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A DISCRETE GALERKIN METHOD 
FOR FIRST KIND INTEGRAL EQUATIONS 

WITH A LOGARITHMIC KERNEL 

KENDALL E. ATKINSON 

ABSTRACT. Consider the first kind integral equation 

g(Q) log \P - Q\ dS(Q) = h{P), PES 

with S a smooth simple closed curve in the plane. A spe­
cial Galerkin method with trigonometric polynomial approxi-
mants has been shown by other authors to converge exponen­
tially when solving the above integral equation. In this paper, 
Galerkin's method is further discretized by replacing the inte­
grals with numerical integrals. The resulting discrete Galerkin 
method is shown to converge rapidly when the curve S and 
the data h are smooth. The method is also equivalent to a 
discrete collocation procedure with trigonometric polynomial 
approximants. 

1. Introduction. Consider the numerical solution of 

(1.1) [ g(Q)log\P-Q\dS(Q) = h(P)J PeS, 

with S the boundary of a simply-connected planar region D. This 
equation arises in solving the Dirichlet problem for Laplace's equation 
on D, using either a direct or indirect boundary integral equation refor­
mulation of the Dirichlet problem. For this mathematical development 
of (1.1), see [6] or any of many other sources on boundary integral 
equation reformulations of Laplace's equation. 

In this paper, we consider the restricted case that S is a smooth 
boundary curve. For simplicity, assume S has a C°° parameterization 

(1.2) r(5) = (£(*), 7y(*)), 0<S<2TT, 
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344 K.E. ATKINSON 

with 

(1.3) k'OOI^O, 0 < 5 < 2 T T . 

Following the development in [8] or [11], rewrite (1.1) as 

1 f2n 

(1.4) - - / p(s)log\r(t)-r(s)\ds = f(t), 0 < t < 2TT, 
^ Jo 

with 
p(s)=9(r(s))\r'(s)\, f(t) = --h(r(t)). 

7T 

Then decompose (1.4) as 

(1.5) Ap + Bp = f 

with 

(1.6) 
i y2" 

Ap(t) = — , p(s) log 2e- 1 / 2 si sm 
t - s 

ds 

(1.7) 
/»27T 

J5p(t) = / b{t,s)p(s)ds 
Jo 

(1.8) &(<>*) = 
.Iloe|£lfcl*l=ri£il 

- i log|eir ' («) | , 

t — s ^ 2m7T, 

t — s = 2rmr, 

for 772 = 0, ±1 , ±2, The function b is 27r-periodic in both variables, 
and it is C°°. The operator A arises from studying equation (1.1) on a 
circle. 

To have unique solvability of (1.1) or (1.5), we assume that the 
transfinite diameter Cs of the boundary S is not equal to 1; see [11, 
§1] for the definition of transfinite diameter and a discussion of its 
properties. From Cs ^ 1, it follows that if p > 1 and if 

(1.9) 
/ . 

q(Q)ìog\P-Q\dS{Q) = 0, PGS, 
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for some g G LP(S), then g = 0. From [11, §4.1], this ensures solvability 
and uniqueness for (1.1) for all function spaces on S of interest here. 

The eigenfunctions of A are the trigonometric functions, and as 
a consequence, A-1 can be computed explicitly. This result has 
been used in the approximate solution of (1.5) by Galerkin's method 
with trigonometric polynomials as approximating solutions. Such a 
numerical method has been presented and analyzed in [8]. We will 
carry this approach further by analyzing the effect of the numerical 
integration errors that arise in the practical implementation of the 
Galerkin method. 

In §2, some needed notation and function space results are presented, 
and the Galerkin method is given. §3 introduces a discrete Galerkin 
framework for solving (1.5), and the discrete Galerkin method is ana­
lyzed in §4. Numerical examples are given in §5. 

A related paper is [7] in which the discretization of Galerkin's method 
is considered in a quite general setting, although differing from that 
presented here. Other numerical treatments of (1.1) for a smooth 
boundary S are given in [2, 5, 8, and 9]. 

