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ABSTRACT. We study the tractability of computing ε-
approximations of the Fredholm problem of the second kind:
given f ∈ Fd and q ∈ Q2d, find u ∈ L2(Id) satisfying

u(x)−
∫
Id

q(x, y)u(y) dy = f(x) for all x ∈ Id = [0, 1]d.

Here, Fd and Q2d are spaces of d-variate right hand func-
tions and 2d-variate kernels that are continuously embedded
in L2(Id) and L2(I2d), respectively. We consider the worst
case setting, measuring the approximation error for the solu-
tion u in the L2(Id)-sense. We say that a problem is tractable
if the minimal number of information operations of f and q
needed to obtain an ε-approximation is sub-exponential in ε−1

and d. One information operation corresponds to the evalua-
tion of one linear functional or one function value. The lack
of sub-exponential behavior may be defined in various ways,
and so we have various kinds of tractability. In particular,
the problem is strongly polynomially tractable if the minimal
number of information operations is bounded by a polynomial
in ε−1 for all d.

We show that tractability (of any kind whatsoever) for
the Fredholm problem is equivalent to tractability of the L2-
approximation problems over the spaces of right-hand sides
and kernel functions. So (for example) if both of these
approximation problems are strongly polynomially tractable,
so is the Fredholm problem. In general, the upper bound
provided by this proof is essentially non-constructive, since
it involves an interpolatory algorithm that exactly solves the
Fredholm problem (albeit for finite-rank approximations of f
and q). However, if linear functionals are permissible and Fd

and Q2d are weighted tensor product spaces, we are able to
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surmount this obstacle; that is, we provide a fully-constructive
algorithm that provides an approximation with nearly-optimal
cost, i.e., one whose cost is within a factor ln ε−1 of being
optimal.

1. Introduction. The Fredholm problem of the second kind consists
of finding a d-variate function u such that

(1) u(x)−
∫
Id

q(x, y)u(y) dy = f(x) for all x ∈ Id = [0, 1]d.

Here, f ∈ Fd and q ∈ Q2d, where Fd and Q2d are given classes of
functions that are respectively defined over Id and I2d. We want to
determine the complexity of computing the solution of (1) to within ε
in the worst case setting. This means that we want to find an algorithm
that solves this problem with minimal cost. Here, we measure cost
by a weighted sum of the total number of function values or linear
functionals of the specific right hand function and the kernel, and the
total number of arithmetic operations.

The first paper on the complexity of the Fredholm problem of the
second kind was already published by Emelyanov and Ilin [4] in 1967.
The problem was to approximate the solution with right hand functions
and kernels being r-times continuously differentiable. Their result was
that the minimal worst case error of algorithms that use at most
n function values is proportional to n−r/(2d). This means that the
complexity of computing an ε-approximation is proportional to ε−2d/r,
with the proportionality factor depending upon r and d. After a
quarter-century hiatus, researchers in information-based complexity
began looking once again at the complexity of this problem. A partial
list of results includes Azizov [1], Dick, et al. [3], Frank, et al. [5],
Heinrich [7], Heinrich and Mathé [8], Pereverzev [15] and [12, 19, 20,
21]). Results were also obtained for the solution at a point as well as
for a global solution and for various Sobolev spaces in the worst case
and randomized settings.

The papers [5, 15, 20, 21] treated the worst case setting for Sobolev
spaces, see also [19]. They found the complexity to be proportional
to (1/ε)dα, with a positive α dependent upon the smoothness param-
eters of the spaces but independent of d. Again, the proportionality
factors depend upon d and the smoothness parameters. Typically, it
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is not known if dependence upon d is exponential or maybe “only”
polynomial.

These results are fine when d is so small that computing exponentially-
many (in d) information or arithmetic operations doesn’t faze us; so
for many problems in science and engineering, in which we have d ≤ 3,
these results are computationally relevant. But what happens when
d is so large that we can no longer afford to calculate (say) 2d func-
tion values or linear functionals or arithmetic operations? When this
happens, we are stymied by the exponential (in d) behavior of the ε-
complexity for the d-dimensional problem, which Bellman [2] called the
“curse of dimensionality.” In fact, there are many multivariate prob-
lems for which the curse of dimensionality is indeed present. Since we
are dealing with complexity (minimal cost), there’s no way that we can
find a cleverer algorithm for the problem. If we really want to solve the
problem, we have two choices:

1. We can weaken the assurance given by the worst case setting,
typical choices being the average case, probabilistic, or randomized
settings.

2. We can stay with the worst case setting, but reformulate the
problem using different spaces for Fd and Q2d.

The papers by Heinrich [7] and by Heinrich and Mathé [8] pursued
the first choice, using the randomized setting. For the second choice, we
usually1 shrink the original spaces Fd and Q2d by introducing “weights”
that measure the importance of successive variables and groups of
variables. Dick et al. [3] pursued this latter path, a choice we also
follow in this paper.

Vanquishing the curse of dimensionality for multivariate problems
forms the heart of research into tractability studies. A problem is
tractable if the information complexity is sub-exponential in ε−1 and d.
Information complexity is defined as the minimal number of informa-
tion operations needed to compute an ε-approximation, with one infor-
mation operation being understood as the evaluation of one function
value or one linear functional. If we specify a particular non-exponential
behavior, we get a specific kind of tractability. For example, polyno-
mial tractability means that non-negative C, p and q exist such that
the information complexity is bounded by Cε−pdq for all ε ∈ (0, 1) and
all d = 1, 2, . . . . If q = 0, then we have strong polynomial tractability.
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This is an especially challenging property since then the information
complexity has a bound independent of d. It is good to know that
strong polynomial tractability holds for many multivariate problems
with properly decaying weights.

Obviously, the information complexity is a lower bound on the (total)
complexity. Therefore, the complexity is sub-exponential in ε−1 and d
only if the problem is tractable. If the complexity is more or less the
same as the information complexity, then the study of complexity and
tractability coincide. The last assumption means that the total number
of arithmetic operations needed to compute an ε-approximation is
almost the same as the number of information operations. Interestingly
enough, the last assumption holds for most linear problems and selected
nonlinear problems. The current state of the art of tractability studies
may be found in [10, 12, 13].

Since the Fredholm problem is not linear, it is not clear a priori
whether its total complexity is essentially the same as its information
complexity. Dick et al. [3] showed that these were essentially (i.e., to
within a logarithmic factor) equal for the problem that they studied;
we show that this is also the case for the problem studied in this paper,
provided that linear functionals are permissible and that Fd and Q2d

are tensor product spaces.

Dick et al. [3] were the first to address the tractability of the Fredholm
problem of the second kind. They considered d-variate right hand
functions and d-variate convolution kernels from the same space, a
weighted Korobov space with product weights. They obtained a result
that is within a logarithmic factor of being optimal, and proved strong
polynomial and polynomial tractability under natural assumptions on
the decay of product weights. The algorithm for which this holds is
the lattice-Nyström method, which uses function values; the resulting
n× n linear system has a special structure, allowing it to be solved in
O(n ln n) arithmetic operations. Tractability of the Fredholm problem
of the second kind is also addressed in [12, subsection 18.2].

In this paper, we study the Fredholm problem for kernel functions
that may fully depend upon all 2d variables. Moreover, we allow the
spaces Fd and Q2d to be independent of each other, up to the final
section of this paper, in which we will need to impose some relations
between these two spaces by assuming that they are certain tensor
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product spaces. That is, Fd is the d-fold and Q2d is the 2d-fold product
space of some spaces of univariate functions.

The Fredholm problem is similar to the quasi-linear problems studied
in [22, 23]. The main difference is that the function spaces defining
the linear and nonlinear parts of the problems studied in [22, 23]
are both defined over Id, whereas for the Fredholm problem these
spaces are respectively defined over Id and I2d, and in general are
not related. Moreover, papers [22, 23] only provided upper bounds on
the complexity, and here we provide both upper and lower bounds.

We present two results in this paper. The first result exhibits
relationships between the tractability of the Fredholm problem and the
tractability of approximating the right-hand side and kernel function
appearing in this Fredholm problem. Suppose that F = {Fd}d=1,2,...

and Q = {Qd}d=1,2,... are families of right hand sides and kernel
functions for this problem. Under certain mild conditions on F and Q,
we show that

(2) tractFRED ≡ tractAPPF
and tractAPPQ

,

that is, tractability of the Fredholm problem is equivalent to tractability
of the approximation problems for F and Q. We stress that this
holds for all kinds of tractability. This result is useful since the
tractability of approximation has been studied for many spaces and
much is known about this problem, see again [10, 12, 13]. Since we
have the equivalence (2), all these known tractability results can now
be applied to the Fredholm problem.

The lower tractability bounds for the Fredholm problem are obtained
by first taking a special f or q and then showing that the Fredholm
problem is equivalent to the approximation problem for functions q
or f , respectively. We get the results in this paper by choosing the
special functions f = 1 and q = 0.

The upper tractability bounds for the Fredholm problem are obtained
by using an interpolatory algorithm that gives the exact solution of the
Fredholm problem (1) with f and q replaced by their approximations.
In general, this kind of algorithm will be impossible to implement. It
does not matter for negative tractability results since, as we already
mentioned, the total complexity is lower bounded by the information
complexity. On the other hand, positive tractability results are in ques-
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tion since it may theoretically happen that the information complexity
is reasonable but the implementation cost may be too large.

So, for our second result, we address the problem of how to actu-
ally implement a good algorithm for the Fredholm problem. Suppose
that linear functionals can be used, and that Fd and Q2d are weighted
tensor product function spaces. In this case, we develop a modified
interpolatory algorithm whose total cost is roughly the same as the
information complexity. More precisely, we exhibit a fixed-point iter-
ation that produces an approximation having the same error as the
interpolatory algorithm, with a penalty that is at worst a multiple of
ln ε−1. This proves that the complexity and the information complex-
ity are essentially the same for tensor-product spaces, as long as linear
functionals can be used.

We briefly comment on the case when only function values can be
used. Using the results that relate the power of function values and
linear functionals, see [9, 17], it is possible to show that in many cases
polynomial or strong polynomial tractability is preserved. However,
the tractability and complexity exponents may increase when function
values are used. We omit the details of this study, so as to not make
our paper even longer than it already is.

