuity of Pn inherits Pnu0 → u0 in Hk+1,
and thus u0 = u(0). The same arguments (Πnu1 → u1 in Hk,

Πnu1 = u
(n)
t (0)⇀ ut(0) in H

k−1) lead to u1 = ut(0).

The integro-differential equation yields

λutt(t) = −ut(t)− u(t) + Δu(t)−
∫ t

0

m(u(t− s))us(s) ds+ f(t).

The right hand side is an element of C0([0, T ], Hk−1), and thus we
have u ∈ C2([0, T ], Hk−1). If m is not bounded, we take constants
δ2 > δ1 > 0 and define m̃ by

m̃(x) :=

{
0 |x| ≥ ‖u0‖Hk + δ2

m(x) |x| ≤ ‖u0‖Hk + δ1

and extended into the area {x ∈ R|δ1 < |x| < δ2} as a Ck+1(R,R)-
function. To this kernel there is a solution u ∈ C2([0, T0], H

k−1) ∩
C1([0, T0], H

k) ∩ C0([0, T0], H
k+1) for some T0 > 0 to (10), and the

regularity implies u ∈ C0([0, T0], C
0
b (R

d,R)). This means that there is
some T , 0 < T ≤ T0, with ‖u(t)‖∞ < ‖u0‖Hk + δ1 for t ∈ [0, T ]. In this
interval we have the identity m(u(t)) = m̃(u(t)); hence, u is a solution
of the original problem.

The proofs above can be directly carried over to a convolution with
∂ju or u, but if we look at a convolution with Δu, some estimates must
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be modified. In the proof of uniqueness we need to deal with the term〈∫ t

0

m(u(t− s))Δu(s)−m(v(t− s))Δv(s) ds, wt(t)

〉
L2

dt,

where u and v are solutions to the same data and w := u−v. Integration
by parts leads to

∫ T ′

0

〈∫ t

0

m(u(t− s))Δu(s)−m(v(t − s))Δv(s) ds, wt(t)

〉
L2

dt

= −
∫ T ′

0

〈∫ t

0

∇m(u(t−s))∇u(s)−∇m(v(t−s))∇v(s) ds, wt(t)

〉
L2

dt

−
∫ T ′

0

〈∫ t

0

m(u(t− s))∇u(s)−m(v(t− s))∇v(s) ds,∇wt(t)

〉
L2

dt

=: −I1− I2.

I1 can be transformed into

I1 =

∫ T ′

0

∫ t

0

〈∇m(u(t− s))∇u(s)−∇m(v(t − s))∇v(s), wt(t)〉L2 ds dt

=

∫ T ′

0

∫ t

0

〈m′(u(t− s))∇u(t− s)∇u(s)−m′(v(t − s))

×∇v(t− s)∇v(s), wt(t)〉L2 ds dt

=

∫ T ′

0

∫ t

0

〈m′(u(t− s))∇u(t− s)∇w(s), wt(t)〉L2 ds dt

+

∫ T ′

0

∫ t

0

〈m′(u(t− s))∇v(s)∇w(t − s), wt(t)〉L2 ds dt

+

∫ T ′

0

∫ t

0

〈
∇v(t− s)∇v(s)w(t − s)

×
∫ 1

0

m′′(ru(t− s) + (1− r)v(t − s)) dr, wt(t)
〉
L2
ds dt.

Here we can use the same technique as before to conclude

|I1| ≤ c

∫ T ′

0

‖∇w(t)‖L2 + ‖w(t)‖L2 + ‖wt(t)‖L2 dt.
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A second integration by parts, now with respect to the time-variable,
gives for I2:

I2 =

〈∫ T ′

0

m(u(T ′ − s))∇u(s)−m(v(T ′ − s))∇v(s) ds,∇w(T ′)
〉

L2

−
∫ T ′

0

〈
d

dt

∫ t

0

m(u(t−s))∇u(s)−m(v(t−s))∇v(s) ds,∇w(t)
〉

L2

dt

=

〈∫ T ′

0

m(u(T ′ − s))∇u(s)−m(v(T ′ − s))∇v(s) ds,∇w(T ′)
〉

L2

−
∫ T ′

0

〈∫ t

0

m′(u(t− s))us(t− s)∇u(s)

−m′(v(t− s))vs(t− s)∇v(s) ds,∇w(t)
〉

L2

dt

−
∫ T ′

0

〈m(u(0))∇u(t)−m(v(0))∇v(t),∇w(t)〉L2 dt

=: I2.1 + I2.2 + I2.3.

