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SYMMETRY GAPS IN RIEMANNIAN GEOMETRY
AND MINIMAL ORBIFOLDS

Wouter van Limbeek

Abstract

We study the size of the isometry group Isom(M, g) of Rie-
mannian manifolds (M, g) as g varies. For M not admitting a
circle action, we show that the order of Isom(M, g) can be univer-
sally bounded in terms of the bounds on Ricci curvature, diame-
ter, and injectivity radius of M . This generalizes results known
for negative Ricci curvature to all manifolds.

More generally we establish a similar universal bound on the

index of the deck group π1(M) in the isometry group Isom(M̃, g̃)

of the universal cover M̃ in the absence of suitable actions by
connected groups. We apply this to characterize locally symmetric
spaces by their symmetry in covers. This proves a conjecture of
Farb and Weinberger with the additional assumption of bounds on
curvature, diameter, and injectivity radius. Further we generalize
results of Kazhdan–Margulis and Gromov on minimal orbifolds of
nonpositively curved manifolds to arbitrary manifolds with only a
purely topological assumption.

1. Introduction

Let M be a closed Riemannian manifold with metric g. A general
question is to study the relation between the geometry of M and the
group of isometries Isom(M,g). An important example is the classical
result of Bochner–Yano [BY53] that if M is negatively curved then
Isom(M) is finite.

Given this qualitative result, one can hope for a quantitative version
that bounds the size of the isometry group. The first result in this
direction is a classical theorem due to Hurwitz, which states that for
any hyperbolic metric on a surface Σ of genus g ≥ 2, the order of
Isom(Σ) is at most 84(g − 1). This result already shows there is an
interesting connection between the question of bounds on the order of
Isom(M,g) and the topology of M . Further results in this direction
have been proved by Huber [Hub72] (for hyperbolic manifolds), Im
Hof (for negatively curved manifolds) [Hof73], Maeda (for nonpositively
curved manifolds with negative Ricci curvature) [Mae75], and Katsuda
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(for manifolds with negative Ricci curvature) [Kat88], and Dai–Shen–
Wei [DSW94]. For more information see [DSW94] and the references
therein. We will just state the latter result since it is the most general.

Theorem 1.1 ([DSW94]). Let n ≥ 1 and Λ > λ, ε0,D be positive
constants. Then there exists C ≥ 1 such that for any closed Riemannian
n-manifold (M,g) such that

−Λ ≤ RicM ≤ −λ < 0, injradM ≥ ε0, diam(M) ≤ D,

we have | Isom(M)| ≤ C.

The proofs of the above results rely on differential geometric tech-
niques in negative (Ricci) curvature such as Bochner identities. On the
other hand, it is clear that the Bochner–Yano theorem generalizes to
many manifolds that are not negatively curved. For instance, Borel
proved that if M is closed aspherical and π1(M) is centerless then M
admits no nontrivial action by a compact connected Lie group [Bor83].
Hence for any metric g on M , the isometry group Isom(M,g) is finite.

Main results. As far as we are aware, no progress has been made on
quantitative generalizations of the Bochner–Yano theorem without some
assumption of negative curvature. The goal of this paper is to prove re-
sults similar to Theorem 1.1 outside of the setting of negative curvature.
However, in general M may admit metrics with infinite isometry group.
In this case no upper bound on the number of isometries exists. Our
main result is that the existence of an action by a connected Lie group is
the only obstruction to a uniform bound on the size of isometry groups.
More precisely, we prove the following:

Theorem 1.2. Let Λ, ε,D > 0 and n ≥ 1. Then there exists C > 0
with the following property. Suppose (M,g) is a closed Riemannian n-
manifold such that M does not admit a C2 circle action, and such that

(1.1) |Ricg | ≤ Λ, injrad(M,g) ≥ ε, diam(M,g) ≤ D.

Then Isom(M,g) has order at most C.

Remark 1.3. At least some of the bounds on Ricci curvature, injec-
tivity radius and diameter are essential in Theorem 1.2 because of the
following example. Cappell–Weinberger–Yan [CWY13] constructed
counterexamples to the Conner–Raymond conjecture. Their examples
are smooth closed aspherical manifolds M of any dimension > 7 that
admit no continuous action by a connected group. However, as was
pointed out to me by Shmuel Weinberger, these examples have a degree
3 self-cover p : M → M . From the construction it is clear that p and
all of its iterates pn : M → M are regular covers, so that M admits a
smooth effective action by a group of order 3n for any n ≥ 1.
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Remark 1.4. As explained above, if M is a manifold with a C∞

circle action, then there is a smooth metric such that this action is by
isometries. In Theorem 1.2 we assume that there is no C2 action. We
do not know if the nonexistence of a C∞ circle action suffices to obtain
the conclusion of Theorem 1.2.

Remark 1.5. Our proof gives no information about the size of C. It
would be interesting to obtain explicit upper bounds.

As mentioned above, in the special case that M is a closed aspherical
manifold and π1(M) is centerless, Borel proved that no connected Lie
group acts effectively on M . Therefore, Theorem 1.2 yields a quanti-
tative version of Borel’s theorem. In this case we actually obtain an
explicit, but probably very far from optimal, bound on C.

Theorem 1.6 (Quantitative Borel). Let Λ, ε,D > 0 and n ≥ 1.
Then there exists C > 0 with the following property. Let (M,g) be a
closed aspherical Riemannian n-manifold with centerless fundamental
group and satisfying the bounds of Equation 1.1. Then Isom(M,g) has
order at most C.

Set N =
Vk(D

2
)

Vk(
ε

4
) , where Vk(r) denotes the volume of a ball of radius r

in a simply-connected manifold of dimension n and constant curvature
−Λ
n−1 . Then we can take C = NN .

Note that in Theorems 1.2 and 1.6 we do not require the Ricci curva-
ture to be negative. Consequently, the proofs will not use phenomena
in negative curvature and hence will be very different from the proof of
Theorem 1.1 (and the previous results of Bochner–Yano, Hüber, Im Hof,
Katsuda, Maeda, and Dai–Shen–Wei). Instead our methods are more
topological. We will give a further outline of the proof of Theorem 1.2
at the end of this section.

The use of topological tools (instead of geometry in negative curva-
ture) has the advantage of generalizing well to covers, and this yields far
more information. The viewpoint of studying the isometries of covers
of M , rather than just of M itself, has been first considered by Eber-
lein [Ebe80, Ebe82] (for nonpositively curved manifolds) and later
Frankel [Fra94] (for semisimple isometry groups), Farb–Weinberger
[FW05, FW08] (for aspherical manifolds), and the author [vL14] (for
general Riemannian manifolds). Here one studies the relation between

the geometry of (M,g) and the isometry group Isom(M̃) of the univer-

sal cover M̃ . Note that the group I(M̃ ) potentially contains much more
information than Isom(M). For example, if M is hyperbolic, then the

Bochner–Yano theorem implies that Isom(M) is finite, but Isom(M̃) is

a Lie group that acts transitively on M̃ .

Of course Isom(M̃) always contains the deck group π1(M). In

[FW08], Farb–Weinberger prove that if M is aspherical and Isom(M̃ )
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contains the deck group π1(M) with infinite index, then M is a Rie-
mannian orbibundle with locally homogeneous fibers (see Section 2.4
for more information and explanation of this terminology).

The correct analogue of the order of Isom(M,g) is the index

[Isom(M̃ , g̃) : π1(M)]. Note that the Bochner–Yano theorem does not
hold for covers, because, as remarked above, if M is hyperbolic then

[Isom(M̃ ) : π1(M)] = ∞. Still, the analogue of Theorem 1.2 is true.

Namely we bound the index [Isom(M̃, g̃) : π1(M)] in terms of dimM ,
bounds on Ricci curvature, diameter, and injectivity radius of M under
the assumption of absence of appropriate actions.

Theorem 1.7. Let Λ, ε,D > 0 and n ≥ 1. Then there exists C > 0
with the following property. Suppose (M,g) is a closed Riemannian n-

manifold such that M̃ does not admit a proper C2 action by a positive-
dimensional Lie group G containing π1(M), and such that

(1.2) |Ricg | ≤ Λ, injrad(M,g) ≥ ε, diam(M,g) ≤ D.

Then [Isom(M̃ ) : π1(M)] ≤ C.

We prove a stronger result in the special case of aspherical manifolds
M such that π1(M) contains no nontrivial normal abelian subgroup.
Namely, in this case we are able to prove that the above result holds
with C2 actions replaced by C∞ actions. Therefore, we obtain the
existence of a gap in smooth symmetry of these manifolds. Namely,

either [Isom(M̃) : π1(M)] ≤ C or [Isom(M̃) : π1(M)] = ∞. Combined
with the work of Farb–Weinberger on the latter case [FW08], this yields
the following theorem:

Theorem 1.8. Let Λ, ε,D > 0 and n ≥ 1. Then there exist C, d > 0
with the following property. Let (M,g) be a closed aspherical Riemann-
ian n-manifold such that π1(M) contains no nontrivial normal abelian
subgroup, and such that

(1.3) |Ricg | ≤ Λ, injrad(M,g) ≥ ε, diam(M,g) ≤ D.

Then [Isom(M̃ ) : π1(M)] ≤ C or M has a finite cover M ′ of degree at
most d such that M ′ is isometric to a nontrivial Riemannian warped
product B ×f N where f : B → R>0 and for every b ∈ B, the copy
{b} ×N of N is isometric to a locally symmetric space of noncompact
type.

