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ATTRACTING SOLUTIONS OF NONLINEAR
VOLTERRA INTEGRAL EQUATIONS

MARIANO R. ARIAS AND JESÚS M.F. CASTILLO

ABSTRACT. This paper is devoted to studying the unique-
ness and the attracting character of nontrivial solutions for
some nonlinear Volterra integral equations. Also, a simple
method to approximate the nontrivial solution is provided.

0. Introduction. We are interested in the nonlinear Volterra
integral equations

(k, g) u(x) =
∫ x

0

k(x − s)g(u(s)) ds,

from now on referred to as equation (k, g). The operator

(Tk,g) Tk,gu(x) =
∫ x

0

k(x − s)g(u(s)) ds

shall be referred to as the associated operator to equation (k, g).

These equations appear in connection with several physical models:
diffusion problems such as percolation from a reservoir [7] or fabrication
of microchips [8], nonlinear models about the behavior of the shock-
wave front in gas-filled tubes [6], etc. The physical models considered
impose some restrictions on the kernel k and the nonlinearity g. The
kernel k is always a nonnegative locally integrable function, and g
is a continuous increasing function such that g(0) = 0. A solution
of those equations is the function zero; so, our interest is centered
on nontrivial solutions, i.e., positive solutions different from zero in
every neighborhood of 0. When the equation (k, g) admits nontrivial
solutions we say that (k, g) is admissible.

Received by the editors on July 20, 1998, and in revised form on October 23,
1998.

Research of the first author supported in part by DGICYT project CLI96-1871-
C04-03.

Research of the second author supported in part by DGICYT project PB94-
1052-C02-02.

Copyright c©1999 Rocky Mountain Mathematics Consortium

299



300 M.R. ARIAS AND J.M.F. CASTILLO

Following [2, 3], a positive function f is said to be like a positive
function h if there exist two positive constants α and β such that
αh ≤ f ≤ βh. The function f is said to be weakly homogeneous if
there exists a positive function l such that, for all λ, x ≥ 0, one has

f(λx) ≥ l(λ)f(x);

the function l is called a lower transfer function for f .

Examples of weakly homogeneous functions are: homogeneous func-
tions, polynomials with nonnegative coefficients, the function log(x+1),
compositions or linear combinations of weakly homogeneous functions.
More examples and properties of these functions can be found in [2].

Assuming the kernel k is like a positive increasing function and the
equation (k, g) is admissible, our purpose is to show that the solution,
u, is unique and attracts all positive functions, f , in the following sense:

u = lim
n→∞ Tn

k,g(f)

where lim denotes a pointwise limit. All throughout the paper lim
denotes a pointwise limit, unless otherwise stated.

We shall prove that the majority of weakly homogeneous functions
are like a positive increasing function. In this way, when the kernel k
is weakly homogeneous, one admissible equation (k, g) has a unique
solution. And this solution is increasing and attracts all positive
functions.

To approximate the solution of a nonlinear Volterra integral equation
by Picard’s iterates is hard. Considering the attracting character of
nontrivial solutions, we obtain, in the second part of the paper, a simple
way to approximate the solution of (k, g) when the associated operator
Tk,g is monotone.

1. Attracting solutions and uniqueness. All throughout the
paper the positive kernel k is assumed to be like some increasing kernel
μ. This means that there are two positive constants α and β such that
αμ ≤ k ≤ βμ. The nonlinearity g is assumed to be nonnegative, strictly
increasing and smooth on the open half-axis (0,∞). Both kernel and
nonlinearity vanish at 0.
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Szwarc proves in [9, Proposition 1 and Theorem 1] that if the equation

u(x) =
∫ x

0

a(x, y)φ(u(y)) dy

has a nontrivial solution, then it is unique and attracts all positive
functions f , assuming that the kernel a(x, y) satisfies

a(x, y) ≥ a(s, t), for 0 ≤ s ≤ x, 0 ≤ t ≤ y, and x − y > s − t,

and a(x, x) = 0; moreover, the functions u and φ have to be smooth,
nonnegative and strictly increasing on the half-axis [0, +∞) and u(0) =
φ(0) = 0.

The kernel a(x, y) = μ(x − y) with μ increasing is a particular case
of a kernel satisfying Szwarc’s hypothesis. We shall study equations
having convolution kernels k(x − y); however, k shall only be assumed
to be like some increasing kernel μ, and therefore our results are not a
proper subset of those of Szwarc.

Our main results are Theorems 3 and 5, and the nontrivial part of
the proof is to find a way to take advantage of such a weak assumption
on k. That way passes through the technical power of the main result
sketched in [1] that we describe now.

Theorem. Let (ω, g) be an equation having a positive increasing
kernel and a strictly increasing continuous N-function nonlinearity.
The equation (ω, g) is admissible if and only if for every λ > 0 the
equation (λω, g) is admissible.

Recall that g is an N -function if it transforms null sets into null sets.
Note that, for a strictly increasing and continuous function, to be an N -
function is equivalent to being a locally absolutely continuous function.
This is Banach’s result [4]. The original proof of this result is presented
in [5, p. 288].