I2.2 can be processed as I1 to get

|I2.2| ≤ c

∫ T ′

0

‖w(t)‖H1 + ‖wt(t)‖L2 dt,

and, because of u(0) = v(0), we have

|I2.3| ≤ c

∫ T ′

0

‖∇w(t)‖2L2 dt.

I2.1 is bounded by

|I2.1| ≤
∥∥∥∥
∫ T ′

0

m(u(T ′−s))∇u(s)−m(v(T ′−s))∇v(s) ds
∥∥∥∥
L2

‖∇w(T ′)‖

≤ 1

4
‖∇w(T ′)‖2L2+

∥∥∥∥
∫ T ′

0

m(u(T ′−s))∇u(s)−m(v(T ′−s))∇v(s)ds
∥∥∥∥
2

L2

≤ cT

∫ T ′

0

‖w(t)‖2H1 dt+
1

4
‖∇w(T ′)‖2L2 .
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From here, the previous proof can be carried out. The idea to do two
integration-by-parts to get integrals which only inhabit the function
and its first derivatives can also be used to obtain the energy estimate
needed for the Faedo-Galerkin method, if the kernel m is bounded. As
before, we have

λ‖u(n)t (t)‖2Hk + ‖u(n)(t)‖2Hk + ‖∇u(n)(t)‖2Hk

= λ‖u1‖2Hk + ‖u0‖2Hk + ‖∇u0‖2Hk

− 2

∫ t

0

‖u(n)s (s)‖2Hk ds+ 2

∫ t

0

〈f(s), u(n)s (s)〉Hk ds

−
∑
|α|≤k

2

∫ t

0

〈
∇α

∫ s

0

m(u(n)(s− r))Δu(n)(r) dr,∇αu(n)s (s)
〉
L2
ds.

Now we carry out the first integration by parts and get∫ t

0

〈∫ s

0

∇α(m(u(n)(s− r))Δu(n)(r)) dr,∇αu(n)s (s)

〉
L2

ds

= −
∫ t

0

〈∫ s

0

∇α(∇m(u(n)(s− r))∇u(n)(r)) dr,∇αu(n)s (s)

〉
L2

ds

−
∫ t

0

〈∫ s

0

∇α(m(u(n)(s− r))∇u(n)(r)) dr,∇α∇u(n)s (s)

〉
L2

ds.

Another integration by parts yields, for the second integral,∫ t

0

〈∫ s

0

∇α(m(u(n)(s− r))∇u(n)(r)) dr,∇α∇u(n)s (s)

〉
L2

ds

=

〈∫ t

0

∇α(m(u(n)(t− r))∇u(n)(r)) dr,∇α∇u(n)(t)
〉

L2

−
∫ t

0

〈∇α(m(u(n)(0))∇u(n)(s)),∇α∇u(n)(s)〉L2 ds

+

∫ t

0

〈∫ s

0

∇α(m′(u(n)(s− r))u(n)s (s− r)∇u(n)(r)) dr,

∇α∇u(n)(s)
〉

L2

ds

≤
∥∥∥∥
∫ t

0

∇α(m(u(n)(t− r))∇u(n)(r)) dr
∥∥∥∥
L2

‖∇α∇u(n)(t)‖L2
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+
1

2

∫ t

0

‖∇α(m(u(n)(0))∇u(n)(s))‖2L2 + ‖∇α∇u(n)(s)‖2L2 ds

+
1

2

∫ t

0

∥∥∥∥
∫ s

0

∇α(m′(u(n)(s− r))u(n)s (s− r)∇u(n)(r)) dr
∥∥∥∥
2

L2

+ ‖∇α∇u(n)(s)‖2L2 ds.

We have

∥∥∥∥
∫ t

0

∇α(m(u(n)(t− r))∇u(n)(r)) dr
∥∥∥∥
L2

‖∇α∇u(n)(t)‖L2

≤ t

∫ t

0

‖∇α(m(u(n)(t− r))∇u(n)(r))‖2L2 dr +
1

4
‖∇α∇u(n)(t)‖2L2 .

