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NUMERICAL SOLUTIONS FOR WEAKLY
SINGULAR HAMMERSTEIN EQUATIONS

AND THEIR SUPERCONVERGENCE

HIDEAKI KANEKO, RICHARD D. NOREN AND YUESHENG XU

ABSTRACT. In the recent paper [7], it was shown that the
solutions of weakly singular Hammerstein equations satisfy
certain regularity properties. Using this result, the optimal
convergence rate of a standard piecewise polynomial colloca-
tion method and that of the recently proposed collocation-
type method of Kumar and Sloan [10] are obtained. Su-
perconvergence of both of these methods are also presented.
In the final section, we discuss briefly a standard product-
integration method for weakly singular Hammerstein equa-
tions and indicate its superconvergence property.

1. Introduction. We consider the Hammerstein equation with
weakly singular kernel

(1.1) ϕ(s) −
∫ b

a

gα(|s− t|)k(s, t)ψ(t, ϕ(t)) dt = f(s), a ≤ s ≤ b,

where

gα(s) =
{
sα−1 for 0 < α < 1
log s for α = 1.

Throughout this paper, we assume that

(i) k ∈ C([a, b] × [a, b])

(ii) ψ ∈ C([a, b] × (−∞,∞)) and satisfies the Lipschitz condition
|ψ(t, y1) − ψ(t, y2)| ≤ A|y1 − y2|.

In the recent paper [7], it was shown that under assumptions (i), (ii)
and

(iii) AG < 1, where G ≡ supa≤s≤b

∫ b

a
|gα(|s− t|)k(s, t)| dt,

there is a unique solution to equation (1.1).

Generalizing the argument of C. Schneider [14], regularity properties
of the solution ϕ were also obtained in [7]. For our present purposes,
these results can be summarized as follows:

Copyright c©1992 Rocky Mountain Mathematics Consortium

391



392 H. KANEKO, R. NOREN AND Y. XU

Theorem A. Let m ∈ N0, where N0 is the set of nonnegative
integers. Let k ∈ Cm+1([a, b] × [a, b]), f ∈ C(0,α)[a, b] ∩ Cm(a, b),
and assume that, for m = 0, 1, ψ ∈ C(0,1)([a, b] × (−∞,∞)) and,
for m ≥ 2, ψ ∈ Cm−1([a, b] × (−∞,∞)). Moreover, assume that
the functions yi(s) ≡ (s − a)i(b − s)if (i)(s), for i = 1, . . . ,m, are
α-Hölder continuous on [a, b]. Then for 0 < α < 1 there exists a
β ∈ [α,m] or for α = 1 there exists β ∈ [1 − ε,m] for any ε ∈ (0, 1)
such that the solution ϕ of (1.1) belongs to Cm(a, b)∩C(0,β)[a, b]. Also,
we have ϕi(s) ≡ (s − a)i(b − s)iϕ(i)(s) belongs to C(0,β)[a, b] for each
i = 1, . . . ,m.

Here C(0,α)[a, b] denotes the class of α-Hölder continuous functions
defined on [a, b]. For most cases, β = α when 0 < α < 1 and
β = 1 − ε when α = 1. Thus we cannot expect the solution to
belong to C1[a, b]. In the terminology of J. Rice [12], we can also say
that ϕ belongs to the class Type (β,m, {a, b}). The results described
in Theorem A parallel the regularity result on the solution of weakly
singular Fredholm equations obtained by Schneider in [14].

The purpose of this paper is two-fold. First, we present a standard
piecewise collocation method and show that the error of its approxima-
tion is O(n−m) where n is the number of breakpoints and m− 1 is the
degree of polynomials used. We also show that there is a superconver-
gence at the collocation points. This is done in Section 2. Second, we
review the collocation-type method of Kumar and Sloan [10] and prove
that their method when applied to equation (1.1) also provides an ap-
proximation whose error is of order O(n−m). With a certain condition
on the set of partition points, a global superconvergence is attained
for the method. This will be presented in Section 3. The results de-
scribed in Sections 2 and 3 are not unexpected since similar results are
available for the Fredholm equations, [15, 18]. Moreover, superconver-
gence results can be obtained by borrowing the arguments from [15]
and [18]. Despite these viewpoints, the results of this paper are new
and the authors believe that they will give useful information toward
solving equation (1.1) numerically. In addition to the aforementioned
papers on weakly singular Fredholm equations, there are many other
notable papers on the subject, see, e.g., [4, 5, 6 and 13].