Applications. We now give two applications of Theorem 1.8. The first
application characterizes locally symmetric spaces in terms of isometries
of the universal cover. In this context, Farb–Weinberger proved the
following:

Theorem 1.9 (Farb–Weinberger [FW08, Theorem 1.3]). Let M be a
closed aspherical, smoothly irreducible, Riemannian manifold such that
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π1(M) contains no nontrivial normal abelian subgroups and [Isom(M̃) :
π1(M)] = ∞. Then M is isometric to a locally symmetric space of
noncompact type.

Here a manifold M is called smoothly irreducible if there is no finite
cover of M that is diffeomorphic to a nontrivial product. In addition
Farb–Weinberger conjectured the following quantitative version of The-
orem 1.9.

Conjecture 1.10 (Farb–Weinberger [FW08, Conjecture 1.6]). Let
M be a smooth closed, aspherical, smoothly irreducible manifold such
that π1(M) contains no nontrivial normal abelian subgroups. Then there
exists C > 1 only depending on π1(M) such that if g is any Riemannian

metric on M with [Isom(M̃ ) : π1(M)] ≥ C, then M is isometric to a
locally symmetric space of noncompact type.

Remark 1.11. The assumption that π1(M) has no nontrivial nor-
mal abelian subgroups can be explained as follows. First note that the
conjecture fails for tori. More generally there are many fiber bundles
M → N with fibers isometric to tori for which the conjecture fails.
However, in this case M has a nontrivial normal abelian subgroup.

On the other hand, suppose M is closed aspherical and π1(M) has
trivial center. Then by a theorem of Borel, M admits no effective actions
by connected Lie groups.

Remark 1.12. In view of Remark 1.3, the assumption in Conjecture
1.10 that π1(M) has no nontrivial normal abelian subgroups cannot be
weakened to assuming that M admits no action by a connected Lie
group.

As evidence for Conjecture 1.10, Farb–Weinberger proved the con-
jecture if M is assumed to be diffeomorphic to a locally symmetric
space of noncompact type. Avramidi [Avr13] proved the conjecture for
noncompact finite volume locally symmetric spaces. Tam Nguyen Phan
[Pha] proved Conjecture 1.10 for piecewise locally symmetric manifolds.
These manifolds are obtained by gluing noncompact finite volume lo-
cally symmetric spaces.

We will prove Conjecture 1.10 for general M , but subject to bounds
on the Ricci curvature, injectivity radius, and diameter of (M,g). The
following is immediate from Theorem 1.8 and the assumption of smooth
irreducibility of M .

Corollary 1.13. Let Λ, ε,D > 0 and n ≥ 2. Then there exists C >
0 with the following property. Suppose (M,g) is a closed, aspherical,
smoothly irreducible Riemannian n-manifold such that π1(M) contains
no nontrivial normal abelian subgroup, and

(1.4) |Ricg | ≤ Λ, injrad(M,g) ≥ ε, diam(M,g) ≤ D.
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Then [Isom(M̃) : π1(M)] ≤ C or (M,g) is isometric to a locally sym-
metric space of noncompact type.

The second application of Theorem 1.7 is to the phenomenon of min-
imal orbifolds. This was first discovered in the context of symmetric
spaces by Kazhdan–Margulis [KM68]. They proved that for every
n ≥ 1, the volume of locally symmetric orbifolds of dimension n is
bounded below by some number μn > 0. More precisely, if X is a sym-
metric space of noncompact type of dimension n, then for any group Γ
acting on X properly discontinuously (not necessarily freely), we have
vol(X/Γ) ≥ μn. This was generalized to manifolds with negative cur-
vature by Gromov [Gro78]. We prove the following related result on
contractible complete Riemannian manifolds X that does not assume
negative curvature.

Corollary 1.14 (Minimal orbifolds). Let Λ, ε,D > 0 and n ≥ 2.
Then there exists μ > 0 with the following property. Let X be a con-
tractible Riemannian n-manifold with |Ric | ≤ Λ and admitting a com-
pact manifold quotient M such that π1(M) contains no nontrivial nor-
mal abelian subgroup, and such that

injrad(M) ≥ ε, diam(M) ≤ D.

Then for any group Γ acting properly discontinuously by isometries on
X, we have vol(X/Γ) ≥ μ.

Remark 1.15.

(1) Note that if X is a symmetric space then X has a compact man-
ifold quotient M such that π1(M) contains no nontrivial normal
abelian subgroups. Therefore, Corollary 1.14 generalizes the theo-
rem of Kazhdan–Margulis. However, as the proof uses the result of
Kazhdan–Margulis, this does not provide a new proof.

(2) The existence of minimal orbifolds is entwined with Conjecture 1.10.
Namely, if the conjecture is true for a manifoldM , then the universal
cover has the minimal orbifolds property.

(3) Minimal manifolds are related to collapsing in Riemannian geome-
try. If Mk is a sequence of Riemannian n-manifolds with vol(Mk)→
0 but with uniformly bounded sectional curvatures and diameter,
then (Mk)k is a collapsing sequence. By the work of Cheeger,
Fukaya, and Gromov, such a manifold admits a nilpotent Killing
structure along which the collapse occurs. This in turn forces topo-
logical restrictions. See [CG86, CG90, CFG92, CR95, CR96]
for more information.

Outline of proofs. We give a brief outline of the proof of the Main
Theorems 1.2 and 1.7. Suppose that there exist closed Riemannian man-
ifolds (Mk, gk) satisfying the bounds of Equation 1.1 and with isometry
groups Ik such that |Ik| → ∞. By a result of Anderson, the bounds of
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Equation 1.1 imply that along a subsequence Mk are diffeomorphic to
some closed manifold M and gk → g for some Riemannian metric g.

Write I := Isom(M,g). Then I is a Lie group acting by C2 diffeomor-
phisms, so for Theorem 1.2 it suffices to show I is infinite. We produce
many elements of I in the following way. Since gk → g, an isometry of
gk is nearly an isometry of g. This suffices to show the family ∪kIk is
uniformly equicontinuous. Therefore, any infinite sequence of elements
of ∪kIk subconverges to an element of I. The difficulty is to produce
infinitely many distinct such limits.

Let us just sketch how to produce one nontrivial element this way.
The key tool here is a theorem of Newman, which shows the maximal
diameter (with respect to a fixed metric) of all Ik-orbits is bounded
away from 0 independently of k. So we can choose δ > 0 and fk ∈ Ik
and pk ∈M such that

d(fkpk, pk) ≥ δ.

This inequality passes to limits, so that the limit f (along a subsequence)
will be nontrivial.

For the proof of Theorem 1.7, there is the additional difficulty that we
may have pk →∞, so that no information about the limit is obtained.

However, we show that we can choose pk in a compact subset of M̃ .

Outline of the paper. In Section 2, we discuss some preliminary tools
that will be used in the proofs. In the next two sections we prove the
main theorems. In Section 3, we first prove Theorem 1.7. Then we
prove Theorems 1.2 and 1.6. In Section 4, we prove Theorem 1.8 that
establishes a smooth symmetry gap for certain aspherical manifolds. We
prove Corollary 1.14 on the existence of minimal orbifolds in Section 5.
Finally, in Section 6, we prove a technical result (Theorem 2.11) needed
in the proof of Theorem 1.8.

Acknowledgments. I am pleased to thank Max Engelstein and
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grateful to Tu Tam Nguyen Phan for helpful discussions about piece-
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2. Preliminaries

2.1. Convergence of Riemannian manifolds. The discussion in
this section is based on [Pet06, Chapter 10]. We first define the impor-
tant notion of convergence of Riemannian manifolds.
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Definition 2.1. Let r ≥ 1 and let (Mk, pk, gk) and (M,p, g) be
pointed complete Cr-Riemannian manifolds. For r > 0 we say that

(Mk, pk, gk)→ (M,p, g) in the Cr-topology,

if for every R > 0 we can find a domain Ω ⊇ BM (p;R) and embeddings

fk : Ω ↪→Mk,

such that

1) BMk
(pk;R) ⊆ fk(Ω),

2) f∗kgk → g in the Cr-topology on metrics on Ω, and
3) fk(p) = pk.

Remark 2.2. In the above definition we allow Mk and M to be
noncompact. If Mk have universally bounded diameter, then it is easy
to see that for k 
 1 all maps fk are diffeomorphisms and basepoints
can be chosen such that Condition (3) holds.

Remark 2.3. We will be especially interested in the case that Mk

is diffeomorphic to M for all k, but the metrics gk are distinct. In this
case, it is important to note that even if (M,gk) → (M,g) in the Cr-
topology, the metrics gk may not converge to g. For more information
we refer to [Pet06].

There is a large amount of work on compactness results of families of
Riemannian manifolds with certain geometric restrictions. This started
with the result of Cheeger that the family of Riemannian manifolds with
uniformly bounded sectional curvature, injectivity radius and diameter
is precompact in the C1,α-topology [Che70]. This was subsequently im-
proved by Anderson to the following theorem that uses Ricci curvature
instead of sectional curvature.

Theorem 2.4 (Anderson [And90]). Let Λ, ε,D > 0 and n ≥ 1.
Also fix 0 < α < 1. The family of closed Riemannian n-manifolds
(M,g) such that

|Ric(Mk, gk)| ≤ Λ, injrad(Mk, gk) ≥ ε, diam(Mk, gk) ≤ D

is precompact in the C1,α-topology. In particular, this family contains
only finitely many diffeomorphism types.

2.2. Isometry group of limit metric. Motivated by Theorem 2.4,
we study the isometry groups of C1,α-metrics on Riemannian manifolds.
Let M be a connected smooth manifold (not necessarily compact) and
let g be a Cr(r ≥ 1) Riemannian metric on M . Here we mean that
r = k + α for an integer k ≥ 1 and 0 < α < 1 and when we write
g = gijdx

idxj in smooth local coordinates on M , we have that for
every i, j, the kth derivatives of gij are Hölder continuous with exponent
α. Set I := Isom(M,g). We will need the following result, which is
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probably well-known to the experts, but we could not find the proof in
the literature for metrics of regularity less than C2, so we will include
it here.