These inequalities lead to the desired estimate

λ‖u(n)t (t)‖2Hk + ‖u(n)(t)‖2Hk +
1

2
‖∇u(n)(t)‖2Hk

≤ λ‖u1‖2Hk + ‖u0‖2Hk + ‖∇u0‖2Hk +

∫ t

0

‖f(s)‖2Hk ds

+ c

∫ t

0

(1 + ‖u(n)t (s)‖2Hk + ‖u(n)(s)‖2Hk + ‖∇u(n)(s)‖2Hk)
2k ds.

Hence, the sequence defined within the Faedo-Galerkin method is
uniformly bounded in an interval [0, T ] and converges weakly to some
u. As before, we can conclude the strong convergence.

To transfer the previous existence proof we need a similar convergence
result for the convolution u �→ m(u)∗Δu. It will be weaker than before
but still good enough to be used in the Faedo-Galerkin method.

Lemma 13. Let 2k > d, T > 0 arbitrary and m ∈ Ck+2(R,R).
Let (u(n))n ⊂ C0([0, T ], Hk+1)∩C1([0, T ], Hk), u ∈ C0([0, T ], Hk+1)∩
C1([0, T ], Hk) and u(n) → u in C0([0, T ], Hk+1) ∩C1([0, T ], Hk).

⇒. For all ϕ ∈ L2((0, T ), Hk+1): 〈m(u(n)) ∗ Δu(n) − m(u(n)) ∗
Δu(n), ϕ〉 −→ 0 (n → ∞).
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Proof. We get

|〈m(u(n)) ∗Δu(n) −m(u(n)) ∗Δu(n), ϕ〉|

≤
∣∣∣∣
∫ T

0

〈∫ t

0

m(u(n)(t−s))∇u(n)(s)−m(u(t−s))∇u(s) ds,∇ϕ(t)
〉

Hk

dt

∣∣∣∣
+

∣∣∣∣
∫ T

0

〈∫ t

0

∇m(u(n)(t− s))∇u(n)(s)

−∇m(u(t− s))∇u(s) ds, ϕ(t)
〉

Hk

dt

∣∣∣∣,
and thus,

|〈m(u(n)) ∗Δu(n) −m(u(n)) ∗Δu(n), ϕ〉|

≤ C

∫ T

0

(‖ut(t)− u
(n)
t (t)‖2Hk + ‖u(t)− u(n)(t)‖2Hk+1)‖ϕ(t)‖Hk dt,

which shows the weak convergence.

The existence of a local solution for unbounded kernels can be carried
over immediately.

If we try to use this Faedo-Galerkin approach for other sets than the
whole Rd, we get into trouble because of boundary terms appearing
when carrying out an integration by parts. Instead, we first will solve
an associated linear problem, in the one-dimensional case and, for a
convolution with ut, we then define some sequence which will converge
to a solution of the nonlinear problem. We want to find a weak solution
to

(13) λutt(t, x) + ut(t, x) + u(t, x)−Δu(t, x)

+

∫ t

0

m(t− s, x)us(s, x) ds = f(t, x),

u(0, x) = u0,

ut(0, x) = u1,

u(t) ∈ H1
0 ,

for x ∈ Ω ⊂ Rd and t ∈ [0, T ], T > 0 arbitrary with given data u0 ∈ H1
0 ,

u1 ∈ L2 and f ∈ C0([0, T ], L2). To show existence and uniqueness we
follow the Faedo-Galerkin method as presented in [11, page 388].
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Theorem 14. Let T > 0 be arbitrary, Ω ⊂ Rd and m ∈ C1
b ([0, T ]×

Ω,R). For u0 ∈ H1
0 , u1 ∈ L2 and f ∈ C0([0, T ], L2) given, there is a

unique weak solution

u ∈ H2((0, T ), H−1)∩H1((0, T ), L2)∩L2((0, T ), H1
0 )∩W 1,∞((0, T ), L2)

to (13).

Proof. (Uniqueness). For two solutions u, v let w = u − v. We have
w(0) = 0 = wt(0),

λwtt(t) + wt(t) + w(t) −Δw(t) +

∫ t

0

m(t− s)ws(s) ds = 0

in L2((0, T ), H−1) and w ∈ H1
0 . Let q ∈ [0, T ] be arbitrary and

v(t) :=
{

−
∫ q

t
w(r) dr t<q

0 t≥q
. Then it is v ∈ L2((0, T ), H1), vt = w in

[0, q] and v(t) = 0 = vt(t) for t ≥ q.

