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ABSTRACT. We present a spline collocation method for
the numerical solution of a system of integral equations on
a polygon in R2. This integral equation arises if one solves
the first boundary value problem for the Lamé equation with
a double layer potential. The derivation and the analysis of
the integral equation is given in detail. The optimal order of
the spline collocation method is proved for sufficiently graded
meshes.

1. Introduction. In this paper we consider a collocation method
for the approximate solution of a boundary integral equation for the
first boundary value problem for the Lamé equation in Ω ⊂ R2, see
[15]. We assume that the domain Ω has a polygonal boundary Γ.

To derive the integral equation of the second kind we use a double
layer potential and the pseudostress tensor, see [14, 12]. The resulting
integral equation takes the form, see Section 2,

(1.1) B�u := (I +K)�u = �f,

where the elastic double layer potential operator K is given by

(1.2) K�u(x0) = − 1
π

∫
Γ

[
(x0 − y) · ny

‖x0 − y‖2

(
(1− ω̄)I2×2

+ 2ω̄
(x0 − y)(x0 − y)T

‖x0 − y‖2

)
�u(y)

]
dsy, x0 ∈ Γ.
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Here ny denotes the exterior normal to Γ at the point y, I2×2 is the
2× 2 unit matrix, and

(1.3) ω̄ = (λ + μ)/(λ + 3μ),

λ, μ being the Lamé constants. Note that the kernel of K has only fixed
singularities at the corners. Local to each corner, the operator (1.2)
may be interpreted as a 4 × 4 system of Mellin convolution operators,
see Section 3. The integral operator (1.2) is not compact in the case of
a polygonal boundary so the standard theory for collocation methods
does not apply here. To the authors’ knowledge this special boundary
integral equation is used here for the first time to approximate the
solution of the Lamé equation in polygonal domains. In order to prove
that the boundary integral equation always has a solution we first have
to show some properties of the double layer potential, and here we
imitate the proofs of Costabel [4].

To analyze the integral equation we first localize the integral operator
(1.2) around each corner and show the Fredholm property and the
existence of the inverse for these localized operators. Related results
were obtained in the papers [19, 20] and [16]. With this result we can
prove the unique solvability of the integral equation on the polygon. We
also prove a regularity result for the solutions of the integral equations,
and this shows that the use of higher order splines makes sense.

We use continuous splines of any order and graded meshes to get
the optimal order of convergence. In order to show the stability of
our method we have to modify the spline space in the vicinity of
each corner. This technique is well known. In [5, 17] it is used for
the solution of integral equations of the second kind with noncompact
integral operators, and in [3, 7] this technique is applied to the solution
of the Laplace equation in polygonal domains. The proof of stability
relies on the stability of the finite section method for systems of Wiener–
Hopf operators [10]. However, in contrast to the corresponding scalar
integral equation for the Laplacian, the analysis is complicated by the
fact that the second kind operator (1.1) need not be strongly elliptic in
L2.

The outline of the paper is as follows: In Section 2 we derive the
integral equation and prove some results for the double layer potential
and some uniqueness results for weak solutions of the Lamé equation.
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In Section 3 we first localize the integral operator around each corner
and then we study the localized operators. We put these results
together to prove that the integral equation on the boundary of Ω
has a solution for every righthand side in L2(∂Ω). If the righthand side
has a higher regularity, then the solution becomes more regular, i.e.,
belongs to certain weighted Sobolev spaces.

In Section 4 we define the meshes and the spline spaces which we
use. Then we prove the stability of our method if the meshes fulfill
some simple condition and if the spline space is suitably modified. A
further approximation result then shows the order of convergence of
our method.

2. The boundary value problem and the corresponding
boundary integral equation. In this section we define the boundary
value problem, which we will study, and we introduce the generalized
stress operator, see [12]. We extend the trace operator and the gen-
eralized stress operator to a sufficiently large function space and for-
mulate the first and second Green formula for our differential operator
in Lemma 2.6. The mapping properties of the single and double layer
operator are studied in Lemma 2.10 and the jump of the double layer
potential across the boundary is derived in Lemma 2.12. At the end of
this section we prove uniqueness for the exterior boundary value prob-
lem, where the generalized stress is prescribed at the boundary, and
the boundary values of the double layer potential are given.

We follow closely the article [4] of Costabel.

Let Ω ⊂ R2 be an open bounded domain with polygonal boundary Γ.
We denote by Ωc the complement of Ω, Ωc := R2 \ Ω, and we assume
that Ω is contained in some sufficiently large ball BR0(0), R0 > 0.

For functions �u = (u1, u2)T ∈ (H2(Ω))2 the Lamé operator P is
defined by

(2.1) P�u := −μΔ�u− (λ + μ)grad (div �u), μ > 0, λ ≥ 0.

It is the aim of Sections 2 and 3 to study the existence and the
properties of the solution of the equation

(2.2)
(P�u)(x) = 0, x ∈ Ω

�u|Γ = �f, �f ∈ (H1/2(Γ))2
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with the help of a corresponding boundary integral equation.

The operator P can be written in another way with the help of the
following definitions, see [15] for the physical meaning of the terms,

(2.3)
εi,j(�u) :=

1
2
(∂iuj + ∂jui)

σi,j(�u) := λ(ε1,1(�u) + ε2,2(�u))δi,j + 2μεi,j(�u)
, i, j = 1, 2.

The ith component of P�u can be written as

(2.4) (P�u)i = −
2∑

j=1

∂j(σi,j(�u)).

We further introduce the following notations

(2.5) V i := (Hi(Ω))2, i = 0, 1, 2, and V 1
0 := (H1

0 (Ω))2.

Formula (2.4) and a partial integration give us the following relation
(first Green formula) for functions �u ∈ V 2 and �v ∈ V 1:

(2.6)
∫

Ω

P�u · �v dy = ΦΩ(�u,�v)−
∫

Γ

Tμ(ny)�u · �v dsy.

The symmetric bilinear form ΦΩ(·, ·) on V 1 is given by

(2.7) ΦΩ(�u,�v) :=
∫

Ω

(
λ

2∑
j=1

εjj(�u)
2∑

j=1

εjj(�v)

+ 2μ

2∑
i,j=1

εi,j(�u)εi,j(�v)
)

dy.

The generalized stress operator Tκ, see [12], is defined in the following
way

Tκ(n)�u := T0(n)�u + κ

(
n2∂1u2 − n1∂2u2

n1∂2u1 − n2∂1u1

)
,(2.8)

T0(n)�u := μ

(
n · ∇u1

n · ∇u2

)
+ (λ + μ)div (�u)n,(2.9)
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with κ ∈ R, n = (n1, n2)T ∈ R2, �u ∈ V 1.

Because of the symmetry of ΦΩ(·, ·) we get the second Green formula
for �u,�v ∈ V 2:∫

Ω

(P�u · �v − P�v · �u) dy =
∫

Γ

(Tμ(ny)�v · �u− Tμ(ny)�u · �v) dsy

=
∫

Γ

(Tμ+ω(ny)�v · �u− Tμ+ω(ny)�u · �v) dsy,

ω ∈ R.

The second equality follows by Gauss’s formula. So we finally get the
second Green formula in the following form

(2.10)
∫

Ω

(P�u · �v − P�v · �u) dy =
∫

Γ

(Tκ(ny)�v · �u− Tκ(ny)�u · �v) dsy

for �u,�v ∈ V 2, κ ∈ R.

Let �f ∈ V 0 be given. The function �u ∈ V 1
0 is the weak solution of

(2.11)
P�u = �f

u|Γ = 0

if and only if

(2.12) ΦΩ(�u, �φ) =
∫

Ω

�f · �φ dy, ∀ �φ ∈ V 1
0 .

Korn’s inequality, see [9], says that there are constants c1, c2 > 0, which
depend only on Ω, for which

(2.13) c1‖�u‖2V 1
0
≤ ΦΩ(�u, �u) ≤ c2‖�u‖2V 1

0
, ∀ �u ∈ V 1

0 .

Equation (2.13) together with the Lax–Milgram lemma gives us the
following result.

Corollary 2.1. The equation (2.11) always has a uniquely deter-
mined weak solution.



146 J. ELSCHNER AND O. HANSEN

In the following we denote by γ0 the trace operator

(2.14) γ0�u := �u|Γ.

Gagliardo’s trace lemma, see [4], implies

(2.15) γ0 : Hs
loc(R

2) −→ Hs−1/2(Γ), s ∈ ((1/2), 1], is continuous

and has a continuous right inverse γ−
0

(2.16) γ−
0 : Hs−(1/2)(Γ) −→ Hs

loc(R
2).

Using the map γ−
0 , the Lax–Milgram lemma and equation (2.13), one

can prove the following lemma.

Lemma 2.2. For every �v ∈ (H1/2(Γ))2 there exists a unique solution
T�v of the equation

(2.17)
P�u = 0
γ0�u = �v

The mapping �v → T�v is linear and continuous, i.e., there exists a
constant cT > 0, such that

(2.18) ‖T�v‖V 1 ≤ cT ‖�v‖(H1/2(Γ))2 .

We denote by G(x, y) the fundamental solution for the operator P :

(2.19) PyG(x, y) = δ(x− y)
(

1 0
0 1

)
=: δ(x− y)I2×2,

where the index y denotes the differentiation with respect to y. The
function G is given by, see [1],

(2.20) G(x, y) :=
1

4πμ(λ + 2μ)

(
− (λ + 3μ) ln(r)I2×2

+ (λ + μ)
(x− y)(x− y)T

r2

)
,
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x, y ∈ R2, r := ‖x− y‖, x 
= y. G is the kernel for the Green operator
for P . We will also denote the Green operator by G. If we substitute
G(x, y) for �u(y) in the Green formula (2.10) then we get

�v(x) =
∫

Ω

G(x, y)T (P�v)(y) dy

+
∫

Γ

(
G(x, y)TTκ,y(ny)�v(y)−

(
Tκ,y(ny)G(x, y)

)T

�v(y)
)

dsy,

x ∈ Ω, �v ∈ V 2.
(2.21)

By V 1
P we denote the set of all functions �u ∈ V 1, for which the

distribution P�u belongs to V 0. The norm on V 1
P is given by

(2.22) ‖�u‖2V 1
P

:= ‖�u‖2V 1 + ‖P�u‖2V 0 .

Now we extend the generalized stress operator to functions in V 1
P . First

we recall the following lemma from [11, p. 113].

Lemma 2.3. V 2 is dense in V 1
P .

The next lemma is an easy consequence of our definitions.

Lemma 2.4. Let �u ∈ V 1
P . The mapping

(2.23)
�φ −→ 〈γ(μ)

1 �u, �φ〉

:= ΦΩ(�u, γ−
0

�φ)−
∫

Ω

(P�u · γ−
0

�φ) dy

is a continuous linear functional γ
(μ)
1 �u on (H1/2(Γ))2, which coincides

for �u ∈ V 2 with

(2.24) �φ −→
∫

Γ

Tμ(ny)�u · �φ dsy.

The mapping

(2.25) γ
(μ)
1 : V 1

P −→ (H−1/2(Γ))2
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is continuous.

Remark. That γ
(μ)
1 coincides with Tμ(ny) for functions in V 2 and

the density result in Lemma 2.3 show that the definition of γ
(μ)
1 is

independent of the chosen operator γ−
0 . The operator γ−

0 is not unique.

As a next step we define T0 and then Tκ, κ ∈ [0, μ], for functions in
V 1

P . The starting point is formula (2.1) for P . For �u ∈ V 2 and �v ∈ V 1

we get by partial integration, cf. (2.6),

∫
Ω

P�u · �v dy =
∫

Ω

(
μ

2∑
i,j=1

∂iuj∂ivj + (λ + μ)div (�u)div (�v)
)

dy

−
∫

Γ

T0(ny)�u · �v dsy(2.26)

=: Φ̃Ω(�u,�v)−
∫

Γ

T0(ny)�u · �v dsy.

For Φ̃Ω we have the following properties

(2.27)

Φ̃Ω(�u,�v) = Φ̃Ω(�v, �u), �u,�v ∈ V 1

μ

2∑
i,j=1

∫
Ω

|∂jui|2dy ≤ Φ̃Ω(�u, �u), �u ∈ V 1

Now we extend the operator T0 to functions in V 1
P . By convex

combination we then define Tκ, κ ∈ [0, μ], for functions in V 1
P .