In order to make this paper self-contained, several known results will
be stated as they are needed. In the final section, Section 4, we make
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a few comments concerning the product-integration scheme applied to
equation (1.1).

2. Piecewise polynomial collocation scheme. Following the
idea of Vainikko and Uba [18] which is based on the result of Rice [12],
for 0 < μ ≤ m, m ∈ N ≡ the set of all positive integers, let q = μ/α.
Also let n ∈ N. Then the breakpoints of our piecewise polynomial
approximation are selected as

ti = a+ ((b− a)/2)(2i/n)q for i = 0, 1, . . . , [n/2](2.1)
ti = (b+ a) − tn−i for i = [n/2] + 1, . . . , n.

Define a sequence {ξi}m
i=1 of points such that 0 ≤ ξ1 < · · · < ξm ≤ 1.

Also, we let

(2.2) tij = ti + ξj(ti+1 − ti), i = 0, 1, . . . , n− 1; j = 1, . . . ,m

so that

ti ≤ ti1 < ti2 < · · · < tim ≤ ti+1, i = 0, 1, . . . , n− 1.

The approach here is to construct the approximate solution ϕn of equa-
tion (1.1) as a piecewise polynomial of degree m− 1 with breakpoints
(2.1).

For each i = 0, 1, . . . , n− 1, let lik denote the Lagrange fundamental
polynomial for the knots {tik}m

k=1, so that

(2.3) lik(σ) =
m∏

l=1
l �=k

(σ − til)
(tik − til)

, ti ≤ σ ≤ ti+1.

We require the approximate solution ϕn to satisfy

(2.4) ϕn(tij) −
∫ b

a

gα(|tij − t|)k(tij , t)ψ(t, ϕn(t)) dt = f(tij),

for i = 0, 1, . . . , n − 1; j = 1, 2, . . . ,m. If ξ1 = 0 and ξm = 1,
then we assume that (2.4) is satisfied only once at the breakpoints.
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For the particular choice of basis functions selected in (2.3), we have
ϕn(t) =

∑m
k=1 aiklik(t), for ti ≤ t ≤ ti+1, i = 0, 1, . . . , n− 1; thus (2.4)

can be written as

(2.5) aij −
n−1∑
p=0

∫ tp+1

tp

gα(|tij − t|)k(tij , t)

· ψ
(
t,

m∑
k=1

apklpk(t)
)
dt = f(tij),

for i = 0, 1, . . . , n− 1 and j = 1, 2, . . . ,m.

In order to describe equations (1.1) and (2.5) in operator form, we
let Ψ(ϕ)(t) = ψ(t, ϕ(t)) and

(KΨ)(ϕ)(s) =
∫ b

a

gα(|s− t|)k(s, t)ψ(t, ϕ(t)) dt.

Moreover, for any continuous function ϕ, Pn denotes the interpolation
projector defined by

(Pnϕ)(s) =
m∑

k=1

ϕ(tik)lik(s), ti ≤ s ≤ ti+1, i = 0, 1, . . . , n− 1.

Then equations (1.1) and (2.5) can be written respectively as

(2.6) ϕ−KΨϕ = f

and

(2.7) ϕn − PnKΨϕn = Pnf.

Let || || denote the norm in L∞ = L∞[a, b]. It is straightforward to
verify that {||Pn||}∞n=1 is bounded (considered as operators on C[a, b])
and that

(2.8) ||Pnϕ− ϕ|| → 0 as n→ ∞, for ϕ ∈ C[a, b],

for our choice of breakpoints, (2.1).
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The following propositions of Vainikko and Uba [18] concerning the
projectors Pn will be used to prove the superconvergence of numerical
solutions at the collocation points.

