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THE SOLUTION OF INTEGRAL EQUATIONS
WITH DIFFERENCE KERNELS

D. PORTER

ABSTRACT. This paper investigates integral equations
with difference kernels posed on finite intervals. Formulae re-
lating the solutions of second kind equations corresponding to
particular free terms, including one of the “imbedding” vari-
ety, are derived using straightforward operator manipulation.
These lead to an explicit expression for the solution of the sec-
ond kind equation with a general free term. Some attention
is given to the practically important logarithmically singular
kernel for both first and second kind equations.

1. Introduction. Suppose that the integral equation

(1.1) μφ(x) = f(x) +
∫ ∞

−∞
k(x− t)φ(t) dt, −∞ < x <∞,

has a solution φ for “suitable” given functions f and k. It is not difficult
to verify that this solution is given by

μφ(x) = f(x) +
∫ ∞

−∞
r(x− t)f(t) dt, −∞ < x <∞,

where r satisfies the integral equation

μr(x) = k(x) +
∫ ∞

−∞
k(x− t)r(t) dt, −∞ < x <∞.

This conclusion is valid if, for example, the functions involved are in
L2(−∞,∞).

One of the objectives of this paper is to derive a corresponding result
for the integral equation

(1.2) μφ(x) = f(x) +
∫ 1

0

k(x− t)φ(t) dt, 0 ≤ x ≤ 1.
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430 D. PORTER

That is, an explicit formula for the solution of (1.2) is sought in the
form

(1.3) μφ(x) = f(x) +
∫ 1

0

r(x, t)f(t) dt, 0 ≤ x ≤ 1,

where the resolvent kernel r is determined by versions of (1.2) with
particular free terms f . Since (1.1) can be generally solved by Fourier
transform methods, the expression given above for its solution is of
little practical interest. There is no comparable solution method for
(1.2), however, and (1.3) is consequently of some value. Even if it does
not lead to the exact solution of (1.2) in a particular case, (1.3) gives a
useful insight into the application of approximation methods, by clearly
revealing the structure of the unknown φ.

From a practical point of view, the importance of (1.2) is due mainly
to its association with boundary value problems for partial differential
equations. In this case the kernel k has a particular form which we
shall give some attention to in due course. For the moment the only
assumptions we make are to provide a convenient setting in which to
investigate (1.2).

Let k : [−1, 1] → C be such that k ∈ L2(−1, 1), in which case the
operator K defined by

(1.4) (Kφ)(x) =
∫ 1

0

k(x− t)φ(t) dt, 0 ≤ x ≤ 1,

is a compact operator on L2(0, 1). The compactness follows if k ∈
L1(−1, 1) but we shall need the stronger condition on k for other
reasons. If we further suppose that f ∈ L2(0, 1), we can therefore
consider (1.2) via the equation (μI − K)φ = f in L2(0, 1). The
parameter μ ∈ C can be regarded as assigned and such that μI −K is
invertible, so that there is a unique solution φ ∈ L2(0, 1).

An important part is played in the proceedings by the operator Vα,
where

(1.5) (Vαφ)(x) =
∫ x

0

e−iα(x−t)φ(t) dt, 0 ≤ x ≤ 1, α ∈ R,

by the “reflection operator” U , which is such that

(1.6) (Uφ)(x) = φ(1 − x), 0 ≤ x ≤ 1,
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and by fα, where

(1.7) fα(x) = e−iαx, 0 ≤ x ≤ 1, α ∈ R.

Obviously Vα and U are bounded operators on L2(0, 1), and it easily
follows that V ∗

−α = UVαU and that

(1.8) Vαφ+ V ∗
αφ = (φ, fα)fα, φ ∈ L2(0, 1),

where V ∗
α , the adjoint of Vα, is given by

(V ∗
αφ)(x) =

∫ 1

x

e−iα(x−t)φ(t) dt, 0 ≤ x ≤ 1,

and ( , ) denotes the inner product on L2(0, 1). We shall also need to
use the adjoint of K, defined by

(K∗φ)(x) =
∫ 1

0

l(x− t)φ(t) dt, 0 ≤ x ≤ 1,

where

(1.9) l(x) = k(−x), −1 ≤ x ≤ 1.

It is not difficult to show that, for φ ∈ L2(0, 1),

(VαKφ)(x)+(KV ∗
αφ)(x) =

∫ 1

0

φ(t) dt
∫ x

−t

e−iα(x−t−s)k(s) ds

=
∫ 1

0

φ(t) dt
{
eiαt

∫ x

0

e−iα(x−s)k(s) ds

+ e−iαx

∫ t

0

eiα(t−s)k(−s) ds
}

= (φ, fα)(Vαk)(x)+(φ, Vαl)fα(x), 0 ≤ x ≤ 1,

using the notation of (1.7) and (1.9). Thus, VαKφ + KV ∗
αφ =

(φ, fα)Vαk + (φ, Vαl)fα for φ ∈ L2(0, 1), which, combined with (1.8),
gives

(1.10)
VαAφ+AV ∗

αφ = {μ(φ, fα) − (φ, Vαl)}fα − (φ, fα)Vαk,

φ ∈ L2(0, 1),
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where A = μI−K. This is the central relationship in what follows. Be-
fore proceeding further, however, an explanation is needed concerning
the use of the symbols k and l. In (1.10) and in certain places else-
where in this account, k and l are to be regarded as elements of L2(0, 1)
and they are, therefore, restrictions of the kernel elements k and l used
previously and belonging to L2(−1, 1). As it is always clear from the
context which interpretation of k and l is required, the introduction of
alternative symbols, or of a restriction operator, is not warranted.