2. Background results. For our discussion of the operator A, we 
quote freely from [11]. Let Hf denote the Sobolev space of functions 

1 °° 
(2.1) f{s) = -= E * 

2TT 
m= — oo 

p(m) = -£= f p(s)e-imsds 
V2Wo 

whose Fourier coefficients satisfy 

I 1/2 

[\P(O)\2+ E M2tlp("0l2] <oo. 
|m|>0 

It is well-known that if t > 1/2, then if* C Cp[0,27r], the 27r-periodic 
continuous functions. 

The operator A of (1.6) can be shown to be equivalent to 

(2.2) M*)~Uo)+£'(m)-
^ L M £ O H 

_ ims 
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where p is given by (2.1). Then 

(2.3) A-.H'^toH«1 

for any real i, and 

(2-4) \\Ap\\t+1 = \\p\\t. 

For the inverse, 

(2.5) A-V(s) = - L [p(0) + £ Hfiimy™ 
V |m|>0 

In addition, 

(2.6) A'1 = -VU + J= -HV + J 

with Vp(t) = p'(t), 

J Pis) = - ^ p ( O ) 

and U, the Hilbert transform: 

nP(s) = 2Ïr" / cot [^~yj ^(a) ̂ a 

For the latter, 

(2.7) H.H* ^Hf is bounded, all t > 0. 

TTie Galerkin method. We give a broad outline of the Galerkin method 
for solving (1.5). Let \n be the space of all trigonometric polynomials 
of degree < n. The dimension of %n is 2n + 1 . For theoretical purposes, 
the most convenient basis for \ n is the set 

(2.8) {e-int,...,e-l\l,é\...,eint}. 

We will often write 

<Pi(t) = eljt-
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In computer programs, it may be faster to use the other standard 
basis, involving sine and cosine functions; but (2.8) is more convenient 
notationally. 

Let Pn denote the orthogonal projection of H° — L2(0, 27r) onto \n\ 

(2.9) (PnP)(t) = ~ £ p(m) imt 

m= — n 

2?r 

p(m) = W.l p{ 

Pnp is simply the truncation of the Fourier series expansion of p(t) given 
in (2.1). It is straightforward to show that Pn is a bounded orthogonal 
projection on L2(0,27r). 

The Galerkin method for solving (1.5) consists of solving 

(2.10) Pn(A + B)pn = Pnf, 
Pn £ Xn-

Since PnA = APn (easily proven), we have the equivalent formulation 

(2.11) (A + PnB)pn = Pnf, pn G L2(0,2TT). 

To analyze the convergence, consider instead the equivalent equation 

(2.12) (/ + PnA-1B)Pn = PnA-1/, 

using A-xPn = PnA'1. 

Because of the smoothness of b(t,s) in (1.8), the operator B is 
compact from H° into if*, for all t > 0. Thus A~XB is a compact 
operator from L2(0, 27r) into L2(0, 27r). Since 

Png^g, all^GL2(0,27r), 

it is straightforward that, on L2(0, 2-zr), 

\\(I -P^A^BW ^ 0 a s n ^ O . 

Combined with the unique solvability of (1.5), we can obtain a conver­
gence theory for (2.12). 
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It can be shown by standard arguments that (I + PnA
 lB) x exists 

and is uniformly bounded for all sufficiently large n, say n > N: 

Wil + PnA^By^l <M <oo . 

For example, see [3]. For convergence, use the identity 

(2.13) p - pn = (I + PnA-lB)-\l - Pn)p. 

Thus if p G L2(0,27r), we have convergence. If p is a smooth function, 
then (I — Pn)p is very rapidly convergent to zero, and thus pn is rapidly 
convergent to p. For a much more extensive analysis, see [8]. 