Lemma 2.5. (i) Let �u ∈ V 1
P . The mapping

(2.28) �φ −→ 〈γ(0)
1 �u, �φ〉 := Φ̃Ω(�u, γ−

0
�φ)−

∫
Ω

P�u · γ−
0

�φ dy

is a continuous functional γ
(0)
1 �u on (H1/2(Γ))2, which coincides for

�u ∈ V 2 with the mapping

�φ −→
∫

Γ

T0(ny)�u · �φ dsy.
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The mapping
γ

(0)
1 : V 1

P −→ (H−1/2(Γ))2

is continuous.

(ii) For κ ∈ [0, μ], κ = λ̃μ, λ̃ ∈ [0, 1], we define

(2.29) γ
(κ)
1 := λ̃γ

(μ)
1 + (1− λ̃)γ(0)

1 .

The mapping γ
(κ)
1 is continuous from V 1

P into (H−1/2(Γ))2. On V 2,
γ

(κ)
1 coincides with Tκ(ny). We further get

(2.30) 〈γ(κ)
1 �u, �φ〉 = Φ(κ)

Ω (�u, γ−
0

�φ)−
∫

Ω

P�u · γ−
0

�φ dsy

where

(2.31) Φ(κ)
Ω (·, ·) := λ̃ΦΩ(·, ·) + (1− λ̃)Φ̃Ω(·, ·).

Because of (2.27) the inequality of Korn (2.13) also holds for Φ(κ)
Ω ,

κ ∈ [0, μ].

For a function �u ∈ (L2(R2))2 with �u|Ω ∈ V 1 and �u|Ωc ∈ (H1
loc(Ω

c))2,
the traces γ0(�u|Ω) and γ0(�u|Ωc) are well defined. Let

(2.32) [γ0�u] := γ0(�u|Ω)− γ0(�u|Ωc) ∈ (H1/2(Γ))2.

For a function �u ∈ (H1
loc(Ω

c))2 and P�u ∈ (L2
loc(R

2))2 the operator
γ

(κ)
1,Ωc , κ ∈ [0, μ], is given by (2.29) and (2.23), where Ω has to be

replaced by Ωc. Here we will assume that supp (γ−
0 �v) ⊂ B2R0(0), for all

�v ∈ (H1/2(Γ))2. We will denote the set of all functions �u ∈ (H1
loc(Ω

c))2

with P�u ∈ (L2
loc(R

2))2 by V 1
P (Ωc).

If �u ∈ (L2(R2))2 with �u|Ω ∈ V 1
P and �u|Ωc ∈ V 1

P (Ωc), then we define

(2.33) [γ(κ)
1 �u] := γ

(κ)
1 (�u|Ω)− γ

(κ)
1,Ωc(�u|Ωc).

The next lemma follows easily by Lemma 2.3 and the above defini-
tions.
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Lemma 2.6. Let κ ∈ [0, μ].

(i) For �u ∈ V 1
P and �v ∈ V 1 the first Green formula holds:

(2.34)
∫

Ω

P�u · �v dy = Φ(κ)
Ω (�u,�v)− 〈γ(κ)

1 �u, γ0�v〉

(ii) The second Green formula holds for all �u,�v ∈ V 1
P .

(2.35)
∫

Ω

(�u · P�v − �v · P�u) dy = 〈γ(κ)
1 �u, γ0�v〉 − 〈γ(κ)

1 �v, γ0�u〉.

(iii) Let �u ∈ (L2(R2))2 be given with

�u|Ω ∈ V 1
P and �u|Ωc ∈ V 1

P (Ωc).

Then

(2.36)
u(x) = (GP�u)(x) + 〈[γ(κ)

1 �u], G(x, ·)〉

−
∫

Γ

(Tκ(ny)G(x, y))T [γ0�u] dsy, x ∈ R2 \ Γ.

With the help of Lemma 2.6, Lemma 2.2 and Corollary 2.1, the next
lemma is proved analogously to Lemma 3.5 of [4].

Lemma 2.7. The trace mapping

(γ0, γ
(κ)
1 ) : �φ −→ (γ0

�φ, γ
(κ)
1

�φ)

maps (C∞
0 (R2))2 onto a dense subset of (H1/2(Γ))2 × (H−1/2(Γ))2.

Lemma 2.8. The trace operator

γ0 : u −→ u|Γ : Hs
loc(R

2) −→ Hs−1/2(Γ)

is continuous for s ∈ ((1/2), (3/2)).
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Proof. See [4, Lemma 3.6].

Lemma 2.9. The Green operator G fulfills

G : (Hs(R2))2 −→ (Hs+2
loc (R2))2.

Proof. Calculate the symbol matrix of P with the Fourier transform.

Now we define the single layer operator K0 and the double layer
operator K1:

(2.37) (K0�v)(x) =
∫

Γ

G(x, y)�v(y) dsy, x ∈ R2 \ Γ

(2.38) (K(κ)
1 �v)(x) =

∫
Γ

(T κ(ny)G(x, y))T�v(y) dsy, x ∈ R2 \ Γ.

The following lemma repeats the results of Theorem 1.(i), (ii) of [4]
for the Lamé operator.

Lemma 2.10. (i) The mapping K0 : (H−1/2+σ(Γ))2 → (H1+σ
loc (R2))2,

σ ∈ (−(1/2), (1/2)), is continuous.

(ii) The mapping K
(κ)
1 : (H1/2(Γ))2 → (H1(Ω))2, κ ∈ [0, μ], is

continuous.

Proof. (i) Let �v ∈ (H−1/2+σ(Γ))2. Then γ′
0�v (where γ′

0 is the adjoint
of γ0) is a distribution in R2 with compact support 〈γ′

0�v, �φ〉 := 〈�v, γ0
�φ〉,

for all �φ ∈ (C∞
0 (R2))2. Now we have

K0 = G ◦ γ′
0

and Lemma 2.8 shows

γ′
0 : (H(1/2)−s(Γ))2 −→ (H−s

comp(R2))2, s ∈ ((1/2), (3/2)).
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Lemma 2.9 finally implies

G ◦ γ′
0 : (H1/2−s(Γ))2 −→ (H2−s

loc (R2))2.

Define σ = 1− s ∈ (−(1/2), (1/2)). Then the above equation gives

K0 : (H−(1/2)+σ(Γ))2 −→ (H1+σ
loc (R2))2.

(ii) Let �v ∈ (H1/2(Γ))2 and �u := T�v ∈ V 1
P , where T�v is the solution

of (2.17), see Lemma 2.2. Formula (2.36), where we define �u|Ωc ≡ 0,
now gives us

T�v =
∫

Ω

G(x, y)PT�v(y) dy + 〈γ(κ)
1 T�v, G(·, x)〉 −K

(κ)
1 �v

= K0γ
(κ)
1 T�v −K

(κ)
1 �v.

Therefore
K

(κ)
1 = K0 ◦ γ

(γ)
1 ◦ T − T

= (K0 ◦ γ
(κ)
1 − I) ◦ T

and we have

T : (H1/2(Γ))2 −→ V 1
P (Lemma 2.2)

γ
(κ)
1 : V 1

P −→ H−1/2(Γ))2 (Lemma 2.5)

K0 : (H−1/2(Γ))2 −→ V 1 (part (i)).

In the next lemma we collect some smoothness properties for the
double layer potential, and for a special parameter κ̄ we estimate the
norm of K

(κ̄)
1 �v(x) and its derivatives.

Lemma 2.11. For �v ∈ (H1/2(Γ))2 and

(2.39) κ̄ := μ
λ + μ

λ + 3μ

the following results hold:
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(i) K
(κ)
1 �v ∈ (C∞(R2 \ Γ))2, κ ∈ R.

(ii)

‖(K(κ̄)
1 �v)(x)‖ = O‖x‖→∞

(
1
‖x‖

)
,

‖(∇K
(κ̄)
1 �v)(x)‖ = O‖x‖→∞

(
1
‖x‖2

)
,

(iii) K
(κ)
1 �v ∈ V 1

P (Ωc), κ ∈ [0, μ].

Proof. (i) The function G(x, y) is in C∞ outside the diagonal in
Rn ×Rn. This proves (i).

(ii) By a calculation we get

(2.40)

Tκ̄(ny)G(x, y) = − 1
2π

(
(1− ω̄)I2×2 + 2ω̄

(y − x)(y − x)T

‖x− y‖2

)
(y − x) · ny

‖x− y‖2 ,

where ω̄ is defined in (1.3).

Property (ii) follows by (2.40) and the compactness of Γ.

(iii) Here the arguments of Lemma 2.5 and Lemma 2.10 for a domain
Ω̃ := (R2 \ Ω) ∩ BR(0), R > R0 arbitrary, have to be repeated. This
shows that K

(κ)
1 �v ∈ (H1(Ω̃))2 and P (K(κ)

1 �v) ∈ (L2(Ω̃))2. Together
with property (i) this proves part (iii).

Remark. Formula (2.40) holds, only for the special choice κ = κ̄,
where Tκ̄ is called the pseudostress operator. For κ 
= κ̄ a further term
appears in formula (2.40). This term has a stronger singularity for
x = y, see [14] and is not covered by the analysis in Sections 3 and 4.

Lemma 2.12. For �v ∈ (H1/2(Γ))2, κ ∈ [0, μ], we get

[γ0K
(κ)
1 �v ] = −�v, [γ(κ)

1 K
(κ)
1 �v ] = 0.

Proof. Let �v ∈ (H1/2(Γ))2, �φ ∈ (C∞
0 (R2))2, �u := K

(κ)
1 �v. By
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Lemma 2.11 we can apply Lemma 2.6 and get∫
Ω

�u · P �φdy = 〈γ(κ)
1 �u|Ω, γ0

�φ〉 − 〈γ(κ)
1

�φ|Ω, γ0�u|Ω〉∫
Ωc

�u · P �φdy = 〈−γ
(κ)
1 �u|Ωc , γ0

�φ〉+ 〈γ(κ)
1

�φ|Ωc , γ0�u|Ωc〉.

The different signs in the second formula are caused by the choice of
the outer normal for Ω in the definition of γ

(κ)
1 . This implies

(2.41)
∫
R2

�u · P �φdy = 〈[γ(κ)
1 �u], γ0

�φ〉 − 〈γ(κ)
1

�φ, [γ0�u]〉.

On the other hand we have

�u = K
(κ)
1 �v = G((γ(κ)

1 )′�v),

where the distribution (γ(κ)
1 )′�v with compact support is defined by

〈(γ(κ)
1 )′�v, �φ〉 = 〈�v, γ

(κ)
1

�φ〉, �φ ∈ (C∞
0 (R2))2.

Now the left side of equation (2.41) can be rewritten

(2.42)

∫
R2

�u · P �φdy = 〈G ◦ (γ(κ)
1 )′�v, P �φ〉

= 〈(γ(κ)
1 )′�v, G ◦ P︸ ︷︷ ︸

=I

�φ〉

= 〈�v, γ
(κ)
1

�φ〉.

Formulas (2.41) and (2.42) give us

〈[γ(κ)
1 K

(κ)
1 �v], γ0

�φ〉 = 〈[γ0K
(κ)
1 �v] + �v, γ

(κ)
1

�φ〉, ∀ �φ ∈ (C∞
0 (R2))2.

Lemma 2.7 proves the lemma.

Now we can prove the uniqueness of the solution of the exterior Neu-
mann problem, where instead of the normal derivative the pseudostress
operator is used.
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Lemma 2.13. Let κ ∈ [0, μ) and �u ∈ (H1
loc(Ω

c))2 with

(i) P�u = 0.

(ii) γ
(κ)
1 �u = 0.

(iii) �u|R2\Ω ∈ (C∞(R2 \ Ω))2 and

|�u(x)| = O
(

1
‖x‖

)
, |∇�u(x)| = O

(
1
‖x‖2

)
.

Then we have �u = 0.

Proof. The first Green formula for �u|Ωc∩BR(0), R > R0, and property
(ii) give

0 =
∫

Ωc∩BR(0)

�u · P�udy

= Φ(κ)
Ωc∩BR(0)(�u, �u) + 〈γ(κ)

1 �u︸ ︷︷ ︸
=0

, �u〉 −
∫

∂BR(0)

Tκ�u · �u dsy.

Because Tκ�u contains only first derivatives of �u, we get by the
Cauchy–Schwarz inequality

|Tκ�u(x) · �u(x)| ≤ C

‖x‖3 .

