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INVARIANT DISTRIBUTIONS AND X-RAY

TRANSFORM FOR ANOSOV FLOWS

Colin Guillarmou

Abstract

For Anosov flows preserving a smooth measure on a closed man-
ifold M, we define a natural self-adjoint operator Π which maps
into the space of flow invariant distributions in ∩r<0H

r(M) and
whose kernel is made of coboundaries in ∪s>0H

s(M). We describe
relations to the Livsic theorem and recover regularity properties of
cohomological equations using this operator. For Anosov geodesic
flows on the unit tangent bundle M = SM of a compact manifold
M , we apply this theory to study X-ray transform on symmetric
tensors on M . In particular, we prove existence of flow invari-
ant distributions on SM with prescribed push-forward on M and
a similar version for tensors. This allows us to show injectivity
of the X-ray transform on an Anosov surface: any divergence-
free symmetric tensor on M which integrates to 0 along all closed
geodesics is zero.

1. Introduction

In this work, we develop new approaches and tools coming from the
theory of anisotropic Sobolev spaces for studying cohomological equa-
tions, invariant distributions and X-ray transform for Anosov flows pre-
serving a Lebesgue type measure.

Ergodicity of the geodesic flow on a closed manifold M can be de-
scribed by saying that the only invariant L2(SM) functions are the con-
stants. By contrast, if the flow is Anosov, there exist infinitely many
invariant distributions, as one can take Dirac measures supported on
closed geodesic. These distributions are not very regular in terms of
Sobolev regularity, and it is natural to ask if there exist invariant dis-
tributions which are in Sobolev spaces Hr(SM) for small r < 0. In
connection to tensor tomography, it was recently shown by Paternain–
Salo–Uhlmann [PSU1,PSU2] that there exist infinitely many invariant
distributions which are in H−1(SM) for Anosov geodesic flows. More
precisely, if one fixes f ∈ L2(M) with

∫
M fdvg = 0, then they show that

there is an invariant distribution w ∈ H−1(SM) such that π0∗w = f if
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π0 : SM → M is the projection on the base. Their work is based on
Fourier decomposition in the fibers of SM as initiated by Guillemin–
Kazhdan [GK1, GK2]. For hyperbolic surfaces, certain invariant dis-

tributions in H−1/2−ε(SM) for all ε > 0 are studied by Anantharaman–
Zelditch [AnZe] in connection with quantum ergodicity.

In the present work, we address several related questions. Recall that
a flow generated by a vector field X on a compact manifold M is Anosov
if there is a continuous splitting TM = RX ⊕ Eu ⊕ Es where Es and
Eu are stable and unstable spaces (see (2.1)). The dual bundles E∗u and
E∗s are defined by E∗u(Eu ⊕ RX) = 0 and E∗s (Es ⊕ RX) = 0. Our first
result is

Theorem 1.1. Let M be a compact manifold and X be a smooth
vector field generating an Anosov flow preserving a smooth invariant
probability measure dμ, and assume the flow is mixing for this measure.
Then there exists a bounded operator

Π : Hs(M) → Hr(M), ∀s > 0, ∀r < 0,

with infinite dimensional range, dense in the space I := {w ∈ C−∞(M),
Xw = 0} of invariant distributions, that is self-adjoint as a map
Hs(M) → H−s(M) for any s > 0 and satisfies1

XΠf = 0, ∀f ∈ Hs(M), and ΠXf = 0, ∀f ∈ Hs+1(M),

f ∈ C∞(M) =⇒ WF(Πf) ⊂ E∗u ∪E∗s .

If f ∈ Hs(M) with 〈f, 1〉L2 = 0, then f ∈ ker Π if and only if there

exists 0 < s′ ≤ s and a solution u ∈ Hs′(M) to Xu = f , in which case
u is actually in Hs(M) and is the only solution in L2 modulo constants.

The result also holds with a weaker assumption than mixing, see
Theorem 2.6. This result shows that the ergodicity statement in terms
of unique L2-invariant distribution cannot be extended to less regu-
lar Sobolev spaces, and that the space of invariant distributions in
∩r<0H

r(M) is infinite dimensional. To define the operator Π, we use
the recent work of Faure–Sjöstrand [FaSj] on the Ruelle spectrum of
Anosov flows, which involves anisotropic Sobolev spaces associated to
the hyperbolic dynamic; such spaces appeared first in [BKL, Li, GoLi,
BaTs, BuLi] to study speed of mixing of Anosov diffeomorphisms and
flows. In fact, the operator can also be defined as a weak limit of damped
correlations

(1.1) 〈Πf, ψ〉 = lim
λ→0+

∫
R

e−λ|t|〈f ◦ ϕt, ψ〉dt, f, ψ ∈ C∞(M),

1WF denotes wave front set of distributions, cf. [Hö2, Chapter 8.1].
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if
∫
M fdμ = 0. The microlocal structure (wave front set) of Π follows

directly from the recent work of Dyatlov–Zworski [DyZw1], see Propo-
sition 2.3 below. As a corollary, we also recover smoothness result for
the Livsic cohomological equation in our setting:

Corollary 1.2. With the same assumptions as in Theorem 1.1, for
all s > dim(M)/2 and f ∈ Hs(M) satisfying

∫
γ f = 0 for all closed

orbit γ of X, there exist u ∈ Hs(M) such that Xu = f . In particular,
if f ∈ C∞(M) then u ∈ C∞(M).

De la Llave–Marco–Moriyon [DMM], Journé [Jo] or Hurder–Katok
[HuKa] proved a version of Corollary 1.2 with a regularity statement in
Hölder spaces Ck,α (the case of geodesic flows with negative curvature
was done previously in [GK1, GK2]), but Theorem 1.1 gives a Sobolev
regularity version of Livsic theorem, which did not seem to be known.
In particular, here we even get a characterization of coboundaries in Hs

for any s > 0, including cases of unbounded functions (if 0 < s < n/2),
which is not possible by the usual Livsic theorem.

Next, we focus on the setting of Anosov geodesic flows, where there
is an additional structure. In this case, M = SM is the unit tangent
bundle of a compact manifold, which is a sphere bundle with natural
projection π0 : SM → M . In the case of manifolds with boundary,
we can define the X-ray transform I0 on functions when the metric is
simple (i.e., the boundary is strictly convex boundary and the expo-
nential map is a diffeomorphism at any point): this is defined as a map
I0 : C

∞(M) → C∞(∂−SM) where ∂−SM is the inward pointing bound-

ary of SM , and I0f(x, v) =
∫ �(x,v)
0 f(π0(ϕt(x, v)))dt is the integral of f

along the geodesic in M with starting point x and tangent vector v and
�(x, v) is the length of that geodesic. The question of injectivity of I0
and surjectivity of I∗0 are important in the study of inverse problems
and tomography, and the description of the operator I∗0I0 as an elliptic
pseudo-differential operator has been fundamental to solve these ques-
tions, see, for instance, [PeUh, UhVa]. In the Anosov setting (the
manifold does not have boundary), we define

Π0 = π0∗Ππ∗0 : C∞(M) → C−∞(M).

This operator will play the role of I∗0I0 when there is no boundary. We
show

Theorem 1.3. Let (M,g) be a compact manifold with Anosov geo-
desic flow. Then
1) The operator Π0 is an elliptic pseudo-differential operator of order
−1, with principal symbol σ(Π0)(x, ξ) = Cn|ξ|

−1
g for some Cn �= 0 de-

pending only on n.
2) The operator Ππ∗0 is well-defined on Hs(M) for all s ∈ R and is
injective.
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3) Let s ≤ 1, then for any f ∈ Hs(M), there exists w ∈ C−∞(SM) so
that Xw = 0 and π0∗w = f and w has the regularity

w ∈
⋂
r<0

Hr(SM) if s = 1 and w ∈ Hs−1(SM), if s < 1.

If we were working in the setting of simple manifolds (case with
boundary), 3) would provide surjectivity for the operator I∗0 . The re-
sult in 3) improves the recent work [PSU2] in terms of regularity and
gives in addition a precise description of the singularities of the invariant
distribution (through the wave front set). Finally we describe tomog-
raphy for m-cotensors: symmetric cotensors f ∈ C∞(M,⊗m

S T ∗M) can
be mapped to smooth functions on SM via the map (π∗mf)(x, v) :=
〈f(x),⊗mv〉, and denote by πm∗ : C

−∞(SM) → C−∞(M,⊗m
S T ∗M) its

adjoint acting on distributions. The divergence of m-cotensors is de-
fined by D∗f := −T (∇f) where ∇ is the Levi–Civita connection and
T is the trace defined in (3.4). As for m = 0, we show in Theorem
3.5 and Corollary 3.8 a result similar to Theorem 1.3 for the operator
Πm := πm∗Ππ∗m; for instance, it is a pseudo-differential operator of or-
der −1 which is elliptic on the space of divergence-free cotensors. We
also show the existence of invariant distributions w with regularity as
in 3) with prescribed divergence-free value πm∗w, assuming injectivity
of Ππ∗m|kerD∗ . We remark that this injectivity follows from the work
of Croke–Sharafutdinov [CrSh] if the sectional curvatures of (M,g) are
non-positive; in the Anosov setting, the kernel is trivial for m = 0, 1 as
a consequence of the work of Dairbekov–Sharafutdinov [DaSh].

