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ABSTRACT. In 1975, Grimmer and Seifert studied a lin-
ear integro-differential equation with weakly singular kernel,
C(t, s), by means of a Razumikhin technique. They obtained
bounded solutions from bounded forcing functions. Their con-
ditions centered on small integrals of the kernel with respect
to the second coordinate, s. On the last page of their paper
they express the desire to obtain Lp solutions from Lp forc-
ing functions. A recent result for singular integral equations
makes it possible to answer the question. Here, we study a
variety of integro-differential equations with singular kernels
including linear, nonlinear, scalar, vector and resolvent equa-
tions by means of Liapunov functionals. We do obtain the
types of Lp solutions from Lp perturbations. The point here
is that there is a loose principle of the following type. Gen-
erally, but not always, Razumikhin techniques integrate the
second coordinate and obtain bounded solutions, while Lia-
punov functionals integrate the first coordinate of the kernel
and obtain Lp solutions. For decades, investigators have dis-
cussed and debated which technique was the “best.” In fact,
neither is best. They perform different sets of tasks, with a
non-empty intersection.

1. Introduction. We study a scalar integro-differential equation of
the form

(1) x′(t) = f(t)− h(t, x(t)) −
∫ t

0

C(t, s)q(s, x(s)) ds,

and also a linear vector equation, together with its resolvent. The
objective is to determine qualitative properties of solutions when

(2) there exists a p ∈ [1,∞) with f ∈ Lp[0,∞),
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(3) xh(t, x) ≥ 0, xq(t, x) ≥ 0,

and C has a weak singularity at t = s with properties to be described
later.

In 1975, [10] Grimmer and Seifert developed a Razumikhin technique
(which utilizes a Liapunov function instead of a Liapunov functional)
to deal with a vector equation

(4) x′(t) = Ax(t) +

∫ t

0

B(t, s)x(s) ds + f(t),

where A is a constant matrix which is negative definite, B is a matrix
satisfying

lim
h→0

∫ t

0

|B(t, s)− B(t+ h, s)| ds = 0,

and

lim
h→0

∫ t+h

t

|B(t+ h, s)|ds = 0, t ≥ 0,

as well as a number of other conditions, some of which are listed below.
Under the central requirement that for a constant matrix K satisfying

ATK +KA = −I then

∫ t

0

|KB(t, s)| ds ≤ M,

where M is related to the eigenvalues of K and, generally, M is
small, they give conditions yielding solutions of (4) that have certain
qualitative properties in case f is bounded and continuous while B is
allowed to have weak singularities. On the last page of their paper,
Grimmer and Seifert express the desire to show that the solution of (4)
is in Lp when f is in Lq for some positive integers p and q. To the
best of our knowledge, those desired results have never been obtained
for equations with singular kernels. On the other hand, soon after the
Grimmer-Seifert work was done, Liapunov theory was extended to (4)
when B is continuous, and that theory led to a great many Lp results
of the desired kind; these may be seen throughout the books [3 5],
where a positive definite Liapunov functional is found with a derivative
satisfying V ′(t) ≤ −|x|p + |f |q.
Now, the recent paper [6] makes it possible to supply the desired

results for weakly singular kernels. We construct Liapunov functionals
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for (4) which give the desired Lp properties of the solutions of (4). We
also consider linear equations and resolvents.

2. Preliminaries. Though in our subsequent work we will only
allow discontinuities of C at t = s, typified by C(t − s) = (t − s)−1/2

which occurs so often in the literature, we mention here a more general
result (Theorem 2.2) found in [8] which concerns existence of a solution
of (1) with a continuous derivative when C has some discontinuities.
For the sake of completeness, we give a short proof of Theorem 2.2
and state a lemma (Lemma 2.3) which gives a simple condition in
order that the inequality assumed in Theorem 2.2 is satisfied. Our
terminology (Definition 2.1) follows that of Becker [2] who studied
integral equations, not integro-differential equations.