Proposition 2.5. The topology of uniform convergence on compact
subsets of M induces the structure of a Lie group on I (possibly with
infinitely many components), and the action of I on M is Ck+1.

Proof. The Arzelà–Ascoli theorem implies that I is locally compact.
A theorem of Calabi–Hartman [CH70] implies that I consists of Cr+1-
diffeomorphisms of M . One should be warned here that the result in
[CH70] is stated for all r > 0, but there is a flaw in the proof for r < 1
as was shown by Lytchak–Yaman [LY06]. However, the conclusion is
still correct, even for r < 1, as was shown by Taylor [Tay06].

Since r ≥ 1, it follows that I consists of C2 diffeomorphisms of M .
Further note that Bochner–Montgomery showed [BM46, Theorem 1]
that a locally compact subgroup of Diff1(M) has the no small sub-
groups property. By the solution to Hilbert’s fifth problem by Gleason,
Montgomery–Zippin, and Yamabe (see [Yam53]), it follows that I is a
Lie group.

Finally, Montgomery showed [Mon45, Corollary 1] that whenever a
Lie group acts effectively by Ck diffeomorphisms on a manifold, then
the action is Ck. q.e.d.

2.3. Equivariant Gromov–Hausdorff convergence. For informa-
tion about Gromov–Hausdorff convergence we refer to [Gro07],
[BBI01], and [Fuk90]. An equivariant version of Gromov–Hausdorff
convergence was developed by Fukaya [Fuk86]. We introduce the fol-
lowing notation. If (X, p) is a pointed proper metric space and G is a
closed subgroup of isometries of X, we set for R > 0

G(R) := {g ∈ G | d(p, gp) < R}.

Now we make the following definition:

Definition 2.6. Let (X, p), (Y, q) be pointed proper metric spaces,
and let G ⊆ Isom(X) and H ⊆ Isom(Y ). For ε > 0, an ε-equivariant
Gromov Hausdorff approximation is a triple (f, ϕ, ψ) where

1) f : BX(p; 1ε )→ Y ,

2) ϕ : G(1ε )→ H(1ε ), and

3) ψ : H(1ε )→ G(1ε ),

satisfying

1) f(p) = q,
2) BY (q;

1
ε ) ⊆ Nε(f(BX(p; 1ε ))) where Nε denotes the ε-

neighborhood,
3) for x, y ∈ BX(p; 1ε ), we have

|dY (f(x), f(y))− dX(x, y)| < ε,
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4) for g ∈ G(1ε ) and x ∈ BX(p; 1ε ) such that gx ∈ BX(p; 1ε ), we have

dY (f(gx), ϕ(g)f(x)) < ε,

5) for h ∈ H(1ε ) and x ∈ BX(p; 1ε ) such that ψ(h)x ∈ BX(p; 1ε ), we
have

dY (f(ψ(h)x), hf(x)) < ε.

The equivariant Gromov–Hausdorff distance deGH((X,G, p), (Y,H, q))
is the infimum of ε such that there exists an ε-equivariant Gromov–
Hausdorff approximation from (X,G, p) to (Y,H, q) and vice versa. This
defines an obvious notion of convergence.

Remark 2.7. It is not required that f is continuous, or that ϕ,ψ
are (restrictions of) homomorphisms.

The following result by Fukaya–Yamaguchi relates ordinary Gromov–
Hausdorff convergence to the equivariant case.

Theorem 2.8 ([FY92, Prop 3.6]). Let (Xk, pk), (X, p) be such that
(Xk, pk) → (X, p)and let Gk ⊆ Isom(Xk) be closed subgroups. Then
there exists a closed subgroup G ⊆ Isom(X) such that (Xk, Gk, pk) sub-
converges in the equivariant Gromov–Hausdorff topology to (X,G, p).

We also have the following relation between equivariant Gromov–
Hausdorff convergence and Gromov–Hausdorff convergence of the orbit
spaces.

Theorem 2.9 ([Fuk86, Theorem 2.1]). Let (Xk, pk) and (X, p) be
pointed proper metric spaces and Gk ⊆ Isom(Xk) and G ⊆ Isom(X)
closed subgroups such that (Xk, Gk, pk) → (X,G, p) in the equivariant
Gromov–Hausdorff sense. Then

(X/Gk, [pk])→ (X/G, [p]).

However, if (Xk, Gk, pk)→ (X,G, p), it is in general very difficult to
relate the group structure of Gk to that of G, essentially because equi-
variant Gromov–Hausdorff distance makes no reference to morphisms.
Still we have the following result of Fukaya–Yamaguchi that detects
suitable normal subgroups in the limit along the sequence.

Theorem 2.10 ([FY92, Theorem 3.10]). Let (Xk, pk) and (Y, q) be
pointed proper metric spaces. Let Γk ⊆ Isom(Xk) and G ⊆ Isom(Y ) be
closed subgroups such that

(X,Γk, pk)→ (Y,G, q).

Let G′ ⊆ G be a normal subgroup and assume the following:

1) G/G′ is discrete and finitely presented,
2) Y/G is compact,
3) Γk acts on Xk properly discontinuously and freely,
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4) Xk is simply-connected and there exists R0 such that
π1(BY (q;R0))→ π1(Y ) is surjective, and

5) there exists R1 such that G′(R1) generates G′.

Then there exist normal subgroups Γ′k ⊆ Γk such that

1) (Xk,Γ
′
k, pk)→ (Y,G′, q),

2) Γk/Γ
′
k and G/G′ are isomorphic for k sufficiently large, and

3) there exists R2 such that for all k sufficiently large, Γ′k is generated
by Γ′k(R2).

Fukaya–Yamaguchi remarked that the conclusions of Theorem 2.10
might remain true without the assumption that Γk act freely on Xk.
We obtain the following towards this generalization:

Theorem 2.11. Assume the hypotheses of Theorem 2.10 hold except
Γk are not assumed to act freely on Xk. Assume in addition that Xk is
a manifold for every k. Then the conclusion of Theorem 2.10 still holds.

We will prove Theorem 2.11 in Section 6. However, let us briefly
explain the idea. Fukaya–Yamaguchi used the assumption of free actions
to define certain covering spaces, and Γ′k will be the fundamental group
of such a covering space. If the action of Γk on Xk is not free, then
this construction will not yield covering spaces, and we cannot define
Γ′k in this way. However, if Xk are assumed to be manifolds then the
spaces of Fukaya–Yamaguchi are naturally orbifolds. In fact, we can
show they are good (sometimes also called ‘developable’) orbifolds. For
good orbifolds, Thurston developed a theory of orbifold covering spaces.
We can then define Γ′k to be the orbifold fundamental group of a suitable
orbifold covering space, and the rest of the proof of Fukaya–Yamaguchi
carries through verbatim.

2.4. Farb–Weinberger’s work on symmetries of universal cov-
ers. We review some of the material of [FW08] since we will use some
of the results and variations on their arguments. The main theorem is
as follows:

Theorem 2.12 (Farb–Weinberger). Let M be a closed, aspherical

Riemannian manifold. Then either [Isom(M̃ ) : π1(M)] < ∞, or M is
isometric to a Riemannian orbibundle

F →M → B,

where

• B is a good Riemannian orbifold, and
• each fiber F is isometric (with respect to the induced metric) to a
nontrivial closed, aspherical locally homogeneous space.

Here a Riemannian orbibundle is a map that is locally modeled on
the quotient map V ×G F → V/G for a finite group G acting on a fixed
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smooth manifold F and (V,G) is a chart for the orbifold B. Further we
require that G acts isometrically on V × F and the projection to V is
a Riemannian submersion. We will need the following two useful facts
obtained in the course of the proof.

We will fix the following notation for the rest of the section. Let
M be a closed Riemannian manifold with a C1-Riemannian metric.
Set I := Isom(M̃ ) and Γ := π1(M). Assume that [I : Γ] = ∞. By
Proposition 2.5 we know that I is a Lie group (possibly with infinitely

many components) and I acts on M̃ by C2 diffeomorphisms. Set Γ0 :=
Γ ∩ I0. Then we have the following:

Lemma 2.13 ([FW08, Claims I and II]).

(1) Γ0 is a cocompact lattice in I0.
(2) If M is aspherical then I0 contains no nontrivial compact factors.

Remark 2.14. Farb–Weinberger prove Lemma 2.13 only for smooth
Riemannian manifolds, but their proof works verbatim for C1 metrics
as well.

Assume in addition that M is aspherical and Γ contains no normal
abelian subgroup. Then we get far stronger results. First we see that
the structure of I0 is very constrained as follows:

Proposition 2.15 ([FW08, Proposition 3.3]). Let M be aspheri-
cal and assume that Γ contains no nontrivial normal abelian subgroup.
Then I0 is semisimple with finite center and no compact factors.

Now assume in addition that (M,g) is smooth. Then Proposition 2.15
implies that the fiber F obtained in Theorem 2.12 is a nonpositively
curved locally symmetric space. Using the theory of harmonic maps
for nonpositively curved manifolds, we can construct a section of the
orbibundle obtained in Theorem 2.12. Together this yields the following
result:

Theorem 2.16 ([FW08, Proposition 3.1]). Let M be aspherical and
assume that Γ contains no nontrivial normal abelian subgroup. Then a
finite cover of M is a Riemannian warped product B ×f N where N is
a locally symmetric space of noncompact type and f : B → R>0 is a
smooth function.