The identity (1.10) shows that VαA + AV ∗
α is a rank two operator,

mapping each φ ∈ L2(0, 1) onto the subspace of L2(0, 1) spanned by fα

and Vαk. This feature can be advantageously used in a number of ways.
Here we effectively regard (1.10) as an equation for V ∗

αφ. Inevitably,
the adjoint operator A∗ = μ̄I −K∗ plays a significant part but we do
not need to build it explicitly into a relationship like (1.10) because
an equation involving A∗ can be restated in terms of A. Specifically,
if φ satisfies A∗φ = f then, using (1.4), (1.6) and (1.9), we see that
UAUφ̄ = f̄ , whence A(Uφ̄) = Uf̄ .

The first kind equation given by setting μ = 0 in (1.2) arises often
in practical problems but our results do not apply directly to this
case as the operator K is not invertible. When we examine the first
kind equations in Section 5, it turns out that we need to remove the
limitations of working in the space L2(0, 1). This is not so serious a step
as it may seem for, having derived specific results about equations in
L2(0, 1), it is not a difficult matter to extend them, where appropriate,
to a larger class of equations. This viewpoint, which removes the need
to consider the whole theory in a more general and possibly more
opaque setting, is illustrated by reference to an example.

The equation (1.2) has, of course, been the subject of previous
investigations, prominent among these being the work of Mullikin
and his coauthors. Leonard and Mullikin ([3] and [4]) considered
an equation essentially the same as (1.2) with the kernel having the
particular form

(1.11) k(x) =
∫ ∞

ν

ψ(t)t−1e−|x|t dt,

where 0 ≤ ν <∞ and ψ is nonnegative on [ν,∞) and such that

2
∫ ∞

ν

ψ(t)t−2 dt = 1.
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For different functions ψ the resulting versions of (1.2) arise variously in
neutron transport theory, radiative transfer and other areas. Leonard
and Mullikin derived a method for determining the resolvent corre-
sponding to the kernel (1.11) in terms of the solutions of auxiliary inte-
gral equations. The latter are particularly suited to iterative methods,
having kernels different from (1.11). While this analysis is far-reaching
for the many applications in which the kernel is of the form (1.11), it
produces information more specific than we seek here.

Gohberg and Feldman [1] produce an expression for the resolvent
of (1.2) for any k ∈ L1(−1, 1). They achieve this by considering a
finite dimensional counterpart of (1.2) which involves a Toeplitz matrix.
Having derived a method for calculating the inverse of such a matrix,
they are able to conjecture a corresponding method for finding its
continuous analogue, that is, the inverse of the operator A = μI−K, in
the notation of (1.4). To verify that the correct resolvent does actually
emerge from this process requires considerable intricate manipulation.
The Gohberg and Feldman formula for the resolvent, which extends to
(1.2) the simple structural result given earlier for (1.1), has itself been
extended to the case of matrix-valued kernels by Mullikin and Victory
[5], whose derivation is reminiscent of the Wiener-Hopf solution method
in that it hinges on the use of the Fourier transform.

So far as the basic approach is concerned, the work of Sakhnovich
[7] is most closely related to the material presented here. As part of
a substantial investigation of (1.2), Sakhnovich, using an identity like
(1.10) but with α = 0, derived an explicit solution formula, different
from that of Gohberg and Feldman [1]. Although the present account
has a similar starting point, it proceeds along another, more direct,
route.

The presence of the parameter α provides a natural equation to
consider first, namely, (μI − K)φ = f with f = fα. This equation
is of interest in its own right, being of a type which frequently arises
in wave scattering problems. However, the free term fα can also be
employed to generate any f ∈ L2(0, 1) using Fourier series, and this is
the means by which we construct the Gohberg and Feldman formula
referred to above. This tactic is evidently new even though it is the
direct counterpart for (1.2) of the standard Fourier transform solution
method for (1.1).
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The technique used here is elementary, being based on straightfor-
ward operator manipulation which may well be capable of adaptation
to other integral equations. In addition to the direct, constructive na-
ture of the method, the Fourier series approach reveals a variety of
ways for finding the two functions which together determine the resol-
vent kernel of (1.2). In particular, it transpires that the solution of (1.2)
is usually given explicitly for any f ∈ L2(0, 1) in terms of its solution
with f = fα, for two distinct values of α. In the case of a kernel which
is an even function of its argument, such as (1.11), the solution of (1.2)
with f = fα for only one value of α is normally sufficient to determine
the associated resolvent.

2. The equation (μI − K)φ = fα. Let α ∈ R and denote by φα

the solution of (μI −K)φ = f with f = fα, so that Aφα = fα where
A = μI −K. It is assumed throughout that A does not depend on the
parameter α. A form of reciprocal principle for Aφα = fα is required
before we tackle the first main result.

Lemma 1. Let Aφα = fα in L2(0, 1), where α is a real parameter,
and let β ∈ R. Then eiα(φα, fβ) = eiβ(φβ, fα).

Proof. It was noted in Section 1 that A∗φ = f implies AUφ̄ = Uf̄ ,
where U is the operator defined by (1.6). Suppose that A∗ψα = fα.
Then AUψ̄α = Uf̄α = eiαfα, and so A(Uψ̄α − eiαφα) = 0. Since
AφL = 0 has only the trivial solution, by hypothesis, Uψ̄α = eiαφα

and, therefore, ψα = e−iαUφ̄α.

Now (φα, fβ) = (φα, A
∗ψβ) = (Aφα, ψβ) = (fα, ψβ). Thus,

eiα(φα, fβ) = eiα(fα, e
−iβUφ̄β) = eiα+iβ(φβ, Uf̄α) = eiβ(φβ, fα).

Theorem 1. Let Aφα = fα in L2(0, 1), where α is a real parameter,
let β, γ and δ be real and denote

Gα,β = eiα(α− β)(φα, fβ).

Then
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(i)
Gβ,γφα = ei(γ−α)Gβ,α{I + i(γ − α)Vα}φγ

− ei(β−α)Gγ,α{I + i(β − α)Vα}φβ ,

(ii)
Gα,βGγ,δ +Gα,δGβ,γ = Gβ,δGα,γ .