Proposition V-U-1. If q = μ/α ≥ 1 and μ ≤ m, then ||u−Pnu|| ≤
cn−μ for each u ∈ Type (α,m, {a, b}) where c is a constant.

Proposition V-U-2. If q = μ/α ≥ 1, μ ≤ m and p = 1/α, then
||u − Pnu||p ≤ c(μ)δn for each u ∈ Type (α,m, {a, b}). Here c(μ)
denotes a constant which depends upon μ and

δn =

⎧⎨
⎩
n−m for μ > m/2
n−m(lnn)α for μ = m/2
n−2μ for μ < m/2.

Put Tϕ ≡ KΨϕ + f and Tnϕn ≡ PnKΨϕn + Pnf so that (2.6) and
(2.7) become

(2.9) ϕ = Tϕ

and

(2.10) ϕn = Tnϕn.

We are now in a position to state and prove our first theorem. A proof
is provided for completeness. The reader who is interested in additional
discussion on the solution of nonlinear equations may consult [3, 8 and
19].

Theorem 2.1. Assume that the hypotheses of Theorem A are
satisfied, and for 0 < μ ≤ m, m ∈ N, let q = μ/α. Let ϕ0 ∈ C[a, b] be
an isolated solution of (1.1). Assume that the partial derivative Ψ2 of
ψ with respect to the second variable exists and satisfies

|Ψ2(t, y1(t)) − Ψ2(t, y2(t))| ≤ C|y1(t) − y2(t)| for each t ∈ [a, b].

Then the piecewise polynomial collocation approximation equation (2.10)
has a unique solution ϕn ∈ L∞[a, b] in ||ϕ−ϕ0|| ≤ δ for some δ > 0 and
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for sufficiently large n. Moreover, there is a constant Q, 0 < Q < 1,
and αn such that

sup
||ϕ−ϕ0||≤δ

||(I − T ′
n(ϕ0))−1(T ′

n(ϕ) − T ′
n(ϕ0))|| ≤ Q

and
αn/(1 +Q) ≤ ||ϕn − ϕ0|| ≤ αn/(1 −Q).

Finally,
||ϕn − ϕ0|| = O(n−μ).

Proof. Since Pn is a bounded linear operator, (PnKΨ)′(ψ0) =
Pn(KΨ)′(ϕ0), where

(KΨ)′(ϕ0)(ϕ)(s) =
∫ b

a

gα(|s− t|)k(s, t)Ψ2(t, ϕ0(t))ϕ(t) dt

is valid provided that ψ has the first partial derivative Ψ2 with respect
to the second variable. Since KΨ is a compact operator of L∞[a, b] into
C[a, b], (KΨ)′(ϕ0) is also compact. Now because of (2.8), it is easy to
see that ||Pn(KΨ)′(ϕ0) − (KΨ)′(ϕ0)|| → 0 as n → ∞. From this, one
can conclude that (I − Pn(KΨ)′(ϕ0))−1 = (I − T ′

n(ϕ0))−1 exists and
it is a bounded linear operator for all sufficiently large n, say for all
n ≥ N1.

Now for ||ϕ− ϕ0|| ≤ δ and n ≥ N1, we have

||T ′
n(ϕ) − T ′

n(ϕ0)|| = ||Pn(KΨ)′(ϕ) − Pn(KΨ)′(ϕ0)||

≤ ||Pn|| sup
||ϕ∗||=1

∣∣∣∣
∫ b

a

gα(|s− t|)k(s, t){Ψ2(t, ϕ(t))