To conclude, we give applications to the injectivity of the X-ray trans-
form on Anosov surfaces. Let (M,g) be a Riemannian surface and let
ϕt : SM → SM be its geodesic flow on the unit tangent bundle SM of
M . A closed geodesic is a curve γ on M such that there exists � > 0
and γ := {π0(ϕt(x, v)) ∈ M ; t ∈ [0, �], ϕ�(x, v) = (x, v)}; the smallest
such � is denoted �γ and called the length of γ. A parametrization of γ
is given by γ(t) = π0(ϕt(x, v)) if t ∈ [0, �γ ] and x ∈ γ and v ∈ SxM is
tangent to γ. The set of closed geodesics of M is countable and denoted
by G. We define the X-ray transform on symmetric m-cotensors as the
linear map

Im : C∞(M,⊗m
S T ∗M) → (G → R),

Im(f)(γ) :=

∫ �γ

0
〈f(γ(t)),⊗mγ̇(t)〉dt,

where dot denotes the time derivative. IfD denotes symmetrized covari-
ant derivative, we remark that any f which is written under the form
f = Dh for some h ∈ C∞(M,⊗m−1

S T ∗M) satisfies Im(f)(γ) = 0 for all
γ ∈ G and thus the kernel ker Im is infinite dimensional for m ≥ 1. It is
then natural to consider Im acting on divergence-free cotensors. In neg-
ative curvature, it has been proved in [CrSh] that ker Im ∩ kerD∗ = 0
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(this was first shown by [GK1] for negatively curved surfaces), then the
proof that I0 is injective and that ker I1 ∩ kerD∗ = 0 for Anosov man-
ifolds appeared in [DaSh]. More recently, Paternain–Salo–Uhlmann
[PSU1] proved that ker I2 ∩ kerD∗ = 0 for Anosov surfaces. Here,
we prove injectivity of X-ray transform on all divergence-free symmet-
ric cotensors for Anosov surfaces, which has been an important open
problem in the field (see, for example, [DaSh, Problem 1.7]).

Theorem 1.4. On a Riemannian surface with Anosov geodesic flow,
then for all m ≥ 0 we have ker Im∩kerD∗ = 0 and ker Ππ∗m∩kerD∗ = 0.

This is the exact analogue in the Anosov case of the recent result of
Paternain–Salo–Uhlmann [PSU3] for simple domains in dimension 2,
but both the proof and the geometric setting are very different; it is clear
that the method of [PSU3] uses strongly that the manifold is open and
non-trapping. To prove Theorem 1.4, we use the existence of invariant
distributions with prescribed push-forward for m = 1, we apply a Szegö
projector in the fibers of SM to these distributions, which allows us
to multiply them using their wave front set property. The obtained
set of distributions produce a large enough vector space of invariant
distributions orthogonal to ker Im ∩ kerD∗ to force this space being
trivial. The properties of our operator Π allows to solve the problem
encountered in Remark 9.4 of [PSU1], which was why they had to
assume m ≤ 2.

To motivate even more this new way of analyzing X-ray transform, we
mention that using tools of similar nature, we are able to prove in [Gu]
the injectivity of X-ray transform for all negatively curved manifold
with strictly convex boundary, and that the scattering map for the flow
on negatively curved surfaces determines the Riemannian metric up to
conformal diffeomorphism.

Acknowledgment. We thank N. Anantharaman, V. Baladi, S. Dy-
atlov, F. Naud, G. Paternain, M. Salo, G. Uhlmann, M. Zworski for
useful discussions. The research is partially supported by grants ANR-
13-BS01-0007-01 and ANR-13-JS01-0006.

2. The resolvent of the flow and the operator Π

In what follows, the manifold M will be connected. Before we start,
we point out that we shall use pseudo-differential operators (ΨDO) and
the notion of wave front set of distributions and of ΨDOs. We refer
to Hörmander [Hö2, Chap. VIII] for wave front sets, and to Grigis–
Sjöstrand [GrSj] for standard pseudo-differential calculus and Zworski
[Zw] for the semiclassical version. We shall say that a pseudo-differential
operator A on M is microsupported in a conic set U ⊂ T ∗M if its wave
front set is contained in U , i.e., its full symbol a(y, ξ) in local coordinates
and all its derivatives vanish to all order as |ξ| → ∞ outside the conic
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set U . We will write Ψm(M) for the class of classical pseudo-differential
operators of order m ∈ R. We say that A ∈ Ψm(M) is elliptic at (x0, ξ0)
if there is a conical neighborhood U of (x0, ξ0) and C > 0 such that its
principal symbol σ(A) satisfies |σ(A)(x, ξ)|/|ξ|m ≥ 1/C in U∩{|ξ| > C}.

2.1. The resolvent of the flow. First, we recall that a smooth vector
fieldX on a compact manifoldM without boundary is Anosov if its flow
ϕt has the following property: there exists a continuous flow-invariant
splitting

TM = RX ⊕Es ⊕Eu,

where Es, Eu are the stable/unstable bundles, which are defined as fol-
lows: there exists C > 0, ν > 0 such that

(2.1)
ξ ∈ Es(y), y ∈ M ⇐⇒ ‖dϕt(y)(ξ)‖ ≤ Ce−νt‖ξ‖ for t ≥ 0,

ξ ∈ Eu(y), y ∈ M ⇐⇒ ‖dϕt(y)(ξ)‖ ≤ Ce−ν|t|‖ξ‖ for t ≤ 0,

where ‖ ·‖ is the norm induced by any fixed metric on M. The flow will
be said to be a contact Anosov flow if the Anosov form α, defined by

α(X) = 1, kerα = Eu ⊕ Es

is a smooth contact form (i.e., dα is symplectic on kerα). This is, for
instance, the case for Anosov geodesic flows on M = SM with (M,g)
a Riemannian compact manifold, as α is simply the Liouville 1-form.
Notice that for contact Anosov flow, there is a natural invariant measure
given by dμ = α ∧ (dα)d where d is the dimension of Eu (and Es). We
shall also define the dual stable and unstable bundles E∗s ⊂ T ∗M and
E∗u ⊂ T ∗M by

(2.2) E∗u(Eu ⊕ RX) = 0, E∗s (Es ⊕RX) = 0.

When the flow ϕt has a smooth invariant measure dμ on M, the
generating vector field can be viewed as a (formally) anti-self-adjoint
operator on C∞(M), that is 〈Xu, v〉 = −〈u,Xv〉 for all u, v ∈ C∞(M)
where the pairing is the L2(M) pairing using the invariant measure dμ.
By Stone’s theorem, the generator −iX of the unitary operator

etX : L2(M) → L2(M), (etXf)(y) = f(ϕt(y))

is self-adjoint on L2(M) = L2(M, dμ). In this case, the spectral the-
orem for self-adjoint operators tells us that SpecL2(−iX) ⊂ R. The
resolvents R−(λ) = (−X − λ)−1 and R+(λ) = (−X + λ)−1 are well-
defined on L2(M) for Re(λ) > 0 by
(2.3)

R+(λ)f(y) =

∫ ∞

0
e−λtf(ϕt(y))dt, R−(λ)f(y) = −

∫ 0

−∞
eλtf(ϕt(y))dt.
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Moreover, Stone’s formula gives the spectral measure of −iX in terms
of the resolvents R±(iλ) by the strong limit

1
2(1[a,b](−iX) + 1(a,b)(−iX))(2.4)

= (2π)−1 lim
ε→0+

∫ b

a
(R+(iλ+ ε)−R−(−iλ+ ε))dλ,

for a, b ∈ R. Then we recall the result of Faure–Sjöstrand [FaSj,
Th. 1.4]:

Theorem 2.1 (Faure–Sjöstrand). Assume that X is a smooth vector
field generating an Anosov flow and let dμ be a smooth invariant mea-
sure. There exists c > 0 such that for all s > 0 and r < 0, there is a
Hilbert space Hr,s such that Hs(M) ⊂ Hr,s ⊂ Hr(M) and −X − λ is
Fredholm with index 0 as an operator

−X − λ : Dom(X) ∩Hr,s → Hr,s, if Re(λ) > −cmin(|r|, s)

depending analytically on λ. Moreover, −X − λ is invertible for Re(λ)
large enough on these spaces, the inverse coincides with R−(λ) when act-
ing on Hs(M) and it extends meromorphically to the half-plane Re(λ) >
−cmin(|r|, s), with poles of finite multiplicity as a bounded operator
on Hr,s.

The assumption about the invariant smooth measure dμ is not nec-
essary in [FaSj], but without it, the Fredholm property is true only
in Re(λ) > −cmin(|r|, s) + λ0 for some λ0 so that −X − λ be invert-
ible on L2(M) (defined with respect to some fixed smooth measure)
for Re(λ) > λ0. If the flow is contact, there is an invariant smooth
measure making X anti-self adjoint and thus one can take λ0 = 0, with
inverse given by (2.3). For what follows, we shall assume, without loss
of generality, that the invariant measure is a probability measure.

The fact that the inverse (−X − λ)−1 for Re(λ) large coincides with
R−(λ) when acting on Hs(M) is not explicitly stated in [FaSj] but it is
straightforward to check, since by formula (2.3), R−(λ) maps Hs(M) to
itself for Re(λ) > C|s| for some C > 0 depending only on the Lyapunov
exponents of ϕt (see [DyZw1, Prop. 3.2] for details). As operator
mapping C∞(M) → C−∞(M), the resolvent R−(λ) does not depend
on r, s; the Schwartz kernel of R−(λ) admits a meromorphic extension
to C as an element in C−∞(M × M). Since, moreover, (−X − λ)∗ =
(X − λ) = −(−X + λ) on C∞(M), we have that for Re(λ) > 0

(2.5) R−(λ)
∗ = −R+(λ) on L2(M).