Proof. Suppose that α, β and γ are distinct real numbers, that at
least one of (φβ, fα) and (φγ , fα) is nonzero, and let

(2.1) Φ = (φγ , fα)φβ − (φβ, fα)φγ .

Since

(2.2) (Φ, fα) = 0,

applying (1.10) to Φ gives

(2.3) VαAΦ +AV ∗
α Φ = −(Φ, Vαl)fα,

which we solve for V ∗
α Φ.

A straightforward calculation reveals that

(2.4) Vαfβ = i(β − α)−1(fβ − fα) = i(β − α)−1A(φβ − φα), α �= β.

Therefore,

VαAΦ = (φγ , fα)Vαfβ − (φβ, fα)Vαfγ

= i(β − α)−1(φγ , fα)A(φβ − φα)
− i(γ − α)−1(φβ, fα)A(φγ − φα),

so that (2.3) can be rewritten in the form

i(β − α)−1(φγ , fα)Aφβ − i(γ − α)−1(φβ, fα)Aφγ +AV ∗
α Φ = CAφα,

where C is some constant. As we are assuming that Aφ = 0 implies
φ = 0, we deduce that

(2.5) Cφα = i(β − α)−1(φγ , fα)φβ − i(γ − α)−1(φβ, fα)φγ + V ∗
α Φ.
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To determine C, note that if δ ∈ R and δ �= α then, by (2.2) and the
first equality in (2.4),

(V ∗
α Φ, fδ) = (Φ, Vαfδ) = −i(δ − α)−1(Φ, fδ).

Using this identity in the equation formed by taking the inner product
of both sides of (2.5) with fδ gives, after substituting for Φ from (2.1)
and gathering together like terms,

(2.6)
C(φα, fδ) = i(δ − β)(β − α)−1(δ − α)−1(φγ , fα)(φβ, fδ)

− i(δ − γ)(γ − α)−1(δ − α)−1(φβ, fα)(φγ , fδ).

By an earlier assumption and Lemma 1, at least one of (φα, fβ) and
(φα, fγ) is nonzero. Taking either δ = β or δ = γ in (2.6) we find, using
Lemma 1 again, that

(2.7) C = −i(β − γ)(γ − α)−1(β − α)−1ei(α−γ)(φβ, fγ).

Substituting for C in (2.5) leads to

(β − γ)ei(α−γ)(φβ, fγ)φα = −(γ − α)(φγ , fα)φβ + (β − α)(φβ, fα)φγ

+ i(γ − α)(β − α)V ∗
α Φ

from which the required expression (i) follows on noting that V ∗
α Φ =

−VαΦ, a consequence of (1.8) and (2.2), replacing Φ by means of (2.1)
and introducing the Gα,β notation. The result in (ii) is immediate
on eliminating C between (2.6) and (2.7) and converting to the given
notation.

We now have to remove the various restrictions which have been
introduced. Suppose first that (with α, β and γ distinct and δ �= α)
both (φβ, fα) and (φγ , fα) are zero. The sequence (f2nπ), n ∈ Z,
is complete in L2(0, 1) and φα �= 0, so there is certainly a β′ ∈ R
such that (φα, fβ′) �= 0, Hence (φβ′ , fα) �= 0, by Lemma 1. Following
through the first part of the proof with β′ replacing β and (φγ , fα) = 0,
one readily finds, on taking δ = β in the equation replacing (2.6), that
(φγ , fβ) = 0. Therefore, (φβ, fα) = 0 and (φγ , fα) = 0 imply that
(φβ, fγ) = 0, showing that (i) and (ii) are identically satisfied in this
case. Now observe that Gα,β + Gβ,α = 0 is implied by Lemma 1 and
that Gα,α = 0. It follows that the results established are identically



SOLUTION 437

satisfied if α = β or α = γ or β = γ or α = β = γ; the result in (ii)
also holds identically for δ = α.

Except in degenerate cases, the formula for φα given in (i) of the
theorem is of the “invariant imbedding” variety in that it determines
φα for any α ∈ R in terms of φβ and φγ , where β and γ are any
distinct real numbers, each different from α. Wave diffraction theory
provides a direct application of the theorem, as the example in Section
5 illustrates. There, and in other cases, the result in (ii) is also found
to be useful.

The feature which makes Theorem 1 immediately useful is that it
relates solutions of the same equation, corresponding to different values
of a parameter. There are ways of expressing the solution of Aφα = fα

in terms of the solutions of two other equations involving the same
operator but different free terms, and some of these can be deduced
from Theorem 1. For example, differentiating the expression (i) with
respect to γ and then setting γ = β results in

(2.8)
(φβ, fβ)φα = ei(β−α){(φβ, fα)φβ

+ i(β − α)(I + i(β − α)Vα)((φβ, fα)χβ − (χβ, fα)φβ)},

where χβ = i∂φβ/∂β. Note that Aφβ = fβ implies Aχβ = i∂fβ/∂β
and that ∂fβ(x)/∂β = −ixfβ(x). Therefore, χβ is the unique solution
of Aχβ = gβ where gβ = xe−iβx, 0 ≤ x ≤ 1. In the case β = 0,
(2.8) gives φα for any α ∈ R in terms of the solutions of Aφ0 = f0
and Aχ0 = g0, the free terms in these equations being f0(x) = 1 and
g0(x) = x, 0 ≤ x ≤ 1.

A formula complementary to (2.8), in which χα is expressed in terms
of φα and φβ , provided α �= β, also follows from (i) of Theorem 1, on
differentiating with respect to γ and then putting γ = α. Other variants
of the theorem can be produced in this fashion or directly, along the
lines used in the proof. However, the most far-reaching result of this
sort, relating solutions of Aφ = f associated with different free terms
f , requires a fresh approach.
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Theorem 2. Let Aψ = k and A∗χ = l in L2(0, 1), where A = μI−K
and μ �= 0, and let Aφα = fα, where α is a real parameter. Then

μφα = eiαbαfα − V ∗
α (aαψ − bαUχ̄)(i)

= aαfα + Vα(aαψ − bαUχ̄),

where aα = 1 + (fα, χ) = 1 + (φα, l) and bα = e−iα(1 + (ψ, fα)) =
e−iα + (φα, Uk̄);

(ii) pα = φ′α + iαφα ∈ L2(0, 1), where φ′α(x) = dφα(x)/dx, and

(β − α)(φα, fβ)ψ = ieiβ(bβpα − bαpβ),
(β − α)(φα, fβ)Uχ̄ = ieiβ(aβpα − aαpβ),

where β ∈ R.