− Ψ2(t, ϕ0(t))}ϕ∗(t) dt
∣∣∣∣

≤ ||Pn||GC||ϕ− ϕ̂0|| ≤Mδ,

where M = GC supn ||Pn|| and G is defined as in (iii) of Section
1. Hence, sup||ϕ−ϕ0||≤δ ||(I − T ′

n(ϕ0))−1(T ′
n(ϕ) − T ′

n(ϕ0))|| ≤ Q with
Q ≡ Mδ||(I − T ′

n(ϕ0))−1||. Here we take δ so small that 0 < Q < 1.
Now ||Tn(ϕ0) − T (ϕ0)|| = ||PnKΨ(ϕ0) − KΨ(ϕ0) + Pnf − f || and
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because of (2.8), there exists N2 so that for n ≥ N2, αn ≡ ||(I −
T ′

n(ϕ0))−1(Tn(ϕ0)−T (ϕ0))|| ≤ δ(1−Q). Hence, for n ≥ max{N1, N2},
using Theorem 2 of [17], one can conclude that (2.10) has a unique
solution in ||ϕ−ϕ0|| ≤ δ and the inequalities αn/(1+Q) ≤ ||ϕn−ϕ0|| ≤
αn/(1 −Q) hold. To prove the convergence rate, consider

||ϕn − ϕ0|| ≤ αn

1 −Q

=
||(I − T ′

n(ϕ0))−1(Tn(ϕ0) − T (ϕ0))||
1 −Q

≤ ||(I − T ′
n(ϕ0))−1|| ||Tn(ϕ0) − T (ϕ0)||

1 −Q

=
Q

Mδ(1 −Q)
||PnKΨ(ϕ0) −KΨ(ϕ0) + Pnf − f ||

=
Q

Mδ(1 −Q)
||Pnϕ0 − ϕ0||.

Since Pn is the interpolatory projection defined using the nonuniform
breakpoints (2.1), using the regularity result of the solution ϕ0 of (1.1)
obtained in [7], proposition V-U-1 now enables us to conclude that
||ϕ0 − Pnϕ0|| = O(n−μ).

The next theorem establishes the superconvergence of ϕn to ϕ0 at the
collocation points. This theorem states in part that in order to obtain
the m-th order of accuracy at the collocation points, it is sufficient to
take q = m/2α. Recall that, to achieve the same order of accuracy in
the uniform norm, we must take q = m/α [18].

Theorem 2.2. Let ϕ0 and ϕn be defined as in Theorem 2.1. If
q = μ/α > 1, μ ≤ m, then max0≤i≤n−1

1≤j≤m
|ϕn(tij) − ϕ0(tij)| = O(εn)

where, for 0 < α < 1, εn = δn(lnn)1−α, and for α = 1, εn = δn lnn,
where δn is defined in V-U-2.

Proof. First we need to show that

(2.11) ||ϕn −Pnϕ0|| ≤ c||KΨ(Pnϕ0)−KΨ(ϕ0)|| for some constant c.
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Consider

ϕn − Pnϕ0 = Pn(KΨ(ϕn) −KΨ(Pnϕ0) +KΨ(Pnϕ0) −KΨ(ϕ0))
= Pn(KΨ)′(Pnϕ0 + θ(ϕn − Pnϕ0))(ϕn − Pnϕ0)

+ Pn(KΨ(Pnϕ0) −KΨ(ϕ0))

for some 0 < θ < 1. Hence, 2.11 is obtained. Moreover, using the
Lipschitz condition on ψ, we obtain

||KΨ(Pnϕ0) −KΨ(ϕ0)||
≤ A1||Pnϕ0 − ϕ0|| sup

a≤s≤b

∫
s∈[a,b]
|s−t|≤h

|gα(|s− t|)| dt

+A1||Pnϕ0 − ϕ0||p sup
a≤s≤b

{∫
s∈[a,b]
|s−t|>h

|gα(|s− t|)|p′
dt

}1/p′

where A1 = A supa≤s,t≤b |k(s, t)|, 0 < h < b − a, p = 1/α and
1/p + 1/p′ = 1. Using propositions V-U-1 and V-U-2 and noting that
|ϕn(tij)−ϕ0(tij)| ≤ ||ϕn −Pnϕ0||, for appropriately chosen values of h
(see [18, Proposition 3]), we obtain the desired results.