The anisotropic Sobolev spaces. In [FaSj, Sec. 1.1.2], the spaces

Hr,s are defined by Hr,s := Â−1r,s (L
2(M)) where Âr,s = Op(Ar,s) is an in-

vertible pseudo-differential operator in an anisotropic class which quan-
tizes a symbol function Ar,s ∈ C∞(T ∗M). We recall the construction of
Ar,s following [FaSj]. The symbol is defined by Ar,s = exp(Gm) where
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Gm is a smooth function on T ∗M constructed in Lemma 1.2 of [FaSj]:

Gm(y, ξ) := m(y, ξ) log(
√

1 + f(y, ξ)2) with m and f smooth, homoge-
neous in |ξ| > 1 with respective degree 0 and 1, f is positive and does
not depend on r, s. Fix ε > 0 small, the function m is given in {|ξ| > 1}
by2 m = s(1 −m2 − ε(m1 −m2)) + rm2 where m1 ∈ C∞(S∗M; [0, 1])
is such that m−1

1 (0) is a small conic neighborhood of E∗s and m−1
1 (1) is

a small conic neighborhood of E∗u ⊕ E∗0 , and m2 ∈ C∞(S∗M; [0, 1]) is

such that m−1
2 (1) is a small conic neighborhood of E∗u and m−1

2 (0) is a
small conic neighborhood of E∗s ⊕E∗0 . The conic neighborhoods can be
taken as small as we like in the construction. From the construction,
we have

(2.6) Hs(M) ⊂ Hr,s ⊂ Hr,s′ ⊂ Hr′,s′ ⊂ Hr′(M),

if r′ ≤ r < 0 < s′ ≤ s. We also see that m = s in a small conic
neighborhood of E∗s and m = r in a small conic neighborhood of E∗u,
which implies that the space Hr,s is microlocally equivalent to Hs(M)
in a small conic open neighborhood Vs of E∗s in the following sense: if
B ∈ Ψ0(M) has wave front set contained in Vs, then there is C > 0
such that for all f ∈ C∞(M)

||Bf ||Hs(M) ≤ C||f ||Hr,s , ||Bf ||Hr,s ≤ C||f ||Hs(M).

If we choose ε > 0 small, we get that in the region W ε
s := {m2 ≤ 1−2ε},

m ≥ sε+ r. Thus for any B ∈ Ψ0(M) with wave front set contained in
W ε

s ,

(2.7) f ∈ Hr,s =⇒ Bf ∈ Hεs+r(M).

The complement of W ε
s is a small conic neighborhood of E∗u if ε is small,

which means that if we choose s and r so that sε + r > 0, functions
in Hr,s are microlocally in a positive Sobolev space outside a small
conic neighborhood of E∗u, which can be made as small as we want in
the construction. The dual space (Hr,s)∗ to Hr,s (with respect to L2-

pairing) is identified with Âr,s(L
2(M)) and the symbol of Â−1r,s being

exp(−Gm), this space is microlocally equivalent to H−r(M) in a small
conic neighborhood of E∗u and is microlocally equivalent to H−s(M) in
a small conic neighborhood of E∗s .

Considering the flow in backward time, which amounts to consider the
generator −X instead of X, the roles of Es and Eu are exchanged and
we can define the space Hs,r for r < 0 < s just as Hr,s but exchanging
E∗u and E∗s : Hs,r is microlocally equivalent to Hs(M) in a small conic
neighborhood of E∗u, and is microlocally equivalent to Hr(M) in a small
conic neighborhood of E∗s . Like (2.6), we have for r′ < r < 0 < s′ < s

(2.8) Hs(M) ⊂ Hs,r ⊂ Hs′,r ⊂ Hs′,r′ ⊂ Hr′(M).

2We choose n0 := (1− ε)s in the notation of [FaSj, Lemma 1.2].
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We then deduce from Theorem 2.1 applied with −X that X − λ is
Fredholm with index 0 as an operator

X − λ : Dom(X) ∩Hs,r → Hs,r, if Re(λ) > −cmin(|r|, s)

depending analytically on λ. Moreover, X − λ is invertible for Re(λ)
large enough on these spaces, the inverse coincides with −R+(λ) when
acting on Hs(M) and it extends meromorphically to the half-plane
Re(λ) > −cmin(|r|, s), with poles of finite multiplicity as a bounded
operator

R+(λ) : H
s,r → Hs,r.

Notice that the formula (2.5) relating R+(λ) with R−(λ) then extends
meromorphically to the half-plane Re(λ) > −cmin(|r|, s) as an operator
Hs(M) → H−s(M), and shows that

(2.9) R−(λ) : (H
s,r)∗ → (Hs,r)∗, R+(λ) : (H

r,s)∗ → (Hr,s)∗

are bounded for λ in the same half-plane. As above in (2.7), there is a
small conic neighborhood (that can be made as small as we like) with
complement W ε

u such that for any B ∈ Ψ0(M) with wave front set
contained in W ε

u,

(2.10) f ∈ Hs,r =⇒ Bf ∈ Hεs+r(M).

By choosing ε > 0 small enough so that W ε
u∪W ε

s contains {|ξ| ≥ 1}, we
deduce from (2.7) and (2.10), the following regularity statement:

Lemma 2.2. For s > 0 and r < 0, we have Hr,s ∩Hs,r ⊂ Hsε+r(M)
for some ε > 0 independent of s, r.

Wave front set of the resolvent. The wave front set of the
Schwartz kernel of the resolvent is analyzed by Dyatlov–Zworski
[DyZw1, Prop. 3.3].

Proposition 2.3 (Dyatlov–Zworski). Let λ0 ∈ C, and assume that
the meromorphically extended resolvent R−(λ) has a pole of order k at
λ0 with Laurent expansion

R−(λ) = Rhol
− (λ) +

k∑
j=1

Aj

(λ− λ0)j
,

where Rhol
− (λ) is holomorphic near λ0, then the wave front set of the

Schwartz kernel of Rhol
− (λ) satisfies

WF(Rhol
− (λ)) ⊂ N∗Δ(M×M) ∪ Ω+ ∪ (E∗u × E∗s ),

with N∗Δ(M×M) the conormal bundle to the diagonal Δ(M×M) of
M×M and

Ω+ := {(Φt(y, ξ), y,−ξ) ∈ T ∗(M×M); t ≥ 0 ξ(X(y)) = 0},
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where Φt is the symplectic lift of ϕt on T ∗M, or equivalently the Hamil-
ton flow of the Hamiltonian p(y, ξ) = ξ(X(y)). A similar result holds
for R+(λ), where the wave front set of the regular part Rhol

+ (λ) satisfies

WF(Rhol
+ (λ)) ⊂ N∗Δ(M×M) ∪ Ω− ∪ (E∗s ×E∗u),

where Ω− is defined like Ω+ but with Φ−t instead of Φt.

We recall that the symplectic lift Φt acts by Φt(y, ξ) = (ϕt(y),
(dϕ−1t (y))T ξ).

Poles on the critical line. To end this section, we describe the
poles of R±(λ) on the imaginary line.

Lemma 2.4. The resolvent R±(λ) have poles of order at most 1 on
the line iR, and we have for all λ0 ∈ R

1
2 ((Resλ0

R+(λ)) + (Resλ0
R+(λ))

∗) = ΠEig(λ0),

where ΠEig(λ0) is the orthogonal projector on the eigenspace Eig(λ0) =
kerL2(−iX − λ0).

Proof. First we notice that from the spectral theorem, if iλ0 ∈ iR is
a pole of R±(λ), it is a first order pole since there is C > 0 such that
for all u, v ∈ C∞(M)

|〈R±(λ)u, v〉| ≤ C|λ− iλ0|
−1||u||L2 ||v||L2 if Re(λ) > 0.

We write the Laurent expansion of R±(λ) at iλ0 using (2.5): for λ, λ0 ∈
R and ε > 0

R+(iλ+ ε) =
A0

iλ+ ε− iλ0
+O(1),

−R−(−iλ+ ε) = R+(iλ+ ε)∗ =
A∗0

−iλ+ ε+ iλ0
+O(1),

for some operator A0 as λ → λ0 (the O(1) is in the weak sense when
applying the identity to f ∈ C∞(M) and pairing with ψ ∈ C∞(M)).
Thus we get from (2.4)

1
2(1[λ0−δ,λ0+δ](−iX) + 1(λ0−δ,λ0+δ)(−iX)) =

A0 +A∗0
2π

lim
ε→0+

∫ δ

−δ

1

iλ+ ε
dλ+O(δ) = 1

2(A0 +A∗0) +O(δ),

where the O(δ) was independent of ε (and as above is in weak sense).
Then letting δ → 0 we get the result. q.e.d.

2.2. Mixing. We say that a flow ϕt is mixing with respect to an in-
variant probability measure dμ if for all u, v ∈ L2(M)

Ct(u, v) :=

∫
M

u(ϕt(y))v(y)dμ(y) −

∫
M

u(y)dμ(y)

∫
M

v(y)dμ(y)

tends to 0 as t → ∞.
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Lemma 2.5. Let X be a smooth Anosov vector field on a compact
manifold M and let dμ be an invariant measure with respect to the flow
of X. Then the flow is mixing if and only if the only pole of R±(λ) on
the line iR is λ = 0 and it is a simple pole with residue ±(1⊗ 1).

Proof. Assume that the flow is mixing. Let u, v ∈ C∞(M), then for
all ε > 0 small, there is Tε such that for |t| > Tε, |Ct(u, v)| ≤ ε. Using
(2.3) we have for λ > 0

λ〈R+(λ)u, v〉 =

∫ Tε

0

∫
M

λe−λtu(ϕt(y))v(y)dt dμ(y)

+

∫ ∞

Tε

λe−λt〈u, 1〉〈v, 1〉dt +

∫ ∞

Tε

λe−λtCt(u, v)dt.