=⇒ 0 = −λ
2
‖w(q)‖2L2 − 1

2
‖v(0)‖2L2 − 1

2
‖∇v(0)‖2L2

−
∫ q

0

‖w(t)‖2L2 + 〈m(0)w(t), v(t)〉L2

+

〈∫ t

0

m′(t− s)w(s) ds, v(t)

〉
L2

dt.

Let h(t) = v(t) − v(0) =
∫ t

0 w(r) dr. This gives h(q) = v(q) − v(0) =
−v(0) and, for some c > 0, it follows

λ

2
‖w(q)‖2L2 +

1

2
‖h(q)‖2L2 +

1

2
‖∇h(q)‖2L2

≤
∫ q

0

(
1

2
c− 1

)
‖w(t)‖2L2+2‖h(t)‖2L2+

1

2
cT 2‖w(t)‖2L2 dt+2q‖h(q)‖2L2

=⇒ λ‖w(q)‖2L2 + (1− 4q)‖h(q)‖2L2 + ‖∇h(q)‖2L2

≤ c

∫ q

0

‖w(t)‖2L2 + ‖h(t)‖2L2 + ‖w(t)‖2L2 dt.

This means w(q) = h(q) = 0 for q ∈ [0, (1/4)), and we get

0 = λwtt(t) + wt(t) + w(t) −Δw(t) +

∫ t

1/2

m(t− s)ws(s) ds.
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In the same way, we deduce w(q) = h(q) = 0 for q ∈ [0, (1/2)) and,
successively, w(q) = h(q) = 0 for all q ∈ [0, T ].

To show the existence, we need the weak continuity of the convolu-
tion.

Lemma 15. Let T > 0, Ω ⊂ Rd and m ∈ C1
b ([0, T ] × Ω,R).

Let (u(n))n ⊂ H1((0, T ), L2), u ∈ H1((0, T ), L2) with u(n) ⇀ u in
H1((0, T ), L2).

=⇒. For all ϕ ∈ L2((0, T ), H1
0 ) : 〈m ∗ u(n)t , ϕ〉 → 〈m ∗ ut, ϕ〉.

Proof. We have

〈m ∗ u(n)t , ϕ〉 =
∫ T

0

〈∫ t

0

m(t− s)u(n)s (s) ds, ϕ(t)

〉
L2

dt

=

∫ T

0

∫ t

0

〈u(n)s (s),m(t− s)ϕ(t)〉L2 ds dt.

The weak convergence of (u(n))n provides that u(n)(t) is almost every-
where weakly convergent, and it is m(t− s)ϕ(t) ∈ L2 (m bounded). So
we get, for t ∈ [0, T ] and for almost every s ∈ [0, T ],

〈u(n)s (s),m(t− s)ϕ(t)〉L2 −→ 〈us(s),m(t− s)ϕ(t)〉L2

=⇒ 〈m ∗ u(n)t , ϕ〉 −→ 〈m ∗ ut, ϕ〉.

Proof of Theorem 13. (Existence). Let (ϕn)n ⊂ H1
0 be a basis in L2,

Vn := span {ϕj : 1 ≤ j ≤ n} with the norm ‖·‖H1 . Let Pn : H1
0 → Vn

and Πn : L2 → Vn be the orthogonal projections. We again construct a
sequence of solutions (u(n))n with u(n)(t) =

∑n
j=1 gnj(t)ϕj for functions

gnj : [0, T ] → R. By defining

Φn := (〈ϕi, ϕj〉L2)1≤i,j≤n,

Ψn := (〈∇ϕi,∇ϕj〉L2)1≤i,j≤n,

Fn(t) := (〈f(t), ϕi〉L2)1≤i≤n
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and
gn(t) := (gnj(t))1≤j≤n,

Mn(t− s) := (〈m(t− s)ϕi, ϕi〉L2)1≤i,j≤n,

we get

λΦng̈n(t) + Φnġn(t) + (Φn +Ψn)gn(t) +

∫ t

0

Mn(t− s)ġn(t) = Fn(t),

n∑
j=1

gnj(0)〈ϕj , ϕi〉 = 〈Pnu0, ϕi〉 (1 ≤ i ≤ n),

n∑
j=1

ġnj(0)〈ϕj , ϕi〉 = 〈Πnu1, ϕi〉 (1 ≤ i ≤ n).