Now we have ∣∣∣Φ(κ)
Ωc∩BR(0)(�u, �u)

∣∣∣ ≤
R→∞

C 4πR
1

R3

On the other hand, we have that

Φ(κ)
Ωc∩BR(0)(�u, �u) ≥ 0

is a monotonically increasing function of R, and this finally implies

0 = Φ(κ)
Ωc∩BR(0)(�u, �u), ∀R ≥ R0.
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Now inequality (2.27) implies that �u is constant and property (iii)
proves the lemma.

In the next section we will prove the injectivity of our boundary
integral equation with the help of the last lemma. For the solution of
the equation (2.2) we use the double layer potential (2.38) with κ = κ̄
defined in (2.39) and finally we need the boundary values of the double
layer potential. For �u ∈ (C(Γ))2 we get by direct calculation from
(2.38)–(2.40)

(2.43) lim
Ω�x→x0∈Γ

(K(κ̄)�u)(x) = −1
2
�u(x0) +

1
2
(K�u)(x0),

where x0 is not a corner point of Γ and K is defined by (1.2).

3. Solvability and regularity results for the integral equa-
tion. In this section we study the operator B := I − K which was
defined in (1.1), (1.2). At the beginning the localization of the oper-
ator B around each corner is given and in Lemma 3.5 and Theorem
3.8 the Fredholm property and the existence of the inverse of these
localized operators are proved. Lemma 3.10 and Lemma 3.11 contain
some local regularity results for the solutions of our integral equation.
In Theorem 3.15 the continuity of the solution of our integral equation
is shown if the righthand side is continuous. This enables us to prove
that B is an isomorphism in L2 (but see also the remark after Theo-
rem 3.17). We finally collect our regularity results in Theorem 3.18,
which is important for the approximation results in Section 4.

We will assume that the polygon Γ is parametrized by γ : [0, T ]→ R2

in the following way: Introduce n + 1 points in [0, T ] by

0 = s0 < s1 < · · · < sn = T,

where ξi := γ(si), i = 0(1)n, are the corners of Γ, ξ0 = ξn and

(3.1) γ|[si,si+1](s) = ξi + (s− si)ζi, ζi := (cos(αi), sin(αi))T .

The outer normal to Γ on γ(si, si+1) is given by ηi :=(sin(αi),− cos(αi))T .

In the following we will identify the functions on Γ and on [0, T ]. So
the study of (1.1) leads us to the study of the integral equation

(3.2) B(ω)�u(s) := �u(s) +K(ω)�u(s) = �f(s), s ∈ [0, T ],
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where the integral operator K(ω) is defined by

(3.3) K(ω)�u(s) :=
∫ T

0

k(ω)(s, τ)�u(τ ) dτ,

and

(3.4)
k(ω)(s, τ) := − 1

π

(γ(s)− γ(τ )) · n(τ )
‖γ(s)− γ(τ )‖2

·
(

(1− ω)I2×2 + 2ω
(γ(s)− γ(τ ))(γ(s)− γ(τ ))T

‖γ(s)− γ(τ )‖2

)
,

see (2.40), (2.43)). Finally we are only interested in K = K(ω̄), see
(2.43), (1.3), but we will study K(ω), ω ∈ [0, 1]. For ω = 0 we get a
decoupled system and the kernel is the well-known kernel of the double
layer potential for the Laplace equation.

In the following we will split the operator K(ω) into a compact
operator K(ω,2) and an operator K(ω,1) which acts locally around the
corners.

For simplicity we will assume that

(3.5) 2 <
n−1
min
i=0
{si+1 − si},

and introduce a subdivision of [0, T ] into the intervals

(3.6) J3i+j :=

⎧⎨⎩
[si, si + 1] j = 0,
[si + 1, si+1 − 1] j = 1,
[si+1 − 1, si+1], j = 2,

i = 0(1)n− 1.

The kernel of K(ω,1) is given by

(3.7) k(ω,1)(s, τ) :=
n−1∑
i=0

χi(s)k(ω)(s, τ)χi(τ ),

where χi, i = 1(1)n− 1, is the characteristic function of (si − 1, si + 1)
and χ0 of [0, 1) ∪ (T − 1, T ].

The kernel of K(ω,2) is defined by

(3.8) k(ω,2) := k(ω) − k(ω,1),
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and by construction we have

(3.9) B(ω) = I +K(ω,1) +K(ω,2).

and

(3.10)
(I +K(ω,1))�u(s) = �u(s),

s ∈ [si + 1, si+1 − 1], i = 1(1)n− 1,

because k(ω,1)(s, τ) = 0, s ∈ [si + 1, si+1 − 1], i = 0(1)n − 1.
Furthermore,

(3.11) (I +K(ω,1))�u(s) = 0, s ∈ [si − 1, si + 1],

holds, if supp (�u) ∩ [si − 1, si + 1] = ∅.

Now we localize I +K(ω,1) around each corner and get the following
equivalent operator for the ith corner

(3.12) B(ω)
i := I +K(ω)

i ,

where K(ω)
i is defined by

(3.13)

(K(ω)
i

⎛⎜⎝
v1

v2

v3

v4

⎞⎟⎠)(s) :=

⎛⎜⎜⎝
∫ 1

0
k

(ω)
i,1 (s/τ )

(
v3

v4

)
(τ ) (dτ/τ )∫ 1

0
k

(ω)
i,2 (s/τ )

(
v1

v2

)
(τ ) (dτ/τ )

⎞⎟⎟⎠ , s ∈ [0, 1].

The kernels are defined by

k
(ω)
i,1 (z) :=

1
π

z sin(αi)
z2+2z cos(αi)+1

(
(1−ω)I2×2 +

2ω

z2+2z cos(αi)+1

(
z2 + 2z cos(αi) + cos2(αi) sin(αi)(cos(αi) + z)

sin(αi)(cos(αi) + z) sin2(αi)

))
,

(3.14)

k
(ω)
i,2 (z) :=

1
π

z sin(αi)
z2+2z cos(αi)+1

(
(1−ω)I2×2 +

2ω

z2+2z cos(αi)+1

(
z2 cos2(αi) + 2z cos(αi) + 1 z sin(αi)(z cos(αi) + 1)

z sin(αi)(z cos(αi) + 1) z2 sin2(αi)

))
,

(3.15)
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and we have identified
(3.16)(

v1(s)
v2(s)

)
with

(
u1(si−s)
u2(si−s)

)
,

(
v3(s)
v4(s)

)
with

(
u1(si+s)
u2(si+s)

)
,

s ∈ [0, 1].

We also assumed αi−1 = 0, so that π − αi is the interior angle at ξi,
and omitted some computations.

In the next lemma we will collect some rather obvious mapping
properties of K(ω,2) and K(ω); note that, for example, the kernel k(ω,2),
see (3.7), (3.8), is C∞ on each set Ji × Jk. Then we will study the
properties of I +K(ω,1) with the help of B(ω)

i , i = 1(1)n.

Lemma 3.1. For ω ∈ [0, 1] we have

(i) K(ω,2) : (L2(0, T ))2 → (L2(0, T ))2 is compact.

(ii) �u ∈ (L2(0, T ))2 implies K(ω,2)�u|Ji
∈ (C∞(Ji))2, i = 0(1)3n− 1.

(iii) If �u ∈ (L2(0, T ))2 then K(ω,2)�u is continuous at each point si.

(iv) �u ∈ (L2(0, T ))2 implies K(ω)�u|(si,si+1) ∈ (C∞(si, si+1))2, i =
0(1)n− 1.

We now define four functions, which build up the functions k
(ω)
i,1 and

k
(ω)
i,2 :

(3.17)

li,1(z) :=
z

1 + 2 cos(αi)z + z2

li,2(z) :=
z

(1 + 2 cos(αi)z + z2)2

li,3(z) :=
z2

(1 + 2 cos(αi)z + z2)2

li,4(z) :=
z3

(1 + 2 cos(αi)z + z2)2

, αi ∈ (−π, π)

The following properties are clear: li,j ∈ C∞([0,∞)), li,j(0) = 0,
li,j(x) > 0 if x > 0 and

(3.18)
∫ ∞

0

xqli,j(x) dx <∞, q ∈ (−2, 0), ∀ i, j.
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From now on we will omit the index i for li,j and k
(ω)
i,j . We get

(3.19)

k
(ω)
1 (z) = (1− ω)kD(z)I2×2 + ω

(
k

(1)
1 (z) k

(1)
2 (z)

k
(1)
2 (z) k

(1)
3 (z)

)

k
(ω)
2 (z) = (1− ω)kD(z)I2×2 + ω

(
k

(2)
1 (z) k

(2)
2 (z)

k
(2)
2 (z) k

(2)
3 (z)

)
with

(3.20)
kD(z) =

1
π

z sin(αi)
z2 + 2 cos(αi)z + 1

=
sin(αi)

π
l1(z)

k
(1)
3 (z) =

2
π

z sin(αi)3

(z2 + 2 cos(αi)z + 1)2

=
2
π

sin(αi)3l2(z)

k
(1)
1 (z) =

2
π

z sin(αi)
z2 + 2 cos(αi)z + cos(αi)2

(z2 + 2 cos(αi)z + 1)2

= − 2
π

sin(αi)3z
(z2 + 2 cos(αi)z + 1)2

+
2
π

z sin(αi)
z2 + 2 cos(αi)z + 1

(3.21)

= 2kD(z)− k
(1)
3 (z)

k
(1)
2 (z) =

2
π

z sin(αi)2(z + cos(αi))
(z2 + 2 cos(αi)z + 1)2

=
2
π

sin(αi)2l3(z) +
2
π

cos(αi) sin(αi)2l2(z)

k
(2)
3 (z) =

2
π

z3 sin(αi)3

(z2 + 2 cos(αi)z + 1)2

=
2
π

sin(αi)3l4(z)
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k
(2)
1 (z) =

2
π

z sin(αi)
cos(αi)2z2 + 2 cos(αi)z + 1

(z2 + 2 cos(αi)z + 1)2

= − 2
π

sin(αi)3z3

(z2 + 2 cos(αi)z + 1)2
+

2
π

z sin(αi)
z2 + 2 cos(αi)z + 1

(3.22)

= 2kD(z)− k
(2)
3 (z)

k
(2)
2 (z) =

2
π

z2 sin(αi)2(z cos(αi) + 1)
(z2 + 2 cos(αi)z + 1)2

=
2
π

sin(αi)2l3(z) +
2
π

cos(αi) sin(αi)2l4(z)

Remark. The mapping properties of Mellin convolutions with kernel
lj(z) also hold for Mellin convolutions with kernel k

(ω)
1 or k

(ω)
2 . The

kernel kD(z) is the kernel of the double layer potential.

Now we recall some definitions from [5].

Let ρ ≥ 0, l ∈ N, p ∈ [1,∞], be given. Then we define

(3.23) Xp,l
ρ (0, 1) := {u ∈ D′(0, 1) | xj−ρDju ∈ Lp(0, 1), : j = 0(1)l }

with the norm

(3.24) ‖u‖p,l,ρ,(0,1) :=
∑

0≤j≤l

‖xj−ρDju‖Lp(0,1).

In [5] the following two conditions also appear for functions g on [0,∞):

(H1p)
∫ ∞

0

x(1/p)−1|g(x)| dx <∞

(H1p,l
ρ )

∫ ∞

0

x(1/p)−1−ρ
∣∣xjDjg(x)

∣∣ dx <∞, j = 0(1)l.

Formula (3.18) shows that all lj , j ∈ {1, . . . , 4} fulfill the conditions
(H1p), 1 < p ≤ ∞, (H1p,1

1 ), 1 ≤ p <∞, and (H12,1
ρ ), ρ ∈ [0, 3/2). For-

mulas (3.19)–(3.22) now show that B(ω)
i , see (3.12), maps (Lp(0, 1))4

continuously into (Lp(0, 1))4 for 1 < p ≤ ∞ and (Xp,0
1 (0, 1))4 continu-

ously into (Xp,0
1 (0, 1))4 for 1 ≤ p < ∞, see [5, p. 275 and the proof of

Theorem 1.10]. We have shown the following lemma.
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Lemma 3.2. For ω ∈ R, i ∈ {1, . . . , n}, the following mappings are
continuous:

B(ω)
i : (Lp(0, 1))4 −→ (Lp(0, 1))4, 1 < p ≤ ∞,

B(ω)
i : (Xp,0

1 (0, 1))4 −→ (Xp,0
1 (0, 1))4, 1 ≤ p <∞,

B(ω)
i : (X2,0

ρ (0, 1))4 −→ (X2,0
ρ (0, 1))4, 0 ≤ ρ < 3/2.