The first term has norm bounded by (1− e−λTε)‖u‖L2‖v‖L2 , the second
term is equal to e−λTε〈u, 1〉〈v, 1〉 and the last term has norm bounded
by εe−λTε . Therefore, letting λ → 0 we obtain

lim
λ→0+

(λ〈R+(λ)u, v〉) = 〈u, 1〉〈v, 1〉 +O(ε),

and since ε is arbitrarily small we deduce that the residue of R+(λ) at
λ = 0 is the rank-1 operator 1⊗ 1. The same argument shows that the
residue of R−(λ) at λ = 0 is −(1⊗ 1) and for all λ0 ∈ iR \ {0}

lim
λ→λ0

((λ− λ0)〈R±(λ)u, v〉) = 0,

where the limit is understood as a limit from the right half-plane
Re(λ) > 0.

Conversely, we can use the formula (2.4) and the meromorphy of
R±(λ) to deduce that the L2-spectrum of iX is made of absolutely
continuous spectrum and pure point spectrum. Moreover, if 0 is the
only pole on the imaginary line and if it is simple with residue 1 ⊗ 1,
then it means that the spectrum on {1}⊥ is absolutely continuous and
it is a classical fact that this implies that the flow is mixing (see [ReSi,
Theorem VII.15]). q.e.d.

For Anosov geodesic flows, mixing was proved by Anosov [An], and
this was extended to contact Anosov flows by Burns–Katok [BuKa]; in

that last case, the rate of mixing is Ct(u, v) = O(e−ε|t|) for some ε > 0
if u, v ∈ C∞(M) by Liverani [Li].

2.3. The operator Π. When the Anosov flow is mixing then by Lemma
2.5, we know that the resolvents R±(λ) have a simple pole at λ = 0 and
using Laurent expansion at λ = 0 of R±(λ) together with (2.5), we see
that there exists an operator R0 : H

s,r → Hs,r such that

(2.11) R+(λ) =
1⊗ 1

λ
+R0 +O(λ), R−(λ) = −

1⊗ 1

λ
−R∗0 +O(λ),
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and, therefore, as operators C∞(M) → C−∞(M)

(2.12) −XR0 = Id− 1⊗ 1 = −R0X, XR∗0 = Id− 1⊗ 1 = R∗0X.

This identity extends to those Sobolev spaces on which the operators
are bounded (as given by Theorem 2.1). In particular, by the Fredholm
property of X on Hs,r and Hr,s, we deduce that the kernel of X on
Hs,r and Hr,s is simply made of constants. The operator R0 is simply
obtained as the limit

(2.13) R0 = lim
λ→0

(R+(λ)− λ−1(1 ⊗ 1)).

When the flow is not mixing, the same exact properties hold as long as
Res0R+(λ) = 1 ⊗ 1, which is equivalent to say that Res0R+(λ) is self-
adjoint and the flow is ergodic (so the projector ΠEig(0) on the L2-kernel
is 1⊗ 1).

We can now show

Theorem 2.6. Let M compact and X be a smooth vector field gener-
ating an Anosov flow preserving a smooth invariant probability measure
dμ. Assume that Res0R+(λ) = 1 ⊗ 1 (this is, in particular, true if the
flow is mixing). For all s > 0 and r < 0, the operator Π := R0 + R∗0 :
Hs(M) → Hr(M) is bounded and satisfies

XΠf = 0, ∀f ∈ Hs(M), and ΠXf = 0, ∀f ∈ Hs+1(M),

f ∈ C∞(M) =⇒ WF(Πf) ⊂ E∗u ∪E∗s .

Let f ∈ Hs(M) with 〈f, 1〉 = 0 and set u+ := −R0f ∈ Hs,r, u− :=
R∗0f ∈ Hr,s so that

Xu+ = Xu− = f,

by (2.12). Then f ∈ kerΠ∩Hs(M) if and only if there exists s′ > 0 and

a solution u ∈ Hs′(M) to Xu = f ; in this case the solution u is actually
in Hs(M) and is unique modulo constants, given by u = u+ = u−.

Proof. The first part follows from the boundedness of the operator
R0 and R∗0 in Theorem 2.1 and the relations (2.12). The wave front
set description of Πf is a consequence of Proposition 2.3 and [Hö2,
Theorem 8.2.12]. If f ∈ Hs(M) is in ker Π then u+ = u− and Xu+ = f ,
moreover, by Lemma 2.2 and taking r = −εs/2 for some ε > 0 small

independent of s, one has u+ ∈ Hsε/2(M). If there is another solution
in L2(M) for some ε > 0, there is a flow invariant L2 function and
so it is constant. In fact, we can prove better regularity of u+ using
propagation of singularities, namely that

(2.14) u+ ∈ Hs(M).

We know that u+ ∈ Hs,r ∩ Hr,s and thus, from the definition of the
spaces Hs,r and Hr,s, we have that A0u+ ∈ Hs(M) if A0 ∈ Ψ0(M) is
microsupported in a sufficiently small conic neighborhood of E∗u ∪ E∗s
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and elliptic in a conic neighbourhood W0 of E
∗
u∪E

∗
s . By classical elliptic

estimates, we also have that A1u+ ∈ Hs(M) if A1 ∈ Ψ0(M) has wave
front set not intersecting the characteristic region E∗s ⊕ E∗u = {(y, ξ) ∈
T ∗M; ξ(X(y)) = 0}, and we can assume A1 elliptic outside a small
conic neighborhood of E∗s ⊕ E∗u, we call W1 the region of ellipticity of
A1. Moreover, for all (y, ξ) /∈ W0 ∪ W1, the trajectory Φt(y, ξ) of the
Hamilton flow of the principal symbol of −iX (i.e., the symplectic lift
of ϕt) reach W1 ∪ W0 in either forward or backward finite time: this
is a consequence of the fact that for all (y, ξ) /∈ E∗s , Φt(y, ξ)/|Φt(y, ξ)|
tend to E∗0 ⊕ E∗u as t → +∞ and for all (y, ξ) /∈ E∗u, Φt(y, ξ)/|Φt(y, ξ)|
tend to E∗0 ⊕ E∗s as t → −∞ (see [FaSj, Section 2], for example). We
are going to apply the propagation of singularities for real principal
type differential operators given in [DyZw1, Proposition 2.5] that we
recall now (see [Hö1, Section 3] for the original argument in the case
of constant coefficients operators): assume that u ∈ H−N (M) for some
N > 0, and let A,B,B1 ∈ Ψ0(M) that are elliptic in respective conic
subsets A,B,B1 ⊂ T ∗M such that Bu ∈ Hs(M), B1Xu ∈ Hs(M) for
some s > −N ; if for all (y, ξ) in the microsupport (wave front set) of
A there is T > 0 such that Φ−T (y, ξ) ∈ B and Φt(y, ξ) ∈ B1 for all
t ∈ [−T, 0], then Au ∈ Hs(M). Applied to our case, we thus deduce
that (2.14) holds since −iXu+ ∈ Hs(M).

We now prove the converse. If there is u ∈ Hs′(M) so that Xu = f

with 0 < s′ ≤ s, then u − u+ is constant since u ∈ Hs′,r, u+ ∈ Hs′,r

by (2.8) and −X is Fredholm on Hs′,r with kernel given by constants.
Similarly, u−u− is constant, and thus u ∈ Hs,r∩Hr,s. Then u+−u− = C
for some C ∈ C and Πf = C. Since XR0(1) = XR∗0(1) = 0 we have that
R0(1) and R∗0(1) are constants and thus Π(1) is constant. We obtain
〈Πf, 1〉 = 〈f,Π(1)〉 = 0 and thus C = 0, showing Πf = 0. We also have
that u+ ∈ Hs(M) by the arguments leading to (2.14). This completes
the proof. q.e.d.

Taking r = −s for s > 0 fixed, Π is self-adjoint as a map Hs(M) →
H−s(M) if we identify H−s(M) with the dual of Hs(M), in the sense
〈Πf, f ′〉 = 〈f,Πf ′〉 for all f, f ′ ∈ Hs(M). Moreover, it maps any
Hs(M) to the space of invariant distributions defined by

(2.15) I :=
⋂
r<0

Ir, Ir := {w ∈ Hr(M); Xw = 0}.

We claim that the image of Π is infinite dimensional for Anosov flows
satisfying the assumptions of Theorem 2.6. Indeed, for each closed orbit
γ of X, there is a smooth function f supported in an arbitrarily small
tubular neighbourhood which equals 1 on γ and 〈f, 1〉 = 0, and f /∈ ker Π
since, if we had Πf = 0, by Theorem 2.6 this would imply that there
exists u ∈ C∞(M) such that Xu = f , and thus

∫
γ f = 0, contradicting

the fact that f = 1 near γ. By [An, Theorem 3], there are countably
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infinitely many (disjoint) periodic orbits γk and thus for any N ∈ N we
can construct smooth functions (fk)k=1,...,N with disjoint supports, so
that

∫
γj
fk = δjk for j, k ≤ N . We deduce that dim span{Πfk; k ≤ N} =

N since if Π(
∑N

k=1 akfk) = 0 for some ak ∈ C, there exists u ∈ C∞(M)

such that Xu =
∑N

k=1 akfk, thus 0 =
∫
γj
Xu = aj for each j ≤ N .

Letting N → ∞, we see that the range of Π has infinite dimension.
The alternative expression (1.1) for 〈Πf, ψ〉 if 〈f, 1〉 = 0 is a direct

consequence of (2.3) and (2.11). We now give a direct corollary of
Theorem 2.6, which proves the density of the range of Π in the space of
invariant distributions for the flow.

Corollary 2.7. Let M and X satisfy the same assumptions as in
Theorem 2.6. For each s > 0, the space I−s of invariant distribu-
tions in H−s(M) is the closure in H−s(M) of Ran(Π|Hs) := {Πf ∈
H−s(M); f ∈ Hs(M)}, which in turn is the orthogonal of ker(Π|Hs(M)).