Let Tα and Tβ be the associated operators to the equations (αμ, g)
and (βμ, g), respectively. Considering the main result of Szwarc in [9],
if (αμ, g) and (βμ, g) are admissible, there is uniqueness of solution
for these equations and they attract (in the above sense) all positive
functions.
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With this set up we are ready to pass to the proof of a technical
result.

Proposition 1. Let g be a smooth strictly increasing function. If the
equation (k, g) admits a nontrivial solution then it admits a maximal
solution and a minimal solution. Moreover, both maximal and minimal
solutions are increasing functions.

Proof. Note that the nonlinearity is a smooth and strictly increasing
function and therefore it is a strictly increasing locally absolutely
continuous function.

By the general assumptions on k, for some positive constants α and
β and some positive increasing kernel μ, one has αμ ≤ k ≤ βμ. If (k, g)
is admissible, then (βμ, g) and (αμ, g) are admissible by the preceding
theorem. Let uα be the nontrivial solution for (αμ, g) and let uβ be
the nontrivial solution for (βμ, g) given by Szwarc’s theorem.

Now we shall construct the maximal solution for (k, g). It is clear that
if we set T = Tk,g then Tuβ ≤ uβ holds. Thus, since T is a monotone
operator,

(Tnuβ)n

is a monotone decreasing sequence.

Claim. uα ≤ uβ.

Proof of the claim. Since uα = Tαuα ≤ Tβuα, then Tn
β uα ≤ Tn+1

β uα

for n ≥ 0. The equation (βμ, g) satisfies the hypothesis of Szwarc’s
paper, so uβ attracts all positive functions and then

uβ = lim
n→∞Tn

β uα.

Therefore, Tnuα ≤ uβ for n ≥ 0. In particular, uα ≤ uβ.

The monotone sequence (Tnuβ)n is bounded from below by uα

because
uα = Tαuα ≤ Tuβ .
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We can define
u1 = lim

n→∞Tnuβ.

A standard application of Lebesgue’s dominated convergence theorem
yields that u1 is a solution for (k, g). Our aim is to see that u1 is
a maximal solution for (k, g). To prove this, we shall show that u1

attracts all functions f ≥ u1, i.e.,

u1 = lim
n→∞Tnf.

Case 1. f ≥ uβ . In this case

uβ = lim
n→∞Tn

β f

and Tn
β f ≥ Tnf ≥ u1 for each n > 0. Since T transforms bounded sets

into relatively compact sets (T is a totally continuous operator) and
{Tnf}n is a bounded set, {Tnf}n is a relatively compact set and, by the
last inequality it is easy to see that the set of its accumulation points,
that we denote by Ωf , is bounded from above by uβ and bounded from
below by u1. Therefore, Ωf = {u1} because Ωf is invariant by T and

u1 = lim
n→∞Tnuβ.

Case 2. Otherwise. Consider the function

fβ(x) = max{f(x), uβ(x)}.

Since u1 ≤ f ≤ fβ and fβ is under the assumption of case 1 we have
that Ωfβ

= {u1} and

u1 ≤ inf Ωf ≤ sup Ωf ≤ sup Ωfβ
= u1.

Thus Ωf = {u1} and the proof is complete.

To obtain a minimal solution for (k, g) one should work with u2 =
limn→∞ Tnuα in an analogous way.

It is clear that u1 and u2 are increasing functions since they are limits
of monotone sequences of increasing functions.
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Proposition 2. The equation (k, g) has at most one positive increas-
ing solution.

The proof follows that of Proposition 1 in [9] by replacing Lemma 2
in [9] by

Lemma. Let u be an increasing function satisfying Tu(x) ≥ u(x),
and let

v(x) =
{

u(x), if 0 ≤ x ≤ c,
u(c), if c < x.

There exists ε > 0 such that

lim inf
n→∞ Tnv(x) ≥ u(x), for c < x < c + ε,

and Lemma 3 in [9] by

Lemma. Let u be a solution of T , and let

v(x) =
{

u(x), if 0 ≤ x ≤ c,
u(c), if c < x.

There exists ε > 0 such that

lim
n→∞Tnv(x) = u(x), for c < x < c + ε.

This is possible because a close inspection of the proofs in [9] reveals
that one does not need the full strength of a “strictly increasing kernel”:
one only needs that the kernel be bounded in each closed subinterval,
a condition satisfied by kernels like positive increasing kernels.

If one compares Szwarc’s statements with ours, then one shall see
that we have replaced stronger assumptions on the equation (k, g) by
some weaker ones at the cost of imposing stronger restrictions on the
functions u (“increasing” in the first lemma instead of “any function”;
and “nontrivial increasing solution” instead of “nontrivial solution” in
the second).
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Thus, we arrive at our main result.

Theorem 3. Let k be a kernel like an increasing kernel and g a
smooth strictly increasing nonlinearity, both vanishing at 0. If the
equation (k, g) admits a nontrivial solution, then it is unique and
attracts all positive functions.