We now give a brief overview of the paper. In Section 2, we
define basic concepts, such as the problem to be solved and various
kinds of tractability for the problem. In Section 3, we show relations
between tractability of the Fredholm problem and tractability of the
L2-approximation problems over the spaces Fd and Qd. In Section 4,
we apply the results of Section 3. We first show that if either Fd or Qd

is a space of infinitely differentiable functions with the same role of all
variables and groups of variables, then the Fredholm problem suffers
from the curse of dimensionality. This means that even sufficiently
high smoothness of functions does not imply tractability. Next, we
look at the case where Fd and Q2d are general unweighted tensor
product spaces, finding both positive and negative tractability results.
Then we examine the case of weighted Sobolev spaces, once again
getting both positive and negative results. Since introducing weights
into Sobolev spaces can sometimes help us to vanquish the curse of
dimensionality, we ask whether weights will do likewise for tensor
product spaces. We define such weighted tensor product spaces in
Section 5; ironically enough, weighted Sobolev spaces are not weighted



TRACTABILITY OF THE FREDHOLM PROBLEM 419

tensor product spaces, despite the fact that the positive results attained
for weighted Sobolev spaces are what led us to consider weighted tensor
product spaces in the first place. Finally, in Section 6 we suppose that
continuous linear functionals are permissible and that the Fd and Q2d

are weighted tensor product spaces (as in Section 5). We then exhibit a
modified interpolatory algorithm, studying its implementation cost and
showing that the total cost of this algorithm is nearly (i.e., to within
a logarithmic factor) the same as the information complexity, so that
this method is nearly optimal. It is worth pointing out that our proof
of this result depends upon the weighted tensor product structure of
these spaces, and hence it does not directly apply to weighted Sobolev
spaces. However, it is also possible to prove this result for weighted
Sobolev spaces; we omit a full discussion and proof, for the sake of
brevity.

2. Basic concepts. Recall that I = [0, 1] is the unit interval2, and
that d ∈ N = {1, 2, . . .} is a positive integer. For q ∈ L2(I

2d), let Tq

be the compact Fredholm operator on L2(I
d) defined by

Tqv =

∫
Id

q(·, y)v(y) dy, for all v ∈ L2(I
d).

We say that q is the kernel of Tq. Clearly,

‖Tqv‖L2(Id) ≤ ‖q‖L2(I2d)‖v‖L2(Id) for all q ∈ L2(I
2d), v ∈ L2(I

d).

Therefore,

(3) ‖Tq‖Lin [L2(Id)] ≤ ‖q‖L2(I2d), for all q ∈ L2(I
2d).

Moreover, if ‖q‖L2(I2d) < 1, then the operator I − Tq has a bounded
inverse, with

(4) ‖(I − Tq)
−1‖Lin [L2(Id)] ≤

1

1− ‖q‖L2(I2d)

.

Let Fd and Qd be normed linear subspaces whose norms are denoted
by ‖ · ‖Fd

and ‖ · ‖Qd
, respectively. We assume that Fd and Qd are

continuously embedded subspaces of L2(I
d) for all d ∈ N. As we shall
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see in Remark 3.1, there is no essential loss of generality in assuming
that

(5) ‖ · ‖L2(Id) ≤ ‖ · ‖Fd
and ‖ · ‖L2(Id) ≤ ‖ · ‖Qd

.

Given M1 ∈ (0, 1), let

Qres
d = {q ∈ Qd : ‖q‖Qd

≤ M1} for all d ∈ N.

We define a solution operator Sd : Fd ×Qres
2d → L2(I

d) as

u = Sd(f, q) if and only if (I − Tq)u = f for all (f, q) ∈ Fd ×Qres
2d .

Note that

Sd(·, q) = (I − Tq)
−1 ∈ Lin [L2(I

d)] for all q ∈ Qres
2d .

In particular, for q = 0, we have Tq = 0, so that

Sd(f, 0) = f for all f ∈ Fd.

The operator Sd is linear in its first variable but nonlinear in its second
variable. Using (4) and (5), we have the a priori bound

(6) ‖Sd(f, q)‖L2(Id) ≤
‖f‖L2(Id)

1−M1
for all (f, q) ∈ Fd ×Qres

2d .

Let BFd denote the unit ball of Fd. We want to approximate Sd(f, q)
for (f, q) ∈ BFd ×Qres

2d , using algorithms whose information N(f, q)
about a right hand side f and a kernel q consists of finitely many
information operations from a class Λd of permissible functionals of f
and from a class Λ2d of permissible functionals of q. These functionals
can be either of the following:

• Linear class. In this case, we are allowing the class of all continuous
linear functionals. We write Λd = Λall

d or Λ2d = Λall
2d .

• Standard class. In this case, we are allowing only function values
and choose the spaces Fd and Qd such that function values are contin-
uous linear functionals. We write Λd = Λstd

d or Λ2d = Λstd
2d .
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That is, for some nonnegative integers n1 and n2 we have

N(f, q)=
[
L1(f), L2(f), . . ., Ln1(f), Ln1+1(q), Ln1+2(q), . . ., Ln1+n2(q)

]
,

where Li ∈ Λd for i = 1, 2, . . . , n1, and Li ∈ Λ2d for i = n1 + 1, n1 +
2, . . . , n1 + n2. The choice of the functionals Li and the numbers ni

may be determined adaptively.

An algorithm A : BFd ×Qres
2d → L2(I

d) approximating the Fredholm
problem Sd has the form

A(f, q) = φ
(
N(f, q)

)
,

whereN(f, q) is the information about f and q and φ : N(BFd ×Qres
2d )→

L2(I
d) is a combinatory function that combines this information and

produces an approximation to the exact solution. For further discus-
sion, see (e.g.), [16, subsection 3.2].

The (worst case) error of an algorithm is given by

e(A,Sd) = sup
(f,q)∈BFd×Qres

2d

‖Sd(f, q)−A(f, q)‖L2(Id).

Let
e(n, Sd,Λd,2d) = inf

An

e(An, Sd)

denote the nth minimal worst case error for solving the Fredholm
problem. Here, the infimum is over all algorithms An using at most
n information operations of right hand sides from Λd and of kernel
functions from Λ2d, which we indicate by the shortcut notation Λd,2d.
That is, if we use n1 and n2 information operations for f and q, then
n1 + n2 ≤ n.

Finally, for ε ∈ (0, 1), we let

n(ε, Sd,Λd,2d) = inf {n ∈ N : e(n, Sd,Λd,2d) ≤ ε}
denote the information complexity, i.e., the minimal number of infor-
mation operations needed to obtain an ε-approximation, i.e., an ap-
proximation with error at most ε.

Remark 2.1. The (total) complexity of a problem is defined to be the
minimal cost of computing an approximation. We will discuss the total
complexity of the Fredholm problem later.
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Remark 2.2. In this paper, we will only deal with the absolute error
criterion. One could also use the normalized error criterion, in which

nnor(ε, Sd,Λd,2d) = inf {n ∈ N : e(n, Sd,Λd,2d) ≤ ε · e(0, Sd,Λd,2d)},

where e(0, Sd,Λd,2d) is the initial error, i.e., the minimal error we can
achieve without doing any information operations whatsoever. Under
the normalized error criterion, we would be trying to determine the
minimal number of information operations needed to reduce the initial
error by a factor of ε. For simplicity, we restrict ourselves to the
absolute error criterion in this paper. See [10, subsection 4.4] for further
discussion of error criteria.

How hard is it to solve our problem for large d? We have the following
tractability hierarchy for the problem S = {Sd}d∈N, see (e.g.), [10,
subsection 4.4]:

1. Problem S is strongly polynomially tractable if C ≥ 0 and p ≥ 0
exist such that

n(ε, Sd,Λd,2d) ≤ C ε−p for all d ∈ N, ε ∈ (0, 1).

Should this be the case, the infimum of all p such that this holds is said
to be the exponent of strong (polynomial) tractability.

2. Problem S is polynomially tractable if C ≥ 0 and p, q ≥ 0 exist
such that

n(ε, Sd,Λd,2d) ≤ C ε−p d q for all d ∈ N, ε ∈ (0, 1).

We can speak of ε−1- and d-tractability exponents for a tractable
problem. However, these need not be uniquely determined; for example,
we can sometimes decrease one of the exponents by allowing the other
exponent to increase.

3. Problem S is quasi-polynomially tractable if there C ≥ 0 and t ≥ 0
exist such that

(7) n(ε, Sd,Λd,2d) ≤ C exp
(
t
(
1 + ln ε−1

)
(1 + ln d)

)
for all d ∈ N, ε ∈ (0, 1).
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The infimum of all t such that (7) holds is said to be the exponent
of quasi-polynomial tractability. Quasi-polynomially tractability was
introduced in [6]. The function appearing on the right hand side of (7)
is in some sense the smallest non-exponential tractability function T
for which the approximation problem for unweighted tensor product
spaces is T -tractable (see below).

4. Let Ω be an unbounded subset of [1,∞)× [1,∞). Let T : [1,∞)×
[1,∞) → [1,∞) be a function that is non-decreasing in both its
variables and that exhibits sub-exponential behavior, i.e.,

lim
(ξ,η)∈Ω
ξ+η→∞

lnT (ξ, η)

ξ + η
= 0.

The set Ω is called a tractability domain, and T a tractability function.

Problem S is (T,Ω)-tractable if C ≥ 0 and t ≥ 0 exist such that

(8) n(ε, Sd,Λd,2d) ≤ C T (ε−1, d)t for all (ε−1, d) ∈ Ω.

The infimum of all t for which this holds is said to be the exponent of
(T,Ω)-tractability.

If the right hand side of (8) holds with d = 1, so that

n(ε, Sd,Λd,2d) ≤ C T (ε−1, 1)t for all (ε−1, d) ∈ Ω,

then S is strongly (T,Ω)-tractable. In such a case, the infimum of
all t for which this holds is said to be the exponent of strong (T,Ω)-
tractability.

5. Problem S is weakly tractable if

lim
ε−1+d→∞

lnn(ε, Sd,Λd,2d)

ε−1 + d
= 0.

A weakly tractable problem is one whose information complexity grows
sub-exponentially in both ε−1 and d.

If problem S is not even weakly tractable, then its information com-
plexity is exponential in either ε−1 or d. We say that S is intractable.
If the information complexity is exponential in d, we follow [2] and say
that it suffers from the curse of dimensionality.
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3. Tractability of Fredholm vs. tractability of approxima-
tion. In this section, we show that tractability of the Fredholm prob-
lem is strongly related to tractability of the L2-approximation problems
over Fd and Qd. Here, the L2-approximation problem over Vd, where
Vd is a normed linear space that is continuously embedded in L2(I

d), is
defined as approximating the canonical injection APPVd

: Vd → L2(I
d)

given by

APPVd
v = v for all v ∈ Vd.