3. The discrete galerkin method. To understand the need for 
further discretization in the Galerkin method (2.11), consider the linear 
system that must be solved in order to calculate pn. Let 

n 

(3.1) Pn(t) = J2 aieÌJt-
j=-n 

The equation (2.10) says the Fourier coefficients of (A -f- B)pn and / 
must be the same for those of index k = — n , . . . , 0 , . . . , n . This yields 

Jo 

lirai, V ^ r2n f2* 

maxi " 
(3.2) J=-n 

r27T 

f(t)e-iktdt, \k\ < n 
/o 

The integral terms in (3.2) must be evaluated numerically. The numer­
ical integration is to be chosen so that: (1) the resulting solution has 
the same speed of convergence as the original Galerkin solution p n , if 
possible, and (2) the resulting method is efficient of computation time. 

Let Cp[0, 2TT] denote the continuous complex-valued 27r-periodic func­
tions on — oo < t < oo. To evaluate the integral 

Jo 

2?r 

g(t)dt 
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approximate it by the trapezoidal rule 

m m—I 

Tm(f) = h^2"f(tj) = ft £ /(*,.), f G CP[0,2TT], 

3=0 j=0 

with 
2TT ., . „ , 

ft = — , tj=jh, j = 0 , l , . . . , r a . 
m 

The double prime notation on the summation means to halve the 
first and last terms before summing. The following is well-known and 
straightforward to prove. 

LEMMA 1. For any integer k, 

( v r(Jto\-f27r> k = 0(modm) 
[ó'ó) lrn[e j ~ \ 0 , k^O(modm). 

To approximate the integral operator B, use 

2n 

(3.4) Bnp{t) = T2n+i(6(*, -)P(O) = h S 6(*' *i) î) 

with ft = 2?r/(2n + 1), i,- = jft. 

Let 

(/,</) = / f(t)g(t)dt, f,geCp[0,27r] 

Jo 

Introduce a discrete (semi-definite) inner product and associated norm: 

(3-5) (f,9)h = T2n+1(f(-)g(-)) 

(3-6) ||/||fc = vU?)fc 

Using Lemma 1, || • \\h is a norm on Xn- As in [4], introduce a discrete 
orthogonal projection Qn : Cp[0, 2-K) —• %n by 

(3.7) (Qn / , <p)/i = ( / , <p)h, all <p € Xn-
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The definitions (3.5)-(3.7) extend to the case where the number of 
integration nodes is greater than 2n + 1, but we need only the given 
case. See [4] for a more general presentation. 

LEMMA 2. The operator Qn satisfies the following on CP[0,2TT]: 

(1) QÌ = Qn, 

(2) (Qnf,g)h = (f,Qng)h, f,ge Cp[0,2w]; 

(3)||Q„/|U<||/IU; 

(4) Qnf(tj) = f(tj), j = 0 , l , . . . , 2n , f£Cp[0,2n}-

The proofs are straightforward and we omit them. The last property 
says that Qnf is the trigonometric polynomial in \n that interpolates / 
at the points in {to, . . . , hn} or equivalently, {£_ n , . . . , 0 , . . . , tn}. Thus 
Qn is both an approximation to the orthogonal projection operator Pn 

and is the interpolating projection operator. 

Using the basis (2.8), the projection Qn is given by 

n 

Qnf(t) Yl 
(3.8) 3 = -n 

The discrete Galerkin method. We approximate the Galerkin method 
(2.11) by 

(3.9) (A + QnBnWn = Qnf, ^n € CP[0,2TT], 

replacing Pn and B by Qn and Bn, respectively. To obtain a finite 
linear system from which ipn can be calculated, note first that if (3.9) 
is solvable, then 

Atßn = Qn(f - Bn1pn) E Xn-

But A\\)n a trigonometric polynomial in \ n implies ißn is a trigonometric 
polynomial of the same degree, from the definition of A. Thus (3.9) 
can be written as 

(3.10) Qn(A + Bn)^n = Q n / , i)n e Xn-
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Let 
n 

Mt) = J2 /W«) 
j=-n 

Calculate ißn from (3.10), Lemma 1, and the definitions of Qn and An: 

97r ft n 

^ 3 ' n ^ maxjllfcl} + ^ ßj(Bn<Pj,<Pk)h = (f,<Pk)h, \k\ < n 
l ' I IJ j = — n 

No further numerical integrations are needed to set up this linear 
system. 