Recall that if (X, gX ) and (Y, gY ) are Riemannian manifolds, then the
Riemannian warped product X ×f Y has underlying manifold X × Y
equipped with the metric

g|(x,y) = gX |x ⊕ f(x)gY |y.

The first step in the proof of Theorem 2.16 is the following proposition.
Since the proof will be useful for us, we give a sketch.
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Proposition 2.17. Let M be aspherical and assume Γ contains no
nontrivial normal abelian subgroup. Then there is a finite index subgroup
Γ′ ⊆ Γ such that

• Γ0 ⊆ Γ′, and
• Γ′ ∼= Γ0 × (Γ′/Γ0).

Proof. Consider the short exact sequence

1→ I0 → 〈Γ, I0〉 → Γ/Γ0 → 1.

This short exact sequence gives rise to a morphism

ρ : Γ/Γ0 → Out(I0).

Since Out(I0) is finite we can assume ρ is trivial by passing to a finite
index subgroup of Γ. Now consider the extension

(2.1) 1→ Γ0 → Γ→ Γ/Γ0 → 1.

This extension gives rise to a morphism

σ : Γ/Γ0 → Out(Γ0).

Let NI0Γ0 be the normalizer of Γ0 in I0. Since we know Γ/Γ0 acts by
inner automorphisms on I0, it follows that σ has image in the finite
group NI0Γ0/Γ0. Therefore, by passing to a finite index subgroup of Γ,
we can assume that σ is trivial. The extension 2.1 is now determined
by a cohomology class in H2(Γ/Γ0, Z(Γ0)). But since I0 is a connected
semisimple Lie group with finite center and Γ0 is a cocompact lattice
in I0, we know that Z(Γ0) is finite. Further Γ is torsion-free (since it
is the fundamental group of an aspherical manifold), and hence so is
Z(Γ0) ⊆ Γ. Therefore, Z(Γ0) = 1, so that H2(Γ/Γ0, Z(Γ0)) = 0. We
conclude that the extension 2.1 is trivial, so that

Γ ∼= Γ0 × (Γ/Γ0). q.e.d.

3. Isometries of Riemannian manifolds and covers

The goal of this section is to prove our main theorems. First we prove
Theorems 1.2 and 1.7. In fact, both follow from a general theorem
about isometries of covers (Theorem 3.1 below) which we prove first.
Theorem 1.2 (resp. 1.7) follows from the case of the trivial cover M →

M (resp. the universal cover M̃ → M) combined with the Anderson
Metric Compactness theorem (Theorem 2.4). At the end of the section
we prove Theorem 1.6.

Theorem 3.1. Let n ≥ 1 and Λ,D, ε > 0. Let M be a closed smooth
manifold and M ′ → M any regular cover of M , and let Γ denote the
deck group. Let gk be Riemannian metrics on M such that

(3.1) |Ricgk | ≤ Λ, injrad(M,gk) ≥ ε, diam(M,gk) ≤ D,
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and [Isom(M ′, gk) : Γ] → ∞. Then M ′ admits an effective proper C2

action by a positive-dimensional Lie group G containing Γ.

Proof of Theorem 3.1. By Anderson’s Metric Compactness Theorem
(Theorem 2.4) we can assume there exist diffeomorphisms fk : M ′ →M ′

and a C1,α Riemannian metric g on M ′ (for some fixed 0 < α < 1) such
that f∗kgk → g in the C1,α-topology. Since

I(M ′, gk) ∼= I(M ′, f∗kgk),

we can assume that fk = id for all k, so that gk → g in the C1,α-topology.
Write Ik := Isom(M ′, gk) for the isometry groups of M ′ and I :=

Isom(M ′, g) for the isometry group of the limit metric. By Proposi-
tion 2.5, we have that I is a Lie group (possibly with infinitely many
components) acting by C2,α diffeomorphisms of M ′.

To prove the theorem, we will show that [I : Γ] = ∞. This suffices
because, since Γ ⊆ I is a cocompact lattice (see Lemma 2.13.(1)), [I :
Γ] = ∞ implies that I is nondiscrete. Since I is also a Lie group,
it follows that I0 is a connected positive dimensional Lie group. The
action of I0 on M ′ is then the desired effective C2 proper action.

So it remains to show that [I : Γ] = ∞. We prove by contradiction
that I/Γ contains infinitely many cosets hΓ such that h = limk→∞ hk
where hk ∈ Ik. The following lemma allows us to produce many isome-
tries:

Lemma 3.2 (Isometry precompactness). I := ∪kIk is uniformly
equicontinuous on compact subsets of M ′. Hence if fk ∈ Ik such that for
some p ∈M ′ the sequence {fk(p)}k is bounded, then (fk)k subconverges
to some f ∈ I.

Proof. The second claim follows from the first claim combined with
the Arzelà–Ascoli theorem. The fact that the limit is an isometry of g
follows easily from gk → g. We prove the first claim. Let K ⊆ M ′ be
any compact subset and ε > 0. Then for k sufficiently large, we have
|d(x, y)−dk(x, y)| <

ε
3 for any x, y ∈ K. Fix such k and choose x, y ∈ K

with d(x, y) < ε
3 . Then for any f ∈ Ik, we have

d(f(x), f(y)) ≤ dk(f(x), f(y)) +
ε

3

= dk(x, y) +
ε

3

≤ d(x, y) +
2ε

3
< ε. q.e.d.

Suppose now there are only finitely many cosets in I/Γ represented
by elements that are limits limk→∞ hk with hk ∈ Ik. Choose such rep-

resentatives h0, . . . , hr with hj = limk→∞ hjk in the Gromov–Hausdorff

topology where hjk ∈ Ik and h0 = e. Set H := ∪jh
jΓ.
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Claim 3.3. H is a subgroup of I.

Proof. It suffices to show that if h1, h2 ∈ H, then h1h
−1
2 ∈ H. So let

h1, h2 ∈ H be arbitrary. Then there exist 0 ≤ ji ≤ r and γi ∈ Γ (for
i = 1, 2) such that hi = hjiγi (for i = 1, 2). Then we can write

h1h
−1
2 = hj1γ1γ

−1
2 (hj2)−1

= lim
k→∞

(hj1k γ1γ
−1
2 (hj2k )−1),

so h1h
−1
2 is a limit of elements of Ik. Therefore, h1h

−1
2 belongs to a

coset hjΓ for some 0 ≤ j ≤ r, which shows that h1h
−1
2 ∈ H. q.e.d.

For k ≥ 1, set

Hk :=
⋃

0≤j≤r

hjkΓ.

Note that we do not know at this point that Hk is closed under com-
position of isometries, so Hk ⊆ Ik is merely a subset, not a subgroup.
Our goal is to produce an isometry f ∈ I\H.

Since Fix(h) is nowhere dense for every h �= e, we can choose p ∈M ′

not fixed by any h ∈ H\{e}. Since H contains Γ as a finite index
subgroup, H acts properly discontinuously on M ′. Therefore, we can
choose η > 0 such that

η <
1

4
min

e �=h∈H
d(p, h(p)).

In addition choose η < ε
4 , where ε is the lower bound on the injectivity

radii of (M,gk). We consider two cases, depending on whether the Ikl-
orbit of p lies in an η-neighborhood of the Hkl-orbit of p or not. We
refer to these as the case of a ‘concentrated orbit’ and ‘diffuse orbit’.

Case 1 (diffuse orbit). Assume that for a subsequence kl → ∞, we
have

Ikl · p � Bkl(Hkl · p; η).

Then we can choose fkl ∈ Ikl such that dkl(fkl(p), h(p)) ≥ η for all
h ∈ Hk. By postcomposing fkl by an element of Γ we can assume that

dkl(fkl(p), p) ≤ diam(M,gkl) ≤ D.

Therefore, along a subsequence we have fkl → f for some f ∈ I, and
we know

d(f(p), h(p)) = lim
l→∞

dkl(fkl(p), hkl(p)) ≥ η,

for every h ∈ H. It follows that f �= h for any h ∈ H, as desired.

Case 2 (concentrated orbit). For k 
 1 we have

Ik · p ⊆
⋃
h∈H

Bk(h(p); η).
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Set

Λk := {f ∈ Ik | dk(f(p), p) < η}.

Step 1 (Λk is a group for k 
 1). We claim that Λk is a finite
subgroup of Ik for k 
 1. It is clear that whenever f ∈ Λk, we have
f−1 ∈ Λk and that Λk contains idM ′ . It remains to show that Λk is closed
under multiplication. Let f1, f2 ∈ Λk. Then there exists 0 ≤ j ≤ r such
that

dk(f1f2(p), h
k
j (p)) < η.(3.2)

Our goal is to show j = 0. Note that if 1 ≤ i ≤ r then

lim
k→∞

dk(h
k
i (p), p) = d(hi(p), p) ≥ 4η.

So we can choose k 
 1 such that for any 1 ≤ i ≤ r, we have

dk(h
i
k(p), p) ≥ 3η.(3.3)

It follows from Equations 3.2 and 3.3 that for any j �= 0, we have

dk(f1f2(p), p) ≥ 2η.(3.4)

On the other hand, since f−11 , f2 ∈ Λk, we find

dk(f1f2(p), p) = dk(f2(p), f
−1
1 (p))

≤ dk(f2(p), p) + dk(p, f
−1
1 (p))

< 2η,

contradicting Equation 3.4. Therefore, we must have j = 0. It remains
to show that Λk is finite. This follows immediately from the definition
of Λk and the proper discontinuity of the action of Ik on M ′. This
completes Step 1.