To calculate the Mellin symbol of the operator B(ω)
i we first collect

the Mellin transformations l̂i(s) of the li(z), see [8]:

(3.25)

l̂1(s) =
π

sin(αi)
sin(αis)
sin(πs)

l̂2(s) = − π

2 sin(αi)3
1

sin(πs)
(s cos(αi) sin(αi) cos(αis)

+ s sin(αi)2 sin(αis)− sin(αis))

l̂3(s) = − π

2 sin(αi)3
1

sin(πs)
(−s sin(αi) cos(αis) + cos(αi) sin(αis))

l̂4(s) = − π

2 sin(αi)3
1

sin(πs)
(s cos(αi) sin(αi) cos(αis)

− s sin(αi)2 sin(αis)− sin(αis))

In the next lemma we calculate the Mellin symbol matrix of the
operator B(ω)

i .

Lemma 3.3. The Mellin symbol matrix B̂(ω)
i (s) of B(ω)

i , ω ∈ R, is
given by

B̂(ω)
i (s) =

(
I2×2 gi(s)I2×2 + ωhi(s)Si,1(s)

gi(s)I2×2 + ωhi(s)Si,2(s) I2×2

)(3.26)

gi(s) =
sin(αis)
sin(πs)

, hi(s) = sin(αi)
s

sin(πs)
(3.27)
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(3.28)
Si,1(s) =

(
cos(αi(s− 1)) − sin(αi(s− 1))
− sin(αi(s− 1)) − cos(αi(s− 1))

)
Si,2(s) =

(
cos(αi(s + 1)) sin(αi(s + 1))
sin(αi(s + 1)) − cos(αi(s + 1))

)

Proof. We substitute the formulas (3.25) into the formula (3.19) and
use (3.20)–(3.22).

Remark (on reflection matrices). The matrices Si,1 and Si,2, which
appear in Lemma 3.2 can be viewed as reflection matrices. A reflection
matrix Sβ in R2, which describes the reflection at the straight line
orthogonal to (cos(β), sin(β))T , has the following form

Sβ =
(
− cos(2β) − sin(2β)
− sin(2β) cos(2β)

)
,

which shows Sβ = ST
β = S−1

β . Define

β1(s) =
π

2
− (s− 1)

2
αi, β2(s) =

π

2
+

(s + 1)
2

αi.

Then one obtains

Si,1(s) = Sβ1(s), Si,2(s) = Sβ2(s).

This means that Si,1(s) and Si,2(s) are reflection matrices for real s.
There is a further reflection matrix S̃i independent of s by which the
matrices Si,1(s) and Si,2(s) are conjugated:

(3.29) S̃i := S(β1(s)+β2(s))/2 = S(π+αi)/2 =
(

cos(αi) sin(αi)
sin(αi) − cos(αi)

)
.

We obtain
S̃iSi,1(s)S̃i = S̃i,2(s).

Now (3.26) can be written in the following way:
(3.30)

B̂(ω)
i (s) =

(
I2×2 gi(s)I2×2+ωhi(s)Si,1(s)

S̃i(gi(s)I2×2+ωhi(s)Si,1(s))S̃i I2×2

)
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As a next step we will prove the Fredholm property of B(ω)
i . We will

closely follow Lewis [13] and we first recall Lemma 6.2 from that paper.

Lemma 3.4. We consider the equation

(∗) sin(γz)
γz

− ω
sin(γ)

γ
= 0, γ ∈ (0, 2π).

(i) Let ω = 1. For 0 < γ ≤ γcrit, equation (∗) has no solution in
Γ0,1, Γ0,1 := {z ∈ C | 0 ≤ Re (z) < 1}, for γcrit < γ < 2π there is
exactly one solution z0(1, γ) ∈ Γ0,1. This solution is real and decreases
monotonically from 1 to 1/2 if γ varies between γcrit and 2π.

(ii) Let −1 ≤ ω < 1. For 0 < γ ≤ π, equation (∗) has no solution
in Γ0,1, for π < γ < 2π there is exactly one solution z0(ω, γ) ∈ Γ0,1,
which decreases monotonically from 1 to 1/2 if γ runs from π to 2π.

Remark. We define

(3.31)

z̄(ω) := z̄(ω, α1, . . . , αn)

:=
n

min
i=1
{z0(ω, π + |αi|), z0(−ω, π + |αi|)}

=
n

min
i=1
{z0(−ω, π + |αi|)}, ω ∈ [0, 1],

because z0(ω, α) is monotonically decreasing as a function of ω. The
lemma of Lewis shows

(3.32)
1
2

< z̄(1) ≤ z̄(ω) < 1,

and

(3.33)
sin((π ± αi)z)

(π ± αi)z
± ω

sin(π ± αi)
π ± αi


= 0, i ∈ {1, . . . , n},

z ∈ {z ∈ C \ {0} | 0 ≤ Re (z) < z̄(ω)}.

The following technical lemma is proved in Section 5.
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Lemma 3.5. Let ω ∈ [0, 1]. Then the following operators are
Fredholm:

(i) B(ω)
i : (Lp(0, 1))4 → (Lp(0, 1))4, p ∈ (1/z̄(ω),∞], i ∈ {1, . . . , n},

(ii) B(ω)
i : (Xp,0

1 (0, 1))4 → (Xp,0
1 (0, 1))4, p ∈ [1, 1/(1 − z̄(ω))),

i ∈ {1, . . . , n},

(iii) B(ω)
i : (X2,0

ρ (0, 1))4 → (X2,0
ρ (0, 1))4, ρ ∈ [0, 1/2 + z̄(ω)), i ∈

{1, . . . , n}.

Now we can determine the index of these Fredholm operators.

Lemma 3.6. Let ω ∈ [0, 1] and i ∈ {1, . . . , n}. We have that

(i) B(ω)
i : (Lp(0, 1))4 → (Lp(0, 1))4, p ∈ (1/z̄(ω),∞],

(ii) B(ω)
i : (Xp,0

1 (0, 1))4 → (Xp,0
1 (0, 1))4, p ∈ [1, 1/(1− z̄(ω))),

(iii) B(ω)
i : (X2,0

ρ (0, 1))4 → (X2,0
ρ (0, 1))4, ρ ∈ [0, 1/2 + z̄(ω)),

are Fredholm operators with index 0.

Proof. B(ω)
i , ω ∈ [0, 1], is a homotopy between B(0)

i and B(1)
i in case

(i) and (ii) and for p fixed and in case (iii) for fixed ρ. It remains in
the set of Fredholm operators by Lemma 3.5 if p and ρ are restricted
to the range which is given in Lemma 3.5 So it is sufficient to prove
that the index of B(0)

i is 0.

We define

B̃i(s) :=
(

I2×2 −I2×2

I2×2 I2×2

)−1

B̂(0)
1 (s)

(
I2×2 −I2×2

I2×2 I2×2

)
=
(

(1 + gi(s))I2×2 0
0 (1− gi(s))I2×2

)
.

So we see that B(0)
i can be diagonalized by a transformation not

dependent on s. This means that we can apply the theory for scalar
equations. By the proof of Lemma 3.5 we already know that 1±gi(s) 
=
0, for all s, |Re(s)| < z(0).
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But in this special case we can prove even more:

|gi(s)| =
∣∣∣∣ ∫ ∞

0

kD(t)ts−1 dt

∣∣∣∣
≤
∫ ∞

0

|kD(t)|tRe (s)−1 dt

=
sin(|αi|Re (s))
sin(πRe (s))

< 1

for all s with Re (s) ∈ (−z̄(0), z̄(0)), because sin(|αi|z̄(0)) ≤ sin(πz̄(0))
and z̄(0) = minn

i=1{π/(π + |αi|)}. If x ∈ R, |x| < z̄(0), we get for the
index of the functions 1± gi(x + iy), y ∈ R,

Index∞
y=−∞(1± gi(x + iy)) = 0.

Now we obtain with the correspondence between B(0)
i and Wiener-Hopf

operators on R+, see the proof of Lemma 3.5, and by [10, Theorem
I.8.1]: (a) B(0)

i is invertible on (Lp(0, 1))4, p ∈ (1/z̄(0),∞],

(b) B(0)
i is invertible on (Xp,0

1 (0, 1))4, p ∈ [1, 1/(1− z̄(0)) ),

(c) B(0)
i is invertible on (X2,0

ρ (0, 1))4, ρ ∈ [0, 1/2 + z̄(0)).

This shows (a), (b) and (c) for ω = 0. Thus the remarks at the
beginning of the proof and the inequality z̄(ω) ≤ z̄(0) show the
statement of the lemma.

The transformation which we used in the proof of the last lemma is
now applied again. With the help of the matrices S̃i defined in (3.29)
and Ĉ

(ω)
i (s), cf. (5.3), we construct a matrix B̃

(ω)
i (s) which is similar

to B̂(ω)
i (s) but has a simpler structure:

(3.34)

B̃
(ω)
i (s) :=

(
I2×2 −I2×2

I2×2 I2×2

)−1(
I2×2 0

0 S̃i

)
B̂(ω)

1 (s)

·
(

I2×2 0
0 S̃i

)(
I2×2 −I2×2

I2×2 I2×2

)
=
(

I2×2 + Ĉ
(ω)
i (s) 0

0 I2×2 − Ĉ
(ω)
i (s)

)
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So B̃
(ω)
i (s) and B̂(ω)

i (s) are similar with a transformation independent
of s. In the next lemma we study the eigenvalues of B̃

(ω)
i (s); the lemma

is proved in Section 5.

Lemma 3.7. There is a q > 0 such that all eigenvalues of
Re (B̃(ω)

i (s)), Re (s) = 0, are greater than q for ω ∈ [0, 1], i ∈
{1, . . . , n}.

Remark. The statement of Lemma 3.7 is wrong for Re (s) = 1/2.
A numerical calculation shows that Re (Ĉ(1)

i (1/2)) has an eigenvalue
greater than 1.05 if αi = 0.6 ∗ π.

Theorem 3.8. Let ω ∈ [0, 1], i ∈ {1, . . . , n}. Then

(i) B(ω)
i : (Lp(0, 1))4 → (Lp(0, 1))4, p ∈ (1/z̄(ω),∞],

(ii) B(ω)
i : (Xp,0

1 (0, 1))4 → (Xp,0
1 (0, 1))4, p ∈ [1, 1/(1− z̄(ω)) ),

(iii) B(ω)
i : (X2,0

ρ (0, 1))4 → (X2,0
ρ (0, 1))4, ρ ∈ [1, 1/2 + z̄(ω)),

are invertible, see Lemma 3.4 and (3.31) for the definition of z̄(ω).

Proof. Lemma 3.7 and the transformation used in (3.34) show that
B̂(ω)

i (s) is strongly elliptic for Re (s) = 0. By the correspondence to
Wiener-Hopf operators, cf. Section 5, we get that

(i) B(ω)
i : (L∞(0, 1))4 → (L∞(0, 1))4 is invertible and

(ii) B(ω)
i : (X1,0

1 (0, 1))4 → (X1,0
1 (0, 1))4 is invertible.

B(ω)
i : (Lp(0, 1))4 → (Lp(0, 1))4, p ∈ (1/z̄(0),∞], is a Fredholm

operator of index 0 by Lemma 3.6 and L∞(0, 1) ⊂ Lp(0, 1) is dense.
Then it follows by a standard argument for Fredholm operators, see
[18], that

N(B(ω)
i |(Lp(0,1))4) ⊂ N(B(ω)

i |(L∞(0,1))4) = {0},
where N(L) denotes the kernel of the linear mapping L. This implies
B(ω)

i is invertible and this proves (i).

Lemma 3.6 also shows that B(ω)
i : (Xp,0

1 (0, 1))4 → (Xp,0
1 (0, 1))4,

p ∈ [1, 1/(1 − z̄(0))), is a Fredholm operator with index 0. But we
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have (Xp,0
1 (0, 1))4 ⊂ (X1,0

1 (0, 1))4 and so we get

N(B(ω)
i |(Xp,0

1 (0,1))4) ⊂ N(B(ω)
i |(X1,0

1 (0,1))4) = {0}.