The mapping Mn : ([0, T ],Rn×n) is well-defined and continuous since
m is bounded and continuous.

For any n ∈ N and T > 0, there is a unique solution gn ∈
C2([0, T ],Rn) to this system, and thus u(n) =

∑n
j=1 gnjϕj ∈ C2([0, T ],

H1
0 ).

It is easy to show that there is some c > 0 with

λ‖u(n)(t)‖2L2 + ‖u(n)(t)‖2H1 ≤
(
λ‖u1‖2L2 + ‖u0‖2H1 +

∫ T

0

‖f(s)‖2L2

)
ect,

so we have a weakly convergent subsequence to some u inH1((0, T ), L2)
∩ L2((0, T ), H1

0 ). That utt exists in L2((0, T ), H−1) and that the
integro-differential equation is fulfilled, follows as in [11].

The estimate for the sequence (u(n))n also holds for u and gives
u ∈W 1,∞((0, T ), L2).

To use this result when dealing with the nonlinear problem we need
a better regularity of the solution.

Lemma 16. Let T > 0 be arbitrary, Ω ⊂ Rd, k ∈ N and
m ∈ Ck

b (R×Ω,R). For u0 ∈ Hk+1
0 , u1 ∈ Hk

0 and f ∈ Hk((0, T ), H1
0 ) ⊂

C0([0, T ], H1
0), the solution u to (13) fulfills

u ∈ Hk+2((0, T ), H−1) ∩Hk+1((0, T ), L2) ∩Hk((0, T ), H1
0 ).
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Proof. For a solution u ∈ H2((0, T ), H−1) ∩ H1((0, T ), L2) ∩
L2((0, T ), H1) to (13) and n ∈ N, let v(n) be the solution to

v
(n)
tt (t) + v

(n)
t (t) + v(n)(t)−Δv(n)(t) +m(0)v(n)(t)

= −
∫ t

0

dnm

dtn
(t− s)us(s) ds−

n−1∑
j=1

djm

dtj
(0)v(n−j)(t)

+
dn

dtn
f(t) =: fn(t)

v(n)(0) = v
(n−1)
t (0)

v
(n)
t (0) = −v(n−1)

t (0)− v(n−1)(0) + Δv(n−1)(0)

−
n−2∑
j=0

djm

dtj
(0)v(n−1−j)(0) +

dn−1

dtn−1 f(0)

v(n)(t) ∈ H1
0

with v(0) = u; thus, v(0)(0) = u0, v
(0)
t (0) = u1. We have fn ∈

L2((0, T ), L2) and, following [11, page 389], there is a unique solution

v(n) ∈ H2((0, T ), H−1) ∩H1((0, T ), L2) ∩ L2((0, T ), H1).

By induction, we get v(n) = v
(n−1)
t and thus the higher regularity of

u.

Using elliptic regularity, we can deduce a better regularity in the
space variable.

Lemma 17. Let T > 0 be arbitrary, Ω ⊂ Rd bounded with Ck+2-
boundary, k ∈ N and m ∈ Ck

b ([0, T ]×Ω,R). For u0 ∈ Hk+1
0 , u1 ∈ Hk

0

and f ∈ Hk((0, T ), H1
0 ) ∩ L2((0, T ), Hk) the solution u to (13) fulfills

u ∈ H2((0, T ), Hk−1) ∩H1((0, T ), Hk) ∩ L2((0, T ), Hk+1).

We especially have, for a C∞-boundary, m ∈ C∞
b ([0, T ] × Ω,R),

u0 ∈ C∞
0 (Ω), u1 ∈ C∞

0 (Ω) and f ∈ C∞([0, T ] × Ω) and therefore
u ∈ C∞([0, T ]× Ω,R).
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We now can solve the nonlinear equation for the special case Ω =
(a, b) ⊂ R being an interval.