Proof. (i). First note that

(fα, χ) = (Aφα, χ) = (φα, A
∗χ) = (φα, l)

and, referring to the proof of Lemma 1, that

(ψ, fα)=(ψ,A∗e−iαUφ̄α)=eiα(Aψ,Uφ̄α)=eiα(k, Uφ̄α)=eiα(φα, Uk̄).

These equalities confirm that the two expressions given for aα and for
bα do indeed coincide.

Now let

(2.9) Φ = aαψ − bαUχ̄

and observe that, since (Uχ̄, fα) = (Uf̄α, χ) = eiα(fα, χ),

(2.10) (Φ, fα) = eiαbα − aα.

From A∗χ = l we deduce that AUχ̄ = Ul̄. Therefore, AΦ = aαk−bαUl̄
and, applying (1.10) to Φ, yields

Vα(aαk − bαUl̄) +AV ∗
α Φ = {μ(Φ, fα) − (Φ, Vαl)}fα − (Φ, fα)Vαk.
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This reduces to

(2.11) bαVα(eiαk − Ul̄) +AV ∗
α Φ = {μ(Φ, fα) − (V ∗

α Φ, l)}fα

on using (2.10) and the property (Φ, Vαl) = (V ∗
α Φ, l).

A direct calculation shows that Kfα = Vαk+e−iαV ∗
αUl̄ and, by (1.8),

VαUl̄ + V ∗
αUl̄ = (Ul̄, fα)fα = eiα(fα, l)fα. Thus

Kfα = Vαk − e−iαVαUl̄ + (fα, l)fα,

which may be used to form Afα, giving

Vα(eiαk − Ul̄) + eiαAfα = eiα{μ− (fα, l)}fα.

Combining this last equation with (2.11) we find that

AΨ = −{aαμ+ (Ψ, l)}fα,

after using (2.10) and writing

(2.12) Ψ = V ∗
α Φ − eiαbαfα.

We deduce that

(2.13) Ψ = −{aαμ+ (Ψ, l)}φα,

whence {1 + (φα, l)}(Ψ, l) = −aαμ(φα, l). Now aα = 1 + (φα, l)
and, therefore, (Ψ, l) = −μ(aα − 1), showing that (2.13) reduces to
Ψ = −μφα. Using (2.9) and (2.12) we thus arrive at

(2.14) μφα = eiαbαfα − V ∗
α (aαψ − bαUχ̄),

which is one of the required formulae. The alternative expression
given for μφα follows at once from (2.14) because VαΦ + V ∗

α Φ =
(eiαbα − aα)fα, according to (1.8) and (2.10).

(ii). Since (
d

dx
+ iα

)
(V ∗

αφ)(x) = −φ(x)
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almost everywhere in [0, 1], for φ ∈ L2(0, 1), it follows from (2.14) that

μ(φ′α + iαφα) = aαψ − bαUχ̄.

Now φα, ψ and χ are members of L2(0, 1) by hypothesis and so,
therefore, are φ′α and pα = φ′α + iαφα.

Using (2.4), (2.9) and (2.12) we find that

(Ψ, fβ) = (Φ, Vαfβ) − eiαbα(fα, fβ)
= −i(β − α)−1eiβ(aαbβ − aβbα), α �= β.

Therefore, since we know that Ψ = −μφα, we have

(2.15) μ(β − α)(φα, fβ) = ieiβ(aαbβ − aβbα),

which is identically satisfied for α = β.

Finally, we deduce from μpα = aαψ − bαUχ̄ and μpβ = αβψ − bβUχ̄

that
(aαbβ − aβbα)ψ = μ(bβpα − bαpβ)

and
(aαbβ − aβbα)Uχ̄ = μ(aβpα − aαpβ).

The expressions given in the theorem result from these, on using (2.15)
to replace aαbβ − aβbα.

We thus see that the pair ψ, χ and the pair φα, φβ are usually
interchangeable, allowing formulae given in terms of one pair to be
rewritten in terms of the other pair. More precisely, φα and φβ

can always be replaced by ψ and χ; the reciprocal transfer requires
(φα, fβ) �= 0, as well as α �= β.

We saw that for equation (1.1) the resolvent kernel satisfies the given
equation with the free term replaced by the kernel. The significance of
Theorem 2 is that it takes us closer to our aim of finding the parallel
construction for (1.2), by introducing functions ψ and χ which satisfy
equations in which the free terms are the kernel and its adjoint. The
next section fulfills this aim.

3. The equation (μI − K)φ = f . The solution of Aφ = f can be
constructed from the solution of Aφα = fα by a superposition method
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suggested by problems in wave scattering theory, which can often be
formulated as integral equations of the form (1.2). There the free term
fα represents a monochromatic incident wave and φα is the “response”
of the system to that wave. The response to a more general wave is the
appropriate linear combination of the individual modal responses.

To deal with any free term f ∈ L2(0, 1), we use the fact that the
orthonormal sequence (f2nπ), n ∈ Z, is complete in L2(0, 1). Therefore,
we can write f =

∑∞
−∞(f, f2nπ)f2nπ, and the solution of Aφ = f

is given by φ =
∑∞

−∞(f, f2nπ)φ2nπ, where Aφ2nπ = f2nπ. This
construction explains the emphasis given to the equation Aφα = fα

with α ∈ R. In particular, using the first of the representations of φα

in Theorem 2, we see that the solution of Aφ = f can be written in the
form

(3.1) μφ =
∞∑
−∞

(f, f2nπ){b2nπf2nπ − V ∗
2nπ(a2nπψ − b2nπUχ̄)},

the principal virtue of which is that the series can be summed to provide
a closed expression for φ.