We approximate v from the unit ball BVd of Vd, with error being
measured in the L2(I

d)-norm. Algorithm errors, minimal errors and
information complexity for the L2-approximation problem over Vd are
all defined analogously to the way they were defined for the Fredholm
problem; the same is true for the various kinds of tractability for
APPV = {APPVd

}d∈N, as well as intractability. Our assumption (5) is
equivalent to requiring that

(9) ‖APPFd
‖Lin [Fd;L2(Id)] ≤ 1 and ‖APPQd

‖Lin [Qd;L2(Id)] ≤ 1,

so that the initial errors of the L2-approximation problems over Fd

and Qd are at most one. Note that if the bounds in (5) are sharp, then
we have equality in (9), and then the L2-approximation problems over
Fd and Qd are properly scaled.

3.1. Lower bounds. We are ready to prove lower bounds for the
Fredholm problem. First, we show that the Fredholm problem Sd is
not easier than the L2-approximation problem over Fd.

Proposition 3.1. We have

n(ε, Sd,Λd,2d) ≥ n(ε,APPFd
,Λd) for all ε ∈ (0, 1), d ∈ N.

Proof. Let An be an algorithm for approximating the Fredholm
problem Sd such that e(An, Sd) ≤ ε, using n information operations

from Λd,2d. Define an algorithm Ãn for APPFd
by

Ãn(f) = An(f, 0) for all f ∈ BFd.
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Since APPFd
= Sd(·, 0), we have

e(Ãn,APPFd
) ≤ e(An, Sd) ≤ ε,

which suffices to establish the desired inequality.

We now wish to show that the Fredholm problem Sd is not easier
than the L2-approximation problem over Qd. Before doing so, we need
a bit of preparation. For a function q : Id → R, let us define functions
qX , qY : I2d → R by

qX(x, y) = q(x) and qY (x, y) = q(y), for all x, y ∈ Id.

We say that the sequence of spacesQ = {Qd}d∈N satisfies the extension
property if for all d ∈ N, we have

q ∈ Qd =⇒ qX , qY ∈ Q2d, for all q ∈ Qd,

with

(10) ‖qX‖Q2d
≤ ‖q‖Qd

and ‖qy‖Q2d
≤ ‖q‖Qd

.

Let

(11) M2 =
2(1 +M1)(3−M2

1 )

M1(1−M1)
.

Clearly, M2 > 1 and goes to infinity as M1 goes to zero. Using
Mathematica, we checked that

M2 ≥ 32.7757 . . . ,

taking its minimal value when

M1 = 1
2 − 1

2

√
− 1

3 + 1
3

3

√
656− 72

√
83 + 2

3

3

√
82 + 9

√
83

+ 1
2

√√√√√1
3

⎛
⎝−2− 3

√
656−72

√
83−2 3

√
82+9

√
83+ 42√

−1
3+

1
3

3
√

656−72√83+
2
3

3
√

82+9
√
83

⎞
⎠

.
= 0.455213,
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Proposition 3.2. Suppose that Q satisfies the extension property,
and that 1 ∈ BFd. Then

n(ε, Sd,Λd,2d) ≥ n (M2ε,APPQd
,Λd) ,

for all ε ∈
(
0,

1

2(1 +M1)

]
, d ∈ N.

Proof. For q ∈ BQd, the extension property tells us thatM1qX ,M1qY ∈
Qres

2d . As in [12, subsection 18.2.1], we have

(12) Sd(1,M1qY ) =
1

1−M1

∫
Id q(y) dy

.

Moreover, it is easy to see that

Sd(1,M1qX) =
M1q

1−M1

∫
Id q(y) dy

+ 1.

Combining these results and solving for q, we see that

(13) q =
Sd(1,M1qX)− 1

M1Sd(1,M1qY )
=

Sd(1,M1qX)− 1

M1

∫
Id Sd(1,M1qY ) dy

,

the latter holding because (12) tells us that Sd(1,M1qY ) is a number.
Now let An be an algorithm for approximating Sd overBFd ×Qres

2d such
that it uses n information operations from Λd,2d and e(An, Sd) ≤ ε,
where

ε ≤ 1

2(1 +M1)
.

Guided by (13), we define an algorithm Ãn for approximating APPQd

by

Ãnq =
An(1,M1qX)− 1

M1

∫
Id An(1,M1qY )(y) dy

, for all q ∈ BQd.

We now compute an upper bound on the error of Ãn. First, some
algebra yields that
(14)

q − Ãnq =
1

M1

∫
Id An(1,M1qY )(y) dy

[
Sd(1,M1qX)−An(1,M1qX)

+

(
1− Sd(1,M1qX)

Sd(1,M1qY )

)

×
∫
Id

[Sd(1,M1qY )−An(1,M1qY )(y)] dy

]
.



TRACTABILITY OF THE FREDHOLM PROBLEM 427

Using the inequality∣∣∣∣
∫
Id

[Sd(1,M1qY )−An(1,M1qY )(y)] dy

∣∣∣∣
≤ ‖Sd(1,M1qY )−An(1,M1qY )‖L2(Id),

along with the fact that e(An, Sd) ≤ ε, equation (14) yields the
inequality
(15)

‖q − Ãnq‖L2(Id) ≤
1

M1

∣∣∫
Id An(1,M1qY )(y) dy

∣∣
×
[
‖Sd(1,M1qX)− An(1,M1qX)‖L2(Id)

+
1 + ‖Sd(1,M1qX)‖L2(Id)

|Sd(1,M1qY )| ‖Sd(1,M1qY )

−An(1,M1qY )‖L2(Id)

]

≤ 1

M1

∣∣∫
Id An(1,M1qY )(y) dy

∣∣
×
[
1 +

1 + ‖Sd(1,M1qX)‖L2(Id)

|Sd(1,M1qY )|
]
· ε.

Since M1qX ∈ Qres
2d , we have

‖Sd(1,M1qx)‖L2(Id) ≤
1

1−M1
.

Since M1qY ∈ Qres
2d and Sd(1,M1qY ) ∈ R, we have

1

1 +M1
≤ Sd(1,M1qY ) ≤ 1

1−M1
.

Now our restriction on ε implies that∣∣∣∣
∫
Id

An(1,M1qY )(y) dy

∣∣∣∣ ≥ Sd(1,M1qY )

−
∣∣∣∣
∫
Id

[Sd(1,M1qY )−An(1,M1qY )(y)] dy

∣∣∣∣
≥ 1

1 +M1
− ε ≥ 1

2(1 +M1)
.
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Substituting these last three inequalities into (15), we find

‖q − Ãnq‖L2(Id) ≤
2(1 +M1)

M1

[
1 +

(
1 +

1

1−M1

)
(1 +M1)

]
ε

= M2 · ε.

Since q is an arbitrary element of BQd, we see that

e(Ãn, Sd) ≤ M2 · ε.

This suffices to establish the desired inequality.

Using Propositions 3.1 and 3.2, we have the following corollary.

Corollary 3.1. Suppose that Q satisfies the extension property and
that 1 ∈ BFd. Then the Fredholm problem S is at least as hard as
the approximation problems APPF and APPQ; equivalently APPF and
APPQ are at most as hard as S. That is:

1. If the Fredholm problem S is strongly polynomially tractable, then
so are APPF and APPQ. Moreover, the exponents of strong polynomial
tractability of the approximation problems are no larger than those for
the Fredholm problem.

2. If the Fredholm problem S is polynomially tractable, then so are
APPF and APPQ. Moreover, ε−1- and d-exponents for the approxima-
tion problems are no larger than those for the Fredholm problem.

3. If the Fredholm problem S is quasi-polynomially tractable, then so
are APPF and APPQ. The exponent of quasi-polynomial tractability
for the approximation problem APPF is no larger than this for the Fred-
holm problem. However, the exponent of quasi-polynomial tractability
for the approximation problem APPQ may be larger than this for the
Fredholm problem by the factor (1 + ln M2)(1 + ln 2(1 +M1)).

4. Suppose that, for all α > 0, the tractability function T satisfies

(16) T (αξ, η) = O
(
T (ξ, η)

)
as ξ, η → ∞.

If the Fredholm problem S is (strongly) (T,Ω)-tractable, then so are
APPF and APPQ. Moreover, the exponents of (strong) (T,Ω)-tractability
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for the approximation problems are no larger than those for the Fred-
holm problem.

5. If the Fredholm problem S is weakly tractable, then so are APPF

and APPQ.

6. If either APPF or APPQ are intractable, then so is the Fredholm
problem S.

Proof. All of these statements follow from Propositions 3.1 and 3.2.
However the statements regarding quasi-polynomial tractability and
(T,Ω)-tractability are a bit more subtle than the others, so we give
some details for these cases.

Suppose first that the Fredholm problem S is quasi-polynomially
tractable. This means that C > 0 and t ≥ 0 exist such that

n(ε, Sd,Λd,2d) ≤ C exp
(
t
(
1 + ln ε−1

)
(1 + ln d)

)
for all d ∈ N, ε ∈ (0, 1).

From Proposition 3.1, we immediately find that APPF is quasi-
polynomially tractable, with the same estimate

n(ε,APPFd
,Λd) ≤ n(ε, Sd,Λd,2d)

≤ C exp
(
t
(
1 + ln ε−1

)
(1 + ln d)

)
for all d ∈ N, ε ∈ (0, 1).

What about APPQ? Proposition 3.2 yields that

n(M2ε,APPQd
,Λd) ≤ n(ε, Sd,Λd,2d)

for all d ∈ N, ε ∈ (0, 1/(2(1 +M1))].

For ε ∈ (0, 1/(2(1 + M1)), we replace M2ε by ε. Remembering that
M2 > 1, we get

n(ε,APPQd
,Λd) ≤ n(M−1

2 ε, Sd,Λd,2d)

≤ C exp
[
t
(
1 + lnM2 + ln ε−1

)
(1 + ln d)

]
= C exp

[
t
(
1 + ln ε−1

)
(1 + ln d)

(
1 +

lnM2

1 + ln ε−1

)]
≤ C exp

(
t(1 + ln M2)

(
1 + ln ε−1

)
(1 + ln d)

)
.
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For ε ∈ (1/(2(1 +M1)), 1), we simply estimate

n(ε,APPQd
,Λd) ≤ n

(
1

2(1 +M1)
,APPQd

,Λd

)
≤ C exp

(
t(1 + ln M2)[1 + ln 2(1 +M1)](1 + ln d)

)
.

Hence, APPQ is quasi-polynomially tractable, with an exponent at
most t(1 + ln M2)[1 + ln 2(1 + M1)]. This exponent is clearly larger
than that of the Fredholm problem.

Now suppose that the Fredholm problem S is (strongly) (T,Ω)-
tractable, with a tractability function T satisfying (16). For APPF ,
we find that

n(ε,APPFd
,Λd) ≤ n(ε, Sd,Λd,2d) = T (ε−1, d)t

for all d ∈ N, ε ∈ (0, 1).