Theorem 18. Let Ω = (a, b) ⊂ R and m ∈ C2(R,R). Then, for
any given u0 ∈ H2

0 (Ω), u1 ∈ H1
0 and f ∈ C0([0,∞), H1

0 ), there exists a
T > 0 and a unique solution

u ∈ C2([0, T ], L2) ∩C1([0, T ], H1) ∩ C0([0, T ], H2 ∩H1
0 )

to

λutt(t) + ut(t) + u(t)−Δu(t) +

∫ t

0

m(u(t− s))us(s) ds = f(t),

u(0) = u0,

ut(0) = u1,

u(t) ∈ H1
0 .

Proof. Uniqueness. For two solutions u, v let w = u − v. It is w ∈
C2([0, T ], L2)∩C1([0, T ], H1)∩C0([0, T ], H2 ∩H1

0 ), w(0) = 0 = wt(0),
w(t) ∈ H1

0 and

λwtt(t) + wt(t) + w(t) −Δw(t)

+

∫ t

0

m(u(t− s))us(s)−m(v(t− s))vs(s) ds = 0.

This yields

λ‖wt(T
′)‖2L2 + ‖w(T ′)‖2L2 + ‖∇w(T ′)‖2L2 ≤ −2

∫ T ′

0

‖wt(t)‖2L2 dt

+

∫ T ′

0

t

∫ t

0

‖m(u(t− s))us(s)−m(v(t− s))vs(s)‖2L2 ds+‖wt(t)‖2L2 dt.

As before, we can conclude, for some c > 0,

‖m(u(t−s))us(s)−m(v(t−s))vs(s)‖L2≤c(‖w(t−s)‖L2+‖ws(t−s)‖L2),
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and it follows that

λ‖wt(T
′)‖2L2 + ‖w(T ′)‖2H1 ≤ −

∫ T ′

0

‖wt(t)‖2L2 dt

+ cT 2

∫ T ′

0

‖w(t)‖2L2 + ‖wt(t)‖2L2 dt.

This implies w = 0.

Existence. We first assume that m ∈ C2
b (R,R) and approximate

the data and functions f and m by C∞-functions. Let T0 > 0 be

arbitrary. There are sequences (u
(n)
0 )n, (u

(n)
1 )n ⊂ C∞

0 (Ω), (f (n))n ∈
C∞([0, T0], C

∞
0 (Ω)) with u

(n)
0 → u0 in H2

0 , u
(n)
1 → u1 in H1

0 , f
(n) → f

in C0([0, T0], H
1
0 ), such that

‖u(n)0 ‖H2 ≤ ‖u0‖H2 ,

‖u(n)1 ‖H1 ≤ ‖u1‖H1

and

‖f (n)‖L2((0,T0),H1
0 )

≤ ‖f‖L2((0,T0),H1
0 )

holds. Let m(n) ∈ C∞
b (R,R) with m(n) → m in C1(R,R) and

‖m(n) −m(n−1)‖∞ ≤ 1

2n
as well as

∥∥∥∥ d

dz
(m(n) −m(n−1))

∥∥∥∥
∞

≤ 1

2n

for n > 1. We choose u(0)(t, x) := 0 and, for n ≥ 1, let u(n) ∈
C∞([0, T0]×Ω,R) be the solution to λu

(n)
tt (t, x)+u

(n)
t (t, x)+u(n)(t, x)−

Δu(n)(t, x) +
∫ t

0 m
(n)(u(n−1)(t− s, x))u

(n)
s (s, x) ds = f (n)(t, x),

u(n)(0, x) = u
(n)
0 (x),

u(n)(0, x) = u
(n)
1 (x),

u(n)(t, a) = 0 = u(n)(t, b).

Our previous results show that this is a well-defined sequence (we get
m(u(n−1)) ∈ C∞

b ([0, T0]× Ω,R) by induction).
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We write ∇ = ∂x and get, for all α ∈ N0,

1

2

d

dt

(
λ‖∂αx u(n)t (t)‖2L2 + ‖∂αx u(n)(t)‖2L2

)
− 〈∂α+2

x u(n)(t), ∂αx u
(n)
t (t)〉L2

= −‖∂αx u(n)t (t)‖2L2

−
〈
∂αx

∫ t

0

m(n)(u(n−1)(t− s))u(n)s (s) ds, ∂αx u
(n)
t (t)

〉
L2

+ 〈∂αx f (n)(t), ∂αx u
(n)
t (t)〉L2 .