An alternative to (3.11) is obtained by using the interpolating prop­
erty of Qn: 

(3.12) V ßj \ *j*kln + Bntpjitk)] = f(tk), -n<k<n. 
jt^n L m ax{l , | j |} J 

This system is faster to set up, since the discrete inner products (-,•)& 
are no longer involved. In addition, the systems (3.11) and (3.12) have 
the same condition number if the latter is based on the operator matrix 
norm induced by the Euclidean vector norm on C 2 n + 1 . 

4. Convergence analysis. Rewrite the boundary integral equation 
(1.5) as 

(4.1) (I + A-1B)p = A~1f 

and rewrite the discrete Galerkin equation (3.9) as 

(4.2) (/ + A^QnBnWn = A~1Qnf. 

We regard A~lB as a compact operator on Cp[0, 27r]. The analysis 
of the solvability of (4.2) is carried out by using the framework of 
collectively compact operator approximations. 

THEOREM 3. (i) Assume the boundary curve S has the C°° param­
eterization of (1.2) — (1.3). Then the family {A~1QnBn\n > 1} is 
collectively compact and pointwise convergent on Cp[0, 2TT]. 
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(ii) Assume the integral equation (1.5) is uniquely solvable for all right 
hand sides f G H1. Then, for all sufficiently large n, say n > N, the 
operators I + A~1QnBn are invertible on Cp[0, 2-K] and satisfy 

(4.3) | |(I + A^QnBn)-1]] < M < oo, n > N. 

For the error in the discrete Galerkin solution ipn of (3.9), 

(4.4) ||p-Vn||oo <M{ | |A- 1 ( / -Qn / ) | | oo+ | |A- 1 Bp-A- 1 Q n J5 n p | | 0 0 } . 

The proof of this requires information on trigonometric interpolation. 
The results are not the best possible, but they are sufficient for our 
needs. 

LEMMA 4. For n>\, 

h n 

(4.5) (Qnf)(t) = -J2 Dn(t - t3)f{tj) 
j=—n 

with h = 27r/(2n -hi) and 

,*~\ ^ / x 1 \-^ /, x s in(n-h i )^ 

(4.6) ^ ) = 2 + g C 0 « = ^ k ( p -
which is called the Dirichlet kernel. Moreover, 

(4-7) | | / - Q n / | | o o < W / ) , 

with 

h n 

(4.8) In - max - V \Dn(t - tj)\ = O(logn) 
t TT z—• 

—n 

Pn{f) = p i n | | / - VI loo 

P R O O F . See [12]. 
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To give actual rates of convergence for Qnj', combine (4.7) with 
Jackson's theorem: 

(4-9) />„(/) < ^ | | / ( f c ) |U , n > l , 

with / G Cp[0, 27T], the /c-times differentiable 27r-periodic functions. A 
proof is given in [10]. D 

LEMMA 5. For a given f G Cp[0, 2ir], let Fn(t) denote the partial sum 
of terms of degree < n for the Fourier series of f on [0, 27r]. Then 

(4.10) Fn(t)= / Dn(t-s)f(s)ds 
Jo 

(4.11) \\f - Fn\\x < LnPn(f) 

with 
/>2TT 

Ln = l + / |Ai(u)|du = 0(logn). 

PROOF. See [12]. Fundamental to the proof is the identity P2TT 

Jo 
(4.12) T ( t ) = / Dn(t-s)T(s)ds 

Jo 

for any trigonometric polynomial of degree < n. Then, for any such 
function T(t), 

f{t) - Fn{t) = lf(t) - T(t)] - f " Dn(t - s)lf(s) - T(s)]ds 
Jo 

and 
| | / - i r n | | o o < £ n | | / - T | | 0 0 , 

leading to (4.11). D 

We now consider the derivatives of Qnf for / G Cp[0, 2TT]: from (3.8) 
and (4.5), 

(4.13) (Qnf)'(s) = J2 «Mi8) = \ E °n(t - Witj) 
0<|j|<n j=-n 
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LEMMA 6. Let f € C^[0,2TT]. Then 

(4.14) | | / ' - (Qn/VlU < LnPn(f) + I(n]\\f - Fn 

(4.15) tf^max- £ ^ „ ( t - * ; ) | < 0(n 2 ) . 