For APPQ, we find that for all d ∈ N and ε ∈ (0, 1), we have

n(ε,APPQd
,Λd) ≤ n

(
M−1

2 min

{
ε,

1

2(1 +M1)

}
, Sd,Λd,2d

)

= O

(
T

(
M2

[
min

{
ε,

1

2(1 +M1)

}]−1

, d

)t)
.

Since
1

min{ε, 1/(2(1 +M1))} ≤ 2(1 +M1)

ε
,

we finally obtain

n(ε,APPQd
,Λd) = O

(
T (ε−1, d)t

)
, for all d ∈ N, ε ∈ (0, 1).

Thus, both approximation problems are (strongly) (T,Ω)-tractable,
with exponents at most as large as the exponent for the Fredholm
problem, as claimed.

3.2. Upper bounds. Having found lower bounds, we now look for
analogous upper bounds.
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Lemma 3.1. Let u = Sd(f, q) and ũ = Sd(f̃ , q̃) for (f, q), (f̃ , q̃) ∈
BFd ×Qres

2d . Then

‖u− ũ‖L2(Id) ≤
1

1−M1

[
‖f − f̃‖L2(Id) + ‖u‖L2(Id)‖q − q̃‖L2(I2d)

]
.

Proof. Since (I − Tq)u = f and (I − Tq̃)ũ = f̃ , we find that

f − f̃ = u− ũ− Tqu+ Tq̃ũ = u− ũ− Tq−q̃u− Tq̃(u − ũ),

and so,

(I − Tq̃)(u− ũ) = f − f̃ + Tq−q̃u.

Hence,

u− ũ = (I − Tq̃)
−1[f − f̃ + Tq−q̃u].

Using (3) and (4), we get the desired inequality.

We now use Lemma 3.1 to find upper bounds for the Fredholm
problem, in terms of upper bounds for the L2-approximation problems
for Fd and Qd.

Proposition 3.3. For ε > 0 and d ∈ N, we have

(17)

n(ε, Sd,Λd,2d) ≤ n

(
(1 −M1)ε

2
,APPFd

,Λd

)

+ n

(
(1−M1)

2ε

2M1
,APPQ2d

,Λ2d

)
.

Proof. Let Ãn(F ),Fd
and Ãn(Q),Q2d

(respectively) be algorithms
using n(F ) and n(Q) information operations for the L2-approximation
problems over Fd and Q2d such that

e
(
Ãn(F ),Fd

,APPFd

)
≤ (1−M1)ε

2
(18)
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and

e
(
Ãn(Q),Q2d

,APPQ2d

)
≤ (1−M1)

2ε

2M1
.

Let n = n(F )+n(Q). Define an algorithmAn for the Fredholm problem
as

An(f, q) = Sd

(
Ãn(F ),Fd

(f), Ãn(Q),Q2d
(q)
)

for all (f, q) ∈ BFd ×Qres
2d .

Clearly, An uses n information operations. To compute the error of An,
let (f, q) ∈ BFd ×Qres

2d . By (18), we have

‖f − Ãn(F ),Fd
(f)‖L2(Id) ≤

(1 −M1)ε

2
‖f‖Fd

≤ (1−M1)ε

2

and

‖q − Ãn(Q),Q2d
(q)‖L2(I2d) ≤

(1 −M1)
2ε

2M1
‖q‖Q2d

≤ (1−M1)
2ε

2
.

Using Lemma 3.1 and inequality (6), we now have

e(An, Sd) ≤ 1

1−M1

[
‖f − Ãn(F ),Fd

‖L2(Id)

+‖Sd(f, q)‖L2(Id)‖q − Ãn(Q),Q2d
(q)‖L2(I2d)

]
≤ 1

1−M1

(
(1 −M1)ε

2
+

1

1−M1

(1−M1)
2ε

2

)
= ε.

Since (f, q) is an arbitrary element of BFd ×Qres
2d , we see that

e(An, Sd) ≤ ε.

The algorithms Ãn(F ),Fd
and Ãn(Q),Q2d

are arbitrary and satisfy (18).
We can then take them to be algorithms using the minimal number
of information operations needed to satisfy (18). Inequality (17) now
follows.
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We now discuss the arguments of n(·,APPFd
,Λd) and n(·,APPQ2d

,
Λ2d) in (17). For all ε ∈ (0, 1), the argument (1 −M1)ε/2 is less than
1/2; however, the argument (1−M1)

2ε/(2M1) may be larger than one
if M1 is small enough and ε close enough to one. In this case, the
second term

n

(
(1−M1)

2ε

2M1
,APPQ2d

,Λ2d

)
= 0 for

(1−M1)
2ε

2M1
≥ 1,

since we now can take A0 = 0 with error at most 1.

Using Proposition 3.3, we have the following corollary.

Corollary 3.2. Fredholm problem S is no harder than the approxi-
mation problems APPF and APPQ. That is:

1. If APPF and APPQ are strongly polynomially tractable, then so is
the Fredholm problem S. Moreover, the exponent of strong polynomial
tractability for S is no larger than the greater of those for APPF and
APPQ.

2. If APPF and APPQ are polynomially tractable, then so is the
Fredholm problem S. Moreover, the ε−1-exponents and the d-exponents
for S are no larger than the greater of the ε−1-exponents and the d-
exponents for APPF and APPQ.

3. If APPF and APPQ are quasi-polynomially tractable, then so is
the Fredholm problem S. Moreover, the exponent tS of quasi-polynomial
tractability for S satisfies

(19) tS ≤ t∗S := max

{
tF

(
1 + ln

2

1−M1

)
,

tQ

(
1 + max

{
0, ln

2M1

(1−M1)2

})
(1 + ln 2)

}
.

4. Suppose that the following are true:

(a) APPF is (strongly) (TF ,Ω)-tractable, with (strong) exponent tF .

(b) APPQ is (strongly) (TQ,Ω)-tractable, with (strong) exponent tQ.

(c) For any α > 0, the tractability functions TF and TQ satisfy

TF (αξ, η) = O
(
TF (ξ, η)

)
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and

TQ(αξ, η) = O
(
TQ(ξ, η)

)
as ξ, η → ∞.

Then

(a) Fredholm problem S is (TS ,Ω)-tractable, with TS = max{TF , TQ}.
Moreover, strong (TS ,Ω)-tractability holds for S if and only if it holds
for both APPF and APPQ.

(b) The (strong) exponent of (TS ,Ω)-tractability is at most max{tF , tQ}.
5. If APPF and APPQ are weakly tractable, then so is Fredholm

problem S.

6. If Fredholm problem S is intractable, then either APPF is in-
tractable or APPQ is intractable.

Proof. All this follows from Proposition 3.3 (as mentioned above),
along with definitions of the various kinds of tractability. To illustrate,
we prove the quasi-polynomial case (part 3) for no other reason than
to explain the somewhat odd looking result for t∗S .

Since APPF and APPQ are quasi-polynomially tractable, positive CF

and CQ exist, as well as nonnegative tF and tQ, such that

n(ε,APPFd
,Λd) ≤ CF exp

(
tF (1 + ln ε−1)(1 + ln d)

)
and

n(ε,APPQ2d
,Λ2d) ≤ CQ exp

(
tQ(1 + ln ε−1)(1 + ln 2d)

)
.

(20)

n(ε, Sd,Λd,2d) ≤ CF exp

(
tF

[
1 + ln

(
(1−M1)ε

2

)−1]
(1 + ln d)

)

+ δεCQ exp

(
tQ

[
1 + ln

(
(1−M1)

2ε

2M1

)−1]
(1 + ln 2d)

)
,

where δε = 0 for (1 −M1)
2ε/(2M1) ≥ 1, and δε = 1, otherwise.

Clearly, for c ∈ (0, 1], we have

1 + ln(c ε)−1 ≤ (1 + ln ε−1)(1 + ln c−1), for all ε ∈ (0, 1),
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as well as

1 + ln 2d ≤ (1 + ln 2) (1 + ln d), for all d ∈ N.

Applying these inequalities to (20), we conclude that

n(ε, Sd,Λd,2d) ≤ CF exp

(
tF

(
1 + ln

2

1−M1

)
(1 + ln ε−1)(1 + ln d)

)

+ CQ exp

(
tQ

(
1 + max

{
0, ln

2M1

(1 −M1)2

})

× (1 + ln 2)(1 + ln ε−1)(1 + ln d)

)
.

Using this we get the formula for t∗S .

The proof of the remaining parts of the corollary is easy.

Remark 3.1. In Section 2, we said that there was no essential loss of
generality in assuming that (5) (equivalently, (9)) holds. To see why
this is true, note the following:

• If ‖APPFd
‖Lin [Fd;L2(Id)] > 1, the bound (17) in Proposition 3.3

becomes

n(ε, Sd,Λd,2d) ≤ n

(
(1−M1)ε

2
,APPFd

,Λd

)

+ n

(
(1−M1)

2ε

2M1 ‖APPFd
‖Lin [Fd;L2(Id)]

,APPQ2d
,Λd

)
.

Hence, if supd∈N ‖APPFd
‖Lin [Fd;L2(Id)] < ∞, then

n

(
(1−M1)

2

2 ‖APPFd
‖Lin [Fd;L2(Id)]

ε, ‖APPFd
‖Lin [Fd;L2(Id)],Λd

)

≤ n

(
(1−M1)

2

2M1 supd∈N ‖APPFd
‖Lin [Fd;L2(Id)]

ε, ‖APPFd
‖Lin [Fd;L2(Id)],Λd

)
.

Thus the tractability results of Corollary 3.2 hold as stated, but
with a slight change in the denominator of the first argument of
n(·,APPQ2d

,Λd). However, if
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sup
d∈N

‖APPFd
‖Lin [Fd;L2(Id)] = ∞,

then the approximation problem for Fd is badly scaled.

• If ‖APPQd
‖Lin [Qd;L2(Id)] > 1, we can renormalize Qd under the

(equivalent) norm

‖q‖Q̂d
=
√
‖q‖2

L2(Id)
+ ‖q‖2Qd

, for all q ∈ Qd,

calling the resulting space Q̂d. We now replace Qd by Q̂d and Qres
d by

Q̂res
d =

{
q ∈ Q̂d : ‖q‖Q̂d

≤ M1

}
.

Since q ∈ Q̂res
d implies that ‖q‖L2(Id) ≤ M1 and ‖q‖Qd

≤ M1, we see
that all our results go through as before under this relabeling.