For all t, we have u(n)(t), u
(n)
t (t), u

(n)
tt (t), f (n)(t) ∈ H1

0 , and thus
∂xu

(n)(t, a) = 0 = ∂2xu
(n)(t, b). It follows that

〈∂α+2
x u(n)(t)∂αx u

(n)
t (t)〉L2

= −〈∂α+1
x u(n)(t), ∂α+1

x u
(n)
t (t)〉L2

=⇒ 1

2

d

dt

(
λ‖∂αx u(n)t (t)‖2L2 + ‖∂αx u(n)(t)‖2L2 + ‖∂α+1

x u(n)(t)‖2L2

)
= −‖∂αxu(n)t (t)‖2L2 −

〈
∂αx

∫ t

0

m(n)(u(n−1)(t− s))u(n)s (s) ds, ∂αx u
(n)
t (t)

〉
L2

+ 〈∂αx f (n)(t), ∂αx u
(n)
t (t)〉L2 .

From here on, c denotes constants independent of n and t. We have

‖∂x(m(n)(u(n−1)(t− s))u(n)s (s))‖L2

≤ c
(
‖∂xu(n)s (s)‖L2 + ‖u(n)s (s)‖∞‖∂xu(n−1)(t− s)‖L2

)
.

Obviously, ‖m(n)(u(n−1)(t−s))u(n)s (s)‖L2 ≤ c‖u(n)s (s)‖L2 holds. Sobo-
lev’s embedding theorem yields

‖u(n)s (s)‖∞ ≤ c‖u(n)s (s)‖H1

and

‖u(n)(t)‖∞ ≤ c‖u(n)(t)‖H1

=⇒ λ‖∂αx u(n)t (t)‖2L2 + ‖∂αx u(n)(t)‖2L2
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+ ‖∂α+1
x u(n)(t)‖2L2

≤ λ‖∂αx u(n)1 ‖2L2 + ‖∂αx u(n)0 ‖2L2 + ‖∂α+1
x u

(n)
0 ‖2L2

−
∫ t

0

‖∂αxu(n)s (s)‖2L2 + ‖∂αx f (n)(s)‖2L2 ds

+ 2c

∫ t

0

∫ s

0

‖∂αx u(n)r (r)‖L2 + ‖u(n)r (r)‖H1

× ‖u(n−1)(s− r)‖H1 dr‖∂αx u(n)s (s)‖L2 ds.

By setting

δ2 := λ‖u1‖2H1 + ‖∂xu0‖2H1 + ‖u0‖2H1 + ‖f‖L2((0,T0),H1)

and

T ′ := min{T0, (c(1 + (1 + δ)2))−1},

we have ‖u(0)(t)‖2H1 ≤ δ2. Assuming ‖u(n−1)(t)‖2H1 ≤ δ2 and summing
up the two cases α = 0 and α = 1 gives

λ‖u(n)t (t)‖2H1 + ‖u(n)(t)‖2H2 ≤ δ2 −
∫ t

0

‖u(n)s (s)‖2H1 ds

+ c

∫ t

0

∫ s

0

(1 + δ)2‖u(n)r (r)‖2H1 + ‖u(n)s (s)‖2H1 dr ds

≤ δ2 + (ct(1 + (1 + δ)2)− 1)

∫ t

0

‖u(n)s (s)‖2H1

≤ δ2,

so the sequence (u(n))n is bounded in C1([0, T ′], H1) ∩C0([0, T ′], H2).

Let n ∈ N and w := u(n) − u(n−1).

=⇒ λ‖wt(t)‖2H1 + ‖w(t)‖2H1 ≤ −2

∫ t

0

‖ws(s)‖2H1 ds

+ 2

∫ t

0

∥∥∥∥
∫ s

0

m(n)(u(n−1)(s− r))u(n)r (r)

−m(n−1)(u(n−2)(s− r))u(n−1)
r (r) dr

∥∥∥∥
2

H1

ds.
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There is a c > 0 with ‖m(n)‖∞ ≤ c; thus, we can estimate∥∥∥∥
∫ s

0

m(n)(u(n−1)(s− r))u(n)r (r) −m(n−1)

(u(n−2)(s− r))u(n−1)
r (r) dr

∥∥∥∥
H1

≤ c

∫ s

0

‖wr(r)‖H1 dr + c

∫ s

0

‖u(n−1) − u(n−2)‖H1 dr

+ c

∫ s

0

‖m(n)(u(n−2)(s− r)) −m(n−1)(u(n−2)(s− r))‖H1 dr.