Example. Consider

ϕ(s) −
∫ 1

0

ϕ2(t)
|s− t|1/4

dt = f(s) 0 ≤ s ≤ 1,

where f is selected so that ϕ(s) = s3/4 is the solution to be approxi-
mated. The collocation points tij are obtained by mapping the Gaus-
sian points (the zeros of Legendre polynomials) into [ti, ti+1] for each
i = 0, 1, . . . , n − 1. We used m = 2 and two different values of q
for comparison, (q = m/2α = 4/3 and q = m/α = 8/3 were used
in the first and second data respectively). In order to obtain the sec-
ond order accuracy of the method in the uniform norm, we must take
q = 8/3 whereas the same order is achieved at the collocation points
with q = 4/3.
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Data 1. (q = 4/3)

n maxtij
|ϕ(tij) − ϕn(tij)| decay exp. ||ϕ− ϕn|| dec. exp.

8 3.16 D-03 1.99 D-02
16 7.96 D-04 1.99 9.41 D-03 1.08
32 1.95 D-04 2.03 4.57 D-03 1.04
64 4.84 D-05 2.01 2.22 D-03 1.04

Data 2. (q = 8/3)

n maxtij
|ϕ(tij) − ϕn(tij)| decay exp. ||ϕ− ϕn|| dec. exp.

8 2.46 D-03 7.46 D-03
16 6.47 D-04 1.92 1.74 D-03 2.10
32 1.47 D-04 2.13 4.06 D-04 2.10
64 3.43 D-05 2.10 9.54 D-05 2.09

||ϕ− ϕn|| was approximated by max{|ϕ(xi) − ϕn(xi)| : xi = i/50 for
i = 0, . . . , 50}.

In the remainder of this section, we make some remarks concerning
the discrete form of equation (2.5) i.e., the form obtained when the
integrals in (2.5) are replaced by some numerical quadrature. Up to
this point, we have paid no attention to the discrete form of equation
(2.5). In many of the practical problems, the integrals involved in
(2.5) must be computed numerically. In order to accomplish this,
it is convenient to utilize some type of product-integration scheme.
Consider the integrals in (2.5),

(2.12)
∫ ti+1

ti

gα(|tij − t|)k(tij , t)ψ
(
t,

m∑
k=1

aiklik(t)
)
dt.

A simple change of variables will transform (2.12) into

ti+1 − ti
2

∫ 1

−1

gα(|tij − ξ(x)|)k(tij, ξ(x))ψ
(
ξ(x),

m∑
k=1

aiklik(ξ(x))
)
dx

where ξ(x) = [(ti+1 − ti)x+ ti + ti+1]/2.

Now we outline the results of I. Sloan [16] in order to demonstrate a
method of approximating the integral in (2.12). Let {xmk}m

k=1 be the
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Chebyshev points and lmr(xmk) = δrk. Then the integral above can be
approximated by

(2.13)
ti+1 − ti

2

m∑
r=1

wmrk(tij , ξ(xmr))ψ(ξ(xmr),
m∑

k=1

aiklik(ξ(xmr))

where wmr =
∫ 1

−1
gα(|tij − ξ(x)|)lmr(x) dx.

Now, for the m-th degree Chebyshev polynomial of the first kind Tm,
we have

(2.14) lmr(x) =
Tm(x)

(x− xmr)T ′
m(xmr)

.

By virtue of the Christoffel-Darboux identity (2.14) becomes

(2.15) lmr(x) =
2
m

[
1
2
+

m∑
k=1

Tk(x) cos kθmr

]
with θmr = (2r−1)/2m.

Using (2.13),

(2.16)
wmr =

2
m

[
1
2
a0 +

m−1∑
k=1

ak cos kθmr

]

with ak =
∫ 1

−1

gα(|tij − ξ(x)|)Tk(x) dx.