4. Some examples. We now study the tractability of the Fredholm
problem for three examples, each being defined by choosing particular
spaces of right-hand side functions and kernel functions. The first ex-
ample shows us that we may be stricken by the curse of dimensionality
even if the right-hand side or the kernel function is infinitely smooth.
In the second example, we look at unweighted isotropic spaces, find-
ing that the Fredholm problem is quasi-polynomially tractable but not
polynomially tractable. In the third example, we explore tractabil-
ity for a family of weighted spaces, getting both positive and negative
results for polynomial tractability.

4.1. Intractability for C∞ functions. Let C∞(Id) be the space
of infinitely many times differentiable functions with the norm

‖v‖C∞(Id) = sup
α∈Nd

0

‖Dαv‖L2(Id).

Here, α = (α1, α2, . . . , αd) ∈ Nd is a multi-index with |α| =∑d
j=1 αj ,

and

Dαv =
∂|α|

∂α1x1∂α2x2 · · · ∂αdxd
.
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Let Fd = Qd = C∞(Id). The L2-approximation problems for Fd and
Gd satisfy assumption (5). Moreover, since ‖1‖Fd

= ‖1‖Qd
= ‖1‖L2(Id),

we have

‖APPFd
‖Lin [Fd;L2(Id)] = ‖APPQd

‖Lin [Qd;L2(Id)] = 1.

This also shows that 1 ∈ BFd, as needed in Proposition 3.2. Moreover,
Q = {Qd}d∈N satisfies the extension property, with equality holding
in (10). This means that we can use all the results presented in the
previous section.

The functions in Fd and Qd are of unbounded smoothness. As in [11],
it is easy to check that, for Λd ∈ {Λall

d ,Λstd
d }, we have

e(n,APPFd
,Λd) = O(n−r)

and

e(n,APPQd
,Λd) = O(n−r) as n → ∞,

for any r > 0, no matter how large. This implies that we also have

e(n, Sd,Λd,2d) = O(n−r) as n → ∞,

and

n(ε, Sd,Λd,2d) = O(ε−1/r) as ε → 0

for the Fredholm problem. Since r can be arbitrarily large, this might
lead one to hope that the Fredholm problem does not suffer from the
curse of dimensionality in this case. We now crush this hope, showing
that the Fredholm problem is intractable if either Fd = C∞(Id) or
Q2d = C∞(I2d) and Fd satisfies (5) as well as 1 ∈ BFd. This holds for
the class Λall, and therefore also for the class Λstd.

First, suppose that Fd = C∞(Id). Using [18, Proposition 3], we find
that

e(n,APPFd
,Λall

d ) = 1 for n < 2�d/24�.

Hence, the L2-approximation problem over Fd is intractable, with

n(ε,APPFd
,Λall

d ) ≥ 2	d/24
 for all ε ∈ (0, 1).
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From Proposition 3.1, we immediately see that

n(ε, Sd,Λd,2d) ≥ n(ε,APPFd
,Λd) ≥ 2	d/24
 for all ε ∈ (0, 1).

Hence, the Fredholm problem is also intractable.

Now suppose that Qd = C∞(Id), and that Fd satisfies (5), with
1 ∈ BFd. Again using [18, Proposition 3], we find that

e(n,APPQ2d
,Λall

2d) = 1, for n < 2�d/12�,

and so the L2-approximation problem over Qd is intractable, with

n(ε,APPQd
,Λall

d ) ≥ 2	d/12
, for all ε ∈ (0, 1).

Noting that

min

{
1

M2
,

1

2(1 +M1)

}
=

1

M2
,

Proposition 3.2 yields that

n(ε, Sd,Λd,2d) ≥ n(M2ε,APPQ2d
,Λd) ≥ 2	d/12
, for all ε ∈

(
0,

1

M2

]
.

Thus, the Fredholm problem is intractable also in this case.

In short, the Fredholm problem suffers from the curse of dimension-
ality if Fd = C∞(Id) or Qd = C∞(Id) and Fd satisfies (5) as well as
1 ∈ BFd. Using these extremely smooth spaces avails us not.

4.2. Results for unweighted tensor product spaces. We now
start to explore tractability for tensor product spaces. Our first step
is to look at unweighted tensor product Hilbert spaces, as per [10,
subsection 5.2]. We will then look at weighted tensor product Hilbert
spaces in Section 5.

Since the space for the univariate case is a building block for the
tensor product space, we first start with the univariate case and then
go on to define the tensor product space for general d.

For the univariate case, let H1 ⊆ L2(I) be an infinite-dimensional
separable Hilbert space of univariate functions. Suppose that the
embedding APP1 : H1 → L2(I) is compact. Then W1 = APP∗

1APP1 :
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H1 → H1 is a compact, self-adjoint, positive definite operator. Let
{ej}j∈N be an orthonormal basis for H1 consisting of eigenfunctions of
W1 = APP∗

1APP1, ordered so that

W1ej = λjej , for all j ∈ N

with λ1 ≥ λ2 ≥ · · · > 0. Clearly, ‖W1‖Lin (H1) = λ1. Since H1 is
infinite-dimensional, the eigenvalues λi are positive. Note that, for
f ∈ H1, we have

‖f‖2L2(I)
= 〈f, f〉L2(I)

= 〈APP1f,APP1f〉L2(I)

= 〈f,W1f〉H1 ≤ λ1‖f‖2H1
.

Hence, assumption (5) holds if we assume that λ1 ≤ 1. For simplicity,
we also assume that e1 ≡ 1 ∈ H1, with ‖1‖H1 = 1, so that λ1 = 1.

We nowmove on to the general case d ≥ 1, defining the tensor product
space Hd = H⊗d

1 , which is a Hilbert space under the inner product

〈 d⊗
j=1

vj ,

d⊗
j=1

wj

〉
Hd

=

d∏
j=1

〈vj , wj〉H1 for all v1, . . ., vd, w1, . . ., wd ∈ H1,

where

( d⊗
j=1

vj

)
(x) =

d∏
j=1

vj(xj), for all x = (x1, x2, . . . , xd) ∈ Id.

Let APPd denote the canonical embedding of Hd into L2(I
d) given by

APPdv = v, for all v ∈ Hd.

Clearly, ‖APPd‖ = 1. Let Wd = APP∗
dAPPd. For a multi-index

α ∈ Nd, let

eα =

d⊗
j=1

eαj and λα =

d∏
j=1

λαj .

Then
Wdeα = λαeα, for all α ∈ N
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and
〈eα, eβ〉Hd

= δα,β, for all α,β ∈ Nd.

Thus {eα}α∈Nd is an orthonormal system of eigenfunctions of Wd.

Knowing the eigensystem of Wd, we can determine the nth minimal
error e(n,APPHd

,Λall). Let

{λd,j}j∈N = {λα}α∈Nd ,

with
λd,1 ≥ λd,2 ≥ · · · > 0

and let ed,j be the eigenfunction corresponding to λd,j. It is well known
(see, e.g., [16, subsection 4.5]) that

e(n,APPHd
,Λall) =

√
λd,n+1,

this error being attained by the algorithm

An(v) =

n∑
j=1

〈v, ed,j〉Hd
ed,j.

We now let Fd = Hd and Qd = H2d. Then assumptions (5) and (10)
hold and 1 ∈ BFd with ‖1‖Fd

= ‖1‖L2(Id) = 1. What can we say about
the tractability of the Fredholm problem?

If λ2 = 1, then [10, Theorem 5.5] tells us that the L2-approximation
problem for Hd is intractable for the class Λall (and thus also for Λstd).
Hence, the Fredholm problem is also intractable for Λall (and Λstd) by
Corollary 3.1.

We now suppose that λ2 ∈ (0, 1). In addition, for the remainder of
this subsection, we shall restrict our attention to the case where some
p > 0 exists such that

λj = Θ(j−p), as j → ∞.

From [10, Theorem 5.5], we find that the L2-approximation problem
for Hd is not polynomially tractable for the class Λall (and so for Λstd).
Again, using Corollary 3.1, we see that the Fredholm problem is also
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not polynomially tractable for Λall (and Λstd). So let’s see what we can
say about quasi-polynomial tractability.

First, suppose that class Λall is used. From [6, subsection 3.1], we
find that the L2-approximation problem for Hd is quasi-polynomially
tractable with

t = max

{
2

p
,

2

ln λ−1
2

}
.

Hence, Corollary 3.2 tells us that the Fredholm problem is also quasi-
polynomially tractable and

n(ε, Sd,Λ
all

d,2d) ≤ C exp
(
t∗S(1 + ln ε−1)(1 + ln d)

)
with

t∗S = tmax

{
1 + ln

1

1−M1
, 1 + max

{
0, ln

2M1

(1−M1)2

}
(1 + ln 2)

}
.

Now suppose that we use the class Λstd. Unfortunately, there are
currently no general results for the case of standard information; we
only know of some examples. From [6, subsection 3.2], we know that
there is a piecewise-constant function space for which quasi-polynomial
tractability is the same for Λall and Λstd, and there is a Korobov space
for which quasi-polynomial tractability does not hold. So in the former
case, the Fredholm problem will be quasi-polynomially tractable; in the
latter case, it will not be quasi-polynomially tractable.

4.3. Results for a weighted Sobolev space. The results reported
in subsection 4.2 tell us that if we want the Fredholm problem to
be polynomially tractable, then the right-hand side and kernel must
belong to non-isotropic spaces, in which different variables or groups
of variables play different roles. In this subsection, we examine a
particular weighted space Hd,m,γ , where m ∈ N is a fixed positive
integer that measures the smoothness of the space, and γ is a sequence
of weights that measure the importance of groups of variables. This
will motivate the general definition presented in Section 5.

Our analysis uses the results and ideas found in [24]. We build
our space Hd,m,γ in stages, starting with an unweighted univariate
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space H1,m, then going to an unweighted multivariate space Hd,m, and
finally arriving at our weighted multivariate space Hd,m,γ .

So we first look at case d = 1. The space H1,m consists of real
functions defined on I, whose (m − 1)st derivatives are absolutely
continuous and whose mth derivatives belong to L2(I), under the inner
product

〈v, w〉H1,m =

∫
I

v(x)w(x) dx +

∫
I

v(m)(x)w(m)(x) dx,

for all v, w ∈ H1,m.

For d ∈ N, define Hd,m = H⊗d
1,m as a d-fold tensor product of H1,m,

under the inner product

〈v, w〉Hd,m
=

∫
Id

v(x)w(x) dx +
∑
u⊆[d]
u=∅

∫
Id

∂m|u|

∂mxu
v(x)

∂m|u|

∂mxu
w(x) dx

for all v, w ∈ Hd,m.