This proves (ii), and the inclusion

N(B(ω)
i |(X2,0

ρ (0,1))4) ⊂ N(B(ω)
i |(X2,0

1 (0,1))4) = {0}, ρ ∈ [1, 1/2 + z̄(0)).

shows (iii) in a similar way.

Corollary 3.9. The operator I +K(ω,1) : (L2(0, T ))2 → (L2(0, T ))2,
see (3.7), has an inverse and B(ω) : (L2(0, T ))2 → (L2(0, T ))2, see
(3.2), is a Fredholm operator with index 0.

Proof. Note that χi(I + K(ω,1))χi can be identified with B(ω)
i , see

(3.6), (3.7), (3.12) and (3.16). Now by Theorem 3.8 each operator B(ω)
i

has an inverse so that I + K(ω,1) = I +
∑n

i=1
χiK(ω,1)χi is invertible.

Lemma 3.1 and (3.9) prove the second statement of the corollary.

Lemma 3.10. Let �u ∈
(
L2(0, 1)

)4, ω ∈ [0, 1], ρ ∈ [1, 1/2+ z̄(ω)) and
l ∈ N. Then

(i) B(ω)
i �u ∈ (X2,l

ρ (0, 1))4 implies �u ∈ (X2,l
ρ (0, 1))4,

(ii) B(ω)
i �u ∈ (X2,l

ρ (0, 1))4+̇R4 implies �u ∈ (X2,l
ρ (0, 1))4+̇R4.

Proof. We follow closely [5, Theorem 1.10] and define

T
(ω)
i (z) :=

(
0 k

(ω)
i,1 (z)

k
(ω)
i,2 (z) 0

)
,

see (3.19). Equations (3.20) (3.22) and (3.17) (3.18) show that all
entries of T

(ω)
i are in X2,m

1 , for all m ∈ N. A simple calculation shows

[zDB(ω)
i �u](z) = [B(ω)

i (zD�u)](z)− T
(ω)
i (z)�u(1),

for �u ∈ (X2,1
0 (0, 1))4. By an induction we get

[(zD + 2)mB(ω)
i �u](z) = [B(ω)

i (zD + 2)m�u)](z) + (T (ω)
i,m(z)�u)(z),
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�u ∈ (X2,m
0 (0, 1))4, m ∈ N. Here T

(ω)
i,m is a finite dimensional operator,

which consists of linear combinations of T
(ω)
i (z) and its derivatives. In

[6] it is shown that

φm := (zD + 2)m : (Xp,m
ρ (0, 1))4 −→ (Xp,0

ρ (0, 1))4, 1 ≤ p ≤ ∞,

is an isomorphism for all m ∈ N.

This implies

B(ω)
i = φ−1

m ◦ B
(ω)
i ◦ φm + φ−1

m ◦ T
(ω)
i,m ,

where B(ω)
i is invertible on (X2,m

ρ (0, 1))4 by Theorem 3.8 and φ−1
m ◦T

(ω)
i,m

is a finite dimensional operator and hence compact. Because of this we
have that B(ω)

i is a Fredholm operator and its index is 0. But we also
have

N(B(ω)
i |(X2,m

ρ (0,1))4) ⊂ N(B(ω)
i |(X2,0

ρ (0,1))4) = {0}.

This shows that B(ω)
i is an isomorphism on (X2,m

ρ (0, 1))4 and proves
(i).

We recall the formula

[zDB(ω)
i �u](z) = [B(ω)

i (zD�u)](z)− T
(ω)
i (z)�u(1)

from above. By [6] it follows that

zD : (Xp,m
ρ (0, 1))4 � R4 −→ (Xp,m−1

ρ (0, 1))4

is surjective with kernel R4. This implies

B(ω)
i (R4) ⊂ (Xp,m

ρ (0, 1))4+̇R4,

and B(ω)
i is a Fredholm operator with index 0 on (Xp,m

ρ (0, 1))4+̇R4.

But the kernel of B(ω)
i in

(
L2(0, 1)

)4 is trivial by Theorem 3.8 and so
(ii) follows.

Lemma 3.11. Let �u ∈ (L2(0, T ))2 be a solution of the equation (3.2),
with ω ∈ [0, 1] and �f |[si,si+1] ∈ (Cl[si, si+1])2, i = 0(1)n − 1, l ∈ N.
Then we have
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(i) �u|(si,si+1) ∈ (Cl(si, si+1))2, i = 0(1)n− 1.

(ii)

�v+(t) := �u(si + t) ∈ (X2,l
ρ (0, 1))4 � R4, i ∈ {0, . . . , n− 1},

�v−(t) := �u(si − t) ∈ (X2,l
ρ (0, 1))4 � R4, i ∈ {1, . . . , n},

with ρ ∈ [1, 1/2 + z̄(ω)) and z̄(ω) defined in (3.31).

Proof. (i) For �u we have, see (3.2),

�u = �f −K(ω)�u.

Lemma 3.1 and the assumption on �f prove statement (i).

(ii) By (3.12) and (3.13) we see that the function �v := (�v−, �v+)T ∈(
L2(0, 1)

)4 fulfills the equation

B(ω)
i �v =

(
�g−
�g+

)
=: �g,

where
�g±(x) = �f(si ± x)− (K(ω,2)�u)(si ± x).

The assumptions on �f and Lemma 3.1 imply

�g ∈ (Cl[0, 1])4.

For l ≥ 1 and ρ ∈ [1, 1/2 + z̄(ω)) we have

�g(x) = (�g(x)− �g(0)) + �g(0) ∈ (X2,l
ρ (0, 1))4 � R4.

By Lemma 3.10 we get

�v ∈ (X2,l
ρ (0, 1))4 � R4,

and this proves (ii).

Corollary 3.12. Let �u ∈ (L2(0, T ))2 be the solution of (3.2),
ω ∈ [0, 1], �f |[si,si+1] ∈ (C1[0, 1])2, for all i. Then we have

�u|[si,si+1] ∈ (H1[si, si+1])2.
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Proof. Because of X2,1
1 (0, 1) � R ⊂ H1[0, 1] and by Lemma 3.11, it

follows that �u|Jj
∈ (H1(Jj))2, for all j ∈ {1, . . . , 3n}. The continuity

of �u on J3i ∪ J3i+1 ∪ J3i+2, i ∈ {1, . . . , n}, follows from 3.11 (i).

Lemma 3.13. Let �u ∈ (C[0, 1])4. Then we have

lim
x↘0

(B(ω)
i �u)(x) = E

(ω)
i �u(0),

where

(3.35) E
(ω)
i = I4×4 +

(
0 C

(ω)
Ei

C
(ω)
Ei

0

)
,

and

C
(ω)
Ei

=
αi

π
I2×2 +

ω

π
sin(αi)

(
cos(αi) sin(αi)
sin(αi) − cos(αi)

)
.

Proof. It is proved in [2] that

lim
x↘0

(B(ω)
i �u)(x) = B̂(ω)

i (0)�u(0),

for continuous �u (only in the scalar case, but this is sufficient). We get:

lim
s→0

gi(s) =
αi

π

lim
s→0

ωhi(s) =
ω

π
sin(αi)

lim
s→0

S̃i,1(s) =
(

cos(αi) sin(αi)
sin(αi) − cos(αi)

)
lim
s→0

S̃i,2(s) =
(

cos(αi) sin(αi)
sin(αi) − cos(αi)

)
,

see (3.27) and (3.28) for the definitions. But then (3.26) gives the
result.

By a calculation we get:
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Lemma 3.14. Let ω ∈ [0, 1], αi ∈ (−π, π). The matrix E
(ω)
i has the

factorization

(3.36) E
(ω)
i =

1√
2

(
Ui −Ui

Ui Ui

)(
D

(ω)
i,1 0

0 D
(ω)
i,2

)
1√
2

(
UT

i UT
i

−UT
i UT

i

)
,

where Ui is a unitary matrix

(3.37) Ui =
(

cos(αi/2) − sin(αi/2)
sin(αi/2) cos(αi/2)

)
and D

(ω)
i,1 and D

(ω)
i,2 are diagonal matrices

(3.38)
D

(ω)
i,1 =

(
1 + (αi + ω sin(αi))/π 0

0 1 + (αi − ω sin(αi))/π

)
D

(ω)
i,2 =

(
1− (αi + ω sin(αi))/π 0

0 1− (αi − ω sin(αi))/π

)
which are nonsingular.

The last two lemmas make it easy to prove.

Theorem 3.15. Let ω ∈ [0, 1] and �u ∈ (L2(0, T ))2 be solutions of
the equation (3.2), �f ∈ (C[0, T ])2, �f |[si,si+1] ∈ (C1[si, si+1])2. Then we
have

�u ∈ (C[0, T ])2.

Proof. Because of Lemma 3.11 we only have to show the continuity
of �u in si, i ∈ {1, . . . , n}. For fixed i we define

�v±(x) := �u(si ± x),

�w±(x) := �f(si ± x)− (K(ω,2)�u)(si ± x), x ∈ [0, 1],

�v :=
(

�v−
�v+

)
,

�w :=
(

�w−
�w+

)
.
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We have by (3.9), (3.12) and (3.13)

B(ω)
i �v = �w.

Our assumptions on �f and Lemma 3.1 imply �w ∈ (C1[0, 1])4 and
�w−(0) = �w+(0). By Corollary 3.12 we get �v ∈ (H1[0, 1])4 ⊂ (C[0, 1])4.
Lemma 3.13 gives

E
(ω)
i �v(0) =

(
�w−(0)
�w−(0)

)
.

Lemma 3.14 shows

�v(0) = (E(ω)
i )−1

(
�w−(0)
�w−(0)

)
=

(
Ui(D

(ω)
i,1 )−1UT

i �w−(0)

Ui(D
(ω)
i,1 )−1UT

i �w−(0)

)
.

This shows �v−(0) = �v+(0) = Ui(D
(ω)
i,1 )−1UT

i �w−(0), and we have proved
the continuity in si.

Corollary 3.16. Let ω ∈ [0, 1], �u ∈ (L2(0, T ))2 be solutions of the
equation (3.2) and �f ∈ (C[0, T ])2, �f |[si, si+1] ∈ (C1[si, si+1])2. Then
we have

�u ∈ (H1[0, T ])2.

Proof. The proof follows from Corollary 3.12 and Theorem 3.15
because �u is a piecewise H1–function, which is continuous on the whole
interval.

Let B be the operator defined in (1.1), or equivalently, the operator
defined in (3.2) with ω = ω̄, cf. (1.3).

Theorem 3.17. B : (L2(0, T ))2 → (L2(0, T ))2 is an isomorphism.

Proof. By Corollary 3.9, B is a Fredholm operator with index 0. If
�u ∈ (L2(0, T ))2 is a solution of

B�u = 0,
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then we know by Corollary 3.16 that �u ∈ (H1[0, T ])2. We define the
double layer potential �U(x) := (K(κ̄)u)(x), see (2.39). By Lemma 2.10
we get

P �U |Ω = 0, �U ∈ V 1
P ,

and the relation (2.43) implies γ0
�U |Ω = 0. By Lemma 2.2 we know

�U |Ω = 0 and this implies γ
(κ̄)
1

�U |Ω = 0. By Lemma 2.11 �U is also a
weak solution of

P �U = 0 in Ωc.

Lemma 2.12 gives γ
(κ̄)
1

�U |Ωc = 0 and Lemma 2.13 implies �U |Ωc = 0.
This shows γ0

�U |Ωc = 0. But by Lemma 2.12 we obtain

0 = [γ0
�U ] = [γ0K

(ω)
1 �u] = −�u.

So B is injective and this proves the theorem.

Remark. Theorem 3.8 shows in an analogous way that

B : (Lp(0, T ))2 −→ (Lp(0, T ))2

is a Fredholm operator with index 0 for p ∈ [1/z̄(c̄),∞], see Lemma 3.4
and (3.31) for the definition of z̄(c̄). The inclusion Lp(0, T ) ⊂ L2(0, T )
proves that B : (Lp(0, T ))2 → (Lp(0, T ))2 is an isomorphism for
p ∈ [2,∞].