To see how the summation is achieved, note that, because a2nπ =
1 + (f2nπ, χ) = 1 + (Uχ̄, f2nπ) and b2nπ = 1 + (ψ, f2nπ), (3.1) can be
arranged as μφ = f + u+ v, where

u =
∞∑
−∞

(f, f2nπ){(ψ, f2nπ)f2nπ − V ∗
2nπ(ψ − Uχ̄)}

and

v =
∞∑
−∞

(f, f2nπ)V ∗
2nπ{(ψ, f2nπ)Uχ̄− (Uχ̄, f2nπ)ψ}.

Now (V2nπ + V ∗
2nπ)ψ = (ψ, f2nπ)f2nπ, by (1.8), and so u =

∑∞
−∞

(f, f2nπ){V2nπψ + V ∗
2nπUχ̄}. Therefore
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u(x) =
∞∑
−∞

(f, f2nπ)
{∫ x

0

e−2nπi(x−t)ψ(t) dt

+
∫ 1

x

e−2nπi(x−t)χ(1 − t) dt
}

=
∞∑
−∞

(f, f2nπ)
{∫ x

0

ψ(x− t)e−2nπit dt

+
∫ 1

x

χ(t− x)e−2nπi(t−1) dt

}
,

giving

u(x) =
∫ x

0

ψ(x− t)f(t) dt+
∫ 1

x

χ(t− x)f(t) dt

for almost all x in [0, 1].

To reduce the corresponding step for v to a concise form, let

F (x, t) = ψ(t)(Uχ̄)(x) − ψ(x)(Uχ̄)(t),

in terms of which we have

v(x) =
∞∑
−∞

(f, f2nπ)
∫ 1

x

ds

∫ 1

0

F (s, t)e−2nπi(x−s−t) dt.

It is not difficult to see that
∫ 1

x

ds

∫ 1

1+x−s

F (s, t)e2nπi(s+t) dt = 0

because the integration domain is symmetric about the line s = t and
F (s, t) = −F (t, s). Hence,

v(x) =
∞∑
−∞

(f, f2nπ)
∫ 1

x

ds

∫ 1+x−s

0

F (s, t)e−2nπi(x−s−t) dt

=
∞∑
−∞

(f, f2nπ)
∫ 1

x

dσ

∫ σ

0

F (1 + x− σ, σ − τ )e−2nπi(τ−1) dτ,
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on making the variable changes σ = 1+x−s and τ = σ−t in succession.
The summation is now trivial and

v(x) =
∫ 1

x

ds

∫ s

0

F (1 + x− s, s− t)f(t) dt.

Reversing the integration order gives

(3.2) v(x) =
∫ 1

0

f(t) dt
∫ 1

max(x,t)

F (1 + x− s, s− t) ds

almost everywhere in [0, 1].

Notice here that, with the aid of (1.8), the original expression for v
can be arranged in the form

v = −
∞∑
−∞

(f, f2nπ)V2nπ{(ψ, f2nπ)Uχ̄− (Uχ̄, f2nπ)ψ}.

This alternative version of v also results if the second representation of
φα in Theorem 2 is used at the outset. Summing it gives

v(x) =
∫ x

0

ds

∫ 1

s

F (1 + s− t, x− s)f(t) dt,

that is,

(3.3) v(x) =
∫ 1

0

f(t) dt
∫ min(x,t)

0

F (1 + s− t, x− s) ds

almost everywhere in [0, 1]. It is not difficult to verify that the inner
integrals in (3.2) and (3.3) are indeed equal.

Gathering together the expressions for u and v and recalling that
μφ = f + u+ v shows that we have established the following result.

Theorem 3. Let Aψ = k and A∗χ = l in L2(0, 1), where A = μI−K
and μ �= 0, and let w : [−1, 1] → C be defined by

w(x) =
{
ψ(x), 0 ≤ x ≤ 1,
χ(−x), −1 ≤ x < 0.
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Then the unique solution of Aφ = f in L2(0, 1) is given by

μφ(x) = f(x) +
∫ 1

0

r(x, t)f(t) dt

for almost all x in [0, 1] where r : [0, 1] × [0, 1] → C is defined by

r(x, t) = w(x− t) +
∫ 1

max(x,t)

{ψ(s− t)χ(s− x)

− ψ(1 − s+ x)χ(1 − s+ t)} ds

= w(x− t) +
∫ min(x,t)

0

{ψ(x− s)χ(t− s)

− ψ(1 − t+ s)χ(1 − x+ s)} ds.

The derivation of this result can be set aside at this stage as a direct
verification is possible, if rather intricate. Gohberg and Feldman [1] of
necessity carry out this verification for the second version of r above;
the first version of r has apparently not been given before.

Alternative forms of the solution of Aφ = f which are perhaps
more revealing as to structure follow from Theorem 3 by noticing that
the operator generated by the kernel r can be expressed in terms of
operators defined by convolutions. By using the two equivalent forms
of r we find that

μφ = f + (S + T ∗ + T ∗S − V ∗W )f

and
μφ = f + (S + T ∗ + ST ∗ −WV ∗)f,

where Sφ = ψ ∗φ, Tφ = χ ∗φ, V φ = (Uψ̄) ∗φ, Wφ = (Uχ̄) ∗φ and the
convolution ∗ is defined by

(ψ ∗ φ)(x) =
∫ x

0

ψ(x− t)φ(t) dt, 0 ≤ x ≤ 1.