Here, |u| denotes the size of u ⊆ [d] := {1, 2, . . . , d}, and xu denotes
the vector whose components are those components xj of x for which
j ∈ u.

We are now ready to define our weighted Sobolev space. Let

γ = {γd,u}u⊆[d]

be a set of non-negative weights. For simplicity, we assume that
γd,∅ = 1. Then we let

Hd,m,γ =

{
v ∈ Hd,m : γd,u = 0 =⇒ ∂m|u|

∂mxu
v ≡ 0

}
,

under the inner product

〈v, w〉Hd,m,γ
=

∫
Id

v(x)w(x) dx

+
∑
u⊆[d]
u=∅

γd,u>0

γd,u
−1

∫
Id

∂m|u|

∂mxu
v(x)

∂m|u|

∂mxu
w(x) dx

for all v, w ∈ Hd,m,γ .
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Interpreting 0/0 as 0, we may rewrite this inner product in the simpler
form

(21) 〈v, w〉Hd,m,γ
=
∑
u⊆[d]

γd,u
−1

∫
Id

∂m|u|

∂mxu
v(x)

∂m|u|

∂mxu
w(x) dx

for all v, w ∈ Hd,m,γ .

Let Fd = Hd,mF ,γF and Qd = Hd,mQ,γQ . Here, the weights γF =
{γd,u,F} and γQ = {γd,u,Q} may be different but we have γd.∅,F =
γd,∅,Q = 1. Again, assumption (5) is satisfied; moreover, since
‖1‖Fd

= ‖1‖L2(Id) = 1, we have 1 ∈ BFd.

Recall that, if Q = {Qd}d∈N satisfies the extension property, then
the Fredholm problem is no easier than the L2-approximation problem
for Qd. So what does it take for Q to satisfy the extension property?
The key inequality (10) clearly depends on the weights. For instance,
(10) holds whenever

γd,u,Q ≤ γ2d,u,Q, for all d ∈ N, u ⊆ [d].

As a particularly simple case, this inequality holds when weights γd,u,Q
are independent of d, a case that has been well-studied in many papers
that have dealt with tractability. So although we cannot say that there
is no lack of generality in assuming that the extension property holds,
it is certainly not an unwarranted assumption.

So let us assume that Q satisfies the extension property. What can
we say about the tractability of the Fredholm problem?

The first result is as follows:

If mF > 1 or mQ > 1, then the Fredholm problem is intractable for
the class Λall (and obviously also for Λstd), no matter how the weights
are chosen.

The reason for this is that the L2(I
d)-approximation problem is in-

tractable for Hd,m,γ whenever m > 1, see [24, Theorem 3.1]. This
last result may seem somewhat counter-intuitive, since it tells us that
increased smoothness (i.e., increasing m) is bad. The reason for this
intractability is that ‖ · ‖Hd,m,γ

= ‖ · ‖L2(Id) on the md-dimensional
space Pd.m−1 of d-variate polynomials having degree at most m− 1 in
each variable, which implies that

e(n,APPHd,m,γ
,Λd) = 1, for all n < md,
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and therefore

n(ε,APPHd,m,γ
,Λall) ≥ m d, for all ε ∈ (0, 1).

Thus, in the remainder of this subsection, we shall assume that mF =
mQ = 1, so that

Fd = Hd,1,γF and Qd = Hd,1,γQ .

For simplicity, we only look at families γ of bounded product weights,
which have the form

γd,u,X =
∏
j∈u

γd,j,X , for all u ⊆ [d]

for a non-negative sequence

γd,1,X ≥ γd,2,X ≥ · · · ≥ γd,d,X,

for any d ∈ N. Here X ∈ {F,Q}, which indicates that we may
use different weights for the space sequences F = {Fd}d∈N and Q =
{Qd}d∈N. The boundedness of these product weights means that

M := sup
d∈N

max{γd,1,F , γd,1,Q} < ∞.

It is easy to see that if

γd,j,Q ≤ γ2d,j,Q, for all d ∈ N, j ∈ [d]

then Q satisfies the extension property. In particular, this inequality
holds when the weights γd,j do not depend on d.

We first consider Λall. Since tractability results for the Fredholm
problem are tied to those of the approximation problem, we will use
the results found in [24].

• Strong polynomial tractability. We know that the problem APPF

is strongly polynomially tractable if and only if a positive number τF
exists such that

(22) lim sup
d→∞

d∑
j=1

γτF
d,j,F < ∞.
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Define τ∗F to be the infimum of τF such that (22) holds. Then the
strong exponent for APPF is max{1, 2τ∗F}. The situation for APPQ

is analogous. From Corollaries 3.1 and 3.2, we see that the Fredholm
problem S is strongly polynomially tractable if and only if both (22)
and its analog (with F replaced by Q) hold, in which case the strong
exponent for the Fredholm problem is max{1, 2τ∗F , 2τ∗Q}.
• Polynomial tractability. The problem APPF is polynomially

tractable if and only if a positive number τF exists such that

(23) lim sup
d→∞

1

ln d

d∑
j=1

γτF
d,j,F < ∞.

The situation for APPQ is analogous. From Corollaries 3.1 and 3.2, we
see that Fredholm problem S is polynomially tractable if and only if
both (23) and its analog (with F replaced by Q) hold.

• Quasi-polynomial tractability. If we replace all γd,j,F and γd,j,G
by their upper bound M , then the approximation problem becomes
harder. The latter approximation problem is unweighted with the
univariate eigenvalues λ1 = 1 > λ2 and λj = O(j−2). Therefore, it is
quasi-polynomially tractable (see subsection 4.2). This implies that the
weighted case is quasi-polynomially tractable for any bounded product
weights. Therefore, the Fredholm is also quasi-polynomially tractable.

•Weak tractability. Since the Fredholm problem is quasi-polynomially
tractable, it is also weakly tractable.

We now turn to the case of standard information Λstd. We will use the
results found in [24] for polynomial tractability for the approximation
problem, upon which we will base the polynomial tractability results
for the Fredholm problem.

• Strong polynomial tractability. The problem APPF is strongly
polynomially tractable if and only if

(24) lim sup
d→∞

d∑
j=1

γd,j,F < ∞.

The situation for APPQ is analogous. From Corollaries 3.1 and 3.2,
we see that Fredholm problem S is strongly polynomially tractable if
and only if both ((24) and its analog (with F replaced by Q) hold.
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When this holds, the strong exponents for all three problems lie in
interval [1, 4].

• Polynomial tractability. The problem APPF is polynomially
tractable if and only if

(25) lim sup
d→∞

1

ln d

d∑
j=1

γd,j,F < ∞.

The situation for APPQ is analogous. From Corollaries 3.1 and 3.2, we
see that Fredholm problem S is polynomially tractable if and only if
both (25) and its analog (with F replaced by Q) hold.

At this time, we do not have conditions that are necessary and sufficient
for the approximation problem to be quasi-polynomially tractable or
weakly tractable for standard information. This means that the same
is true for the Fredholm problem.

5. Weighted tensor product spaces. In subsection 4.2, we saw
that the Fredholm problem is not polynomially tractable if either Fd

orQ2d is from a family of unweighted tensor product spaces. However in
subsection 4.3, we saw that our problem can be polynomially tractable
(or even strongly polynomially tractable) if both Fd and Q2d are from
families of weighted Sobolev spaces. This leads us to wonder whether
replacing the unweighted tensor product spaces of subsection 4.2 by
weighted tensor product spaces can render the Fredholm problem
polynomially tractable, or maybe even strongly polynomially tractable.

So with spacesHd,m,γ as a guide, we now give the general definition of
a weighted tensor product space, which captures this idea that different
variables or groups of variables can play different roles. In Section 6, we
will study a modified interpolatory algorithm for the Fredholm problem,
and our analysis of this algorithm will draw heavily on the properties
of weighted tensor product spaces.

Our presentation is based on that found in [10, subsection 5.3], which
should be consulted for additional details.

Let {γd,u}u⊆[d] be a set of non-negative weights. We assume the
following about these weights:

• γd,∅ = 1, and
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• γd,u ≤ 1 for all u ⊆ [d].

• There is at least one nonempty u ⊆ [d] for which γd,u > 0.

Let H1 be defined as in subsection 4.2. That is, H1 is an infinite
dimensional space with e1 ≡ 1 ∈ H1 and ‖e1‖H1 = 1. Let

H̃1 = {f ∈ H1 : 〈f, e1〉H1 = 0}

be the subspace of H1 of functions orthogonal to e1 ≡ 1. We now define

(26) Hd,γ =
⊕
u⊆[d]

H̃1,u,

where H̃1,u = H̃
⊗|u|
1 is the |u|-fold tensor product of H̃1. That is,

v ∈ Hd,γ has the unique decomposition

(27) v(x) =
∑
u⊆[d]

vu(xu), for all x ∈ Id,

where
vu ∈ H̃1,u, for all u ⊆ [d].

Although Hd,γ can algebraically be identified with a subspace of the
space Hd described in subsection 4.2, the spaces Hd and Hd,γ generally
have different topologies. The inner product for Hd,γ is given by

(28) 〈v, w〉Hd,γ
=
∑
u⊆[d]

γd,u
−1〈vu, wu〉Hd

, for all v, w ∈ Hd,γ .

For this to be well-defined, we assume that vu = wu = 0 whenever
γd,u = 0, interpreting 0/0 as 0. (Compare with (21) in subsection 4.3.)
The decomposition (27) tells us that we write v as a sum of mutually
orthogonal functions, each term vu depending only upon the variables
in u. Formula (28) tells us that the contribution made by ‖vu‖Hd

to
‖v‖Hd,γ

is moderated by the weight γd,u.

Let

eα(x) =
d∏

k=1

eαk
(xk), for all x = (x1, x2, . . . , xd) ∈ Id
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for any multi-index α = [α1, α2, . . . , αd] ∈ Nd. Note that, if αk = 1,
then eαk

≡ 1, and so eα does not depend upon xk. Defining

u(α) = {k ∈ [d] : αk ≥ 2},

we may write

eα(x) =
∏

k∈u(α)

eαk
(xk), for all x = (x1, x2, . . . , xd) ∈ Id.

For further details, once again see [10, subsection 5.3].

Let Wd,γ = APP∗
Hd,γ

APPHd,γ
. Defining

eα,d,γ = γ
1/2
d,u(α)eα, for all α ∈ Nd,

we see that {eα,d,γ}α∈Nd is an orthonormal basis of Hd,γ , consisting
of eigenfunctions of Wd,γ , with

Wd,γeα,d,γ = λα,d,γeα,d,γ for all α ∈ Nd,

where

λα,d,γ = γd,u(α)

d∏
k=1

λαk
, for all α ∈ Nd.