PROOF. For T(t), an arbitrary trigonometric polynomial of degree 
< n, 

7 n 

T(t) = - Y, Dnit-t^ntj). 
7j- I ,J 7T 

j = ~n 

Thus 

(4.16) T ' W = ^ E D n ( * - * i ) T ( * i ) 
j = — n 

and 

/(*) - (Qnf)'(t) = [/'(0 - T'(*)] - - È Dn(* - <i)[/(<i) - TX**)]-
j=-n 

Let T = F n . Then 

!/'(<)-(Qn/VWI^I/'W-^WI 
(4.17) A 

+ - E l^n('-*i)ll/(*i)-^(<i)l-
TT • » 
7T 

The last term is bounded by Jn | | / — Fn 11oo- A crude bound for In is 
obtained from 

n 

Djj(w) = — yjfesin(/c^), 
k=l 

\D'n\U<±k=n-^l, 
k = l 
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# > < n ( n + l) . 

It is likely there is a smaller bound, and it would result in a slight 
improvement in our final convergence results. 

For the term \f(t) - Fn(t)\ in (4.17), use (4.10) and the periodicity 
of / and Dn to obtain 

/»Z7T 

Fn(t)= / Dn(s)f(t-s)ds 
Jo 

/•27T /»27T 

Fn(t) = / Dn(s)f'(t -s)ds= Dn(t - s)f(s) ds. 
Jo Jo 

Thus the derivative of the Fourier approximation of degree n is just the 
Fourier approximant of degree n for / ' . Thus 

| | / ' - ^ | | o o < £ n P n ( / ) . 

This proves (4.14). D 

LEMMA 7. Assume f e C*[0, 2TT] with k > 3. Then 

(4.18) i[/'-(Q„/yiioo<Cfclogi!2
+2)n/(fc)iioo. 

PROOF. Combine (4.14)-(4.15) with the Jackson result (4.9) and the 
Fourier series result (4.11). It is likely that this result can be improved 
by finding a sharper bound for In . D 

LEMMA 8. Let I > 1. Assume f G C^[0,2TT]? with k>l + 2. Then 

(4.19) ||/(<) - (Qn/)«||oo < Ck"\gtî2)\\f(k)\\^ 

P R O O F . Just repeat the arguments used in Lemmas 6 and 7. In 
particular, 

fil)(t)-(Qnff\t) = [f(')(t)-Fil\t)}-- J2 DXHt-t^HW-Fnitj)) 
j = -n 
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||/(() - (Qn/)(/)||oc < LnPn(fil)) + WWf - Fn\U 

4 ' ^ m a x ^ J2 \D«\t-t3)\<0{nl+'). 

j = -n 

D 

PROOF OF THEOREM 3. (a). We find an explicit formula for 
Cn = A~1QnBn, analyze its properties, and compare it to C = A~XB. 
Recall from (3.4) that 

2n 

3=0 

Write 

2n 

(4.20) QnBnf(t) = ft]T6n(Mj)/(*j) 

(4.21) bn,8(t) = bn(t, s) = (Qnba)(t), bs(t) = b(t, s). 

For each s, bns G Xn and interpolates bs(t) at t — to, £ i , . . . , t2n define 

2n 

(4.22) Cnf(t) = hY,Cn(t,tj)f(tj) 
J=0 

(4.23) cn<s = A_ 16n , s , cn(£,s) = cn,s(t) 

The function cn,s G Xn? f°r each s. Also define 

(4.24) Cf(t)= f\(t,S)f(S)ds 
Jo 

(4.25) cs = 4 _ 1 6 s , c(£, 5) = cs(t) 
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From the smoothness of ò(t, s), it is straightforward that cs is C°° and 
an element of Hl for all / > 0. 