Step 2 (Nontriviality). We show that Λk is nontrivial for k 

1. Suppose Λkl is trivial for some subsequence kl → ∞. Let f ∈

Ikl . By assumption there exists 0 ≤ j ≤ r and h ∈ hjklΓ such that

d(f(p), h(p)) < η. It follows that f−1h ∈ Λkl = {e}, so f = h ∈ hjklΓ.

Since f ∈ Ikl was arbitrary, we conclude that [Ikl : Γ] ≤ r+1. This is a
contradiction for l 
 1, which completes Step 2.

Newman proved that there exists δ > 0 such that such for any non-
trivial compact group G acting effectively on M ′, there exists a G-orbit
with diameter at least δ with respect to the metric d [Bre72, Corol-
lary III.9.6]. In particular, there exists δ > 0 (independent of k) and
qk ∈M ′ such that diam(Λk ·qk) ≥ δ. A major difficulty is that we could
have qk →∞, so that the inequality d(fk(qk), qk) ≥ δ does not give any
information as k →∞. We resolve this in the following way.

Step 3 (Trapping qk). We prove there exists a compact subset K
of M ′ such that for every k 
 1, there exists e �= f ∈ Λk with a fixed
point in K.
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Let k 
 1 such that Step 1 holds. Consider

Vk :=
⋃

λ∈Λk

Bk(λ(p); η).

Note that

diamk Vk ≤ 3η ≤ injrad(M,gk).

Therefore, Vk is contained in a geodesically convex ball Bk centered at
p, so that every pair of points of Vk is joined by a unique geodesic with
respect to gk. Let Ck be the convex hull of Uk. Since Vk is a Λk-invariant
set and Λk acts by isometries with respect to gk, it follows that Ck is
also Λk-invariant. Further, since Vk is closed and convex, it follows that
Ck is homeomorphic to an n-dimensional disk.

Now let e �= f ∈ Λk. By possibly replacing f by a power, we can
assume f has prime order �. Consider the action of 〈f〉 on Ck. Since Ck

is contractible, it is well-known that f must have a fixed point on Ck,
for otherwise Ck/〈f〉 would be a finite dimensional K(Z/�Z, 1), which
is impossible. Let xk ∈ Ck be fixed by f .

Now set K := B(p; 4η). Note that by construction, we have
dk(xk, p) ≤ 3η. Therefore, for k 
 1, we have xk ∈ K, which proves
Step 3.

Step 4 (Constructing qk). Choose e �= fk ∈ Λk with fixed points
xk ∈ K as above. Since K is compact, after passing to a subsequence,
we can assume that xk → x for some x ∈M ′. Now consider the action
of 〈fk〉 on Bk(xk; η).

Let ∇gk
xk,x denote parallel transport from xk to x with respect to the

metric gk. Then ∇gk
xk,x ◦ (exp

gk
xk
)
−1

is a diffeomorphism from Bk(xk; η)
to the η-ball Bk := Bk(0; η) ⊆ TxM

′ with respect to gk. The above
diffeomorphism defines a smooth conjugacy between the action of 〈fk〉
on Bk(xk; η) and an action on Bk.

Choose linear isomorphisms Ak of TxM
′ such that Ak conjugates the

quadratic form gk|x to g|x. Since gk → g in the C1,α-topology, we have
gk|x → g|x, so that we can choose Ak such that Ak → id. Denote by
B := B(0; η) the ball in TxM

′ with respect to the metric g. Then Ak

conjugates the action of 〈fk〉 on Bk to an action on B.
Now let δ > 0 be the constant from Newman’s theorem for the metric

space (B, d). By choice of δ, there exists vk ∈ B and lk ≥ 1 such that

d(vk, f
lk
k (vk)) ≥ δ.

Along a subsequence, we can assume vk → v for some v ∈ B and

f lk
k → f . Write

qk := expgkxk
∇gk

x,xk
A−1k vk,

where the exponential map and parallel transport are with respect to gk.
Similarly define q := expgx v where the exponential map is with respect
to the metric g.
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Step 5 (Convergence). We claim that qk → q. First note that

d(qk, exp
gk
x A−1k vk)→ 0,

since xk → x (so that ∇gk
x,xk

→ id). Secondly,

d(expgkx A−1k vk, exp
g
xA

−1
k vk)→ 0,

since gk → g (so that expgkx → expgx). Combining these observations,
we see that qk → q if and only if A−1k vk → v. But the latter is obvious
since vk → v and Ak → id.

Step 6 (Constructing a new isometry). We produce an isometry
f ∈ I such that f /∈ H. Let k 
 1 such that Steps 1, 2, and 3 hold.
Recall that qk ∈M ′ have the property diam(Λk · qk) ≥ δ (where δ does
not depend on k). Choose fk ∈ Λk such that d(fk(qk), qk) ≥ δ. Along
a subsequence we can assume that qk → q and fk → f for some q ∈M
and f ∈ I. We claim that f /∈ H.

By Step 5, we have

d(f(q), q) = lim
k→∞

dk(fk(qk), qk),

and by the same arguments as in the proof of Step 5, we have

lim
k→∞

dk(fk(qk), qk) = lim
k→∞

d(fk(exp
g
x(A

−1
k vk)), exp

g
x(A

−1
k vk)).

(Here the exponential maps are with respect to g.) Since g is a C1,α-
metric with α > 0, exponential maps of g are Hölder continuous with
exponent α. Therefore, there is a constant L > 0 such that

lim
k→∞

d(fk(exp
g
x(A

−1
k vk)), exp

g
x(A

−1
k vk)) ≥ L lim

k→∞
(‖fk(vk)− vk‖gx)

1

α

≥ Lδ
1

α > 0.

It follows that d(f(q), q) ≥ Lδ
1

α > 0 so f is nontrivial. Further observe
that

d(f(p), p) = lim
k→∞

dk(fk(p), p) ≤ η,

and for e �= h ∈ H we have

d(h(p), p) ≥ 4η.

This completes Step 6, which shows that f /∈ H. On the other hand, by
construction f is a limit of a subsequence of elements of fk ∈ Ik. This
contradicts the definition of H. This is the desired contradiction that
completes the proof of Theorem 3.1. q.e.d.

Proof of Theorem 1.2. Let n ≥ 1 and Λ,D, ε > 0. Suppose that for
k ≥ 1 there exists a smooth n-manifolds Mk and a Riemannian metric
gk on M such that

|Ricgk | ≤ Λ, diam(Mk, gk) ≤ D, injrad(Mk, gk) ≥ ε,
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and | Isom(M,gk)| → ∞. We want to show that for any k 
 1, the man-
ifold Mk admits a C2 circle action. By Anderson’s Metric Compactness
Theorem (Theorem 2.4) we can assume that there is a closed smooth
manifold M such that Mk is diffeomorphic to M for all k. Theorem 3.1
applied to the trivial cover M →M implies that M admits a C2 circle
action. q.e.d.

Proof of Theorem 1.7. Let n ≥ 1 and Λ,D, ε > 0. Suppose that for
k ≥ 1 there exists a smooth n-manifolds Mk and a Riemannian metric
gk on M such that

|Ricgk | ≤ Λ, diam(Mk, gk) ≤ D, injrad(Mk, gk) ≥ ε,

and [Isom(M̃k, g̃k) : π1(Mk)] → ∞. We want to show that for any
k 
 1, there is an effective proper C2 action by a positive-dimensional

Lie group Gk containing π1(Mk) on M̃k. By Anderson’s Metric Com-
pactness Theorem (Theorem 2.4) we can assume that there is a closed
smooth manifold M such that Mk is diffeomorphic to M for all k. The-

orem 3.1 applied to the universal cover M̃ →M implies that M̃ admits
a proper C2 action by a positive-dimensional Lie group. q.e.d.

Proof of Theorem 1.6. Let (M,g) be a closed aspherical manifold
with centerless fundamental group and satisfying the bounds of Equa-
tion 1.1. It is well-known that the lower bound on Ricci curvature
Ric ≥ Λ and diam ≤ D give a packing inequality. Namely, the number
N of disjoint ε

4 -balls inM is bounded only depending on Λ andD. More
explicitly, we have the following Bishop–Gromov inequality for R > r

and p ∈ M̃ :
vol (B(p;R))

vol(B(p; r))
≤

Vk(R)

Vk(r)
,

where Vk(s) is the volume of a ball of radius s in a simply-connected
space of constant curvature k = −Λ

n−1 and dimension n. Using that M
has diameter ≤ D, it is easily follows that the number of disjoint ε

4 -balls

in M is at most N =
Vk(D

2
)

Vk( ε

4
)
. Take a maximal collection of disjoint ε

4 -

balls. Then the collection of balls with the same centers but radius ε
2

covers M .
Now let X be the nerve associated to this cover (i.e., the vertices of

X are the balls Bi, 1 ≤ i ≤ m, and two vertices are joined if and only if
Bi∩Bj �= ∅, andBi, Bj , Bk span a triangle if and only if Bi∩Bj∩Bk �= ∅).

Since injrad(M,g) ≥ ε, we know that each of these balls are embedded
and all possible intersections are contractible. It follows that π1(M) ∼=
π1(X). Now let f : M → M be an isometry. Then define a map
F : X → X as follows. Let x ∈ X0 and B the corresponding ball with
center p ∈ M . Let q ∈ M be a point that is the center of some ball
in U and minimizes distance to f(p). Note that there might be many
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such points, but in which case we arbitrarily choose one of them. Set
F (x) := q. Then extend F to a simplicial map X → X.