Note that all eigenvalues λα,d,γ ∈ [0, 1] since we assumed that all
γd,u ≤ 1 and all λj ≤ 1. Furthermore, infinitely many λα,d,γ are
positive. Indeed, since a nonempty u exists for which γd,u > 0, it is
enough to take indices α such that u(α) = u; since λαk

> 0 for k ∈ [d],
all the λα,d,γ are positive. The condition u(α) = u holds if αk ≥ 2 for
k ∈ u, and αk = 1 for k /∈ u. For a nonempty u, we have infinitely
many such indices α, and therefore, we have infinitely many positive
eigenvalues, as claimed.

In what follows, it will be useful to order the eigenvalues of Wd,γ

in non-increasing order. So we order the multi-indices in Nd as
α[1],α[2], . . . , with

(29) 1 = λα[1],d,γ ≥ λα[2],d,γ ≥ · · · > 0.
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We stress the last inequality in (29) which holds since infinitely many
eigenvalues are positive. This also implies that γd,u(α[j]) > 0.

It will often be useful to write λj,d,γ and ej,d,γ , rather than λα[j],d,γ

and eα[j],d,γ , so that

Wd,γej,d,γ = λj,d,γej,d,γ

with
1 = λ1,d,γ ≥ λ2,d,γ ≥ · · · > 0.

We shall do so when this causes no confusion.

Remark. A sequence of weighted tensor product spaces {Hd,γ}d=1,2,...

defined in this section has the extension property if

γd,u ≤ γ2d,u, for all d ∈ N, u ⊆ [d].

For tensor product spaces, the eigenfunctions ej,2d,γ of W2d,γQ are
related to the eigenfunctions ej,d,γ ofWd,γQ . Indeed, the eigenfunctions
of W2d,γQ have the form

ej,2d,γQ = eα[j],2d,γQ
= γ

1/2
2d,u(α[j]),Qeα[j],

where
α[j] = [(α[j])1, (α[j])2, . . . , (α[j])2d] ∈ N2d

has 2d components. Let

α1[j] = [(α[j])1, (α[j])2, . . . , (α[j])d] ∈ Nd

and
α2[j] = [(α[j])d+1, (α[j])d+2, . . . , (α[j])2d] ∈ Nd.

Since eα[j] = eα1[j] ⊗ eα1[j], we obtain

eα[j],2d,γ = γ
1/2
2d,u(α[j]) eα1[j] ⊗ eα2[j],

eα[j],2d,γ =
γ
1/2
2d,u(α[j])

γ
1/2
d,u(α1[j])

γ
1/2
d,u(α2[j])

eα1[j],d,γ ⊗ eα2[j],d,γ .
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Remark. The fact that weights could sometimes help us vanquish
the curse of dimensionality for Sobolev spaces is what led us to think
about using weighted tensor product spaces for this problem. So it’s
somewhat ironic that weighted Sobolev spaces are not weighted tensor
product spaces. A full discussion is given in [10, subsection 5.4.2]; the
basic idea is that if we were to define an operator Wd,γ,Sob for weighted
Sobolev spaces that is analogous to the operator Wd,γ defined in this
section, we would find that the eigenvalues of Wd,γ,Sob are not of the
same form as the eigenvalues of Wd,γ .

6. Interpolatory algorithm for weighted tensor product
spaces. We now define an interpolatory algorithm whose error for the
Fredholm problem will be expressed in terms of the L2-approximation
errors for Fd and Qd as in Lemma 3.1. Then we analyze the implemen-
tation cost of this algorithm. As we shall see, the implementation cost
will be quite small as long as we use tensor product spaces for Fd and
Qd.

We first specify the spaces as Fd = Hd,γF and Qd = Hd,γQ , where
Hd,γ is defined as in Section 5. This means that γF = {γd,u,F}
and γQ = {γd,u,Q} are sequences of weights for the spaces Hd,γF

and Hd,γQ satisfying the assumptions of Section 5. Note that the
weight sequences γF and γQ may be different, or they may be the
same. Thus, {ej,d,γF }j∈N is an Fd-orthonormal system, consisting of
the eigenfunctions for Wd,γF , and {ej,2d,γQ}j∈N is a Q2d-orthonormal
system, consisting of the eigenfunctions for W2d,γQ . In both cases, the
corresponding eigenvalues λj,d,γF and λj,2d,γQ are ordered.

Let n(F ) and n(Q) be two positive integers. The information about
f will be given as the first n(F ) inner products with respect to
{ej,d,γF }j∈N, and the information about q as the first n(Q) inner
products with respect to {ej,2d,γQ}j∈N. That is, we use the class Λall,
and for (f, q) ∈ BFd ×Qres

2d we compute

Nn(F )(f) =
[〈f, e1,d,γF 〉Hd,γF

, 〈f, e2,d,γF 〉Hd,γF
, . . . ,

〈f, en(F ),d,γF
〉Hd,γF

]T
Nn(Q)(q) =

[〈q, e1,2d,γQ〉H2d,γQ
, 〈q, e2,2d,γQ〉H2d,γQ

, . . . ,

〈q, en(Q),2d,γQ
〉H2d,γQ

]T
.
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Define the orthogonal projection operators

Pn(F ),d,γF
=

n(F )∑
j=1

〈·, ej,d,γF 〉Hd,γF
ej,d,γF

and

Pn(Q),2d,γQ
=

n(Q)∑
j=1

〈·, ej,2d,γQ〉H2d,γQ
ej,2d,γQ .

Knowing Nn(F )(f) and Nn(Q)(q), we know

f̃ = Pn(F ),d,γF
f and q̃ = Pn(Q),2d,γQ

q.

Observe that (f̃ , q̃) ∈ BFd ×Qres
2d . Furthermore, (f̃ , q̃) interpolate the

data, i.e.,

Nn(F )(f̃) = Nn(F )(f) and Nn(Q)(q̃) = Nn(Q)(q).

We define the interpolatory algorithm

AINT
n(F ),n(Q)(f, q) = Sd(f̃ , q̃) for all q(f, q) ∈ BFd ×Qres

2d

as the exact solution of the Fredholm problem for (f̃ , q̃). Lemma 3.1
gives an error bound for AINT

n(F ),n(Q) in terms of the errors of the L2-
approximation problems for Fd and Q2d. As in the proof of Propo-
sition 3.3, we can choose n(F ) and n(Q) to make the approximation
errors for Fd and Q2d be at most (1−M1)ε/2 and (1−M1)

2ε/(2M1),
respectively; this guarantees that the error of AINT

n(F ),n(Q) for the Fred-
holm problem is at most ε.

Our next step is to reduce the computation of ũ = AINT
n(F ),n(Q)(f, q)

to the solution of a linear system of equations. To do this, we will use
the notation and results of Section 5, suitably modified to take account
of the fact that we are dealing with two sequences of weights. Now
αF [j] is the d-component multi-index giving the jth-largest eigenvalue
of Wd,γF and αQ[j] is the 2d-component multi-index giving the jth-
largest eigenvalue of W2d,γQ . Thus,

ej,d,γF = eαF [j],d,γF
= γ

1/2
d,u(αF [j]),F eαF [j]
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and

ej,2d,γQ = eαQ[j],2d,γQ
= γ

1/2
2d,u(αQ[j]),Q eα1,Q[j] ⊗ eα2,Q[j].

Here, α1,Q[j] denotes the first d indices of αQ[j], and α2,Q[j] denotes
the remaining indices of αQ[j], as at the end of Section 5.

We have

〈eα, eβ〉Hd
= δα,β and 〈eα, eβ〉L2(Id) = δα,β λα,

and so the functions {eα}α∈Nd are orthogonal in the unweighted
space Hd, as well as in the space L2(I

d). Since AINT
n(F ),n(Q) is an

interpolatory algorithm, we see that ũ satisfies the equation

ũ =

∫
Id

q̃(·, y) ũ(y) dy + f̃ ,

which can be rewritten as

(30) ũ =

n(Q)∑
j=1

ζj〈eα2,Q[j], ũ〉L2(Id)eα1,Q[j] +

n(F )∑
j=1

θjeαF [j],

with

ζj = 〈q, ej,2d,γQ〉H2d,γQ
γ
1/2
2d,u(αQ[j]),Q

and

θj = 〈f, ej,d,γF 〉Hd,γF
γ
1/2
d,u(αF [j]),F .

This proves that

ũ ∈ En(F ),n(Q) = span
{
eαF [1], eαF [2], . . ., eαF [n(F )], eα1,Q[1] ,

eα1,Q[2], . . ., eα1,Q[n(Q)]

}
.

Note that the elements eαF [j] are orthogonal for j = 1, 2, . . . , n(F ).
Moreover, the elements eα1,Q[j] are orthogonal for different α1,Q[j].
However, two kinds of “overlap” are possible:
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• We might have αF [j] = α1,Q[j
′] for some j ∈ {1, 2, . . . , n(F )} and

j′ ∈ {1, 2, . . . , n(Q)}.
• We might have α1,Q[j] = α1,Q[j

′] for some j, j′ ∈ {1, 2, . . . , n(F )}.
Therefore,

m := dimEn(F ),n(Q) ∈ {n(F ), n(F ) + 1, . . . , n(F ) + n(Q)}.

We remove all redundant eα1,Q[j], as well as all eα1,Q[j] that belong
to span {eαF [1], eαF [2], . . . , eαF [n(F )]}, calling the remaining elements
eα1,Q[l1], eα1,Q[l2], . . . , eα1,Q[lm−n(F )]. Therefore,

En(F ),n(Q) = span {z1, z2, . . . , zm},

where

zj =

{
eαF [j] for j ∈ {1, 2, . . . , n(F )},
eα1,Q[lj−n(F )] for j ∈ {n(F ) + 1, n(F ) + 2, . . . ,m}.

The elements z1, . . . , zm are L2(I
d)-orthogonal, i.e., 〈zj , zk〉L2(Id) = 0

for j �= k, with

‖zj‖L2(Id) =

⎧⎨
⎩

λ
1/2
αF [j],d,γF

for j ∈ {1, 2, . . ., n(F )},
λ
1/2
α1,Q[lj−n(F )],d,γQ

for j∈{n(F ) + 1, n(F ) + 2, . . .,m}.

We know that

ũ =

m∑
k=1

υk zk

for some real coefficients υ1, υ2, . . . , υm. From (30), we conclude that

ũ =
m∑

k=1

υk

( n(Q)∑
j=1

ζj〈eα2,Q[j], zk〉L2(Id) eα1,Q[j]

)
+

n(F )∑
j=1

θjeαF [j].