(b). From Lemmas 4, 7, and 8, we can show that, for all / > 0, 

\dlbn(t,s) dlb{t,s) (4.26) sup 
£,. dtl dtl 0 as n —» oo 

Recall that Cl
p[0, 2TT] C Hl and that convergence in Cl

p implies conver­
gence in Hl,l > 0. Thus (4.26) implies 

(4.27) | | ò n , s -& s | | / ->0as7 i ->oo , / > 0. 

To examine the convergence of {Cn}, use (2.6) to write 

(4.28) cn,s = (-HV + H)b7US = -H{VbJUS) + J6n,6. 

Then 

(4.29) (^.^(O = MM ^ KM 
V27T V27T 

uniformly in s. Next, the result (4.26) implies 

(4.30) sup \\Vb7US - Vbs\\i -+ 0 as n -> oo 

for all / > 0. Combined with (2.7) and (4.27)-(4.30), we have 

(4.31) sup ||cn.s — cs\\i —> 0 as n —>> oo, / > 0. 
s 

(c). To show {Cn} is collectively compact in Cp[0, 27r], we must show 
that the set 

ß = { C „ / | | | / | | 0 O < l } 

is uniformly bounded and equicontinuous. The convergence in (4.31) 
implies the functions in {cn(t, s)\n > 1} are uniformly bounded in (£, s), 
and thus B is bounded. The equicontinuity of B comes from the uniform 
continuity of c(t,s) and the uniform convergence of cn to c. 
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To show pointwise convergence of the family {Cn}, write 

r27r 2n p2ix 2n 

Cf(s)-Cnf(s)= / c(t1s)f(s)ds-hTc(t1tJ)f(tJ) 
Jo 

2n 

+ hY^[c(t,tj)-cn(t,tj)]f(tj) 
j=0 

r2n 2n /»Z7T * ' « -

HCZ-Cn/Hoo^max / c(t,s)f(s)ds-hJ2^tj)f(tj) 
(4.32) ' I J o i=o 

+ 2TT max|c(£, s) - cn(£,s)| 
L t,s J 

The first term on the right side goes to zero by standard arguments on 
the convergence of numerical integration operators. The second term 
goes to zero from (4.31) with I = 1. 

(d). The theory of the solvability of (1.1), given in [11], leads to the 
existence and uniform boundedness of (/ — C ) _ 1 on Cp[0,2-ir] into itself. 
[Recall the assumption involving (1.9)]. The existence and uniform 
boundedness of the inverses (I -f C n ) - 1 , 

(4.33) | | ( / + C n ) - 1 | | < M < o o , 

follows from part (i) and the standard theory of collectively compact 
operator approximations, given in [1]. 

For convergence of the discrete Galerkin method (3.9), rewrite (1.6) 
and (3.9), respectively, as 

(4.34) V + VP-A-'/ 
(I + CM„=A-'Q„f. 
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Subtract and manipulate these equations to get 

(4.35) (I + Cn)(p - 4>n) = A-\î - Qnf] - [C - Cn]p 

(4.36) \\p - ^ „ | U < M\\\A-l[f - Q„/]||oo + ||[C - Cn]p\l 

THEOREM 9. Assume the hypotheses of Theorem 3. Assume f G 
C£[0,2TT] withk>4. Then 

(4-37) | |p_W |Ä<£lg£ 

for all sufficiently large n. 

PROOF. The space C£[0,2?r] C Hk; and it then follows from [11] that 
p G Hk~l. From (4.31), (4.32), and the Euler-MacLaurin formula for 
the error in the trapezoidal numerical integration rule, 

(4-38) | | [ c _ C n ] p | | M < _ _ 

for some c. 