For the weakly singular kernel gα(s) = sα−1, 0 < α < 1, a
recurrence relation is available to compute ak in (2.16) efficiently.
See [11 and 16] for more detailed discussion on the subject. If
F (x) ≡ k(tij , ξ(x))ψ(ξ(x),

∑m
k=1 aiklik(ξ(x))) is sufficiently smooth,

e.g., F ∈ Cm[−1, 1], then it is proved [16, Theorem 3] that (2.13)
approximates (2.12) in the order that is consistent with the order of
approximation of ϕ0 by ϕn obtained in Theorem 2.1.

3. Method of Kumar and Sloan. In this section, as an alternative
approach to the standard collocation method described in the previous
section, we present the new collocation-type method of S. Kumar and
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I. Sloan [10] and improve their results by giving the rate of convergence
of numerical solutions. Following the argument given by Schneider in
[15], we are able to provide a global superconvergence result provided
that the partition points {ξj}m

j=1 in (2.2) are chosen properly. In
[10], the following interesting observation was made. If the system of
nonlinear equations (2.5) were to be solved by an iterative scheme, then
the integrals in (2.11) must be computed at each step of the iteration.
To circumvent this difficulty, we let

(3.1) z(s) ≡ ψ(s, ϕ(s)).

Upon substituting (3.1) into (1.1),

(3.2) ϕ(s) −
∫ b

a

gα(|s− t|)k(s, t)z(t) dt = f(s) a ≤ s ≤ b.

Combining (3.1) and (3.2), we obtain

(3.3) z(s) = ψ(s, f(s) +
∫ b

a

gα(|s− t|)k(s, t)z(t) dt).

z is approximated by zn(t) =
∑m

k=1 apklpk(t) for tp ≤ t ≤ tp+1,
p = 0, . . . , n− 1. Using the collocation scheme,

zn(tij) = ψ(tij , f(tij) +
∫ b

a

gα(|tij − t|)k(tij , t)zn(t) dt)(3.4)

for i = 0, . . . , n− 1 and j = 1, . . . ,m,
or equivalently

aij = ψ(tij , f(tij) +
n−1∑
p=0

m∑
k=1

apk

∫ tp+1

tp

gα(|tij − t|)k(tij , t)lpk(t) dt)

(3.5)

for i = 0, . . . , n− 1 and j = 1, . . . ,m.

In this new system of nonlinear equations, the a′ijs are ingeniously
extracted out of the integrals, making the computations of the integrals
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necessary only once throughout the iteration process. Upon computing
aij , the approximation ϕ̄n to ϕ is obtained by

(3.6) ϕ̄n(s) = f(s) +
n−1∑
p=0

m∑
k=1

apk

∫ tp+1

tp

gα(|s− t|)k(s, t)lpk(t) dt.

The convergence of ϕ̄n to ϕ is guaranteed by [10, Theorem 2]. The
convergence rate is given by Kumar and Sloan through the inequality
||z − zn|| ≤ const. ||z − pnz||. Hence, the actual rate of convergence
depends heavily upon the smoothness of z which, for weakly singular
equation (1.1), is not normally in C1[a, b]. The regularity result of
Theorem A now allows us to establish the optimal convergence rate.

Theorem 3.1. Let m ∈ N0, k ∈ Cm+1([a, b] × [a, b]), f ∈ Cm(a, b)
and the functions yi(s) ≡ (s − a)i(b − s)if (i)(s), for i = 0, . . . ,m,
be α-Hölder continuous on [a, b]. Assume that, for m = 0, 1, ψ ∈
C(0,1)([a, b] × (−∞,∞)) and for m ≥ 2, ψ ∈ Cm−1([a, b] × (−∞,∞)).
Let ϕ0, ϕ̄n, z and zn be the solutions of (1.1), (3.6), (3.3) and (3.4),
respectively. Here we assume ϕ0 to be an isolated solution. If 1 is not
an eigenvalue of the compact linear operator (Tw)(s) ≡ Ψ2(s, f(s) +
(Kz)(s))(Kw)(s) defined on C[a, b] with

(Kw)(s) ≡
∫ b

a

gα(|s− t|)k(s, t)w(t) dt, then ||ϕ0 − ϕ̄n|| = O(n−m).