It is easy to see that F∗ = f∗ on fundamental groups (after making
the identification π1(X) ∼= π1(M) induced by the inclusion X ↪→ M).
However, there are only finitely many possibilities for F . Explicitly the
number is bounded above by the number of maps X0 → X0, which is
NN = C. Therefore, there are at most C possibilities for f∗ : π1(M)→
π1(M) up to conjugation.

The theorem of Borel on group actions on closed aspherical manifolds
with centerless fundamental groups mentioned in Section 1, has the
following more precise formulation [Bor83]. Let G be a compact group
acting on a closed aspherical manifold N with centerless fundamental
group. Then the map

G→ Out(π1N)

is an embedding. Setting G := Isom(M) and N := M we obtain
| Isom(M)| ≤ C. q.e.d.

4. Isometry groups of contractible manifolds

In this section, we prove Theorem 1.8.

Proof of Theorem 1.8. Suppose there exist closed, aspherical,
smoothly irreducible Riemannian n-manifolds (Mk, gk) such that
π1(M) contains no nontrivial normal abelian subgroup, and such that

|Ricgk | ≤ Λ, injrad(Mk, gk) ≥ ε, diam(Mk, gk) ≤ D,

and [I(M̃k, g̃k) : π1(Mk)] → ∞. As before we can assume that Mk are
diffeomorphic to a single manifold M and gk → g in the C1,α-topology.

By the work of Farb–Weinberger, if [I(M̃ , g̃k) : π1(M)] =∞ for k 
 1,
then a finite cover M ′ of M is a warped product (see Theorem 2.16),
but no bound on the degree of the cover M ′ → M is obtained. The
existence of a bound is proven in the following lemma:

Lemma 4.1. There exists d(n) ≥ 1 such that the cover M ′ →M can
be chosen of degree at most d(n).

Proof. We keep the notation of the proof of Proposition 2.17. By
Lemma 2.13.(1), we have that Γ0 ⊆ I0 is a cocompact lattice and by
Proposition 2.15, we know that I0 is semisimple with finite center. As
in the proof of Proposition 2.17, consider the short exact sequence

(4.1) 1→ I0 → 〈I0,Γ〉 → Γ/Γ0 → 1,

which gives rise to morphism σ : Γ/Γ0 → Out(I0). Let Γ′ be the
preimage in 〈I0,Γ〉 of kerσ. Now consider the short exact sequence

(4.2) 1→ I0/Z(I0)→ 〈Γ′, I0〉/Z(I0)→ Γ′/Γ0 → 1.
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This extension is determined by a cohomology class in H2(Γ′/Γ0, Z(I0/
Z(I0))) and a morphism Γ′/Γ0 → Out(I0/Z(I0)). Since Z(I0/Z(I0)) =
1 and Γ′/Γ0 = kerσ, we see this extension is trivial, so that

〈Γ′, I0〉/Z(I0) ∼= (I0/Z(I0))× (Γ′/Γ0).

In particular, Γ′/Γ0 centralizes the image of Γ0 in I0/Z(I0). Since Γ
is torsion-free (because it is the fundamental group of an aspherical
manifold) and Z(I0) is finite, it follows that Γ0 projects isomorphically
into I0/Z(I0). Hence Γ′/Γ0 centralizes Γ0.

Further Z(Γ0) = Γ0 ∩ Z(I0) = 1, so we have Γ′ ∼= Γ0 × (Γ′/Γ0). Now
it is clear that

[Γ : Γ′] ≤ |Out(I0)| ≤ |Out(I0/Z(I0))|.

To have this bound only depend on n (not on I0), let d be the maximal
order of Out(G) where G is a semisimple Lie group with trivial center
such that the associated symmetric space has dimension ≤ n. q.e.d.

We will now show that [I(M̃ , gk) : π1(M)] = ∞ for k 
 1, which
will complete the proof. By Theorem 1.7, it follows that there exists
a nondiscrete Lie group G (possibly with infinitely many components)

such that Γ ⊆ G, and G acts properly by C2 diffeomorphisms on M̃ .
Set Γ0 := Γ ∩G0.

By Lemma 2.13 and Proposition 2.15, we have that G0 is semisimple
with finite center and no compact factors, and Γ0 ⊆ G0 is a cocompact
lattice. By Lemma 4.1 we can find Γ′ ⊆ Γ of index at most d such that

Γ′ ∼= Γ0 × (Γ′/Γ0).

Fix some p0 ∈ M̃ . By a result of Fukaya–Yamaguchi (see Theorem 2.8
or [FY92, Prop 3.6]), there is a closed subgroup H ⊆ G such that we
have after possibly passing to a subsequence:

(M̃, Ik, p0)→ (M̃ ,H, p0),

in the equivariant Gromov–Hausdorff sense. Note that since H ⊆ G is
closed, H is a Lie group.

Step 1 (Structure of the limit). We claim that H is a nontrivial
product of factors of G0 and Λ0 := Γ0∩H

0 is a cocompact lattice in H0.
The proof of Theorem 2.8 (see [FY92, Prop 3.6]) shows that if fk ∈ Ik

such that, after possibly passing to a subsequence, we have fk → f , then
f ∈ H. It follows that Γ ⊆ H and from the proof of Theorem 1.7, it
follows that there are infinitely many distinct cosets of G/Γ that are
limits of subsequences of (fk)k where fk ∈ Ik. Hence [H : Γ] =∞.

Since H is a Lie group and Γ ⊆ H is cocompact and of infinite index,
it follows that H0 �= 1. Further Γ normalizes H0. Hence H0 is a closed
connected subgroup of the semisimple Lie group G0 that is normalized
by Γ0. By the Borel Density theorem (see [Rag72, 5.17, 5.18]), it
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follows that H0 is normal in G0, hence H0 is a product of factors of G0.
Since Γ is cocompact in H, it follows that Λ0 is cocompact in H0. This
completes Step 1.

Step 2 (Detection of H0 in the sequence). We show that the
conditions for Theorem 2.11 are satisfied. Namely, we claim

1) H/H0 is discrete and finitely presented,

2) M̃/G is compact,
3) There exists R > 0 such that H0 is generated by H0(R),

4) Ik acts on M̃ properly discontinuously.

Proofs.

1) It is clear that H/H0 is discrete, and using that Γ ∼= Γ0× (Γ/Γ0),
it follows that:

H/H0 ∼= (Γ0/Λ0)× (Γ/Γ0).

Γ is finitely presented since it is the fundamental group of a closed
manifold. Note that Γ/Γ0 is finitely presented since it is a direct
factor of Γ (see [Wal65, Lemma 1.3]). Further Γ0/Λ0 is finitely
presented since it is a cocompact lattice in the semisimple Lie
group G0/H0. Hence H/H0 is finitely presented.

2) Since M is compact and the map

M = M̃/Γ→ M̃/G

is continuous and surjective, it follows that M̃/G is compact.
3) For any R > 0, we know that H0(R) is an open neighborhood of

the identity. Since H0 is a connected Lie group, it is generated by
any open neighborhood of the identity.

4) The action of Ik on M̃ is properly discontinuous since Ik contains

Γ with finite index, and Γ acts properly discontinuously on M̃ .

By Properties (1)–(4) the hypotheses of Theorem 2.11 hold, so there
exist normal subgroups I ′k ⊆ Ik such that Ik/I

′
k
∼= H/H0 for k 
 1.

Step 3 (Constructing maps to H0). Since H/H0 ∼= Γ/Λ0, it
follows that I ′k contains Λ0 with finite index. Choose Λk ⊆ Λ0 of finite
index such that Λk is normal in I ′k. Therefore, we get a map

I ′k/Λk → Out(Λk).

The generalized Nielsen realization problem asks if whenever N is a
closed aspherical manifold and F ⊆ Out(π1(N)) is a finite subgroup, F
can be realized as a group of isometries N with respect to some Rie-
mannian metric. Originally Nielsen posed this problem for hyperbolic
surfaces and asked if F can be realized by isometries. An affirmative so-
lution was given by Kerckhoff [Ker83]. For locally symmetric spaces of
noncompact type without surface factors Mostow rigidity implies that
F lifts to a group of isometries [Mos73]. A combination of these results
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solves the generalized Nielsen realization problem for arbitrary closed
locally symmetric spaces of noncompact type.

It follows that I ′k/Λk acts by isometries on the locally symmetric space
Λk\H

0/K, where K ⊆ H0 is a maximal compact subgroup. It follows
that there is a map:

ϕk : I ′k → Isom(H0/K).

This map extends the natural inclusion Λ0 ↪→ H0. The number of com-
ponents of Isom(H0/K) is finite, so that there exists L > 1 (independent
of k) and a characteristic subgroup I ′′k ⊆ I ′k of index at most L such that

ϕk : I ′′k → H0.

Step 4 (Estimating kerϕk). We show that kerϕk �= 1 for k 
 1.
By the Kazhdan–Margulis theorem on minimal orbifolds for symmetric
spaces [KM68], the volume of orbifolds modeled on H0/K is bounded
away from 0. Since

[ϕk(I
′′
k ) : Λ0] =

vol(Λ0\H
0/K)

vol(ϕk(I
′′
k )\H

0/K)
,

it follows that there is L′ (independent of k) such that [ϕk(I
′′
k ) : Λ0] ≤ L′.

On the other hand, we know

[I ′′k : Λ0] ≥
1

L
[I ′k : Λ0]→∞.

Hence we have

| kerϕk| → ∞.