This leads to the system

(31) (I−K)u = b
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of linear equations, where I denotes the m × m identity matrix, and
the m×m matrix K = [κi,k]1≤i,k≤m is given by

κi,k =

n(Q)∑
j=1

ζj
〈eα2,Q[j], zk〉L2(Id)〈eα1,Q[j], zi〉L2(Id)

〈zi, zi〉L2(Id)

,

with

b =

[
θ1

〈z1, z1〉L2(Id)

,
θ2

〈z2, z2〉L2(Id)

, . . .,
θn(F )

〈zn(F ), zn(F )〉L2(Id)

, 0, 0, . . ., 0

]T
∈ Rm

and

u = [υ1, υ2, . . . , υn(F ), υn(F )+1, . . . , υm]T ∈ Rm.

We can now look at some important properties of K, including the
structure of K and the invertibility of I−K.

Lemma 6.1. Define

I = {αQ[j] = (α1,Q[j],α2,Q[j]) ∈ N2d : 1 ≤ j ≤ n(Q)}.

1. We have

κi,k =

⎧⎨
⎩

ζjλα2,Q[j] if (i, k) = (α1,Q[j],α2,Q[j])

for some j ∈ {1, 2, . . . , n(Q)}
0 if (i, k) /∈ I,

and so the matrix K has at most n(Q) non-zero elements.

2. ‖K‖Lin [�2(Rm)] ≤ M1 < 1.

3. The matrix I−K is invertible, with

‖(I−K)−1‖Lin [�2(Rm)] ≤ 1

1−M1
.
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Proof. For part 1, note that the coefficient κi,k may be nonzero only
if an integer j ∈ [1, n(Q)] exists such that

zi = eα1,Q[j] and zk = eα2,Q[j],

that is, when (i, k) ∈ I. In this case, there is at most one nonzero term
in the sum defining κi,k, since I consists of distinct elements. Then

κi,k = ζj‖eα2,Q[j]‖2L2(Id)

= ζjλα2,Q[j]

= 〈q, ej,2d,γQ〉H2d,γQ
γ
1/2
2d,u(αQ[j]),Qλα2,Q[j].

Obviously, if (i, k) /∈ I then κi,k = 0. Hence, the number of nonzero
coefficients of the matrix K is at most |I| = n(Q), as claimed in part 1.

To see that part 2 holds, we estimate ‖K‖2Lin [�2(Rm)] by the square

of the Frobenius norm
∑m

i,k=1 κ
2
i,k and then apply part 1. Recall that

the L2-approximation is properly scaled for Q, i.e., that λα2,Q[j] ≤ 1
and γ2d,u(α),Q ≤ 1 for all eigenvalues and weights. Thus, we have

‖K‖2Lin [�2(Rn(F ))] ≤
m∑

i,k=1

κ2
i,k

=
∑

(i,k)∈I

κ2
i,k

≤
n(Q)∑
j=1

ζ2j λ
2
α2,Q[j]

=

n(Q)∑
j=1

〈q, ej,2d,γQ〉2H2d,γQ
γ2d,u(αQ[j]),Qλ

2
α2,Q[j]

≤
n(Q)∑
j=1

〈q, ej,2d,γQ〉2H2d,γQ

= ‖Pn(Q),2d,γQ
q‖2H2d,γq

≤ ‖q‖2Q2d
≤ M2

1 < 1,

which proves part 2. Part 3 follows immediately from part 2.
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We now discuss the implementation of the interpolatory algorithm
AINT

n(F ),n(Q), which is equivalent to solving the linear equation (I−K)u =
b. Note that the m × m matrix K is sparse, in the sense that it
has at most n(Q) nonzero elements; moreover, its norm is at most
M1 < 1, independent of the size of m. Therefore, it seems natural to
approximate the solution u via the simple fixed-point iteration

(32)
u(�+1) = Ku(�) + b (0 ≤ � < r),

u(0) = 0.

Letting

u(r) = [υ
(r)
1 , υ

(r)
2 , . . . , υ(r)

m ]T,

we shall write

u
(r)
n(F ),n(Q) =

m∑
k=1

υ
(r)
k zk

for our r-step fixed-point approximation to the exact solution

ũ = AINT
n(F ),n(Q)(f, q) =

m∑
k=1

υkzk.

Let us write
u
(r)
n(F ),n(Q) = AINT

n(F ),n(Q),r(f, q),

calling AINT
n(F ),n(Q),r the modified interpolatory algorithm.

We now analyze the cost of computing ũ = AINT
n(F ),n(Q)(f, q). How

much do we lose when going from the interpolatory algorithm to
the modified interpolatory algorithm? The answer is, “not much,” if
parameter r is properly defined. Let cost (A) denote the overall cost
of an algorithm A for approximating the Fredholm problem, including
the cost of both information and combinatory operations. We shall
make the usual assumption, commonly made in information-based
complexity theory, that arithmetic operations have unit cost and that
one information operation of f and q have a fixed cost cd ≥ 1. Now let

cost (ε, AINT
ε,d ,Λall

d,2d)

= inf
{
cost (AINT

n(F ),n(Q)) : e
(
AINT

n(F ),n(Q),, Sd,Λ
all

d,2d

)
≤ ε
}
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and

cost (ε, AINT-MOD
ε,d ,Λall

d,2d)

= inf
{
cost (AINT

n(F ),n(Q),r) : e
(
AINT

n(F ),n(Q),r, Sd,Λ
all

d,2d

)
≤ ε
}
,

respectively, denote the minimal cost of using the interpolatory and
modified interpolatory algorithms to find an ε-approximation of the
Fredholm problem. That is, we minimize the cost by choosing proper
parameters n(F ), n(Q) and r of the modified interpolatory algorithm,
and the parameters n(F ) and n(Q) of the interpolatory algorithm.

Proposition 6.1.

cost (ε, AINT-MOD
ε,d ,Λall

d,2d) = cd ·Θ
(
n
(
1
2ε, A

INT
ε,d ,Λall

d,2d

)
ln

(
1

ε

))
,

where the Θ-factor is independent of d and ε. Hence, if

(33) n
(
1
2ε, A

INT
ε,d ,Λall

d,2d

)
= O
(
n(ε, AINT

ε,d ,Λall
d,2d)
)

with O-factor independent of d and ε, then

cost (ε, AINT-MOD
ε,d ,Λall

d,2d) = cd ·Θ
(
n
(
ε, AINT

ε,d ,Λall
d,2d

)
ln

(
1

ε

))
.

Proof. Recall that K has n(Q) non-zero elements, see Lemma 6.1.
Hence, each iteration of (32) can be done in Θ(n(F )+n(Q)) arithmetic
additions and multiplications. Thus, the total number of arithmetic

operations needed to compute u
(r)
n(F ),n(Q) will be Θ((n(F ) + n(Q))r).

For a given value of ε ∈ (0, 1), let us choose n(F ) and n(Q) so that
the solution ũ of the interpolatory algorithm satisfies

‖u− ũ‖L2(Id) ≤ 1
2ε.

Obviously, it is enough to choose r such that

(34) ‖ũ− u
(r)
n(F ),n(Q)‖L2(Id) ≤ 1

2ε,
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and then our approximation u
(r)
n(F ),n(Q) ∈ L2(I

d) will satisfy

(35) ‖u− u
(r)
n(F ),n(Q)‖L2(Id) ≤ ε,

as required.

So let’s analyze the convergence of the fixed-point iteration (32).
From Lemma 6.1, we know that

‖K‖Lin [�2(Rm)] ≤ M1 < 1 so that ‖(I−K)−1‖Lin [�2(Rm)] ≤ 1

1−M1
.

Each iteration of (32) reduces the error by a factor of M1, i.e.,

‖u− u(�+1)‖�2(Rm) ≤ M1‖u− u(�)‖�2(Rm) (0 ≤ � < r),

and so
‖u− u(r)‖�2(Rm) ≤ M r

1‖u‖�2(Rm)

= M r
1‖(I−K)−1b‖�2(Rm)

≤ M r
1

1−M1
‖b‖�2(Rm).

Finally, since f ∈ BFd, we have

‖b‖2�2(Rm) =

n(F )∑
j=1

〈f, ej,d,γF 〉2Fd
γd,u(αF [j]),F

≤
n(F )∑
j=1

〈f, ej,d,γF 〉2Fd
= ‖Pn(F ),d,γF

q‖Fd

≤ ‖f‖2Fd
≤ 1,

and thus the previous inequality becomes

‖u− u(r)‖�2(Rm) ≤ M r
1

1−M1
.

Taking

(36) r =

⌈
ln
(
2/(1−M1)

)
+ ln 1/ε

ln 1/M1

⌉
= Θ

(
ln

1

ε

)
,
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we thus have

(37) ‖u− u(r)‖�2(Rm) ≤ 1
2ε.

We now claim that, with r given by (36), we have (34). Indeed, note
that, since the L2(I

d) approximation problem is properly scaled over Fd

and over Qd, we have λαF [j],d,γF
, λα1,Q[lj−n(F )],d,γQ

≤ 1 for all j ∈ N.
Then

‖ũ− u
(r)
n(F ),n(Q)‖2L2(Id) =

m∑
j=1

(υj − υ
(r)
j )2‖zj‖2L2(Id)

=

n(F )∑
j=1

(υj − υ
(r)
j )2 λαF [j],d,γF

+

m∑
j=n(F )+1

(υj − υ
(r)
j )2 λα1,Q[lj−n(F )],d,γQ

≤
m∑
j=1

(υj − υ
(r)
j )2

= ‖u− u(r)‖�2(Rm),

and so
‖ũ− u

(r)
n(F ),n(Q)‖L2(Id) ≤ ‖u− u(r)‖�2(Rm) ≤ 1

2ε,

establishing (34), as claimed.

Since (34) holds, we have our desired result (35). Hence, we have com-
puted an ε-approximation with information cost Θ(cd(n(F ) + n(Q)))
and combinatory cost Θ([n(F ) + n(Q)] ln(1/ε)), and so the result fol-
lows.

Using Proposition 6.1, along with the results in Section 3, we see
that when (33) holds, the modified interpolatory algorithm is within a
logarithmic factor of being optimal. Such is the case when the Fredholm
problem (or, alternatively, the L2-approximation problems APPF and
APPQ) is strongly polynomially tractable or polynomially tractable.
Obviously, the extra factor ln(1/ε) does not change the exponents of
strong polynomial or polynomial tractability.
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ENDNOTES

1. But not always, see [14].

2. In fact, one can take I as a measurable subset of R with a posi-
tive Lebesgue measure and define L2(I) with a weight ρ such that∫
I
ρ(t) dt = 1. We take I = [0, 1] for simplicity.
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