Proof. From [9, Theorem 2], we have

(3.7) ||ϕ0 − ϕ̄n|| ≤ c∗||K(z − Pnz)|| ≤ c∗||K|| ||z − Pnz||
where c∗ is a constant independent of n and ||K|| = supa≤s≤b

∫ b

a
|gα(|s−

t|)||k(s, t)| dt. In [7], it was shown that ϕ ∈ Type (α,m, {a, b}) and that
z ∈ Type (α,m, {a, b}). Since {ti}n

i=0 are selected according to (2.1),
the result of Rice [12] and (3.7) would yield ||ϕ0−ϕ̄n|| = O(n−m) upon
choosing q = m/α or q = m/1 − ε for any ε ∈ (0, 1) in the logarithmic
case.

Our next theorem discusses a global superconvergence of ϕ̄n to ϕ0.
The inequality (3.7) again serves as a critical factor in obtaining this
result.
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Theorem 3.2. Assume that the conditions in Theorem 3.1 are
satisfied. Also with m ≥ 1 assume that M1 ≡ ∫ 1

0

∏m
j=1(ξj − s) ds = 0

where {ξj}m
j=1 are the points used in (2.2). Let ϕ0 be an isolated solution

of (1.1) and, for α ≤ β ≤ m + 1, assume ϕ0 ∈ Type (β,m + 1, {a, b})
or ϕ0 ∈ Type (β − ε,m+ 1, {a, b}) for any ε ∈ (0, β) in the logarithmic
case. Then with q = (α+m+1)/(α+β) and q = (α+m+1)/(α+β−ε)
in the logarithmic case used as the graded exponent in (2.1), we have

(3.8) ||ϕ0 − ϕ̄n|| =
{O(n−m−α) 0 < α < 1
O(n−m−1 lnn) α = 1.

Proof. Arguing as in the previous theorem, z ∈ Type (β,m+1, {a, b})
or z ∈ Type (β − ε,m + 1, {a, b}). For such z, following the proof
of Theorem 3 of Schneider [15], we can establish the following upper
bounds,

|E(gα, z)| ≡
∣∣∣∣
∫ b

a

gα(|s− t|)k(s, t){z(t) − (Pnz)(t)} dt
∣∣∣∣

≤
{
cn−m−α 0 < α < 1

cn−m−1 lnn α = 1,

where c is a constant. Combining this result with the first inequality
in (3.7), we obtain (3.8).

This type of superconvergence arises from the fact that ϕn(= f +
Kzn), being the iterate of zn, has the possibility that it converges
faster than zn. Kumar [9] demonstrates that this superconvergence
does occur under the assumption that z belongs to some Sobolev space.
Such a strong condition on the smoothness of z is not necessary in the
present paper. Now we present examples.

Example 1. Consider the previous example of Section 2,

ϕ(s) −
∫ 1

0

ϕ2(t)
|s− t|1/4

dt = f(s), 0 ≤ s ≤ 1,

where f is selected so that ϕ(s) = s3/4 is a solution. Let en = ||ϕ−ϕ̄n||.
In the first data, q = (α + m + 1)/(α + β) with α = β = 3/4. In



404 H. KANEKO, R. NOREN AND Y. XU

the second data, q = 1 (uniformly spaced breakpoints) is tested for
comparison. In both of these two cases, tij are obtained by mapping
the Gaussian points into [ti, ti+1] for each i = 0, 1, . . . , n − 1. Hence,
M1 = 0. The en’s are estimated as before.