Step 5 (End of the proof). Let F k be the center of ϕk(I
′′
k ), and set

Fk := ϕ−1k (F k). Since ϕk(I
′′
k ) is a lattice in the connected semisimple Lie

group H0 (with finitely many components and finite center), it follows
from the Borel Density theorem that any finite normal subgroup of
ϕk(I

′′
k ) is central (see [Mor15, Cor 4.45]). Hence Fk is characteristic in

I ′′k . Since I ′′k is normal in Ik, it follows that Fk is normal in Ik.
Now let Γ′ ⊆ Γ be the centralizer of Fk. Then Γ′ ⊆ Γ is normal and

finite index. Hence the action of Fk on M̃ descends to an action on the

closed aspherical manifold M ′ := M̃/Γ′.
By assumption, Γ has no nontrivial normal abelian subgroups. On

the other hand, Z(Γ′) is a characteristic subgroup of Γ′, hence Z(Γ′) is
a normal abelian subgroup of Γ. Therefore, Z(Γ′) = 1.

By a theorem of Borel [Bor83], if F is a finite group acting effec-
tively on a closed aspherical manifold with centerless fundamental group
π, then the induced map F → Out(π) is injective. But Fk centralizes
Γ′, so the map Fk → Out(Γ′) is trivial. We conclude that Fk is triv-
ial. But since Fk contains kerϕk, we know that |Fk| → ∞. This is a
contradiction. q.e.d.
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5. Minimal orbifolds

Proof of Corollary 1.14. The proof is by induction on n. First
note that injrad(M) ≥ ε combined with Berger’s isembolic inequality
[Ber80] yields

vol(M) ≥ v,

for some v > 0 only depending on n and ε. Let C be as in Theorem 1.8.

First suppose we have [I(M̃ ) : π1(M)] ≤ C. Then

vol(M̃/I(M̃ )) =
vol(M)

[I(M̃) : π1(M)]

≥
vol(M)

C

≥
v

C
,

which yields the desired bound.

Now suppose we have [I(M̃ ) : π1(M)] > C. By Theorem 1.8 and
choice of C, we have there exists a contractible Riemannian manifold
X and a nontrivial symmetric space Y of noncompact type such that

M̃ is isometric to the Riemannian warped product X ×f Y where f :
X → R>0 is a smooth map. Therefore, at the point (x, y) ∈ X × Y the
metric g satisfies

g|(x,y) = gX |x ⊕ f(y)gY |y,

where gX is a metric on X and gY is a locally symmetric metric on Y .

Base case (n = 2). Since the only nontrivial locally symmetric space
of dimension ≤ 2 is the hyperbolic plane, we must have Y ∼= H2, and
X is trivial. In particular, it follows that M is a hyperbolic surface of
constant curvature ≥ −Λ. Siegel [Sie45] showed that the minimal Euler
characteristic of a 2-orbifold is 1

42 , the Gauss–Bonnet theorem implies

that for any orbifold M ′ modeled on M̃ , we have

vol(M) ≥
−2πχ(M)

Λ
≥

π

21Λ
.

Inductive step. Suppose now the result is true in dimension < n.
Normalize gY such that K(gY ) ≥ −1.

Step 1 (Control on geometry in Y -direction) Let d ≥ 1 be as
in Theorem 1.8. Choose a cover M ′ of degree ≤ d that is isometric to a
warped product B×f N where N is a locally symmetric space modeled

on Y . We can write N = Y/Λ0 and B = X/(Λ/Λ0) for some Λ ⊆ I(M̃).
We claim there exists α > 0 only depending on Λ, ε,D and n, such

that f ≥ α everywhere. To see this, choose x0 ∈ X such that f(x0)
is a minimum. Then {x0} × Y is totally geodesic in X ×f Y . This
is immediate from an explicit description of the geodesics of a warped
product (see [Zeg, Theorem 6.3]). Namely, suppose γ(t) = (x(t), y(t)) ∈
X ×f Y is a geodesic. Then y(t) is an unparametrized geodesic on Y ,
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and x(t) satisfies the equation

x′′ = −∇

(
c

f

)
(x)

for some c > 0. Since x(0) = x0 is a minimum of f , we see that

−∇
(

c
f

)
(x0) = 0, so that x(t) = 0 is a solution.

Since {x0}×Y is totally geodesic inX×fY , it follows from the O’Neill
curvature formulas [O’N66, Corollary 1] that the metric f(x0)gY sat-
isfies the Ricci curvature bound Ricf(x0)gY ≥ −(n − 1)Λ. The normal-
ization K(gY ) ≥ −1 and the bound Ric(f(x0)gY ) ≥ −Λ give a lower
bound f(x0) ≥ α where α depends only on Λ and n. This completes
the proof of Step 1.

Step 2 (Control in X-direction). Since the factor X is totally
geodesic in the warped product X ×f Y and the cover M ′ → M is
degree ≤ d, we see that

injrad(B) ≥ ε, diam(B) ≤ dD.

Using the O’Neill curvature formulas [O’N66, Corollary 1] and the
bound f ≥ α, we obtain a bound on |RicgX | only in terms of Λ and n.

Further B is aspherical and Λ/Λ0 does not contain nontrivial normal
abelian subgroups, and dimB < n. By the inductive hypothesis there
exists μ′ > 0 (only depending on n,Λ, ε,D) such that

vol(X/(I/I0)) ≥ μ′,

where I := Isom(M̃ ).

Now suppose Δ that acts on M̃ properly discontinuously and vol(M̃/
Δ) < ∞. Set Δ0 := Δ ∩ I0. Then Δ0 is a lattice in I0. In the
cocompact case this follows from [FW08]. For the noncocompact case,
see the proof of [vL14, Corollary 1.5]. To summarize, disintegrate the

finite volume measure on M̃/Δ along the fibers of the map

p : M̃/Δ→ X/(Δ/Δ0).

If x is not a singular point of the orbifold X/(Δ/Δ0), then p−1(x) = Y/
Δ0 equipped with the volume form νx := f(x)m volY wherem := dimY .

Since the total space M̃/Δ has finite volume and f is bounded away
from 0, it follows that a.e. fiber has finite volume.

By the Kazhdan–Margulis theorem on minimal orbifolds of symmetric
spaces, we know there exists η > 0 such that

volY (Y/Δ0) ≥ η.

Step 3 (Bounding volume of orbifolds). We conclude that

vol(M̃/Δ) =

∫
X/(Δ/Δ0)

νx(p
−1(x)) dvolX(x)

=

∫
X/(Δ/Δ0)

|f(x)|m volY (Y/Δ0) dvolX(x)
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≥ αm volY (Y/Δ0) volX(X/(Δ/Δ0))

≥ αnημ′.

This proves the theorem. q.e.d.

6. Detecting normal subgroups and equivariant
Gromov–Hausdorff convergence

We prove Theorem 2.11. As mentioned in Section 2, the proof is es-
sentially Fukaya–Yamaguchi’s proof of Theorem 2.10 (see [FY92, Ap-
pendix 1]), but some arguments involving covering spaces are replaced
by analogous arguments involving orbifold covers. Since the original
proof is quite long, we will merely summarize most of the proof and
only supply the details where the arguments need to be changed (see
Claims 6.1 and 6.2 below). For the details of the original proof, see
[FY92].

Proof of Theorem 2.11. Let εk → 0 such that there are εk-equivariant
Gromov–Hausdorff approximations

(fk, ϕk, ψk) : (Xk,Γk, pk)→ (Y,G, q).

Choose R such that R > R0 and R > D and R < 1
10εk

. Then we define

Γ′k(R) := Γk(R) ∩ ϕ−1k (G′).

Let Γ′′k be the subgroup generated by Γ′k(R). We will construct Γ′k �Γk

such that Γ′k ∩ Γk(R) = Γ′k(R), and Γk/Γ
′
k
∼= G/G′ for k sufficiently

large.
First define a relation on Γk(R) as

γ ∼ δ ⇐⇒ γ−1δ ∈ Γ′k(3R).

As in [FY92], we show ∼ is a bi-invariant equivalence relation if k is
sufficiently large. Set

Λk(R) := Γk(R)/ ∼ .

Since Γk(R) is naturally a pseudogroup, there is a natural pseudogroup
structure on Λk(R). We apply the same construction to G(R) and
G′(R) (rather than Γk(R) and Γ′k(R)), and we obtain a pseudogroup
H(R) := G(R)/ ∼. The maps ϕk descend for k 
 1 to pseudogroup
morphisms

ϕk : Λk(R)→ H(R),

and for k 
 1, we see that ϕ is an isomorphism. We let Λ̂k(R) and

Ĥ(R) be the groupifications of Λk(R) and H(R). There are natural
inclusions

ik : Λk(R) ↪→ Λ̂k(R),

and
i : H(R) ↪→ Ĥ(R).
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Now Γ′k(3R) (resp. G′(3R)) acts (as a pseudogroup) on BXk
(pk;R)

(resp. BY (q;R)). We let Vk(R) (resp. W (R)) be the quotients.

Claim 6.1. The natural projection π : BXk
(pk;R) → Vk(R) is an

orbifold covering.

Proof. Let x ∈ BXk
(pk;R). Choose an open neighborhood U � x

such that U ⊆ BXk
(pk;R) and U contains no Γ-translates of x except x

itself. On U , we have the local description

U → U/StabΓ′

k
(3R)(x),

for π. Therefore, it suffices to prove StabΓ′

k
(3R)(x) is a group (note

that this is not obvious, since Γ′k(3R) is only a pseudogroup). Let
γ, δ ∈ StabΓ′

k
(3R)(x). We want to show that γδ−1 ∈ Γ′k(3R). First we

show that γδ−1 ∈ Γk(3R). Note that

dk(γδ
−1pk, pk) ≤ dk(γδ

−1, γδ−1x) + dk(γδ
−1x, x) + dk(x, pk)

≤ R+ 0 +R

≤ 2R,

so γδ−1 ∈ Γk(3R). It remains to show that γδ−1 ∈ ϕ−1k (G′). To see
this, note that since ϕk is a pseudogroup morphism, we have

ϕk([γδ
−1]) = [e] ∈ H(R),

so ϕk(γδ
−1) ∈ G′, as desired. It follows that Vk(R) is an orbifold and

BXk
(pk;R)→ Vk(R) is an orbifold cover. q.e.d.