S is a bounded operator on L2(0, 1) with ||S|| = ||ψ|| and so on. The
presence of the operator U in V and W means that these operators
represent “convolutions about x = 1.”
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Theorem 2 indicates that the functions ψ and χ needed to construct
the solution of Aφ = f can be found indirectly using φα and φβ

(provided α �= β and (φα, fβ) �= 0) rather than by solving Aψ = k
and A∗χ = l. The solution of Aφ = f is, therefore, determined for any
f by a “suitable” pair φα, φβ . Returning to the relationship with wave
scattering theory, the response of a system to an arbitrary incident wave
can be calculated once its response to two “independent” individual
wave modes is known, if the problem can be represented in the form
(1.2). This connection between the key elements ψ and χ and the “wave
responses” φα and φβ has not previously been given.

There are other indirect ways of finding ψ and χ, of which one needs
to be mentioned since it provides a link with the different approach of
Sakhnovich [7], referred to in Section 1.

Applying (1.10) to ψ, where Aψ = k as before, gives

AV ∗
αψ = {μ(ψ, fα) − (ψ, Vαl)}fα − (1 + (ψ, fα))Vαk

from which we deduce that

(3.4) V ∗
αψ = {μ(ψ, fα) − (ψ, Vαl)}φα − (1 + (ψ, fα))ωα

where ωα satisfies Aωα = Vαk and Aφα = fα as usual. Taking the inner
product with l and solving the resulting equation for (ψ, Vαl) enables
(3.4) to be expressed in the form

(3.5) aαV
∗
αψ = eiαbα(μ+ (ωα, l))φα − μφα − eiαaαbαωα

where the notation of Theorem 2 has been employed. Part (i) of that
theorem also combines with (3.5) to produce

V ∗
αUχ̄ = eiα(μ+ (ωα, l))φα − eiα(fα + aαωα).

Since aα and bα are determined by φα, we see that ψ and χ are given
once φα and ωα are known for any α ∈ R; more exactly, φα, ωα and
their first derivatives are required to provide ψ and χ explicitly.

This approach to the solution of Aφ = f through φα and ωα

generalizes Sakhnovich’s result. His solution formula is based solely
on φ0 and ω0, in the present notation, and the connection of these
functions with others, such as ψ and χ, is not explored in his paper.



446 D. PORTER

Although we are concerned here with integral equations posed on
finite intervals, we can deduce from Theorem 3 the corresponding re-
solvent kernel construction for the Wiener-Hopf type integral equation

(3.6) μφ(x) = f(x) +
∫ ∞

0

k(x− t)φ(t) dt, x ≥ 0.

By transforming (1.2) so that the interval [0, 1] on which that equation
holds maps onto [0, a], redefining the dependent variables suitably and
formally taking the limit a → ∞, Theorem 3 shows that if (3.6),
interpreted as an equation in L2(0,∞), has a solution, it is given by

μφ(x) = f(x) +
∫ ∞

0

r(x, t)f(t) dt

(for almost all x ≥ 0). In this case,

r(x, t) =
∫ min(x,t)

0

ψ(x− s)χ(t− s) ds+
{
ψ(x− t), x > t
χ(t− x), t > x

}
,

ψ and χ satisfying the counterparts in L2(0,∞) of

μψ(x) = k(x) +
∫ ∞

0

k(x− t)ψ(t) dt, x ≥ 0,

and
μ̄χ(x) = k(−x) +

∫ ∞

0

k(t− x)χ(t) dt, x ≥ 0,

respectively. This representation of the solution of (3.6), which can be
confirmed directly, was given by Krein [2].

4. The kernel g(|x − t|). We now consider the case in which
k(x) = k(−x) so that we can write

(4.1) k(x) = g(|x|), −1 ≤ x ≤ 1,

where g : [0, 1] → C is such that g ∈ L2(0, 1), thus obtaining
information about a commonly occurring equation of the type (1.2),
namely,

(4.2) μφ(x) = f(x) +
∫ 1

0

g(|x− t|)φ(t) dt, 0 ≤ x ≤ 1.



SOLUTION 447

To avoid a wholesale change of notation we continue to use the
operator K, defined for the purposes of this section by

(4.3) (Kφ)(x) =
∫ 1

0

g(|x− t|)φ(t) dt, 0 ≤ x ≤ 1.

Even though A = μI−K is not self-adjoint in these new circumstances,
as μ is not necessarily real nor is g necessarily real-valued, some
significant simplifications of the earlier theory follow from (4.1). This
is because A now satisfies A = UAU , so that Aφ = f implies
A∗φ̄ = f̄ , and because l = k̄, by (1.9). An immediate consequence
of these relationships is that the elements ψ and χ of L2(0, 1) arising
in Theorems 2 and 3 are now related by

(4.4) χ = ψ̄.

Further, A∗ψα = fα implies Aψ̄α = f̄α = f−α and, therefore,
ψ̄α = φ−α. But from the proof of Lemma 1 we recall that ψα = eiαUφ̄α,
and so the solutions of Aφα = fα are such that

(4.5) φ−α = eiαUφα.

Modified versions of Theorems 1, 2 and 3 follow if (4.1) applies.
Choosing γ = −β in Theorem 1(i), and using (4.5), leads to

(4.6)
2βeiα(φβ, f−β)φα = (β − α)(φβ, fα)(I − i(β + α)Vα)Uφβ

+ (β + α)(Uφβ, fα)(I + i(β − α)Vα)φβ,

giving φα for any α ∈ R in terms of φβ only, provided β �= 0 and
(φβ, f−β) �= 0. However, φα cannot be determined for α �= 0 in terms
of φ0 alone; a knowledge of χ0 is also required, in the notation of (2.8),
even if (4.1) holds.

Letting β = −α in Theorem 2(ii) and using (4.1) and its consequences
leads to

(4.7) 2iα(φα, f−α)ψ = aαpα + bαUpα,

where pα = φ′α+iαφα, aα = 1+(φα, ḡ) and bα = e−iα+(φα, Uḡ). Thus,
ψ can be determined using any φα, other than φ0, if (φα, f−α) �= 0.
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Conversely, from Theorem 2(i) and (4.4), φα is expressed in terms of ψ
for any α ∈ R by

(4.8) μφα = aαfα + Vα(aαψ − bαUψ),

where the alternative versions aα = 1 + e−iα(Uψ, fα) and bα =
e−iα(1 + (ψ, fα)) are now required.