Proof. If f ∈ Hs(M) is orthogonal to I−s, then using that
Ran(Π|Hs) ⊂ I−s, we have 0 = 〈Πu, f〉 = 〈u,Πf〉 for all u ∈ Hs(M)
thus Πf = 0. Conversely, if Πf = 0, by Theorem 2.6 we get Xu = f for
some u ∈ Hs(M), we want to show that 〈Xu,w〉 = 0 for all w ∈ I−s:
by [DyZw2, Lemma E.41] there is a sequence uj ∈ C∞(M) such that
uj → u in H−s(M) and Xuj → Xu in H−s(M) as j → ∞, thus
〈w,Xu〉 = limj→∞〈w,Xuj〉 = − limj→∞〈Xw,uj〉 = 0. We deduce that

the space I⊥−s := {f ∈ Hs(M);∀w ∈ I−s, 〈w, f〉 = 0} is equal to

ker Π|Hs(M). On the other hand (Ran(Π|Hs))⊥ = (Ran(Π|Hs))⊥ where

the closure is inH−s(M) and ker Π|Hs = (Ran(Π|Hs))⊥ thus ker Π|Hs =

I⊥−s ⊂ (Ran(Π|Hs))⊥ = kerΠ|Hs and we deduce that Ran(Π|Hs) = I−s.
q.e.d.

Using the operator Π, we also recover the smoothness result of [DMM,
Jo] for the solution of the cohomological equation and, indeed, we get
a Sobolev version which does not seem to be available in the literature:

Corollary 2.8. With the same assumptions as in Theorem 2.6, if
the flow is topologically transitive (which is the case for mixing flows),
then for all s > dimM/2 and all f ∈ Hs(M) satisfying

∫
γ f = 0 for

all closed orbits γ of X, there exists u ∈ Hs(M) such that Xu = f . In
particular, if f ∈ C∞(M) then u ∈ C∞(M).

Proof. Let n = dimM. If f ∈ Hn/2+ν(M) for ν ∈ (0, 1), then
f ∈ Cν(M) and since the flow is assumed topologically transitive, by
Livsic theorem for Hölder function [KaHa, Theorem 19.2.4], we know

that there exist u ∈ Cν(M) so that Xu = f . Then we get u ∈ Hν′(M)
for all ν ′ < ν since M is compact and so by Theorem 2.6 we see that
f ∈ ker Π, which implies that there is u ∈ Hs(M) so that Xu = f and
u is unique modulo constants. q.e.d.
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Remark 2.9. The three results above hold as well if instead of assum-
ing that the residue Res0R+(λ) is 1⊗1, we only assume that Res0R+(λ)
is self-adjoint (which is equivalent to assuming that the residue is equal
to the spectral projector on the L2 kernel of X, by Lemma 2.4), but
then we need to take f orthogonal to the L2-kernel of X and unique-
ness modulo constants needs to be replaced by uniqueness modulo the
L2-kernel.

3. Anosov geodesic flows

In this section, we consider the special case of M = SM being the
unit tangent bundle of a compact Riemannian manifold (M,g) such that
the geodesic flow ϕt : SM → SM of the metric g is Anosov. We shall
denote π0 : SM → M the natural projection π0(x, v) = x where x ∈ M
is the base point of the element (x, v) ∈ SM .

3.1. X-ray transform on functions. In this section, we study the
operator Π acting on pull-back of functions on M . Recall that the
geodesic flow is mixing [An]. The pull-back operator π∗0 : C∞(M) →
C∞(SM) induces a push-forward map π0∗ : C

−∞(SM) → C−∞(M) on
distributions by

〈π0∗u, ψ〉 := 〈u, π∗0ψ〉, ∀ψ ∈ C∞(M).

We then define the operator

(3.1) Π0 := π0∗Ππ∗0 : C∞(M) → C−∞(M).

This operator corresponds exactly to the operator I∗0I0 which appears in
the setting metric on manifolds with boundary, with I0 being the X-ray
transform on functions (see Section 5.1 in [Gu] for explanations). The
goal of this section is to prove

Theorem 3.1. If (M,g) has Anosov geodesic flow, the operator Π0

is an elliptic self-adjoint pseudo-differential operator of order −1, with
principal symbol

σ(Π0)(x, ξ) = Cn|ξ|
−1
gx ,

where Cn is a non-zero constant depending only on n. As a consequence,
the kernel kerΠ0 := {f ∈ C−∞(M); Π0f = 0} is finite dimensional and
its elements are smooth.

Proof. Let us first show the first statement using Proposition 2.3.
We will first show that the wave front set of the Schwartz kernel of Π0

is conormal to the diagonal, and then reduce the computation of the
symbol to the case dealt with by Pestov–Uhlmann [PeUh]. We write if
Re(λ) > 0

R+(λ) =

∫ ε

0
e−λtetXdt+ e−ελeεXR+(λ),
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where ε ≥ 0 is small and this extends meromorphically to C when acting
on smooth functions. At λ = 0, we deduce from (2.11) that the finite
part of R+(λ) is

R0 =

∫ ε

0
etXdt+ eεXR0 − ε(1⊗ 1).

The last term is smoothing, we now describe the wave front set of the
Schwartz kernel of π0∗e

εXR0π
∗
0 . By [Hö2, Theorem 8.2.4], the wave

front set of the Schwartz kernel of eεX is

WF(eεX) ⊂ {(ϕ−ε(y), η, y,−dϕ−ε(y)
T η);

y ∈ SM, η ∈ T ∗ϕ−ε(y)
(SM) \ {0}},

and Proposition 2.3 gives the wave front set of R0, thus by [Hö2, The-
orem 8.2.14], we deduce

WF(eεXR0) ⊂{(ϕt(y), (dϕt(y)
−1)T η, y,−η); t ≤ −ε, η(X(y)) = 0}

∪ (E∗s × E∗u) ∪ {(ϕ−ε(y), η, y,−dϕ−ε(y)
T η);

(y, η) ∈ T ∗(SM) \ {0}}

using that E∗s , E
∗
u are invariant by the lifted flow Φt : T ∗(SM) →

T ∗(SM). Then, we notice that the Schwartz kernel of π0∗e
εXR0π

∗
0 is

given by the push forward (π0 ⊗ π0)∗Kε if Kε is the kernel of eεXR0.
Since by [FrJo, Proposition 11.3.3]

WF((π0 ⊗ π0)∗Kε) ⊂ {(π0(y), ξ, π0(y
′), ξ′); (y, dπ0(y)

T ξ, y′, dπ0(y
′)T ξ′)

∈ WF(Kε)}

we deduce that WF(π0∗e
εXR0π

∗
0) ⊂ S1 ∪ S2 ∪ S3 with

S1 := {(π0(y), ξ, π0(y
′), ξ′) ∈ T ∗0 (M ×M);

(y, dπ0(y)
T ξ, y′, dπ0(y

′)T ξ′) ∈ E∗s × E∗u},

S2 := {(π0(ϕt(y)), ξ, π0(y), ξ
′) ∈ T ∗0 (M ×M);

∃ t ≤ −ε,∃ η, η(X(y)) = 0,

dπ0(y)
T ξ′ = −η, dπ0(ϕt(y))

T ξ = (dϕt(y)
−1)T η},

S3 := {(π0(ϕ−ε(y)), ξ, π0(y), ξ
′) ∈ T ∗0 (M ×M);

(d(π0 ◦ ϕ−ε)(y))
T ξ = −dπ0(y)

T ξ′},

where T ∗0 (M × M) := T ∗(M × M) \ {0}. Denote by V = ker dπ0 ⊂
T (SM) the vertical bundle, and H the horizontal bundle (cf. [Pa,
Chapter 1.3]), these are orthogonal for the Sasaki metric 〈·, ·〉S and
X ∈ H. Let V ∗,H∗ ⊂ T ∗(SM) defined by H∗(V ) = 0 and V ∗(H) = 0;
V ∗ is dual to V and H∗ is dual to H using this metric. We have
E∗s ∩H∗ = {0} = E∗u∩H∗ since RX⊕Eu⊕V = RX⊕Es⊕V = T (SM)
(see, for instance, [Pa, Theorem 2.50]), therefore, S1 = ∅. Now take a
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point (x, ξ, x′, ξ′) ∈ S2, then write x′ = π0(y) and y = (x′, v) with v ∈
SxM , so ϕt(x

′, v) = (x, v′) for some v′, there exists η = dπ0(y)
T ξ′ ∈ H∗

so that (dϕt(y)
−1)T η ∈ H∗ for some t ≤ −ε, and η(X) = 0. Taking

the dual vector ζ ∈ Ty(SM) to η ∈ T ∗y (SM) using the Sasaki metric,
we have ζ ∈ H and 〈ζ,X〉S = 0. Now, let J be the almost complex
structure on T (TM) so that 〈J ·, ·〉S is the Liouville symplectic form on
TM (see [Pa, Chapter 1.3.2]), then J maps ζ to Jζ ∈ V . Since the
flow preserves the symplectic form, one has (dϕt)

TJdϕt = J where the
transpose is with respect to the Sasaki metric, and then we see that
dϕt(y)Jζ = J(dϕt(y)

−1)T ζ ∈ V since (dϕt(y)
−1)T ζ ∈ H. We deduce

that the points x and x′ are conjugate points, which is not possible if
the flow is Anosov, by a result of Klingenberg [Kl, Theorem p. 2]. As a
conclusion, S2 = ∅. Using finally the formula of S3, we have shown that
for ε > 0 smaller than the injectivity radius, π0∗e

εXR0π
∗
0 has smooth

Schwartz kernel except at Δε(M ×M) := {(x, x′) ∈ M ×M ; dg(x, x
′) =

ε}, where dg is the Riemannian distance.
We finally have to study the operator Lε :=

∫ ε
0 π0∗e

tXπ∗0dt, and we
take ε smaller than the injectivity radius. This operator Lε can be
written as

(3.2) Lεf(x) =

∫ ε

0

∫
SxM

f(ϕt(x, v))dvdt,

and it is a straightforward computation to check that its Schwartz kernel
Lε(x, x

′) is smooth outside Δ(M ×M) ∪Δε(M ×M) with a conormal
singularity of the form dg(x, x

′)−n+1 at Δ(M ×M) if the dimension of
M is n. Since ε > 0 is arbitrary (in a small interval), this implies that
π0∗R0π

∗
0 has wave front set given by the conormal bundleN∗Δ(M×M).