Definition 2.1. Let ΩT := {(t, s) : 0 ≤ s ≤ t ≤ T }. The kernel
C of (1) is weakly singular on the set ΩT if it is unbounded in ΩT ;
but, for each t ∈ [0, T ], C(t, s) has at most finitely many discrete
singularities in the interval {0 ≤ s ≤ t} and, for every continuous
function φ : [0, T ] → �n, ∫ t

0

C(t, s)φ(s) ds,

and ∫ t

0

|C(t, s)| ds,

both exist and are continuous on [0, T ]. If C(t, s) is weakly singular on
ΩT for every T > 0, then it is weakly singular on the set Ω := {(t, s) :
0 ≤ s ≤ t < ∞}.

For (1) we suppose that f : [0,∞) → �n is continuous, h, q :
[0,∞) × �n → �n are both continuous and both satisfy a global
Lipschitz condition for the same constant L. In the proof below, the
mapping follows [9], but the details then are precisely those of Becker
[2] or of [8, Theorem 2.2].

Theorem 2.2. In addition to these continuity conditions, let C(t, s)
be weakly singular on Ω. Suppose also that, for each T > 0 and each
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k ∈ (0, 1), there is a constant γ0 > 0 with∫ t

0

e−γ0(t−s)|C(t, s)| ds ≤ k,

for t ∈ [0, T ]. Then, for every x0 ∈ �n (1) has a unique solution x(t)
with a continuous derivative and satisfying x(0) = x0.

Proof. Let T > 0 and x0 ∈ �n be given, and let (Y, ‖·‖) be the Banach
space of continuous functions φ : [0, T ] → �n with the supremum norm.
Define P : Y → Y by φ ∈ Y implies that

(Pφ)(t) = f(t)−h
(
t, x0+

∫ t

0

φ(s) ds
)
−
∫ t

0

C(t, s)q
(
s, x0+

∫ s

0

φ(u)du
)
ds.

By the continuity assumptions and the weak singularity, Pφ ∈ Y .
As the existence of γ0 implies that, for any γ > γ0, we also have∫ t

0
e−γ(t−s)|C(t, s)| ds ≤ k (see Lemma 2.3 below), we will define a

weighted norm ‖ · ‖T by φ ∈ Y implies that

‖φ‖T = sup
0≤t≤T

e−γt|φ(t)|,

where γ ≥ γ0 is chosen so large and k is chosen so small so that
(L/γ) + LTk ≤ 1/2. With this mapping and norm, the details are
readily completed as in [8].

Lemma 2.3 below states that the inequality in Theorem 2.2 is satisfied
if condition (5) is satisfied. We omit the routine proof.

Lemma 2.3. Let C(t, s) be a weakly singular kernel on the set Ω,
and fix T > 0. Moreover, suppose that, for any k ∈ (0, 1) there exists
an ε := ε(k, T ) > 0 such that

(5)

∫ t

t−ε

|C(t, s)| ds ≤ k for all t ∈ [0, T ],

where we have set C(t, s) = 0, (t, s) ∈ �2−Ω. Then there always exists
a γk,T > 0 such that for any γ ≥ γk,T we have∫ t

0

e−γ(t−s)|C(t, s)| ds ≤ k for all t ∈ [0, T ].
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Though there are many other existence results (Grimmer and Seifert
[10] and Grossman and Miller [11] deal with some far more compli-
cated ones) we believe that Theorem 2.2 is simple, general and very
instructive concerning existence ideas. In the following material, we
will assume that the Liapunov results are being applied to problems in
which existence has been established.

We will also be looking at a resolvent equation

d

dt
z(t, s) = A(t)z(t, s)−

∫ t

s

C(t, u)z(u, s) du,

where A is a continuous n × n matrix and existence theory for it will
be the same. Indeed, in this case, q is linear, and we automatically
have a global Lipschitz condition. When C is continuous, Becker [1]
has shown that, if Z(t, s) is the n× n matrix solution of that equation
satisfying Z(s, s) = I, then the solution of

x′ = Ax−
∫ t

0

C(t, s)x(s) ds + f(t), x(0) = x0,

is given by

x(t) = Z(t, 0)x0 +

∫ t

0

Z(t, s)f(s) ds.