Adapting Theorem 3 to (4.2), regarded as defining an equation in
L2(0, 1), produces it solution in the form

μφ(x) = f(x) +
∫ 1

0

r(x, t)f(t) dt

(almost everywhere in [0, 1]), where

(4.9)

r(x, t) = ψ(|x− t|) +
∫ 1

max(x,t)

{ψ(s− t)ψ(s− x)

− ψ(1 + x− s)ψ(1 + t− s)} ds

= ψ(|x− t|) +
∫ min(x,t)

0

{ψ(x− s)ψ(t− s)

− ψ(1 − x+ s)ψ(1 − t+ s)} ds.

We have shown, therefore, that μφ = f + Kφ, with K defined by
(4.3), is solved for any f ∈ L2(0, 1) once ψ is known. Several ways of
obtaining ψ present themselves, in addition to the direct one of solving
μψ = g +Kψ. One alternative is offered by (4.7) which requires that
φα and φ′α be determined from μφα = fα +Kφα for some α �= 0 such
that (φα, f−α) �= 0. Other routes to ψ are less attractive because they
require solutions of two auxiliary equations rather than just one. Thus,
(2.8), with β = 0, and (4.7) show that ψ is given in terms of φ0 and
χ0, and (3.5) relates ψ to φα and ωα.

Having derived this collection of methods for solving μφ = f + Kφ
in L2(0, 1), we address the issue of translating our results into more
concrete terms, applicable to (4.2).

First note that, as (Vαφ)(x) is the convolution of the continuous
function fα with φ, it is continuous for x ∈ [0, 1], for any φ ∈ L2(0, 1).
It follows from (4.8) (assuming μ �= 0) that φα(x) is also continuous
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for x ∈ [0, 1]. Moreover, the quantities aα and bα are related to
particular values of φα(x), for aα = 1 + (φα, ḡ) = μφα(0) and bα =
e−iα +(φα, Uḡ) = μφα(1). (These properties of φα hold whether or not
the kernel k satisfies (4.1).)

We also deduce from (4.8) that

(4.10) μ(φ′α(x) + iαφα(x)) = aαψ(x) − bαψ(1 − x),

the equality holding almost everywhere in [0, 1]. More useful informa-
tion about φ′α and ψ only follows if we are more precise about the kernel
g. To give an example, suppose that

(4.11) g(x) = log x+ h(x),

where h is a continuous function in [0, 1]. As mentioned in Section 1,
integral equations of the type under consideration here often arise in
connection with boundary value problems and (4.3) with (4.11) gives
the typical structure of the operator in such a case, when the underlying
boundary value problem is two-dimensional.

It is not difficult to show that, with g given by (4.11), the function
(Kφ)(x) defined in (4.3) is continuous for x ∈ [0, 1], for each φ ∈
L2(0, 1). If μ �= 0, therefore, μφ = f + Kφ implies that “φ is as
continuous as f .” In particular, the solution ψ of

(4.12) μψ(x) = g(x) +
∫ 1

0

g(|x− t|)ψ(t) dt, 0 ≤ x ≤ 1,

is continuous for x ∈ (0, 1] and behaves like μ−1 log x near x = 0. Thus,
the resolvent kernel r given by (4.9) is logarithmically singular at x = t;
in fact,

r(x, t) = μ−1 log |x− t| +m(x, t),

where m is a continuous kernel. This implies that the solution of (4.2)
has the form μφ = f+μ−1Kf+Tf , T being generated by a continuous
kernel.

Returning to (4.10), the properties of ψ deduced from (4.11) mean
that φ′α(x) is continuous for x ∈ (0, 1) and behaves like μ−1aα log x =
φα(0) log x near x = 0 and like −μ−1bα log(1 − x) = −φα(1) log(1 − x)
near x = 1.
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Deductions such as those we have made on the basis of (4.11), which
are valuable when approximation methods have to be implemented,
also follow for other forms of g (for example, g(x) = x−ν + h(x) where
0 < ν < 1/2) and for the more general equation (1.2) if the structure
of the kernel k is given.

5. First kind equations. Under the assumptions made in Section
1, the operatorK defined by (1.4) is not invertible, and it is not possible
to discuss the first kind equation Kφ + f = 0 in general terms on the
basis of the results derived so far. A specific example helps to focus
attention on the issues raised by first kind equations.

Let φα satisfy

(5.1) (K0φα)(x) = −e−iκx cos θα , 0 ≤ x ≤ 1,

where

(K0ψ)(x) =
1
2
πi

∫ 1

0

H
(1)
0 (κ|x− t|)φ(t) dt, 0 ≤ x ≤ 1,

H
(1)
0 denoting the zero order Hankel function. The equation (5.1)

arises, for instance, in connection with the diffraction of a plane water
wave through a gap in a straight, purely reflecting breakwater. The
nondimensionalized wavenumber κ > 0 may be regarded as fixed,
and θα ∈ [0, π] is the angle which the incident wave makes with the
breakwater.

The operator K0 is an example of a type considered in Section 4,
namely,

(5.2) (Kφ)(x) =
∫ 1

0

{log(|x− t|) + h(|x− t|)}φ(t) dt,

where h is continuous in [0, 1]. In this section we shall restrict attention
to an operator K of the form (5.2), having already noted its importance
in practical problems. As remarked in the last section, Kφ is continuous
in [0, 1] for any φ ∈ L2(0, 1). Therefore, Kφ + f = 0 certainly has no
solution in L2(0, 1) if f is not continuous in [0, 1], and, in particular, the
first kind counterpart of (4.12), Kψ+g = 0, has no solution in L2(0, 1).
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This rules out an attempt to construct a formula for the resolvent of a
first kind equation along the lines previously employed, at any rate in
L2(0, 1).