Proof. Let u be the solution of (k, g) and v a positive function. It is
sufficient to see that u attracts v. Let us consider the functions

v1(x) = max{v(x), u(x)} and v2(x) = min{v(x), u(x)}.

One has u = limn→∞ Tnvi, i = 1, 2, and therefore, u = limn→∞ Tnv.

The following result proves that most nonnegative weakly homoge-
neous functions are like an increasing function.

Proposition 4. Let f be a weakly homogeneous function such that
f(0) = 0 with a lower transfer function bounded from below by a
strictly positive constant in the interval [1,∞). Then f is like a positive
increasing function.

Proof. We are going to prove that f is like f̃ , where

f̃(x) = max
s∈[0,x]

f(s).

It is immediate that f̃(x) ≥ f(x) for x ≥ 0. We show that there
exists a positive constant θ for which θf̃(x) ≤ f(x) for x ≥ 0, which is
equivalent to

f(x)/f̃(x) ≥ θ > 0, ∀x > 0.

To calculate θ it is sufficient to observe the inequalities

f̃(x) = max
s∈[0,x]

f(s) = max
λ∈[0,1]

f(λ, x)

≤ f(x) sup
λ∈[0,1]

d(λ) ≤ f(x)ρ,
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where d(λ) = 1/c(1/λ). Therefore, θ = 1/ρ is a valid selection.

The hypothesis about the bound for the lower transfer function in the
previous proposition is not so strong; it essentially means that there
exists a positive constant α bounding f from below when x is large or
else that f(λx) is not remarkably smaller than f(x) for large x.

The results proved in this section allow us to assert

Theorem 5. Let k be a weakly homogeneous kernel as in Propo-
sition 4, g a smooth strictly increasing nonlinearity, k(0) = 0 and
g(0) = 0. If the equation (k, g) admits a nontrivial solution, then it
is unique and attracts all positive functions.

2. Approximation of solutions. The idea for this section is to
describe a simple way to approximate solutions of equations u = Tu
in some interval [0, δ], assuming the existence and uniqueness of a non-
trivial solution attracting the positive functions and the monotonicity
of the operator T .

We construct a monotone decreasing sequence of continuous increas-
ing functions converging to the solution u.

In what follows M denotes a positive constant function bounding
u from above in a closed interval [0, δ0]. Since TM is an increasing
continuous function such that TM(0) = 0, there is a closed interval
[0, ρ] where TM(x) ≤ M . We assume that [0, ρ] = [0, δ0] since our aim
is to describe an iterative method defined on a zero closed interval. The
characteristic function of an interval I shall be denoted by χI .

Let α < 1 be a constant. Since TM is uniformly continuous on [0, δ0],
there exists δ1 > 0:

|x − y| < δ1 =⇒ |TM(x) − TM(y)| < α.

Take a finite partition P1 = {xi}i of the interval [0, δ0] for which
xi − xi−1 < δ1.

Let M1 be the function

M1(x) =
∑

xi∈Pi

TM(xi)χ[xi−1,xi)(x)
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on [0, δ0]. It is easy to see that

0 ≤ M1(x) − TM(x) < α and M(x) ≥ M1(x) ≥ TM1(x),

on [0, δ0]. Taking into account the monotonicity of T , one has

M1(x) ≥ TM(x) ≥ TM1(x), ∀x ∈ [0, δ0].

Repeating the previous constructions with TM1 and α2 instead of
TM and α, a positive δ2 and a finite partition P2 = {xi}i can be found
of the interval [0, δ0] such that xi − xi−1 < δ2, and we can define the
function

M2(x) =
∑

xi∈P2

TM1(xi)χ[xi−1,xi)(x),

on [0, δ0]. In this case

0 ≤ M2(x) − TM1(x) < α2 and M1(x) ≥ M2(x) ≥ TM1(x),

on [0, δ0]. By the monotonicity of T one has M2(x) ≥ TM2(x) on [0, δ0].

Proceeding inductively one obtains a sequence (Mn) of simple func-
tions such that

Mn(x) ≥ TMn(x) and Mn−1(x) ≥ Mn(x) ≥ TMn−1(x)

hold on [0, δ0]. Moreover, (TmMn) converges to u on [0, δ0]. The
second group of inequalities implies that the monotone sequences (Mn)
and (TMn) are convergent and their limit is a solution of (k, g). Let f
be the limit of (Mn). One sees that f is a solution of u = Tu since

|f(x) − Tf(x)| ≤ |f(x) − Mn(x)| + |Mn(x) − TMn(x)|
+ |TMn(x) − Tf(x)| ≤ ε.

Therefore, (TMn) converges to u. So, one has

Theorem. Let (k, g) be a nonlinear Volterra integral equation with
a monotone associated operator T and a unique attracting nontrivial
solution. There exist sequences (Mn) of simple functions such that
(Mn) and (TMn) converge to the nontrivial solution.
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