m = 2

n en data-1 decay exp. en data-2 decay exp.
8 4.72 D-03 1.62 D-02

16 9.06 D-04 2.38 6.83 D-03 1.24
32 1.52 D-04 2.57 1.84 D-03 1.92
64 2.43 D-05 2.65 4.96 D-04 1.89

m = 3

8 8.24 D-04 5.27 D-03
16 7.70 D-05 3.42 1.06 D-03 2.31
32 6.57 D-06 3.55 1.64 D-04 2.69
64 5.12 D-07 3.68 2.43 D-05 2.72

Example 2. Consider

ϕ(s) −
∫ 1

0

sinϕ(t)√|s− t| dt = f(s), 0 ≤ s ≤ 1,

where f is selected so that ϕ(s) =
√
s is a solution. In the first data,

q = (α+m+ 1)/(α+ β) with α = β = 1/2 and M1 = 0 (the Gaussian
points are used as in Example 1). In the second data, we used the same
q but M1 
= 0. Namely, for m = 2, ti1 = ti and ti2 = ti+1, and for
m = 3, ti1 = ti, ti2 = (2ti + ti+1)/3 and ti3 = ti+1. In the third data,
the case for q = 1 and M1 = 0 was tested for comparison.

m = 2

n en data-1 dec. exp. en data-2 dec. exp. en data-3 dec. exp
8 5.75 D-03 3.26 D-02 1.43 D-02

16 1.22 D-03 2.23 8.15 D-03 2.00 7.12 D-03 1.00
32 2.52 D-04 2.28 2.01 D-03 2.02 3.15 D-03 1.17
64 4.94 D-05 2.35 5.03 D-04 2.00 1.36 D-03 1.21
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m = 3

n en data-1 dec. exp. en data-2 dec. exp. en data-3 dec. exp
8 9.31 D-04 6.77 D-03 4.04 D-03

16 9.39 D-05 3.31 9.01 D-04 2.91 9.36 D-04 2.11
32 8.77 D-06 3.42 1.13 D-04 2.99 2.32 D-04 2.01
64 8.08 D-07 3.44 1.43 D-05 2.98 5.05 D-05 2.20

4. Production-integration method. In this final section, we
discuss the product-integration method for equation (1.1). Since the
stated results which follow can be proved with minor modifications to
our earlier proofs, we omit the proofs.

Let Pn be the interpolatory projection which was defined in Section
2 with the breakpoints (2.1) and the interpolation points (2.2). The
product-integration method was investigated by Atkinson [1,2] to ob-
tain a numerical solution of the weakly singular second kind Fredholm
integral equation. His results were extended by Schneider in [15] who,
using the graded breakpoints (2.1) of Rice, gave the optimal rate of con-
vergence of the numerical solution. It is straightforward to see that the
product-integration method can be applied to our Hammerstein equa-
tion (1.1). Furthermore, it is evident, from the discussion of Section 3,
that a global superconvergence is possible.

In the product-integration method, we seek a function ϕn, taken usu-
ally as a piecewise polynomial, which satisfies the following equation,
(4.1)

ϕn(s) −
∫ b

a

gα(|s−t|)Pn[k(s, ·)ψ(·, ϕn(·))](t) dt = f(s), a ≤ s ≤ b.

This can be written as

(4.2) ϕn −KαPnΨ̂ϕn = f

where Kα(ϕ)(s) =
∫ b

a
gα(|s− t|)ϕ(t) dt and Ψ̂(ϕ)(t) = k(s, t)ψ(t, ϕ(t)).

Using an argument similar to the one used to prove Theorem 2.1
or using the results from [3 or 19], the following theorem can be
established.

Theorem 4.1. Assume that the hypotheses of Theorem A are
satisfied. Let ϕ0 be an isolated solution of (1.1) and for β ∈ [α,m], ϕ0
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is of Type {β,m, {a, b}) or ϕ0 is of Type (ϕ− ε,m, {a, b}) for any ε ∈
(0, β) in the logarithmic case. Let Ψ2 satisfy the Lipschitz condition as
in Theorem 2.1. Then, with q = m/α or q = m/β−ε in the logarithmic
case, the solution ϕn of (4.2) exists and ||ϕ0 − ϕn|| = O(n−m).

For a result of superconvergence, we obtain

Theorem 4.2. Let the hypotheses of Theorem 3.2 be satisfied. Then
for the solution ϕn of (4.2) and an isolated solution ϕ0 of (1.1), we
have

||ϕ0 − ϕn|| =
{O(n−m−α) 0 < α < 1
O(n−m−1 lnn) α = 1.
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