Theorem 3.18. Let �f ∈ (C[0, T ])2, �f |[si,si+1] ∈ (Cl[si, si+1])2,
i = 0(1)n − 1, l ∈ N, and �u ∈ (L2(0, T ))2 be the solution of equation
(1.1). Then �u has the following properties:

(i) �u ∈ (C[0, T ])2,

(ii) �u|(si,si+1) ∈ (Cl(si, si+1))2, i ∈ {0, . . . , n− 1},
(iii)

�u(si + t) ∈
(
X2,l

ρ (0, 1)
)2 � R2, i ∈ {0, . . . , n− 1},

�u(si − t) ∈
(
X2,l

ρ (0, 1)
)2 � R2, i ∈ {1, . . . , n},

with ρ ∈ [1, 1/2 + z̄(ω̄)), z̄(ω̄) defined in (3.31).
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Proof. Corollary 3.16 shows (i) and Lemma 3.11 implies (ii) and (iii).

4. On the numerical approximation of the solution of the
Lamé equation. In this section we use a collocation method to ap-
proximate the solution of equation (1.1). We use piecewise polynomials
on [0, T ], which are continuous and periodic on [0, T ]. The meshes must
be graded near the corners to get a good convergence rate and a cut
off technique (i∗-trick, see [7] and [3]) has to be used to guarantee the
stability of the method. The proof of stability here is not standard,
because the operator is not strongly elliptic in L2, see the remark after
Lemma 3.7.

As a preliminary step, we first discuss the stability of certain finite
section approximations to equation (1.1). We introduce projections Ph

on (L2(0, T ))2 and projections Qh on the reference space
(
L2(0, 1)

)4 to
construct these approximations.

Let h ∈ (0, 1). The projector Ph : (L2(0, T ))2 → (L2(0, T ))2 is defined
by

(4.1) (Ph�u)(x) =
{

�u(x) |x− si| > h, ∀ i ∈ {0, . . . , n},
0, else.

Recall that si are the preimages of the corner points under the
parametrization γ : [0, T ]→ Γ. The projectors Ph have the property:

lim
h→0

Ph = I(L2(0,T ))2 , strongly.

The finite section approximation for B(ω), see (3.2), is defined by

(4.2) B(ω)
h := PhB(ω)Ph.

Our first aim is to prove that B(ω)
h has a bounded inverse for h < h0,

where h0 > 0 is some constant. To prove the stability, we have to study
the corresponding finite section approximation for B(ω)

i , cf. (3.12). The
projector Qh :

(
L2(0, 1)

)4 → (
L2(0, 1)

)4, h ∈ (0, 1), is given by

(4.3) (Qh�u)(x) =
{

�u(x) x ≥ h

0 x ≤ h
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and the finite section approximation for B(ω)
i by

(4.4) B(ω)
i,h = QhB(ω)

i Qh.

Lemma 4.1. Let ω ∈ [0, 1]. There exists h0 > 0 such that B(ω)
i,h has

an inverse in Qh

(
L2(0, 1)

)4 for all h < h0 and i ∈ {1, . . . , n}. There
is a constant C for which

‖(B(ω)
i,h )−1‖Qh(L2(0,1))4 ≤ C, h < h0, i ∈ {1, . . . , n}.

Proof. The proof is based on the stability results for the finite section
approximation for Wiener-Hopf operators in [10]. The finite section
approximation of a Wiener-Hopf operator W is stable if the symbol
matrix Ŵ (s) has determinant different from zero, s ∈ R, and if the
left and right partial indices of the symbol matrix Ŵ (s) are all zero,
[10, Theorem VIII.6.2]. The left partial indices of Ŵ (s) are the right
partial indices of Ŵ (−s), [10, p. 222]. The vanishing of the right partial
indices of Ŵ (s) is equivalent to the invertibility of the operator W , [10,
Theorem VIII.6.1].

Now we denote by W the Wiener-Hopf operator which corresponds
to B(ω)

i . Then Ŵ (s) = B̂(ω)
i (1/2 + i s), s ∈ R, see (3.26). Because B(ω)

i

is invertible all right partial indices of Ŵ (s) vanish.

We denote by C
(ω)
i the operator on

(
L2(0, 1)

)4 which has the symbol
matrix B̂(ω)

i (1 − s). Then the Wiener-Hopf operator W1 which corre-
sponds to C

(ω)
i has the symbol matrix Ŵ (−s). If we can show that

C
(ω)
i is invertible then the right indices of Ŵ (−s) are zero and then the

finite section approximation for W and so for B(ω)
i is stable.

It remains to show that the operator C
(ω)
i :

(
L2(0, 1)

)4 → (
L2(0, 1)

)4
is invertible. If Re (s) = 1, then Ĉ

(ω)
i (s) = B̂(ω)

i (1 − s) is strongly
elliptic, Lemma 3.7, i.e., all eigenvalues of Re (Ĉ(ω)

i (s)), Re (s) = 1, are
greater than some positive constant. This implies

C
(ω)
i : (L1(0, 1))4 −→ (L1(0, 1))4
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is invertible. Now we remark that det(Ĉ(ω)
i (s)) 
= 0, for all s with

Re (s) ∈ [1/2, 1], see (3.4) and the following text. Therefore the
operator C

(ω)
i is a Fredholm operator on (Lp(0, 1))4 for all p ∈ [1, 2]

and ω ∈ [0, 1]. For ω = 0 we get the operator, which corresponds
to the double layer potential, see (3.4). This operator is invertible in
(Lp(0, 1))4 and so C

(ω)
i is a Fredholm operator with index 0 for all

p ∈ [1, 2], ω ∈ [0, 1]. But

N(C(ω)
i |(Lp(0,1))4) ⊂ N(C(ω)

i |(L1(0,1))4) = {0},

which proves the invertibility of C
(ω)
i , especially for p = 2.

In the following we restrict ourselves to the case ω = ω̄ and omit the
upper index ω for B(ω̄)

h , K(ω̄,1) and K(ω̄,2).

Theorem 4.2. There exists an h0 > 0 and a constant C > 0 such
that for h ∈ (0, h0) the operator Bh is invertible in Ph((L2(0, T ))2) and

‖B−1
h ‖Ph((L2(0,T ))2) ≤ C.

Proof. By (3.9), we get

Bh = Ph(I +K(1))Ph + PhK(2)Ph

with compact K(2), see Lemma 3.1. Moreover B is invertible by
Theorem 3.17, and [10, II.3.1] shows that we only have to prove the
invertibility of Ph(I + K(1))Ph. The operator Ph(I + K(1))Ph, h ≤ 1,
takes the form

Ph +
n−1∑
i=0

χiPhK(1)Phχi

and the operator χiPh(I + K(1))Phχi can be identified with Bi,h, cf.
the proof of Corollary 3.9. Therefore Lemma 4.1 proves the theorem.

Now we introduce the graded meshes and the corresponding spline
spaces. Choose a grading exponent q > 0, let Θm := (x(m)

j )m
j=0, m ∈ N,
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be the partition of the interval [0, 1] given by

(4.5) x
(m)
j :=

(
j

m

)q

and define

(4.6) h
(m)
j := x

(m)
j − x

(m)
j−1, j = 1(1)m.

Here and in the following we will not explicitly indicate the dependence
of x

(m)
j and h

(m)
j on q.

Remark. We assume this special partition only for simplicity. All of
the following statements are true for partitions (x(m)

j )m
j=1, which fulfill

(4.7)
c1

j

(
j

m

)q

≤ h
(m)
j ≤ c2

j

(
j

m

)q

,

with constants c1, c2 independent of j and m.

For a sequence Θm, we define by

(4.8) Πd
m := Πd

m(Θm)

the space of all continuous functions, which are piecewise polynomials
with respect to the partition Θm and of degree smaller than or equal
to d. If we choose (ξk)d

k=0 ⊂ [0, 1], 0 = ξ0 < . . . < ξd = 1, then the
projector P d

m : C[0, 1]→ Πd
m, P d

m = P d
m(Θm, (ξk)d

k=0) is defined by

(4.9) (P d
mu)(x(m)

j + ξkh
(m)
j+1) = u(x(m)

j + ξkh
(m)
j+1),

j = 0(1)m− 1, k = 0(1)d. For j ≥ 1 we define

(4.10) Πd
m,j := {u ∈ Πd

m | u|[0,x
(m)
j

]
= 0}

and P d
m,j : C[0, 1]→ C[0, 1] by

(4.11)

(P d
m,ju)(x(m)

l + ξkh
(m)
l+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(x(m)

l + ξkh
(m)
l+1) l = j + 1(1)m− 1,

k = 0(1)d,

u(x(m)
l + ξkh

(m)
l+1) l = j, k = 1(1)d,

0 else.
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As a next step we introduce partitions of [0, T ], which are refinements
of the subdivision (3.6). For q > 1 we define a sequence of partitions
Δm := (s(m)

j )3mn+1
j=0 , m ∈ N, of [0, T ] with

(4.12) 0 = s
(m)
0 < · · · < s

(m)
3mn+1 = T,

by the demand that the 3mn + 1 real numbers

si +
(

j

m

)q

, j = 0(1)m, i = 0(1)n− 1,

si + 1 +
j

m
(si+1 − si − 2), j = 0(1)m, i = 0(1)n− 1,

si −
(

j

m

)q

, j = 0(1)m, i = 1(1)n,

are elements of {s(m)
j | j = 0(1)3mn+1}. The stepwidth δ

(m)
j is defined

by

(4.13) δ
(m)
j := s

(m)
j − s

(m)
j−1, j = 1(1)3mn + 1.

Remark. Here we also consider this special mesh only for simplicity.
For a sequence of partitions (s(m)

j )M(m)
j=0 , M(m) ∼ m, it is sufficient

that the greatest stepwidth goes to zero like 1/m and that near the
points si the mesh satisfies condition (4.7). All results in this section
are valid if this is fulfilled.

We define by

(4.14) Π̃d
m = Π̃d

m(Δm), d ∈ N,

the space of all continuous functions on C[0, T ], which are piecewise
polynomials with respect to Δm and of degree smaller than or equal
to d. Given 0 = ξ0 < ξ1 < · · · < ξd = 1, we define the projector
P̃ d

m : C[0, T ]→ Π̃d
m by

(4.15)
(P̃ d

mu)(s(m)
j + ξkδ

(m)
j+1) = u(s(m)

j + ξkδ
(m)
j+1),

j = 0(1)3mn, k = 0(1)d.
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For j ∈ N, j ≤ m, we define

Ξ(m)
j :=

[
0,

(
j

m

)q]
∪

n−1⋃
l=1

[
sl −

(
j

m

)q

, sl +
(

j

m

)q]
∪
[
T −

(
j

m

)q

, T

]
and a further projector Rm

j in (L2(0, T ))2 by

(4.16) (Rm
j �u)(x) =

{
�u(x) x ∈ [0, T ] \ Ξ(m)

j ,

0 x ∈ Ξ(m)
j .

Finally we define the modifications of the space Π̃d
m,

(4.17) Π̃d
m,j := {u ∈ Π̃d

m | u|Ξ(m)
j

≡ 0},

and its projector P̃ d
m,j : C[0, T ]→ Π̃d

m,j by

(4.18) (P̃ d
m,ju)(s(m)

l + ξkδ
(m)
l+1 )

=

{
u(s(m)

l + ξkδ
(m)
l+1 ) s

(m)
l + ξkδ

(m)
l+1 ∈ [0, T ] \ Ξ(m)

j

0 else

for all l, k. All of the above spaces and projectors can be defined for
functions with values in Rl, l ∈ N.

For �f ∈ (C[0, T ])2 we denote by �um ∈ Π̃d
m,j the solution of the

collocation equation

(4.19) P̃ d
m,j∗(I +K)�um = P̃ d

m,j∗ �f.

Remark. If we look at the proof of Theorem 4.2, then it is clear that
for a fixed j ≥ 1 we have

(4.20) ‖Rm
j (I +K)�u‖

(L2([0,T ]\Ξ(m)
j

)
≥ c‖�u‖

(L2[0,T ]\Ξ(m)
j

)
,

for all �u ∈ (L2([0, T ] \ Ξ(m)
j ))2, m sufficiently large.
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The following lemmas allow us to obtain the stability of the colloca-
tion by small perturbations of the last estimate (4.20).