In fact, the analysis of the singularity at Δ(M × M) follows directly
from Pestov–Uhlmann [PeUh, Lemma 3.1]: let x0 ∈ M and multi-
ply the kernel of π0∗R0π

∗
0 with a smooth cut-off function ψ which is 1

near a point (x0, x0) ∈ Δ(M × M) and supported in a neighborhood
{(x, x′) ∈ M ×M ; dg(x, x0) + dg(x

′, x0) < ε/2}, it is then equal, up to
a smooth function, to the kernel Lε(x, x

′)ψ(x, x′). This distribution is
the Schwartz kernel of a pseudo-differential operator of order −1 with
principal symbol Cn|ξ|

−1
gx : indeed from the formula (3.2), we see that the

Schwartz kernel of 2Lε coincides near (x0, x0) with the Schwartz kernel
of the operator I∗0I0 considered in [PeUh] where I0 is the X-ray trans-
form on functions on a geodesic ball of center x0 and radius ε (which
is a simple domain); the detailed computation of the symbol at x0 is
thus exactly the same as in [PeUh, Lemma 3.1]. To conclude the proof
of the structure of Π0, we argue that the same exact argument applies
for π0∗R

∗
0π
∗
0 (in fact this is just the adjoint π0∗R0π

∗
0 and its Schwartz

kernel has the exact same property as π0∗R0π
∗
0). The statement about

ker Π0 is a direct consequence of ellipticity. q.e.d.
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Remark 3.2. In constant negative curvature, we can use represen-
tation theory to give an expression of the operator Π0 in term of the
Laplacian: it turns out to be an explicit function of the Laplacian on
the manifold. We refer to [GuMo, Appendix] for the computation.

We remark that for f ∈ C−∞(M), then by [Hö2, Theorem 8.2.4]

(3.3) WF(π∗0f) ⊂ {(y, dπ0(y)
T η); (π0(y), η) ∈ WF(f)} ⊂ H∗,

and so, using Theorem 8.2.13 in [Hö2] and the fact that H∗∩E∗u = 0 =
H∗ ∩ E∗s as in the proof of Theorem 3.1, the operator R0π

∗
0 and R∗0π

∗
0

acts on C−∞(M) continuously, so that

Ππ∗0 : C−∞(M) → C−∞(SM)

is continuous. In fact, we can say more:

Lemma 3.3. 1) For all s > 0, the following operator is bounded

Ππ∗0 : H−s(M) → H−s(SM),

and the kernel of Ππ∗0 : C−∞(M) → C−∞(SM) is trivial.
2) Assume that there exists u ∈ Hs(SM) with Xu = π∗0f for some f ∈
Hs−1(M) satisfying 〈f, 1〉 = 0 and with s ∈ (0, 1), then u is constant.

Proof. For f ∈ H−s(M) with s > 0, we have π∗0f ∈ H−s(SM) and,
by (3.3), Bπ∗0f ∈ C∞(SM) for any pseudo-differential operator B ∈
Ψ0(M) microsupported in any open conic neighborhood of E∗s ∪ E∗u
not intersecting H∗. Using (2.10), |〈(1 − B)π∗0f, f

′〉| ≤ C||f ′||Hs/ε,r

and thus π∗0f ∈ (Hs/ε,r)∗ for any r < 0. Similarly using (2.7), π∗0f ∈
(Hr,s/ε)∗ for any r < 0 and some ε > 0 small independent of s (using the
notation of Theorem 2.1). Therefore, by (2.9), we obtain boundedness

of R0π
∗
0 : H−s(M) → (Hr,s/ε)∗ and R∗0π

∗
0 : H−s(M) → (Hs/ε,r)∗. To

show that in fact they map to H−s(SM), we will use propagation of
singularities. First, like in (2.7), we notice that for any r < 0, AR0π

∗
0 :

H−s(M) → H−r(SM) is bounded if A ∈ Ψ0(SM) is microsupported in
a small conic neighborhood of E∗u. Then, by ellipticity and propagation
of singularities [DyZw1, Propositions 2.4 and 2.5] as in the proof of
Theorem 2.6, we obtain that BR0π

∗
0 : H−s(M) → H−s(SM) is bounded

for any B ∈ Ψ0(SM) whose microsupport does not intersect E∗s . To
conclude the argument, we use the propagation estimate with radial
sink3 [DyZw1, Proposition 2.7]: for any s > 0, N ≥ s and any B1 ∈
Ψ0(SM) elliptic near E∗s , there exist A ∈ Ψ0(SM) elliptic near E∗s ,
B ∈ Ψ0(SM) with WF(B) ∩ E∗s = ∅ and microsupported in the region
where B1 is elliptic and C > 0 such that for any u ∈ C∞(SM),

||Au||H−s(SM) ≤ C(||Bu||H−s(SM) + ||B1Xu||H−s(SM) + ||u||H−N (SM)).

3It can be checked that, since X
∗ = −X, the m0 > 0 parameter in Proposition

2.7 of [DyZw1] can be taken as small as we like.
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Applying this with u = R0π
∗
0f for f ∈ H−s(M), we deduce that AR0π

∗
0 :

H−s(M) → H−s(SM) is bounded for some A ∈ Ψ0(SM) elliptic near
E∗s , and, therefore, R0π

∗
0 : H−s(M) → H−s(SM) is bounded. The same

argument works with R∗0π
∗
0 and we obtain the boundedness statement

in 1). To prove that the kernel is trivial, we remark that, by Theorem
3.1, if Ππ∗0f = 0 then f is smooth, and by Theorem 2.6 there exists u ∈
C∞(SM) so that Xu = π∗0f . By the result of Dairbekov–Sharafutdinov
[DaSh] one has f = 0 (this follows directly from the so-called Pestov
identity – see [PSU2, Proposition 2.2.]).

Let u ∈ Hs(SM) with Xu = π∗0f for some s > 0 and f ∈ Hs−1(M).

Recall from Theorem 2.1 that X is Fredholm on (Hs′,r)∗ and (Hr,s′)∗

for any r < 0 and s′ > 0, with kernel the constants and respective
inverse operator R0 and R∗0. So using the fact that π∗0f ∈ (H(1−s)/ε,r)∗∩
(Hr,(1−s)/ε)∗ for some small ε > 0 and all r < 0, and u ∈ Hs(SM) ⊂
(H(1−s)/ε,r)∗ ∩ (Hr,(1−s)/ε)∗ if |r| ≤ s, then we deduce by the Fredholm
property of X that u = −R0π

∗
0f = R∗0π

∗
0f . As a consequence, we have

that f ∈ ker Ππ∗0 , thus Xu = f = 0 and u is constant since u ∈ L2.
q.e.d.

It is not clear if injectivity holds for Π0, at least we do not see why
Π0f = 0 would imply Ππ∗0f = 0. Another corollary of Theorem 3.1
is the existence of invariant distributions with prescribed push-forward
on M .

Corollary 3.4. Let s ∈ R and r < 0, then there exists C > 0 such
that for each f ∈ Hs(M), there exists w ∈ C−∞(SM) so that Xw = 0
and π0∗w = f and

‖w‖Hs−1(SM) ≤ C‖f‖Hs(M) if s < 1,

‖w‖Hr(SM) ≤ C‖f‖H1(M) if s ≥ 1.

If s > 1, for any A ∈ Ψ0(SM) with wave front set not intersecting
E∗u ∪ E∗s , there is C > 0 such that for each f ∈ Hs(M), the invariant
distribution w satisfies ||Aw||Hs−1(SM) ≤ C||f ||Hs(M).

Proof. If f is constant the result is obvious, so we can assume that
〈f, 1〉 = 0. For s �= 0, define the sesquilinear product Bs on C∞(M)

Bs(u, u
′) := 〈Ππ∗0u,Ππ

∗
0u
′〉H−|s|(SM) + 〈Π0u,Π0u

′〉H1−s(M).