It is not difficult to verify that, when C satisfies Definition 2.1, then Z
and Zt are continuous and so all the steps in Becker’s proof are valid
and the same variation of parameters formula holds. This is used in
Section 4.

3. A simple result. To see what is happening in order to get
the desired Lp property, note that all of our integral conditions on
C(t, s) are with respect to t, while all of the Grimmer-Seifert integral
conditions yielding boundedness are with respect to s. Our conclusion
will be that q(·, x(·)) ∈ L1[0,∞), as a result of f ∈ L1[0,∞), a direct
solution to the Grimmer-Seifert question. But we also get x(t) bounded.

Theorem 3.1. Let (2) hold with p = 1. Suppose there is a γ > 0
with |h(t, x)| ≥ γ|q(t, x)| on [0,∞) × �. Suppose also that there is a
β > 0 so that, for each ε > 0, we have

∫∞
ε

|C(u + t, t)| du ≤ β for all
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t ≥ 0, where γ − β =: μ > 0. Finally, if there is an η < μ and a fixed
ε > 0 with

∫ t

s

|C(u+ ε, s)− C(u, s)| du ≤ η, for 0 ≤ s ≤ t < ∞,

then any solution x(t) of (1) on [0,∞) satisfies q(·, x(·)) ∈ L1[0,∞).

Proof. For the fixed ε > 0, define a Liapunov functional

V (t, ε) = |x(t)| +
∫ t

0

[ ∫ ∞

t−s+ε

|C(u+ s, s)| du
]
|q(s, x(s))| ds, t ≥ 0,

so that, since

−|C(t+ ε, s)| ≤ −|C(t, s)|+ |C(t + ε, s)− C(t, s)|,

we have

V ′(t, ε) ≤ |f(t)| − |h(t, x(t))| +
∫ t

0

|C(t, s)q(s, x(s))| ds

+

∫ ∞

ε

|C(u+ t, t)| du|q(t, x(t))|

−
∫ t

0

|C(t+ ε, s)||q(s, x(s))| ds

≤ |f(t)| − γ|q(t, x(t))| +
∫ t

0

|C(t, s)q(s, x(s))| ds

+ β|q(t, x(t))| −
∫ t

0

|C(t, s)q(s, x(s))| ds

+

∫ t

0

|C(t+ ε, s)− C(t, s)||q(s, x(s))| ds
= |f(t)| − μ|q(t, x(t))|

+

∫ t

0

|C(t+ ε, s)− C(t, s)||q(s, x(s))| ds.
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In preparation for integration of this expression, we calculate∫ t

ε

∫ u

0

|C(u + ε, s)− C(u, s)||q(s, x(s))| ds du

≤
∫ t

0

∫ t

s

|C(u+ ε, s)− C(u, s)| du|q(s, x(s))| ds

≤
∫ t

0

η|q(s, x(s))| ds.

With this conclusion in hand, we now integrate V ′, obtaining

V (t, ε) ≤ V (ε, ε) +

∫ t

ε

|f(u)| du− μ

∫ t

ε

|q(s, x(s))| ds

+

∫ t

ε

∫ u

0

|C(u + ε, s)− C(u, s)||q(s, x(s))| ds du

≤ V (ε, ε) +

∫ t

0

|f(u)| du

− (μ− η)

∫ t

ε

|q(s, x(s))| ds + η

∫ ε

0

|q(s, x(s))| ds.

This completes the proof.

This case with p = 1 is very simple, and the proof is very short.
Yet, it contains most of the properties and techniques involved in the
case of an arbitrary, even, positive number p which is the topic of our
last theorem. That proof makes repeated use of Young’s and Schwarz’s
inequalities and, consequently, goes on for several pages. All of this
involves small kernels in which the sign of the kernel is never employed.