Lemma 4.3. Let q > 0 and 0 = ξ0 < ξ1 < · · · < ξd = 1 be given.
For every ε > 0 there is an ĩ ≥ 1 and m̃ ≥ 1 such that

‖(I − P d
m,j)u‖L2(x

(m)
j

,1)
≤ ε‖u‖X2,1

0
, u ∈ X2,1

0 (0, 1),

j ≥ ĩ, m ≥ m̃.

Proof. For u ∈ X2,1
0 we have u ∈ H1[α, 1], for all α > 0. P d

m,ju is
well defined for j ≥ 1. If m ∈ N, j ≥ 1, we get

‖(I − P d
m,j)u‖2L2(x

(m)
l

,x
(m)
l+1 )
≤ c(h(m)

l+1)2
∫ x

(m)
l+1

x
(m)
l

u′(x)2 dx

≤ c

(
h

(m)
l+1

x
(m)
l

)2 ∫ x
(m)
l+1

x
(m)
l

(xu′(x))2 dx,

where c depends only on (ξk)k, see [5, Section 2]. For ε > 0 there exists
an i∗(ε) ≥ 1 and m∗(ε) such that(

h
(m)
l+1

x
(m)
l

)2

≤ ε2

c
, l ≥ i∗,

and therefore∫ x
(m)
l+1

x
(m)
l

((I − P d
m,j)u)2 dx ≤ ε2

∫ x
(m)
l+1

x
(m)
l

(xu′(x))2 dx.

Summation over l gives∫ 1

x
(m)
j

((I − P d
m,j)u)2 dx ≤ ε2

∫ 1

x
(m)
j

(xu′(x))2 dx, j ≥ i∗,

and this implies

‖(I − P d
m,j)u‖L2(x

(m)
j

,1)
≤ ε‖xu′‖

L2(x
(m)
j

,1)

≤ ε‖u‖X2,1
0 (0,1),
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for all j ≥ i∗, m ≥ m∗. This shows the lemma with ĩ = i∗ and m̃ = m∗.

Lemma 4.4. Let ω ∈ R, i ∈ {1, . . . , n}. The operator

xDK(ω)
i :

(
L2(0, 1)

)4 −→ (
L2(0, 1)

)4
is continuous.

Proof. The definition of K(ω)
i in (3.13) and the formulas (3.19) (3.22)

show that we only have to prove that

xDLj : L2(0, 1) −→ L2(0, 1), j = 1(1)4,

is continuous, where

(Lju)(x) :=
∫ 1

0

lj

(
x

τ

)
u(τ )

dτ

τ
,

see (3.17) for the definitions of the lj . For u ∈ C∞
0 (0, 1), we have

(L̃ju)(x) := [xD(Lju)](x)

=
∫ 1

0

l′j

(
x

τ

)(
x

τ

)
u(τ )

dτ

τ
.

This shows that L̃j is a Mellin convolution with kernel l′j(s)s. But
l′j(s)s fulfills (H1p), p ∈ (−1, 1). This shows [5]

L̃j : L2(0, 1) −→ L2(0, 1)

is continuous and the lemma is proved.

Lemma 4.5. Let ω ∈ R, q > 0, and 0 = ξ0 < ξ1 < · · · < ξd = 1.
For every ε > 0 there are ĩ(ε) ≥ 1 and m̃(ε) ≥ 1 such that

‖(I − P̃ d
m,j)K(ω)�u‖

(L2([0,T ]\Ξ(m)
j

))2
≤ ε‖�u‖(L2(0,T ))2 ,

j ≥ ĩ, m ≥ m̃.
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Proof. First we write

(I − P̃ d
m,j)K(ω)�u = (I − P̃ d

m,j)K(ω,1)�u + (I − P̃ d
m,j)K(ω,2)�u,

see (3.7), (3.8). By Lemma 3.1 we know that

K(ω,2) : (L2(0, T ))2 −→
3n−1∏
i=0

(C1(Ji))2

is continuous. By the definition of Δm we know that there is an
m∗

0(ε) ≥ 1, such that

(4.21) ‖(I − P̃ d
m,j)K(ω,2)�u‖(L2(0π))2 ≤

ε

2
‖�u‖(L2(0,T ))2 , m ≥ m∗

0(ε).

But (I − P̃ d
m,j)(K(ω,1)�u)(x) is different from zero only for x ∈ [si −

1, si + 1]. We apply Lemma 4.3 in the neighborhood of each si and
define �v ∈

(
L2(0, 1)

)4 by(
v1

v2

)
(x) :=

(
u1

u2

)
(si − x),(

v3

v4

)
(x) :=

(
u1

u2

)
(si + x).

Lemma 4.3 shows that for all η > 0 there is an i∗1(η) ≥ 1 and m∗
1(η) ≥ 1

such that

‖(I − P̃ d
m,j)K(ω,1)�u‖

(L2((si−1,si+1)\Ξ(m)
j

))2
≤ η‖K(ω)

i �v‖(X2,1
0 (0,1))4

≤ ηc‖�v‖(L2(0,1))4

≤ ηc̃‖�u‖(L2(si−1,si+1))2 ,

i ≥ i∗1, m ≥ m∗
1.

Here we have applied Lemma 4.4. So we can choose i∗(ε) ≥ 1 and
m∗

2(ε) ≥ 1 with

‖(I − P̃ d
m,j)K(ω,1)�u‖

(L2((si−1,si+1)\Ξ(m)
j

))2
≤ ε

2
‖�u‖(L2(si−1,si+1))2 ,

i ≥ i∗(ε), m ≥ m∗
2(ε).(4.22)
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Equations (4.21) and (4.22) together prove the theorem for m∗(ε) :=
max{m∗

1(ε), m
∗
2(ε)}.

Now we can prove the stability of our modified collocation method
P̃ d

m,j(I +K)P̃ d
m,j if j is sufficiently large.

Theorem 4.6. Let q > 0 and 0 = ξ0 < . . . < ξd = 1. There exist
i∗, m∗ ∈ N, such that, for all i ≥ i∗,

‖P̃ d
m,i(I +K)�u‖(L2(0,T ))2 ≥ c‖�u‖(L2(0,T ))2 ,

�u ∈ Π̃d
m,i, m ≥ m∗, where the constant c > 0 does not depend on �u or

m.

Proof. By Theorem 4.2 there is an h0 > 0, such that

(4.23) ‖Ph(I +K)Ph�u‖(L2(0,T ))2 ≥ c‖Ph�u‖(L2(0,T ))2 , h ∈ (0, h0),

where c is independent of �u and h. By Lemma 4.5 there exist i∗ and
m∗ with

(4.24) ‖(I − P̃ d
m,j)K�u‖

(L2([0,T ]\Ξ(m)
j

))2
≤ c

2
‖�u‖(L2(0,T ))2 ,

m ≥ m∗, j ≥ i∗. Now we fix j. For m ≥ m∗
1 the projector Rm

j ,
see (4.16), also fulfills the inequality (4.23), see the remark before
Lemma 4.4. We further have

(4.25) Rm
j ◦ P̃ d

m,j = P̃ d
m,j .

For m ≥ max{m∗, m∗
1}, we get for �u ∈ (Π̃d

m,j)
2

‖P̃ d
m,j(I +K)�u‖(L2(0,T ))2

(4.25)

≥ ‖Rm
j (I +K)Rm

j �u‖(L2(0,T ))2

− ‖(P̃ d
m,j − Rm

j )(I +K)Rm
j �u‖(L2(0,T ))2

(4.23)

≥ c‖Rm
j �u‖(L2(0,T ))2

− ‖(P̃ d
m,j −Rm

j )KRm
j �u‖(L2(0,T ))2

= c‖�u‖(L2(0,T ))2

− ‖(P̃ d
m,j − I)KRm

j �u‖
(L2([0,T ]\Ξ(m)

j
))2

(4.24)

≥ c

2
‖�u‖(L2(0,T ))2 .
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Lemma 4.7. Let �u ∈ (L2(0, T ))2, ρ ∈ (1, 3/2). Assume that, for
every i,

�u|[si,si+1] ∈ (Cl(si, si+1))2,

�v ±
i (x) := �u(si ± x) ∈

(
X2,l

ρ (0, 1)
)2 � R2,

and let q ≥ 2r, r := min{l, d + 1}. For j∗ ∈ N we have

‖(I − P̃ d
m,j∗)�u‖(L2(0,T ))2 ≤

c(�u, j∗)
mr

.

Proof. By the triangle inequality we get

‖(I − P̃ d
m,j∗)�u‖(L2(0,T ))2 ≤

n−1∑
j=0

‖(I − P̃ d
m,j∗)�u‖(L2(sj+1,sj+1−1))2

+
n−1∑
j=0

‖(I − P̃ d
m,j∗)�u‖(L2(sj ,sj+1))2

+
n∑

j=1

‖(I − P̃ d
m,j∗)�u‖(L2(sj−1,sj))2 .

For the first summand we get

(4.26) |(I − P̃ d
m,j∗)�u(x)| ≤ c1(�u)

mr
, x ∈ [si + 1, si+1 − 1],

because here �u is a Cl-function, l ≥ r.

The terms in the second and third sum can all be estimated by the
approximation error for �v ±

i (x) on (0, 1). We look at one term in the
second summand and because of 2r ≥ r/ρ we get by [5, Lemma 2.20]

(4.27) ‖(I − P d
m,j∗)�v +

i ‖L2(x
(m)
j∗ ,1))2

≤ c2

mr
‖�v +

i ‖(X2,l
ρ (0,1))2 ,

where the constant c2 depends only on (ξk)d
k=0. Now we notice

�v +
i = �w +

i + v +
0 , �w +

i ∈
(
X2,l

ρ (0, 1)
)2

, v +
0 ∈ R2.
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We get

‖(I − P d
m,j∗)�v +

i ‖(L2(0,x
(m)
j∗ ))2

= ‖�v +
i ‖(L2(0,x

(m)
j∗ ))2

≤
(∫ x

(m)
j∗

0

‖�w +
i (x)‖2 dx

)1/2

+
(∫ x

(m)
j∗

0

‖�v +
0 ‖2 dx

)1/2

≤
(

(x(m)
j∗ )2ρ

∫ x
(m)
j∗

0

(x−ρ‖�w+
i (x)‖)2 dx

)1/2

(4.28)

+ (x(m)
j∗ )1/2‖�v +

0 ‖

≤ c3(�v +
i )(x(m)

j∗ )1/2

q≥2r

≤ c4(�v +
i )

1
mr

.

Now (4.26) (4.28) prove the lemma.

Remark. In the proof of Lemma 4.7 we see that the large grading
exponent 2r is only necessary for the proof of (4.28). If it is possible
to prove stability for a modified projector P d

m,j∗ where the functions
are constant (but not necessarily zero) in a vicinity of zero, then a
grading exponent r/ρ would be sufficient for the approximation result
in Lemma 4.7.

The next theorem shows that for m large enough the solution �um of
the collocation equation (4.19) is well defined and we get an estimate
for the error.

Theorem 4.8. Let �f ∈ (C[0, T ])2, �f |[si,si+1] ∈ (Cl[si, si+1])2,
i = 0(1)n − 1, l ∈ N. We denote by �u the solution of equation (1.1),
see Theorem 3.17. Let 0 = ξ0 < ξ1 < · · · < ξd = 1, d ∈ N, q ≥ 2r,
r := min{l, d + 1}. There exists an i∗ ∈ N, such that for j∗ ≥ i∗ and
all sufficiently large m the equation (4.19) has a solution �um and we
get

‖�u− �um‖(L2(0,T ))2 ≤
c

mr
.
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Proof. By Theorem 4.6 there exists an i∗ ∈ N, such that for j∗ ≥ i∗

(4.29) ‖P̃ d
m,j∗(I +K)�v‖(L2(0,T ))2 ≥ c‖�v‖(L2(0,T ))2 , ∀�v ∈ Π̃d

m,j∗ ,

m ≥ m∗, c > 0. Because Π̃d
m,j∗ is finite-dimensional this shows the

solvability of (4.19), and we get by the triangle inequality
(4.30)
‖�u− �um‖(L2(0,T ))2 ≤ ‖�u− P̃ d

m,j∗�u‖(L2(0,T ))2 + ‖P̃ d
m,j∗�u− �um‖(L2(0,T ))2 .