Using the boundedness 1) in Lemma 3.3, and the fact that Π0 is an el-
liptic pseudo-differential operator of order −1, we have that there exists
C > 0 and K : H−s(M) → H−s(M) a compact operator such that for
all u ∈ H−s(M)

Bs(u, u) ≥ ‖Π0u‖
2
H1−s(M) ≥ C‖u‖2H−s(M) − ‖Ku‖2H−s(M).
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Since Ππ∗0 is injective by Lemma 3.3, it is easy to see from the com-
pactness of K that there is C ′ > 0 such that

Bs(u, u) ≥ C ′‖u‖2H−s(M),

and thus the completion of C∞(M) for the product Bs is H−s(M).
Using Riesz representation theorem, for all f ∈ Hs(M) there exists
u ∈ H−s(M) such that Bs(u, u

′) = 〈f, u′〉L2 for all u′ ∈ H−s(M), with
||u||Bs ≤ C||f ||Hs(M) for some C independent of f . We use the norm

||u||Hs(N) := ||Λs
Nu||L2(N) if N = M or N = SM and ΛN ∈ Ψ1(N)

is a fixed positive elliptic operator on N . This implies that w := Πũ

with ũ := (Λ
−2|s|
SM Ππ∗0u + π∗0Λ

−2s+2
M Π0u) satisfies Xw = 0 and π0∗w =

f and w ∈ Hs−1(SM) if s − 1 < 0 while w ∈ Hr(SM) if s ≥ 1:

indeed Λ
−2|s|
SM Ππ∗0u ∈ H |s|(SM) and π∗0Λ

−2s+2
M Π0u ∈ Hs−1(SM) thus

the regularity of w follows from Lemma 3.3 and Theorem 2.6.
The fact that ||Aw||Hs−1(SM) ≤ C||f ||Hs(M) if A ∈ Ψ0(SM) has mi-

crosupport not intersecting E∗s ∪E∗u follows from an argument as in the
proof of Lemma 3.3: if s > 1, the boundedness of R0 on Hs−1,r for any
r < 0 implies that ||BR0ũ||Hs−1(SM) ≤ C||f ||Hs(M) if B ∈ Ψ0(SM) is
microsupported in a small enough conic neighborhood of E∗u, then by
ellipticity and propagation of singularities, for any A with microsup-
port not intersecting E∗s there is C > 0 so that ||AR0ũ||Hs−1(SM) ≤
C||f ||Hs(M), and then the same argument applies with AR∗0ũ by ex-
changing E∗s with E∗u, this gives the desired result. q.e.d.

This statement gives a more precise result than that of Paternain–
Salo–Uhlmann [PSU2, Theorem 1.2] when f has some regularity (us-
ing Pestov identity and Fourier decomposition à la Guillemin–Kazhdan,
they obtain the same existence result but only for s = 0).

3.2. X-ray transform on symmetric tensors. Consider the space
of symmetric m-cotensors C∞(M,⊗m

S T ∗M). Then there is a natural
map

π∗m : C∞(M,⊗m
S T ∗M) → C∞(SM), (π∗mf)(x, v) = 〈f(x),⊗mv〉.

The vertical Laplacian Δv : C∞(SM) → C∞(SM) can be defined using
the Riemannian metric on each fiber SxM , and its spectral decomposi-
tion induces an isomorphism

L2(SM) =

∞⊕
m=0

Hm,

where Hm are L2 sections of a smooth vector bundle over M corre-
sponding to the decomposition of a function into spherical harmonics of
degree m in the fibers SxM � Sn−1. Notice that spherical harmonics
of degree m correspond to restrictions of harmonic homogeneous poly-
nomials on R

n and Hm identifies via π∗m to the space of L2 sections of
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the bundle

Em := {q ∈ ⊗m
S T ∗M ;T (q) = 0},

where T : ⊗m
S T ∗M → ⊗m−2

S T ∗M is the trace defined by contracting
with the Riemannian metric:

(3.4) T (q)(v1, . . . , vm−2) :=

n∑
i=1

q(ei, ei, v1, . . . , vm−2),

if (e1, . . . , en) is an orthonormal basis of TM . Consider the operator
D : C∞(M,⊗m

S T ∗M) → C∞(M,⊗m+1
S T ∗M) defined by D = S ◦ ∇

where ∇ is the Levi–Civita covariant derivative and S is the orthogo-
nal projection on symmetric tensors. Each section of ⊗m

S T ∗M can be
decomposed as a sum of sections of Ej for j ≤ m. The adjoint of D
is given by D∗ = −T ◦ D and is called the divergence. Then the flow
X acting on smooth sections of Em, viewed as elements of C∞(SM)
through π∗m, satisfies

X : C∞(M,Em) → C∞(M,Em−1 ⊕ Em+1),

where it decomposed as X = X+ + X− with X± : C∞(M,Em) →
C∞(M,Em±1) and X+ = D while X− = −X∗

+ = − m
n+2m−2D

∗. We

refer to [GK2] and [PSU2, Section 3] for further details and discussions
about this decomposition.

The map π∗m : C∞(M,⊗m
S T ∗M) → C∞(SM) induces a push-forward

on distributions

πm∗ : C
−∞(SM) → C−∞(M,⊗m

S T ∗M), 〈πm∗u, ψ〉 := 〈u, π∗mψ〉,

where the pairing uses the metric g. We now show

Theorem 3.5. The operator Πm := πm∗Ππ∗m is a self-adjoint pseudo-
differential operator of order −1 on the bundle ⊗m

S T ∗M , which is ellip-
tic on kerD∗ in the sense that there exist pseudo-differential operators
P, S,R with respective order 1,−2,−∞ so that

(3.5) PΠm = Id +DSD∗ +R.

Proof. We follow the proof to Theorem 3.1. Take two points x0, x
′
0 in

M , then we want to analyze the Schwartz kernel of Πm near (x0, x
′
0) ∈

M×M . Take two cutoff functions χ, χ′ supported in small neighborhood
Vx0

of x0 and Vx′
0
of x′0 so that the bundle ⊗m

S T ∗M has a smooth or-

thonormal basis (e1(x), . . . , eN(m)(x)) on Vx0
and (e′1(x), . . . , e

′
N(m)(x))

on Vx′
0
with N(m) = rank⊗m

S T ∗M . A smooth section ψ of ⊗m
S T ∗M

can be written near x0

ψ(x) =

N(m)∑
j=1

〈ψ(x), ej(x)〉gej(x),

and a similar decomposition for ψ′ supported near x′0. The Schwartz
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kernel Km of Πm near (x0, x
′
0) ∈ M×M can be analyzed by considering

χΠmχ′, which in turn is given by: for all ψ,ψ′ ∈ C∞(M,⊗m
S T ∗M)

〈χΠmχ′ψ′, ψ〉 =
∑
j,j′

〈
Π e′j′χ

′π∗0(〈ψ
′, e′j′〉g), ejχπ

∗
0(〈ψ, ej〉g)

〉
.

The Schwartz kernel χ(x)χ′(x)Km(x, x′) of χΠmχ′ can be viewed as a
matrix valued distribution on Vx0

× Vx′
0
using the local bases (ej)j and

(e′j)j and its (j, j′) component is given by

Kj,j′
m = (π0 ⊗ π0)∗(χ(x)χ

′(x′)〈K(x, x′)e′j′(x
′), ej(x)〉),

where K is the Schwartz kernel of Π. Since multiplying by a smooth
function does not make the wave front set larger, we are reduced to
the exact same analysis we did in the proof of Theorem 3.1. Then we
deduce that the operator Πm has smooth kernel outside the diagonal
Δ(M ×M), the wave front set is contained in the conormal bundle to
the diagonal and Πm can be written as

Πm =

∫ ε

−ε
πm∗e

tXπ∗mdt+ πm∗e
εX(R0 +R∗0)π

∗
m + smoothing,

for small ε with πm∗e
εX(R0 + R∗0)π

∗
m having a smooth Schwartz kernel

outside the set {dg(x, x
′) = ε}. Then, just as in the proof of Theorem

3.1, we are reduced to analyze the integral kernel of∫ ε

0
πm∗e

tXπ∗mdt

close to Δ(M × M). It follows from Sharafutdinov–Skokan–Uhlmann
[SSU, Theorem 2.1] that, after multiplying by a smooth cutoff function
equal to 1 near Δ(M ×M) and supported in {dg(x, x

′) < ε/2}, this is a
pseudo-differential operator of order −1 if ε > 0 is chosen smaller than
the radius of injectivity. It is also shown in [SSU, Theorem 3.1] that
there exists pseudo-differential operator P, S,R as announced above. We
notice that, even though [SSU] deal with the case of simple manifolds,
all their computations are local, and near a point (x0, x0) ∈ Δ(M×M),
the operator

∫ ε
0 πm∗e

tXπ∗mdt has the same conormal singularity as the
operator I∗I acting on symmetric m-tensors on a small disk centered at
x0 (which is the case considered in [SSU]). q.e.d.

Just as for m = 0, using the wave front set of Π, we see that

Ππm∗ : C
−∞(M,⊗m

S T ∗M) → C−∞(SM)

is well-defined. The operator D is elliptic on sections of ⊗m
S T ∗M and

thus the range ofD : Hs(M,⊗m
S T ∗M) → Hs−1(M,⊗m+1

S T ∗M) is closed

for any s ∈ R, and we have kerD∗ = Ran(D)⊥ where Ran(D) is the
range of D. We set the Hilbert space norm

‖f‖Hs(M,⊗m
S T ∗M) := ‖(1 +D∗D)s/2f‖L2(M,⊗m

S T ∗M).
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Then Hs(M,⊗m
S T ∗M) ∩ kerD∗ is a Hilbert space with this norm, and

by Riesz representation theorem, we can describe the dual with respect
to L2 (i.e., distributional) pairing as

(Hs(M,⊗m
S T ∗M)∩kerD∗)∗ = H−s(M,⊗m

S T ∗M)∩kerD∗(1+D∗D)−s.

We then get

Lemma 3.6. 1) There exists ε > 0 so that for all s > 0, the following
operator is bounded

Ππ∗m : H−s(M,⊗m
S T ∗M) → H−s(SM),

and the kernel of Ππ∗m : C−∞(M,⊗m
S T ∗M) ∩ kerD∗ → C−∞(SM) is

finite dimensional.
2) The kernel of Ππ∗m on kerD∗ consists of those f ∈ C∞(M,⊗m

S T ∗M)∩
kerD∗ such that there exists u ∈ C∞(SM) with Xu = π∗mf .
3) Assume that there is u ∈ Hs(SM) with Xu = π∗mf for some f ∈
Hs−1(M,⊗m

S T ∗M) ∩ kerD∗ with s ∈ (0, 1), then u ∈ C∞(SM).