4. The resolvent. Let C be an n×n matrix of functions with weak
singularities, and consider

(6) x′(t) = Ax(t) −
∫ t

0

C(t, s)x(s) ds + f(t), x(0) = x0,

where A is an n× n constant matrix, all of whose characteristic roots
have negative real parts. There is then an n× n symmetric matrix B
with

(7) ATB +BA = −I.
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Associated with (6) is the resolvent equation

d

dt
Z(t, s) = AZ(t, s)−

∫ t

s

C(t, u)Z(u, s) du, Z(s, s) = I,

whose columns are the vector equations

(8) z′(t, s) = Az(t, s)−
∫ t

s

C(t, u)z(u, s) du.

There is then the variation of parameters formula

x(t) = Z(t, 0)x0 +

∫ t

0

Z(t, s)f(s) ds.

We focus on three fundamental results. (i) If we can show that

there is an M > 0 with
∫ t

0 |Z(t, s)| ds ≤ M , then for f ∈ L∞[0,∞),
we see that for x(0) = 0, there is the bounded solution of (6),

x(t) =
∫ t

0 Z(t, s)f(s) ds.

(ii) If we can show that there is an M > 0 with
∫ t

s
|Z(u, s)| du ≤

M and if f ∈ L1[0,∞), then for x(0) = 0, we have |x(t)| ≤∫ t

0
|Z(t, s)f(s)| ds. Thus, we would have

∫ t

0

|x(s)| ds ≤
∫ t

0

∫ u

0

|Z(u, s)||f(s)| ds du

=

∫ t

0

∫ t

s

|Z(u, s)| du|f(s)| ds ≤ M

∫ t

0

|f(s)| ds

so that x ∈ L1[0,∞).

(iii) If C is scalar, if there is an M > 0 with
∫ t

s Z2(u, s) du ≤ M and
if f ∈ L1[0,∞), then for x(0) = 0 we have

|x(t)|2 ≤
(∫ t

0

|Z(t, s)f(s)| ds
)2

≤
∫ t

0

|f(s)| ds
∫ t

0

Z2(t, s)|f(s)| ds,

and x ∈ L2[0,∞) by the argument in (ii).

There are endless other uses for the resolvent and asking x(0) = 0
is not necessary. But these properties now direct our work. We have
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two choices for a Liapunov functional for (8). For the B of (7), for a
positive constant ε to be determined, and for 0 ≤ s ≤ t, define

(9)

V1(t, s; ε) = zT (t, s)Bz(t, s)

+

∫ t

s

∫ ∞

t−u+ε

|CT (v + u, u)B| dv|z(u, s)|2du.

We will also have occasion to ask for an r > 0 with

r|z| ≤ [zTBz]1/2,

and then, for 0 ≤ s ≤ t, define

(10)

V2(t, s; ε) = [zT (t, s)Bz(t, s)]1/2

+
1

r

∫ t

s

∫ ∞

t−u+ε

|CT (v + u, u)B| dv|z(u, s)| du.

It should be obvious to the reader that the subscripts on V do not
refer to partial derivatives. It is assumed that there exists an ε > 0
such that C(t, s) is continuous for 0 ≤ s ≤ t − ε. Here, we have
v ≥ t − u + ε ≥ ε so these integrands are continuous. With the V1

we will obtain
∫ t

s
z2(u, s) du bounded. The second functional yields∫ t

s
|z(u, s)| du bounded; it also satisfies a global Lipschitz condition.

Lemma 4.1. The derivative of zT (t, s)Bz(t, s) with respect to t along
a solution of (8) satisfies

(11)

[zT (t, s)Bz(t, s)]′ ≤ −|z(t, s)|2

+

∫ t

s

|CT (t, u)B|(|z(u, s)|2 + |z(t, s)|2) du.
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Proof. Differentiating by the product rule yields

(zT (t, s))′Bz(t, s) + zT (t, s)Bz′(t, s)

= (z′(t, s))TBz(t, s) + zT (t, s)Bz′(t, s)

=
[
Az(t, s)−

∫ t

s

C(t, u)z(u, s) du
]T

Bz(t, s)

+ zT (t, s)B
[
Az(t, s)−

∫ t

s

C(t, u)z(u, s) du
]

= zT (t, s)[ATB +BA]z(t, s)− 2

∫ t

s

zT (u, s)CT (t, u)Bz(t, s) du

≤ −zT (t, s)z(t, s) + 2

∫ t

s

|CT (t, u)B||z(u, s)||z(t, s)| du

≤ −zT (t, s)z(t, s) +

∫ t

s

|CT (t, u)B|(|z(u, s)|2 + |z(t, s)|2) du,

as required.