One remedy is to recast the whole development in a wider setting
with the prospect of producing a theory of greater generality than we
have given here. There are, however, more immediate ways of salvaging
from existing material results of interest in practical problems, where
the extra generality required is usually of a quite specific nature and can
be accommodated without undue sophistication. Having used L2(0, 1)
to provide a straightforward, secure framework in which to generate
results, we can extend these by ad hoc means.

Equation (5.1) offers a means of illustrating this point of view. It is
an example of Kφα +fα = 0 if we make the identification α = κ cos θα,
so that |α| ≤ κ and varying α corresponds to varying the incident angle
θα with κ fixed. (Note that α = 0 corresponds to the incident angle
θ0 = π/2.) The question of whether Theorem 1 applies to (5.1) is,
therefore, a matter of practical interest. From the underlying wave
diffraction problem one can show that (5.1) has one and only one
physically acceptable solution which is of the form

(5.4) φα(x) = x−1/2(1 − x)−1/2φ̃α(x), 0 < x < 1,

where φ̃α is continuous in [0, 1] and is nonvanishing at the ends of this
interval. Obviously, φα is not in L2(0, 1) and we cannot use the results
of Theorem 1 without further investigation.

The structure (5.4) is typical of the solution of Kφα + fα = 0, when
K is given by (5.2), suggesting that we should explore the validity of
the formulae in Theorem 1 for such first kind equations, considering
functions of the form

φ(x) = x−1/2(1 − x)−1/2φ̃(x), 0 < x < 1,

where φ̃ is continuous in [0, 1]. We let E denote the space of such
functions and adopt the understanding that Vα and K, defined by
(1.5) and (5.2), respectively, now denote operators on E; it is a
straightforward matter to show that both Vαφ and Kφ are continuous
in [0, 1] for φ ∈ E. We continue to use the notation (φ, ψ), now merely
as a shorthand for

∫ 1

0
φ(x)ψ(x) dx = 0.
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Let φ ∈ E be such that (φ, fα) = 0 and write Ψ = Vαφ. Then Ψ is
continuous in [0, 1], Ψ(0) = 0 and (since (φ, fα) = 0) Ψ(1) = 0. Also,
Ψ′ + iαΨ = φ, so Ψ′ ∈ E. An integration by parts using (5.2) shows
that KΨ′ = (KΨ)′. Hence,

VαKφ = VαK(Ψ′ + iαΨ)
= Vα{(KΨ)′ + iα(KΨ)}
= KΨ + Cfα,

where C(= −(KΨ)(0)) is a constant. We have, therefore, established
that

(5.5) VαKφ−KVαφ = Cfα

for all φ ∈ E such that (φ, fα) = 0. The identity (5.5) is a special case
of (1.10), applying to a different class of functions and a particular type
of operator.

Now suppose that the solution of Kφα + fα = 0 is in E, and let

Φ = (φγ , fα)φβ − (φβ, fα)φγ ,

where β and γ are distinct real numbers, so that Φ ∈ E and (Φ, fα) = 0.
Starting from (5.5) applied to Φ, we can now derive the two formulae
of Theorem 1, the required construction being almost identical to that
given in the proof of that theorem.

Therefore, both elements (i) and (ii) of Theorem 1 hold for the first
kind equation Kφα + fα = 0 for K of the form (5.2), if the equation
has a solution in E. In particular, the solution of (5.1) for any incident
angle θα is given in terms of the solutions for any two different angles
θβ and θγ , provided (φα, fβ) �= 0.

Further, it was shown in Section 4 that the solution of the second
kind equation μφα = fα+Kφα satisfies φ−α = eiαUφα when K has the
form (4.3). This property holds with μ = 0 and, in particular, applies
to (5.1). Thus, the solution of (5.1) also satisfies the special version
(4.6) of Theorem 1(i). We, therefore, require the solution of (5.1) for
only one incident angle, θβ, in order to determine its solution for any
other incident angle, as long as θβ �= θ0(= π/2) and (θβ, f−β) �= 0.
This generalizes “imbedding formulae” obtained previously for (5.1) by
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Williams [8] and by Porter and Chu [6] and constructed by methods
which produced only the θβ = 0 (that is, β = κ) case.

The solution of (5.1) for θβ = θ0 does not generate the solution
for any other angle on its own. As noted after (4.6), two auxiliary
equations have to be solved in this case. This makes sense in terms
of the diffraction problem because θβ = θ0 corresponds to normally
incident waves, and the associated solution φ0 of (5.1) contains no
information about the behavior of a transverse wave component which
is present for every other incident angle.

In the context of (5.1) the quantity (φγ , fδ) is sometimes called the
diffraction coefficient; it is a measure of the far-field amplitude and
phase of the diffracted wave field at an angle θγ for a wave incident
at angle θδ. From this interpretation we infer that the vanishing of
(φγ , fδ) is exceptional and that formula (ii) of Theorem 1 can also be
usefully employed in relation to (5.1). Putting α = −β in that formula
and using φ−β = eiβUφβ , we find that
(5.6)
2β(γ − δ)eiγ(φβ, f−β)(φγ , fδ) = (β − γ)(β + δ)eiγ(φβ, fγ)(φβ, f−δ)

− (β − δ)(β + γ)eiδ(φβ, fδ)(φβ, f−γ).

Hence, the diffraction coefficient (φγ , fδ) may be calculated for any field
angle θγ and any different incident angle θδ using only the solution of
(5.1) for one angle θβ, provided θβ �= θ0 and (φβ, f−β) �= 0. Formula
(5.6) generalizes one given by Porter and Chu [6]. The saving which
it and the formula (4.6) offer when numerical solutions of (5.1) are
determined is clearly significant.

We finally note that the adaptation of Theorem 1 to (5.1) can be
carried further. Hardly any extra effort is needed to deal with equations
whose solutions are known to be continuous in (0,1), integrable on [0, 1]
and which have end-point singularities stronger than inverse square
roots.
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