For the second summand we get by (4.29),

(4.31)

‖P̃ d
m,j∗�u− �um‖(L2(0,T ))2 ≤

1
c
‖P̃ d

m,j∗(I +K)P̃ d
m,j∗�u

− P̃ d
m,j∗(I +K)�um‖(L2(0,T ))2

=
1
c
‖P̃ d

m,j∗(I +K)P̃ d
m,j∗�u

− P̃ d
m,j∗ �f‖(L2(0,T ))2

=
1
c
‖P̃ d

m,j∗(I +K)P̃ d
m,j∗�u

− P̃ d
m,j∗(I +K)�u‖(L2(0,T ))2

=
1
c
‖P̃ d

m,j∗K(P̃ d
m,j∗�u− �u)‖(L2(0,T ))2

≤ c1‖P̃ d
m,j∗�u− �u‖(L2(0,T ))2 .

Here the continuity of P̃ d
m,j∗K, see Lemma 4.5, has been used. Equa-

tions (4.30) and (4.31) now give

‖�u− �um‖(L2(0,T ))2 ≤ (1 + c1)‖�u− P̃ d
m,j∗�u‖(L2(0,T ))2 ,

but �u fulfills the assumptions of Lemma 4.7, with ρ ∈ [1, 1/2 + z̄(ω̄)),
by Lemma 3.11, and this proves Theorem 4.8.

5. Proof of some auxiliary results.

Proof of Lemma 3.5. By the transformation x→ e−x/p we have the
correspondence between the operator B(ω)

i on (0, 1) and a Wiener-Hopf
operator W

(ω)
i on [0,∞).
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The Wiener-Hopf operator is a Fredholm operator if the determinant
of its symbol Ŵ

(ω)
i (s) is different from zero on the real line [10,

Theorem VIII, 6.1]. If we consider B(ω)
i as an operator on (Lp(0, 1))4

the corresponding Wiener-Hopf operator has the symbol

(5.1) B̂(ω)
i (s), Re (s) = 1/p.

If we consider B̂(ω)
i (s) as an operator on (Xp,0

ρ (0, 1))4, the corresponding
Wiener-Hopf operator has the symbol

(5.2) B̂(ω)
i (s), Re (s) = 1/p− ρ,

see [5].

This implies that we have to study the zeros of the function

det(B̂(ω)
i (s)), ω ∈ [0, 1].

By formula (3.30) we have

(5.3)

B̂(ω)
i (s) =

(
I2×2 0

0 S̃i

)
B̃(ω)

i (s)
(

I2×2 0
0 S̃i

)
, where

B̃(ω)
i (s) :=

(
I2×2 Ĉ

(ω)
i (s)

Ĉ
(ω)
i (s) I2×2

)
, with

Ĉ
(ω)
i (s) = (gi(s)I2×2 + ωhi(s)Si,1(s))S̃i.

Because of det(Ŝi) = −1 we get

det(B̂(ω)
i (s)) = det(B̃(ω)

i (s)).

Now we follow the proofs of Lewis in [13].

First we obtain

det(B̃(ω)
i (s)) = det(I2×2 − Ĉ

(ω)
i (s)) det(I2×2 + Ĉ

(ω)
i (s)).

Furthermore we have

I2×2 − Ĉ
(ω)
i (s) =

1
sin(πs)

[
− sin(αis)S̃i(

sin(πs)− ωs sin(αi) cos(αi) −ωs sin(αi) sin(αis)
ωs sin(αi) sin(αis) sin(πs)− ωs sin(αi) cos(αi)

)]
=:

1
sin(πs)

(A2 + A1).



COLLOCATION METHOD 189

Here A1 has the form

A1 =
(

a
(1)
11 a

(1)
12

−a
(1)
12 a

(1)
11

)
(which is called antireflective by Lewis) and A2 has the form

A2 =
(

a
(2)
11 a

(2)
12

a
(2)
12 −a

(2)
11

)
(called reflective by Lewis). This implies

det(A1 ±A2) = det(A1) + det(A2)

= ((a(1)
11 )2 + (a(1)

12 )2)− ((a(2)
11 )2 + (a(2)

12 )2);

hence,

det(I2×2 − Ĉ
(ω)
i (s)) =

1
sin(πs)2

((sin(πs) cos(αis)− ωs sin(αi))2

− (cos(πs) sin(αis))2)

=:
1

sin(πs)2
(α2 − β2)

=
1

sin(πs)2
(α− β)(α + β),

where
α = sin(πs) cos(αis)− ωs sin(αi),
β = cos(πs) sin(αis).

For s = 0, α and β have a simple zero. Now we have

α− β = 0
s 
=0⇐⇒ sin((π − αi)s)

(π − αi)s
− ω

sin(π − αi)
π − αi

= 0.

By Lemma 3.4 of Lewis we get

α− β 
= 0, for s ∈ C, 0 ≤ Re (s) < z̄(ω), s 
= 0.
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On the other hand,

α + β = 0
s 
=0⇐⇒ sin((π + αi)s)

(π + αi)s
+ ω

sin(π + αi)
π + αi

= 0.

Again by the lemma of Lewis we know

α + β 
= 0, for 0 ≤ Re(s) < z̄(ω), s 
= 0.

This implies

(5.4) det(I2×2 − Ĉ
(ω)
i (s)) 
= 0, 0 ≤ Re (s) < z̄(ω).

Analogous to I2×2 − Ĉ
(ω)
i (s) we now analyze I2×2 + Ĉ

(ω)
i (s) and get

(5.5) det(I2×2 + Ĉ
(ω)
i (s)) 
= 0, 0 ≤ Re (s) < z̄(ω).

det(I2×2 ± Ĉ
(ω)
i (s)) are even functions, therefore (5.4) and (5.5) show

det(I2×2 ± Ĉ
(ω)
i (s)) 
= 0, if |Re (s)| < z̄(ω).

This gives
det(B̂(ω)

i (s)) 
= 0, if |Re (s)| < z̄(ω).

Lemma 3.2 now shows (iii) for 1/2 − ρ > −z̄(ω), and Lemma 3.2 and
(5.1) imply

B(ω)
i : (Lp(0, 1))4 −→ (Lp(0, 1))4

is a Fredholm operator for

0 ≤ 1
p

< z̄(ω)⇐⇒ 1
z̄(ω)

< p ≤ ∞.

Lemma 3.2 and (5.2) show

B(ω)
i : (Xp,0

1 (0, 1))4 ←→ (Xp,0
1 (0, 1))4
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is a Fredholm operator for

−z̄(ω) <
1
p
− 1 ≤ 0⇐⇒ 1 ≤ p <

1
1− z̄(ω)

.

Proof of Lemma 3.7. We have

Ĉ
(ω)
i (s) = gi(s)S̃i + ωhi(s)Si,1(s)S̃i

For S̃i,1(s) := Si,1(s)S̃i we get

S̃i,1(s) =
(

cos(αis) sin(αis)
− sin(αis) cos(αis)

)
.

Re (Ĉ(ω)
i (s))

=
1
2

(
gi(s)S̃i + gi(s)S̃i + ωhi(s)S̃i,1(s) + ωhi(s)S̃i,1(s)∗

)
= Re (gi(s))S̃i

+ ω

(
Re (hi(s) cos(αis))

√
−1 Im (hi(s) sin(αis))

−
√
−1Im (hi(s) sin(αis)) Re (hi(s) cos(αis))

)
The first term is a reflective matrix and the second term is antireflective.
This will be used in the calculation of the eigenvalues of Re (Ĉ(ω)

i (s)).

det(Re (Ĉ(ω)
i (s))− λI2×2)

= det(
(

ωRe (hi(s) cos(αis))− λ
√
−1ω Im (hi(s) sin(αis))

−
√
−1ω Im (hi(s) sin(αis)) Re (hi(s) cos(αis))− λ

)
+ Re (gi(s))S̃i)

= (ωRe (hi(s) cos(αis))− λ)2

− ω2 Im ((hi(s) sin(αis)))2 − Re (gi(s))2

= λ2 − 2ω Re (hi(s) cos(αis))λ
+ ω2(Re (hi(s) cos(αis))2

− Im (hi(s) sin(αis))2)− Re (gi(s))2.
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The two solutions for λ are given by

(5.6)
λ1/2(s) = ω Re (hi(s) cos(αis))

± (Re (gi(s))2 + ω2 Im (hi(s) sin(αis))2)1/2

We recall that

hi(s) sin(αis) = sin(αi)
s sin(αis)
sin(πs)

,

hi(s) cos(αis) = sin(αi)
s cos(αis)
sin(πs)

,

gi(s) =
sin(αis)
sin(πs)

.

We substitute s =
√
−1y, y ∈ R, and obtain

hi(s) sin(αis) =
√
−1 sin(αi)

y sinh(αiy)
sinh(πy)

,

hi(s) cos(αis) = sin(αi)
√
−1 y cosh(αiy)√
−1 sinh(πy)

,

= sin(αi)
y cosh(αiy)
sinh(πy)

,

gi(s) =
sinh(αiy)
sinh(πy)

.

By (5.6) we get

λ1/2(y) = ω sin(αi)
y cosh(αiy)
sinh(πy)

±
(

sinh(αiy)2

sinh(πy)2
+ ω2 sin(αi)2

sinh(αiy)2

sinh(πy)2

)1/2

= ω sin(αi)
y cosh(αiy)
sinh(πy)

±
∣∣∣∣ sinh(αiy)
sinh(πy)

∣∣∣∣(1 + ω2 sin(αi)2y2)1/2.
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Let αi ≥ 0. We define

f1(αi, y) := λ1(y)

= ω sin(αi)
y cosh(αiy)
sinh(πy)

+
sinh(αiy)
sinh(πy)

(1 + ω2 sin(αi)2y2)1/2

f2(αi, y) := λ2(y)

= ω sin(αi)
y cosh(αiy)
sinh(πy)

− sinh(αiy)
sinh(πy)

(1 + ω2 sin(αi)2y2)1/2.

For αi < 0 we have

λ1(y) = −ω sin(−αi)
y cosh(αiy)
sinh(πy)

+
sinh(−αiy)
sinh(πy)

(1 + ω2 sin(αi)2y2)1/2

= −f2(−αi, y)

λ2(y) = −ω sin(−αi)
y cosh(αiy)
sinh(πy)

− sinh(−αiy)
sinh(πy)

(1 + ω2 sin(αi)2y2)1/2

= −f1(−αi, y)

We are only interested in the absolute values of λ1/2(y), so we only
have to consider f1/2(αi, y), αi ∈ [0, π), y ∈ R. But we further have

(i) f1/2(αi, y) = f1/2(αi,−y), ∀αi and y ∈ R.

This means we only have to look at the case αi ∈ [0, π), y ≥ 0. But
then we observe that

|f1(αi, y)| ≥ |f2(αi, y)| and f1(αi, y) ≥ 0.

So it remains to show that there exists

(5.7) q∗i < 1 such that f1(αi, y) ≤ q∗i , ∀ y ≥ 0.

The statement of the lemma then follows with

q := 1− n
max
i=1
{q∗i }.

Define

f(αi, y) := sin(αi)
y cosh(αiy)
sinh(πy)

+
sinh(αiy)
sinh(πy)

(1 + sin(αi)2y2)1/2
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(here ω is equal to 1). We have the following properties

(ii) f1(αi, y) ≤ f(αi, y), ∀αi ∈ [0, π), y ≥ 0.

(iii) lim|y|→∞ f(αi, y) = 0.

(iv) f(0, y) ≡ 0.

(v) f(π, y) ≡ 1.

From (ii) it follows that we have to prove (5.7) only for f(αi, y). (iii) (v)
show that it is sufficient to prove that the mapping

(5.8) αi −→ f(αi, y) is monotonically increasing, y ≥ 0.

Then (5.7) is proved. But we have

∂f

∂αi
(αi, y) = cos(αi)

y cosh(αiy)
sinh(πy)

+ sin(αi)
y2 sinh(αiy)

sinh(πy)

+
y cosh(αiy)
sinh(πy)

(1 + sin(αi)2y2)1/2

+ sin(αi) cos(αi)
y2 sinh(αiy)

sinh(πy)
(1 + sin(αi)2y2)−1/2

=
1

sinh(πy)

(
y cosh(αiy) (cos(αi) + (1 + sin(αi)2y2)1/2︸ ︷︷ ︸

>0

+ y2 sin(αi) sinh(αiy)︸ ︷︷ ︸
≥0

(1 + cos(αi)(1 + sin(αi)2y2)−1/2)︸ ︷︷ ︸
≥0

≥ 0.

This proves (5.8) and the lemma.
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