We will now have two parallel results.

Theorem 4.2. Let V1 be defined in (9), and let z(t, s) be a solution

of (8). Suppose there is a β̂ > 0 with
∫∞
ε |CT (v + t, t)B| dv ≤ β̂. Then

the derivative of V1 along z(t, s) with respect to t satisfies

(12)

V ′
1(t, s; ε) ≤ −|z(t, s)|2

[
1− β̂ −

∫ t

s

|CT (t, u)B| du
]

+

∫ t

s

|[CT (t+ ε, u)− CT (t, u)]B||z(u, s)|2du.

Proof. In view of (11) we have, for t ≥ 0,

V ′
1(t, s; ε) ≤ −|z(t, s)|2

+

∫ t

s

|CT (t, u)B|(|z(u, s)|2 + |z(t, s)|2) du

+

∫ ∞

ε

|CT (v + t, t)B| dv|z(t, s)|2

−
∫ t

s

|CT (t+ ε, u)B||z(u, s)|2du
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≤ −|z(t, s)|2 + |z(t, s)|2
∫ t

s

|CT (t, u)B| du + β̂|z(t, s)|2

+

∫ t

s

|[CT (t+ ε, u)− CT (t, u)]B||z(u, s)|2du,

as required.

We can now see exactly what is needed to conclude that
∫ t

s
z2(u, s) du

is bounded. If we integrate the last term from s to t and interchange
the order of integration, we have∫ t

s

∫ w

s

[CT (w + ε, u)− CT (w, u)]B||z(u, s)|2du dw

=

∫ t

s

∫ t

u

|[CT (w + ε, u)− CT (w, u)]|B| dw|z(u, s)|2du.

The required condition is that there exist ε > 0, α > 0, β > 0, β̂ > 0
and α+ β + β̂ < 1, with

(13)

∫ t

s

|CT (t, u)B| du ≤ α, 0 ≤ s ≤ t < ∞,

(14)

∫ t

u

|[CT (w + ε, u)− CT (w, u)]B| dw ≤ β,

0 ≤ u ≤ t < ∞,

and

(15)

∫ ∞

ε

|CT (v + t, t)B| dv ≤ β̂.

Theorem 4.3. If (13), (14) and (15) hold, then for V1 defined in (9)
and z(t, s) a solution of (8), we have

V1(t, s; ε)− V1(s, s; ε) ≤ −(1− α− β − β̂)

∫ t

s

|z(u, s)|2du,

and there is an M > 0 with
∫ t

s
|z(u, s)|2du ≤ M for 0 ≤ s ≤ t.
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Proof. By (12) and (13) upon integration of (12), we have from the
above interchange of order of integration

V1(t, s; ε)−V1(s, s; ε)

≤−(1−α−β̂)

∫ t

s

|z(u, s)|2du+

∫ t

s

∫ t

u

|[CT (w+ε, u)

− CT (w, u)]B| dw|z(u, s)|2du

≤ −(1− α− β − β̂)

∫ t

s

|z(u, s)|2du.

Remark. Quantities α and β̂ are of an essentially different character
than β, which is a measure of the singularity and in many significant
problems can be made arbitrarily small by taking ε small enough. Thus,
the essential part of the inequality is that α + β̂ < 1. In fractional
differential equations the kernel (t − s)q−1 appears for 0 < q < 1 and
the equation is transformed into two integral equations, one of which
has a kernel R(t− s) for which it is easily shown that β tends to zero
as ε → 0. See, for example, [7, Lemma 8.1].

We come now to (10) and prepare V2. When the characteristic roots
of A all have negative real parts, then we find the symmetric matrix B
with (7) holding. There are then positive constants r, k,K (not unique)
with

(16) |z| ≥ 2k[zTBz]1/2, |Bz| ≤ K[zTBz]1/2, r|z| ≤ [zTBz]1/2.