From Lemma 8, Qnf —» / in if2, with 

for some c. Since ^4_1 : H2 —> i / 1 , we have that 

(4.39) | | , i - i [ / - Q n / ] | | 1 < £ ^ f | | A - 1 | | . 

The space H1 is compactly embedded in Cp[0,27r], and consequently 
(4.39) implies the same bound for | | A - 1 [ / — Qn/]||oo-
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5. N u m e r i c a l e x a m p l e . We give only a simple illustration of 
the preceding material. Consider the interior Dirichlet problem for 
Laplace's equation: 

(5.1) 
Au{P) = 0, PeD, 

u(P) = h(P), PeS, 

We represent the solution u as the single layer potential 

(5.2) u(P) = J g(Q) log \P - Q\ dS(P), PeD 

Js 

The unknown density function g is obtained by solving (1.1). 

We give numerical results for the case of the elliptical region 

(5.3) (x,y) = (arcos(£),&rsin(*)), 0 < t < 2TT, 0 < r < 1, 

with a, 6 > 0. Then (1.8) yields 

b(t,s) -h{1+]o*[ 1 + log a sin 
s + t 

+ b cos 
s + ti 

]]} 
After solving the equation (1.5) for the approximate solution ißtn the 
approximate density function gn is given by 

gn(t) = 4'n(t)/\r'(t)\, 0<t<2n, 

as in (1.4). We obtain an approximation un to u by substituting gn into 
(5.2) and numerically integrating. The integral is evaluated with the 
trapezoidal rule T ^ + i? using, as the quadrature nodes, the same points 
{tj} as were used in solving for ij:n. An error analysis for the resulting 
solution un can be given to show tha t the effect of this integration 
preserves the rate of convergence associated with rtpn. 

We give the results of this integration at a selected set of points 
(xj,yj) inside D. In particular, define 

(xjiyj) = ry(acos(7r/4), 6sin(7r/4)), j = 1,2,3,4 

with Tj = 0, .4, .8, .99. The point (#4,2/4) is very close to the boundary 
5 , making the integrand in (5.2) very peaked. The problem being 
solved here has the true solution 

u = e'r cos(y) 
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and we let (a, b) = (1, .4). Table 1 contains the errors in un for selected 
values of the degree n. 

TABLE 1. Errors in un(xj,yj). 

n 

1 

2 

3 
4 

5 

6 

7 

8 

9 

10 

11 
12 

13 
14 

15 

16 

17 

18 

19 

20 

j=l 

1.99E-1 

6.84E-4 

1.21E-3 

-8.02E-5 

1.95E-4 

-6.38E-5 

2.78E-5 

-1.06E-5 

4.23E-6 

-1.66E-6 

6.63E-7 

-2.64E-7 

1.06E-7 

-4.25E-8 

1.71E-8 

-6.94E-9 

2.81E-9 

-1.15E-9 

4.67E-10 

-1.91E-10 

j=2 

5.21E-1 

-1.32E-1 

2.68E-2 

-5.87E-4 

-4.58E-3 

3.91E-3 

-2.04E-3 

7.00E-4 

-7.26E-5 

-1.15E-4 

1.14E-4 

-6.51E-5 

2.45E-5 

-3.32E-6 

-3.79E-6 

4.12E-6 

-2.48E-6 

9.82E-7 

-1.56E-7 

-1.39E-7 

j=3 

6.83E-1 

2.40E-1 

-2.71E-1 

5.40E-2 

6.39E-2 

-5.18E-2 

-5.49E-3 

2.48E-2 

-6.72E-3 

-9.79E-3 

7.85E-3 

1.67E-3 

-4.95E-3 

1.39E-3 

1.99E-3 

-1.64E-3 

-3.37E-4 

1.04E-3 

2.81E-4 

-4.51E-4 

j=4 

7.78E-1 

5.96E-1 

-1.22E-1 

-1.49E-1 

2.06E-1 

1.88E-1 

-1.07E-1 

-5.70E-2 

1.21E-1 

1.06E-1 

-9.11E-1 

-2.96E-2 

8.39E-2 

7.02E-2 

-8.07E-2 

-1.69E-2 

6.34E-2 

5.02E-2 

-7.29E-2 

-9.70E-3 

As can be seen from the table entries, the convergence of un to u 
is quite rapid, in fact, exponential. But as the point of evaluation 
(x,y) becomes closer to the boundary S, the convergence becomes 
significantly worse. In addition, the convergence is also somewhat 
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erratic, making it difficult to predict errors for individual values of 
n and (x,y). 