The quotient pseudogroup Λk(3R) (resp. H(3R)) acts on Vk(R)
(resp. W (R)). Hence Λk(3R) (resp. H(3R)) acts (as a pseudogroup)

on Λ̂k(3R)× Vk(R) (resp. Ĥ(3R)×W (R)) as

γ · (δ, x) = (δγ−1, γx),

for γ ∈ Λk(3R), δ ∈ Λ̂k(3R) and x ∈ Vk(R). There is a similar formula

for H(3R) acting on Ĥ(3R)×W (R). Let V ′k (resp. W ′) be the quotient,
and let Vk (resp. W ) be the connected component of the image of
[(e, [pk])] ∈ V ′k (resp. [(e, [q])]).

Since the action of Λk(3R) on Λ̂k(3R) × Vk(R) is free, we have a
natural orbifold structure on Vk.

Further Λ̂k(3R) (resp. Ĥ(3R)) acts on Λ̂k(3R) × Vk(R) (resp.

Ĥ(3R)×W (R)) by left-translations on the first factor, and this action
commutes with the action of Λk(3R) (resp. H(3R)) described above.

Therefore, Λ̂k(3R) (resp. Ĥ(3R)) acts on V ′k (resp. W ′). Let Λk (resp.
H) be the subgroups preserving Vk (resp. W ).

As in Fukaya–Yamaguchi’s proof (see [FY92, Lemmas A1.12, 13,
14]), we see:
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1) Λk
∼= H,

2) Λk (resp. H) acts properly discontinuously on Vk (resp. W ),
3) W/H ∼= Y/G.

Claim 6.2 (replaces part of Lemma A1.14 in [FY92]). Vk/Λk
∼= Xk/

Γk as orbifolds.

Remark 6.3. Lemma A1.14 of [FY92] states that Vk/Λk andXk/Γk

are diffeomorphic. Here it is critical that Γk act freely, for otherwise Xk/
Γk need not be a manifold. Below we will give an explicit description
of orbifold charts which will imply the result.

Proof. Since (Xk,Γk, pk) → (Y,G, q), we have Gromov–Hausdorff
convergence of the orbit spaces (see Theorem 2.9):

Xk/Γk → Y/G.

Hence for k 
 1 we have diam(Xk/Γk) < R. It follows that we can
choose a fundamental domain Uk ⊆ BXk

(pk;R) for the Γk-action on Xk.
Then Uk projects to the fundamental domain Fk := Uk/Γ

′
k(3R) for

the Λk-action on Vk. If x ∈ Fk ⊆ Vk and g ∈ Λk such that gx = x, then
there is γ ∈ Λk(3R) such that

(g, x) = (γ−1, γx).

Hence g = γ−1, so g ∈ StabΛk(3R)(x) (here we view x ∈ Uk/Γ
′
k(3R) ⊆

Vk(R)). Choose a lift x̃ ∈ Uk of x. Then a chart for Vk/Λk containing
x is given by (Uk,StabΓk(3R)(x̃), π1) where π1 is the natural projec-
tion π : Uk → Vk/Uk/StabΓk(3R)(x̃). Again an important point is that
StabΓk(3R)(x̃) is a group, even though Γk(3R) is only a pseudogroup.
This is proven in the same way as in Claim 6.1.

A chart for Xk/Γk containing an orbit x = Γkx̃ is given by the triple
(Uk,StabΓk

(x̃), π2) where π2 is the natural projection Uk → Xk/Γk.
Since

StabΓk
(x̃) = StabΓk(3R)(x̃),

it follows that Vk/Λk
∼= Xk/Γk as orbifolds. q.e.d.

In particular, Vk/Λk is a good orbifold (because Xk is a manifold)
and

Vk → Vk/Λk

is an orbifold covering. Therefore, Vk is a good orbifold as well. Let Γ′k
be the orbifold fundamental group of Vk. With this setup, the remainder
of Fukaya–Yamaguchi’s proof works verbatim. q.e.d.
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30(3):259–265, 1980. MR0597027, Zbl 0421.53028.

[BM46] S. Bochner and D. Montgomery. Locally compact groups of differen-
tiable transformations. Ann. Math., 47(4):639–653, 1946. MR0018187, Zbl
0061.04407.

[Bor83] A. Borel. On periodic maps of certain K(π,1). In Oeuvres: Collected Papers
III, pages 57–60. Springer, 1983. MR0725854, Zbl 0537.22001.

[Bre72] G. Bredon. Introduction to compact transformation groups, volume 46 of
Pure and Applied Mathematics. Academic Press, 1972. MR0413144, Zbl
0246.57017.

[BY53] S. Bochner and K. Yano. Curvature and Betti numbers, number 32
in Annals of Mathematics Studies. Princeton University Press, 1953.
MR0062505, Zbl 0051.39402.

[CFG92] J. Cheeger, K. Fukaya, and M. Gromov. Nilpotent structures and invariant
metrics on collapsed manifolds. J. Amer. Math. Soc., 5(2):327–372, 1992.
MR1126118, Zbl 0758.53022.

[CG86] J. Cheeger and M. Gromov. Collapsing Riemannian manifolds while keep-
ing their curvature bounded. I. J. Diff. Geom., 23(3):309–346, 1986.
MR0852159, Zbl 0606.53028.

[CG90] J. Cheeger and M. Gromov. Collapsing Riemannian manifolds while keep-
ing their curvature bounded. II. J. Diff. Geom., 32(1):269–308, 1990.
MR1064875, Zbl 0727.53043.

[CH70] S. Calabi and P. Hartman. On the smoothness of isometries. Duke Math.
J., 37(4):741–750, 1970. MR0283727, Zbl 0203.54304.

[Che70] J. Cheeger. Finiteness theorems for Riemannian manifolds. Amer. J.
Math., 92(1):61–74, 1970. MR0263092, Zbl 0194.52902.

[CR95] J. Cheeger and X. Rong. Collapsed Riemannian manifolds with bounded
diameter and bounded covering geometry. Geom. Func. Anal., 5(2):141–
163, 1995. MR1334865, Zbl 0843.53039.

[CR96] J. Cheeger and X. Rong. Existence of polarized F-structures on collapsed
manifolds with bounded curvature and diameter. Geom. Func. Anal.,
6(3):411–429, 1996. MR1392324, Zbl 0863.53026.

[CWY13] S. Cappell, S. Weinberger, and M. Yan. Closed aspherical manifolds with
center. J. Topol., 6:1009–1018, 2013. MR3145148, Zbl 1316.57025.

[DSW94] X. Dai, Z. Shen, and G. Wei. Negative Ricci curvature and isometry group.
Duke Math. J., 76(1):59–73, 1994. MR1301186, Zbl 0820.53045.

[Ebe80] P. Eberlein. Lattices in spaces of nonpositive curvature. Ann. of Math.,
111:435–476, 1980. MR0577132, Zbl 0401.53015.

[Ebe82] P. Eberlein. Isometry groups of simply connected manifolds of nonpositive
curvature II. Acta Math., 149:41–69, 1982. MR0674166, Zbl 0511.53048.

[Fra94] S. Frankel. Locally symmetric and rigid factors for complex manifolds
via harmonic maps. Ann. of Math., 139:285–300, 1994. MR1324135, Zbl
0828.53058.

[Fuk86] K. Fukaya. Theory of convergence for Riemannian orbifolds. Japan J.
Math., 12:121–160, 1986. MR0914311, Zbl 0654.53044.



516 W. VAN LIMBEEK

[Fuk90] K. Fukaya. Hausdorff convergence of Riemannian manifolds and its ap-
plications. In Recent topics in differential and analytic geometry, volume
18-I of Adv. Stud. Pure Math. Academic Press, 1990. MR1145256, Zbl
0754.53004.

[FW05] B. Farb and S. Weinberger. Hidden symmetries and arithmetic manifolds.
In Geometry, spectral theory, groups, and dynamics, volume 387 of Con-
temp. Math. Amer. Math. Soc., 2005. MR2179789, Zbl 1082.53050.

[FW08] B. Farb and S. Weinberger. Isometries, rigidity and universal covers. Ann.
of Math., 168:915–940, 2008. MR2456886, Zbl 1175.53055.

[FY92] K. Fukaya and T. Yamaguchi. Fundamental groups of almost negatively
curved manifolds. Ann. Math., 136(2):253–333, 1992. MR1185120, Zbl
0770.53028.

[Gro78] M. Gromov. Manifolds of negative curvature. J. Diff. Geom., 13:223–230,
1978. MR0540941, Zbl 0433.53028.

[Gro07] M. Gromov. Metric structures for Riemannian and non-Riemannian
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negativer Krümmung. Helv. Phys. Acta, 45:277–288, 1972.

[Kat88] A. Katsuda. The isometry groups of compact manifolds with negative Ricci
curvature. Proc. Amer. Math. Soc., 104:587–588, 1988. MR0962832, Zbl
0693.53012.

[Ker83] S. Kerckhoff. The Nielsen realization problem. Ann. Math., 117(2):235–
265, 1983. MR0690845, Zbl 0528.57008.

[KM68] D. Kazhdan and G. Margulis. A proof of Selberg’s hypothesis. Mat. Sb.,
75(117)(1):163–168, 1968. MR0223487, Zbl 0241.22024.
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