Lemma 4.4. If z(t, s) is a solution of (8), then for z(t, s) 	= 0 and
for W (t, s) = [zT (t, s)Bz(t, s)]1/2, we have

d

dt
W (t, s) ≤ −k|z(t, s)|+ 1

r

∫ t

s

|CT (t, u)B||z(u, s)| du.

Proof. By the proof of Lemma 4.1 and (7), we have

d

dt
W (t, s) =

−zT (t, s)z(t, s)− 2
∫ t

s zT (u, s)CT (t, u)Bz(t, s) du

2[zT (t, s)Bz(t, s)]1/2
.



SINGULAR INTEGRO-DIFFERENTIAL EQUATIONS 13

By (16),

zT z

2[zTBz]1/2
≥ zT z

(|z|/k) = k|z|, and
|z|

[zTBz]1/2
≤ 1

r
,

so the conclusion is verified.

Theorem 4.5. Let B satisfy (7), z(t, s) satisfy (8) and let V2 be

defined by (10). If (15) holds for some β̂ > 0, and k and r satisfy (16),
then the derivative of V2 along z(t, s) with respect to t satisfies

V ′
2(t, s; ε) ≤ −k|z(t, s)|+ 1

r

∫ t

s

|CT (t, u)B||z(u, s)| du

+
1

r

∫ ∞

ε

|CT (v + t, t)B| dv|z(t, s)|

− 1

r

∫ t

s

|CT (t+ ε, u)B||z(u, s)| du

≤ −k|z(t, s)|+ 1

r
β̂|z(t, s)|

+
1

r

∫ t

s

|[CT (t+ ε, u)− CT (t, u)]B||z(u, s)| du.

Proof. From (10) and Lemma 4.4, we have

V ′
2(t, s; ε) =

d

dt
W (t, s) +

1

r

∫ ∞

ε

|CT (v + t, t)B| dv|z(t, s)|

− 1

r

∫ t

s

|CT (t+ ε, u)B||z(u, s)| du

≤ −k|z(t, s)|+ 1

r

∫ ∞

ε

|CT (v + t, t)B| dv|z(t, s)|

+
1

r

∫ t

s

|CT (t, u)B||z(u, s)| du

− 1

r

∫ t

s

|CT (t+ ε, u)B||z(u, s)| du

− 1

r

∫ t

s

|CT (t, u)B||z(u, s)| du



14 T.A. BURTON AND I.K. PURNARAS

+
1

r

∫ t

s

|CT (t, u)B||z(u, s)| du

≤ −k|z(t, s)|+ 1

r

∫ ∞

ε

|CT (v + t, t)B| dv|z(t, s)|

+
1

r

∫ t

s

|[CT (t+ ε, u)− CT (t, u)]B||z(u, s)| du,

as required.

Theorem 4.6. Let B satisfy (7), z(t, s) satisfy (8) and let V2 be
defined in (10). Suppose also that (14) and (15) hold with

−μ := −k +
β

r
+

β̂

r
< 0.

Then

V2(t, s; ε)− V2(s, s; ε) ≤ −μ

∫ t

s

|z(u, s)| du.

Proof. Integration of V ′
2 in Theorem 4.5 and interchange of the order

of integration will yield

V2(t, s; ε)− V2(s, s; ε) ≤ −μ

∫ t

s

|z(u, s)| du,

upon application of (14) and (15), as required.

5. Scalar equations and arbitrary p. It is possible to take f , h
and g to be vectors and C to be an n× n matrix. Care must be taken
in multiplication, but most of the absolute values translate easily into
norms. For p = 1, there is no real distinction between the vector and
scalar notation.

While the proof of our main theorem here is long, we view this as
our main result. Here, we have great flexibility and are able to treat a
much wider variety of forcing functions.