To improve the accuracy in our approximate potential, we use a more 
accurate numerical integration to evaluate the integral formula defining 
un(P) [formula (5.2) with p(P) replaced by i/jn(P)]. We again integrate 
(5.2) with the trapezoidal rule, but now we use 2q + 1 evenly spaced 
node points on the boundary, with q > n. The results are shown in 
Table 2 for the case of n = 10, with varying values of q. Note that the 
new values of U\Q{P) are much improved over those in Table 1, even 
for only moderately sized values of q. 

TABLE 2. Errors in uio(xj,yj): varying q. 

q 

10 

20 

40 

80 

160 

320 
640 

j=l 

-1.66E-6 

1.23E-9 

1.42E-9 

1.42E-9 

1.42E-9 

1.42E-9 

1.42E-9 

j=2 

-1.15E-4 

-1.38E-7 

1.10E-9 

1.10E-9 

1.10E-9 

1.10E-9 

1.10E-9 

j=3 

-9.79E-3 

-4.51E-4 

-1.85E-6 

1.11E-9 

1.17E-9 

1.17E-9 

1.17E-9 

j=4 

1.06E-1 

-9.70E-3 

2.04E-3 

3.86E-3 

1.35E-3 

-5.29E-5 

3.88E-7 
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Added in proof. A related paper, D. Arnold and R. Cheng, "The 
delta-trigonometric method using the single-layer potential representa­
tion" will appear later. It contains a similar, but different, method, 
with a different method of analysis. 



DISCRETE GALERKIN METHOD 363 

REFERENCES 

1. P. Anselone, Collectively Compact Operator Approximation Theory, 1971, 
Prentice-Hall, Englewood Cliffs, NJ. 

2. D. Arnold, A spline-trigonometric Galerkin method and an exponentially 
convergent boundary integral method, Math of Comp. 4 1 , pp. 383-397. 

3 . K. Atkinson, A Survey of Numerical Methods for Fredholm Integral Equations 
of the Second Kind, SIAM, Philadelphia, 1976. 

4. and A. Bogomolny, The discrete Galerkin method for integral equa­
tions, Math, of Comp. 48, pp. 595-616. 

5. G. Hsiao, P. Kopp, and W. Wendland, A Galerkin collocation method for 
some integral equations of the first kind, Computing 1987 25, pp. 89-130. 

6. M. Jaswon and G. Symm, Integral Equation Methods in Potential Theory and 
Elastostatics, Academic Press, London, 1977. 

7. U. Lamp, K.-T. Schleicher, and W. Wendland, The fast Fourier transform 
and the numerical solution of one-dimensional boundary integral equations, Numer. 
Math. 47, pp. 15-38. 

8. W. McLean, A spectral Galerkin method for a boundary integral equation, 
Math, of Comp. 47, pp. 597-607. 

9. and W. Wendland, Trigonometric approximations of solutions of 
periodic pseudodifferential equations, 1987, submitted for publication. 

10. G. Meinardus, Approximations of Functions, Springer-Verlag, Berlin, 1967. 

1 1 . Y. Yan and I. Sloan, On integral equations of the first kind with logarithmic 
kernels, submitted for publication, 1987. 

12. A. Zygmund, Trigonometric Series, Vols. I and II, Cambridge Univ. Press, 
Cambridge, 1959. 

D E P A R T M E N T O F MATHEMATICS, U N I V E R S I T Y O F IOWA, IOWA C I T Y , IOWA 55242 