Let g(n)(z) := m(n)(z) − m(n−1)(z). Then it is ‖g(n)‖ ≤ 1/2n,
‖dg(n)/dz‖∞ ≤ 1/2n for n > 1. This yields:

‖m(n)(u(n−2)(s− r)) −m(n−1)(u(n−2)(s− r))‖H1

= ‖g(n)(u(n−1)(s− r))‖H1

≤ c‖(u(l)(s− r))‖H1 max

{∥∥∥∥dg(n)dz

∥∥∥∥
∞
, ‖g(n)‖∞

}
≤ c

1

2n

=⇒ λ‖wt(t)‖2H1 + ‖w(t)‖2H1 ≤ c

∫ t

0

‖ws(s)‖2H1 ds

+ c

∫ t

0

‖u(n−1)(s)− u(n−2)(s)‖2H1 ds+ c
1

2n
.

So we get

‖wt(t)‖2H1 + ‖w(t)‖2H1 ≤ Ct sup
s∈[0,t]

‖u(n−1)(s)− u(n−2)(s)‖2H1 ds+ C
1

2n

for some C > 0. Let T > 0 such that q := CT < 1 and T < T ′ holds,
and let k ≤ n.

=⇒ ‖u(n)(t)− u(k)(t)‖2H1 + ‖u(n)(t)− u(k)(t)‖2H2

≤
n∑

l=k+1

‖u(l)(t)− u(l−1)(t)‖2H1

≤
n∑

l=k+1

(CT0)
l‖u(1)(t)− u(0)(t)‖2H1 + C

1

2l

≤ δ

n∑
l=k+1

ql + C
1

2l
−→ 0 (n, k → ∞).
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Thus, we have the convergence in C0([0, T ], H2) ∩ C1([0, T ], H1) to
some limit u and∥∥∥∥
∫ s

0

m(n)(u(n−1)(s−r))u(n)r (r)−m(u(s−r))ur(r) dr
∥∥∥∥
L2

−→ 0 (n→∞),

which gives us u(n) → u in C2([0, T ], L2) and

λutt(t, x)+ut(t, x)+u(t, x)−Δu(t, x)+
∫ t

0

m(u(t−s, x))us(s, x) ds=f(t, x).

u(0) = u0 can easily be deduced by

u(0) = lim
n→∞u(n)(0) = lim

n→∞ u
(n)
0 = u0,

analogous for ut(0) = u1. H
1
0 is closed, and we finally have u(t) ∈ H1

0

for all t.

For unbounded kernels we can prove the local existence as in the
proof of Theorem 11.

APPENDIX

The Moser-type inequalities are proven in [10, Lemma 4.8, 4.9] and
are stated as follows.

Lemma 19. Let r ∈ N, h ∈ Cr(R,R). Then, for any Γ > 0,
there is some c(Γ) > 0 such that, for all u ∈ Hk(Rd) ∩ L∞(Rd) with
‖u‖L∞(Ω) < Γ,

‖∇kh(u)‖L2(Rd) ≤ c(Γ)‖∇ku‖L2(Rd)‖u‖k−1
∞

holds. If h is bounded in Cr(R,R), the constant c does not depend
on Γ.

Lemma 20. Let k ∈ N. Then there is some c > 0 such that, for all
f, g ∈ Hk(Rd) ∩ L∞(Rd) and α ∈ Nd

0, |α| = k,

‖∇α(fg)‖L2(Rd) ≤ c
(‖f‖∞‖∇kg‖L2(Rd) + ‖g‖∞‖∇kf‖L2(Rd)

)
holds.
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A nonlinear generalization of Gronwall’s inequality is given in [14,
1.II].

Lemma 21. Let f, h, g ∈ C0([0, T ],R), k ∈ C0([0, T ]×[0, T ]×R,R),
g, k(t, s, ·) nondecreasing with

f(t) ≤ g(t) +

∫ t

0

k(t, s, f(s)) ds, h(t) ≥ g(t) +

∫ t

0

k(t, s, h(s)) ds

for t ∈ [0, T ]. Then, for t ∈ [0, T ],

f(t) ≤ h(t)

holds.
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