Theorem 5.1. In (1) and (3), let q(t, x) be independent of t, and
write q(t, x) = g(x). Assume that

(17) there exists a δ > 0 with |h(t, x)| ≥ δ|g(x)|, (t, x) ∈ [0,∞)×�.
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Suppose that (2) holds for some even integer p and there are positive
numbers α, β with

(18) β + (p− 1)α < pδ,

so that, for each ε > 0 and for any t ≥ 0, we have

(19)

∫ ∞

ε

|C(u+ t, t)| du ≤ β,

and for t ≥ 0, then

(20)

∫ t

0

|C(t, s)| ds ≤ α.

Moreover, assume that there exists a μ > 0 with

(21) μ ∈ (0, pδ − β − (p− 1)α),

such that, for all sufficiently small ε > 0, we have

(22) sup
s∈[0,∞)

∫ ∞

s

|C(u + ε, s)− C(u, s)| du < μ.

If f ∈ Lp[0,∞), and if x solves (1) on [0,∞), then g(x(·)) ∈ Lp[0,∞).

Proof. For ε > 0 satisfying (22), and for t ≥ 0, define

V (t, ε) = p

∫ x(t)

0

gp−1(s) ds+

∫ t

0

[ ∫ ∞

t−s+ε

|C(u + s, s)| du
]
gp(x(s)) ds,

so that u ≥ t − s + ε ≥ ε since 0 ≤ s ≤ t; that is, the integrand is
continuous.

Notice that, by the assumption xg(x) ≥ 0 and that p is an even

integer, it follows that
∫ x(t)

0 gp−1(s) ds ≥ 0 for any t ≥ 0, and so

0 ≤ V (t, ε), t ≥ 0 for any ε > 0.

Using

−|C(t+ ε, s)| ≤ −|C(t, s)|+ |C(t + ε, s)− C(t, s)|,
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we find

V ′(t, ε) = pgp−1(x(t))x′(t) +
∫ ∞

ε

|C(u+ t, t)| dugp(x(t))

−
∫ t

0

|C(t+ ε, s)|gp(x(s)) ds

≤ pgp−1(x(t))x′(t) + gp(x(t))

∫ ∞

ε

|C(u + t, t)| du

−
∫ t

0

|C(t, s)|gp(x(s)) ds

+

∫ t

0

|C(t+ ε, s)− C(t, s)|gp(x(s)) ds,

from which, in view of (19), we find

(23)

V ′(t, ε) ≤ pgp−1(x(t))x′(t) + βgp(x(t))

−
∫ t

0

|C(t, s)|gp(x(s)) ds

+

∫ t

0

|C(t+ ε, s)− C(t, s)|gp(x(s)) ds.

Since x is a solution of (1), it is true that

H := pgp−1(x(t))

[
f(t)− x′(t)− h(t, x(t)) −

∫ t

0

C(t, s)g(x(s)) ds

]
= 0,

and we have

H = pgp−1(x(t))f(t) − pgp−1(x(t))x′(t)− pgp−1(x(t))h(t, x(t))

− pgp−1(x(t))

∫ t

0

C(t, s)g(x(s)) ds.

First, we may note that, by (3), it follows that

pgp−1(x(t))h(t, x(t)) ≥ 0,

and so, by (17), we have

−pgp−1(x(t))h(t, x(t)) = −p|gp−1(x(t))h(t, x(t))| ≤ −pδgp(x(t)).
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Next, note that, for p ≥ 2, we have

1

p/(p− 1)
+

1

p
= 1,

for use in Young’s inequality

ab ≤ ap

p
+

bq

q
,

where a ≥ 0, b ≥ 0 and q = p/(p− 1). In view of (21) for

γ ∈
(
0,

pδ − (p− 1)α− β − μ

p− 1

)
,

and for M satisfying
M1/pγ(p−1)/p ≥ 1,

we apply the inequality to

M1/p|f(t)| · γ(p−1)/p|g(x(t))|p−1,

obtaining

|g(x(t))|p−1|f(t)| ≤M1/p|f(t)| · γ(p−1)/p|g(x(t))|p−1

≤M
fp(t)

p
+ γ

gp(x(t))

p/(p−1)
.

Then this, along with Young’s inequality also applied to the integrand
below, yields

H ≤ p|g(x(t))|p−1|f(t)| − pgp−1(x(t))x′(t)− pgp−1(x(t))h(t, x(t))

+ p

∫ t

0

|C(t, s)||g(x(s))||g(x(t))|p−1ds

≤ pM
fp(t)

p
+ pγ

gp(x(t))

p/(p− 1)
− pgp−1(x(t))x′(t)− pδgp(x(t))

+ p

∫ t

0

|C(t, s)|
(

gp(x(t))

p/(p− 1)
+

gp(x(s))

p

)
ds

= Mfp(t) + γ(p− 1)gp(x(t)) − pgp−1(x(t))x′(t)− pδgp(x(t))
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+ (p− 1)

∫ t

0

|C(t, s)| dsgp(x(t)) +
∫ t

0

|C(t, s)|gp(x(s)) ds,

from which by the use of (20), we take

(24)

H ≤ Mfp(t) + γ(p− 1)gp(x(t)) − pgp−1(x(t))x′(t)− pδgp(x(t))

+ (p− 1)αgp(x(t)) +

∫ t

0

|C(t, s)|gp(x(s)) ds.

In view of (23) and (24), we have

V ′(t, ε) ≤ pgp−1(x(t))x′(t) + βgp(x(t)) −
∫ t

0

|C(t, s)|gp(x(s)) ds

+

∫ t

0

|C(t+ ε, s)− C(t, s)|gp(x(s)) ds
≤ Mfp(t) + γ(p− 1)gp(x(t)) − pδgp(x(t))

+ (p− 1)αgp(x(t)) +

∫ t

0

|C(t, s)|gp(x(s)) ds

+ βgp(x(t)) −
∫ t

0

|C(t, s)|gp(x(s)) ds

+

∫ t

0

|C(t+ ε, s)− C(t, s)|gp(x(s)) ds,

that is,

(25)

V ′(t, ε) ≤ Mfp(t) + [β + γ(p− 1) + (p− 1)α− pδ]gp(x(t))

+

∫ t

0

|C(t+ ε, s)− C(t, s)|gp(x(s)) ds.

If we integrate the last term from 0 to t and interchange the order of
integration, taking into consideration (21) and (22), we obtain

(26)

∫ t

0

∫ u

0

|C(u+ ε, s)− C(u, s)|gp(x(s)) ds du

=

∫ t

0

∫ t

s

|C(u+ ε, s)− C(u, s)| dugp(x(s)) ds

≤ μ

∫ t

0

gp(x(s)) ds.
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Set μ∗ := β+(p−1)α−pδ+γ(p−1)+μ and note that, by the definition
of γ, we have μ∗ < 0. Using (25) and (26), we obtain

V (t, ε)− V (0, ε) ≤ M

∫ t

0

fp(s) ds

+ [β + γ(p− 1) + (p− 1)α− pδ]

∫ t

0

gp(x(s)) ds

+

∫ t

0

∫ u

0

|C(u+ ε, s)− C(u, s)|gp(x(s)) ds du

≤ M

∫ t

0

fp(s) ds

+ [β + γ(p− 1) + (p− 1)α− pδ + μ]

∫ t

0

gp(x(s)) ds

= M

∫ t

0

fp(s) ds+ μ∗
∫ t

0

gp(x(s)) ds,

and so,

0 ≤ V (t, ε) ≤ V (0, ε) + μ∗
∫ t

0

gp(x(s)) ds +M

∫ t

0

fp(s) ds.

Since V (0, ε) = p
∫ x(0)

0 gp−1(s) ds < ∞, it follows that

0 ≤
∫ t

0

gp(x(s)) ds ≤ 1

−μ∗

[
p

∫ x(0)

0

gp−1(s) ds+M

∫ t

0

fp(s) ds

]
,

as required.

Notes. Assume that δ > α. Clearly, (18) holds true for any positive
even integer p with p > (β − α)/(δ − α). In addition to δ > α, if
α + β < 2δ, then (18) holds true for all positive even integers p. It is
not difficult to see that, for any β > 0, there always exists a positive
even integer p0 such that (18) holds true for all integers p ≥ p0.
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