Proof. The proof of the first boundedness result is exactly the same
as for the case m = 0. To prove that the kernel is finite dimensional, we
remark that by Theorem 3.5, if Ππ∗mf = 0 and D∗f = 0, then Πmf = 0
and so f is smooth by applying (3.5) to f . Then by Theorem 2.6 there
exists u ∈ C∞(SM) so that Xu = π∗mf . Conversely, elements f so that
Xu = π∗mf for some u smooth satisfy π∗mf ∈ ker Π by Theorem 2.6
(in particular, note that f integrates to 0 along closed geodesics). The
proof of the last statement is the same as for m = 0 thus we do not
repeat it. q.e.d.

Remark 3.7. This gives an alternative (microlocal) proof of the
result of Dairbekov–Sharafutdinov [DaSh, Theorem 1.5.] on the fi-
nite dimensionality of the kernel of the X-ray transform on m-cotensors
on Anosov manifolds. By results of Croke–Sharafutdinov [CrSh] and
Lemma 3.6, we deduce that the kernel of Ππ∗m on kerD∗ is trivial if
(M,g) is Anosov with non-positive curvature, and is always trivial when
m = 1 for Anosov manifolds by [DaSh, Theorem 1.3].

Finally we get existence of invariant distributions with prescribed
push-forward πm∗.

Corollary 3.8. Let m ≥ 1, s ∈ R and r < 0, then there exists C > 0
such that for each f ∈ Hs(M,⊗m

S T ∗M) ∩ kerD∗ with 〈f, k〉L2 = 0 for
all k ∈ kerΠπ∗m ∩ kerD∗, there exists w ∈ C−∞(SM) so that Xw = 0,
πm∗w = f and

‖w‖Hs−1(SM) ≤ C‖f‖Hs(M) if s < 1,

‖w‖Hr(SM) ≤ C‖f‖H1(M) if s ≥ 1.
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If s > 1, for any A ∈ Ψ0(SM) with wave front set not intersecting
E∗u ∪ E∗s , there is C > 0 such that for each f as above, the invariant
distribution w satisfies ||Aw||Hs−1(SM) ≤ C||f ||Hs(M).

Proof. The proof is essentially the same as Corollary 3.4, thus we just
focus on the differences. Take s �= 0 and define the sesquilinear form on
C∞(SM)

Bs(u, u
′) := 〈Ππ∗mu,Ππ∗mu′〉H−|s|(SM) + 〈Πmu,Πmu′〉H1−s(M,⊗m

S T ∗M).

The Hs-norm on ⊗m
S T ∗M is defined by ||u||Hs = ||Λsu||L2 where Λ :=

(1 +D∗D)1/2. Then we conjugate (3.5) by Λ2s on the left so that

Λ2sPΠmΛ−2s = Id + Λ2sDSD∗Λ−2s + R̃,

where R̃ is smoothing. The left-hand side can be written as PΠm +Q
withQ∈Ψ−1(SM), thus there exists C > 0 and T : H−s(M,⊗m

S T ∗M)→
H−s(M,⊗m

S T ∗M) compact such that for all u ∈ H−s(M,⊗m
S T ∗M) ∩

kerD∗Λ−2s

Bs(u, u) ≥ ‖Πmu‖2H1−s(M,⊗m
S T ∗M)

≥ C‖u‖2H−s(M,⊗m
S T ∗M) − ‖Tu‖2H−s(M,⊗m

S T ∗M).

By Lemma 3.6, the kernel Km of Ππ∗m in C−∞(M,⊗m
S T ∗M)∩ kerD∗ is

a finite dimensional space included in C∞(M,⊗m
S T ∗M), and we claim

that if u ∈ kerΠπ∗m∩kerD∗Λ−2s is in H−s(M,⊗m
S T ∗M) and 〈u, k〉L2 =

0 for all k ∈ Km, then u = 0: indeed we can decompose u = u0 +Du′

with D∗u0 = 0 and u′ ∈ H−s+1(M,⊗m−1
S T ∗M) and we get Ππ∗mu0 = 0

since Ππ∗mDu′ = ΠXπm−1u
′ = 0; then u0 ∈ Km and 0 = 〈u, k〉L2 =

〈u0 +Du′, k〉L2 = 〈u0, k〉L2 for each k ∈ Km and we get u0 = 0. Since
D∗Λ−2su = 0, we have D∗Λ−2sDu′ = 0, which gives Du′ = 0 (by pairing
with u′), and thus u = 0. We conclude that there is C > 0 such that

Bs(u, u) ≥ C‖u‖2H−s(M,⊗m
S T ∗M),

for each u ∈ Bs := H−s(M,⊗m
S T ∗M) ∩ kerD∗Λ−2s ∩ (Λ2sKm)⊥ (the

orthogonal is with respect to H−s product). Then Bs is a Hilbert space
with the Bs scalar product. Using Riesz representation theorem, for all
f ∈ Hs(M,⊗m

S T ∗M) ∩ kerD∗ satisfying 〈f, k〉L2 = 0 for all k ∈ Km,
there exists u ∈ Bs such that Bs(u, u

′) = 〈f, u′〉L2 for all u′ ∈ Bs, with
||u||Bs ≤ C||f ||Hs for some C independent of f . From this, there is
w := ΠΛ−2|s|Ππ∗mu + Ππ∗mΛ2−2sΠmu such that Xw = 0, πm∗(w) =
f + k + Λ−2sDq for some q ∈ Hs+1(M ;⊗m−1

S T ∗M) and k ∈ Km. We
apply D∗ to this identity and since D∗πm∗Π = 0, we get D∗Λ−2sDq = 0
and thus Dq = 0. Now we use that 〈f, k〉L2 = 0 and 〈πm∗w, k〉L2 = 0
to deduce that k = 0. The regularity of w is just as in the case m = 0.

q.e.d.
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Remark 3.9. An analysis similar to what is done in Theorem 3.1 and
3.5 shows that the operators π�∗Ππ∗m are pseudo-differential of order −1
for all m, �. In particular, this implies that the components w� := π�∗w
of w in Corollaries 3.4 and 3.8 are Hs−1(M,E�) if f ∈ Hs(M,⊗m

S T ∗M).
In particular, if f ∈ C∞(M,⊗m

S T ∗M) then the distribution v in Corol-
laries 3.4 and 3.8 has smooth coefficients in the vertical Fourier decom-
position (matching with the work [PSU2] for m = 0). This also follows
from the wave front set property of w and applying π�∗.

3.3. Injectivity of X-ray transform on tensors for Anosov sur-

faces. Consider an oriented compact Riemannian surface (M,g) with
Anosov geodesic flow ϕt : SM → SM . As before, let X be the smooth
vector field generating the flow. The manifold SM is a circle bundle
over M , equipped with a natural action

S1 × SM → SM, eiθ.(x, v) = (x,Rθ(v)),

where Rθ is the rotation of an angle +θ in the fiber. The action is
generated by a vector field V defined by V f(x, v) = ∂tf(e

it.(x, v))|t=0.
We let X⊥ := [X,V ], and it can be checked that (X,X⊥, V ) form a basis
of T (SM), which is orthonormal for the Sasaki metric. The tangent
space T (SM) splits as T (SM) = V ⊕H where V = RV = ker dπ0 is the
vertical space and H is the horizontal space defined using Levi–Civita
connection (cf [Pa]). In particular, one has H = span(X,X⊥). Let α
be the Liouville 1-form defined by α(x, v).η = g(dπ0(x, v).η, v) which
satisfies α(X) = 1, ιXdα = 0 and is a contact form. One has kerα =
Eu ⊕ Es. Near a point x0 of M , one can find isothermal coordinates
x = (x1, x2) so that the metric is of the form g = e2ω(x)(dx21 + dx22) for
some smooth function ω. Using the action generated by V , this induces
coordinates (x1, x2, e

iθ) near the fiber π−1(x0), and in these coordinates

V = ∂θ,

X = e−ω(cos(θ)∂x1
+ sin(θ)∂x2

+ (−∂x1
ω sin θ + ∂x2

ω cos θ)∂θ),

X⊥ = −e−ω(− sin(θ)∂x1
+ cos(θ)∂x2

− (∂x1
ω cos θ + ∂x2

ω sin θ)∂θ).

Fourier decomposition in the fibers. Each smooth function u ∈
C∞(SM) can be decomposed as

(3.6) u =
∑
k∈Z

uk, V uk = ikuk

using the Fourier decomposition in the fibers with ‖uk‖L2 = O(|k|−∞)
(see [GK1]). This decomposition extends to L2(SM) and induces
a splitting L2(SM) = ⊕k∈ZHk where elements in Hk correspond to
ker(V − ik) and can be represented as L2-sections of k-th power of a
complex line bundle over M . The geodesic vector field X acts as a first
order differential operator on C∞(SM) and can be decomposed as

X = η+ + η−, η± = 1
2(X ± iX⊥),
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where in the decomposition (3.6), η± : Hk → Hk±1 for all k ∈ Z.
Symmetric cotensors of order m are embedded as functions in SM by
the map π∗m : C∞(M,⊗m

S T ∗M) → C∞(SM) as before. The map π∗m is
an isomorphism
(3.7)
π∗m : C∞(M,⊗m

S T ∗M) → (Hm⊕Hm−2⊕· · ·⊕H−m+2⊕H−m)∩C∞(SM),

with sections of S(dzm−j ⊗ dz̄j) mapped to Hm−2j by π∗m. If q ∈ Hm,
we have π∗mπm∗q = cmq for some cm �= 0 depending only on m. The
operator X has a splitting

X = X+ +X−,

where, using (3.7), the action on each Hm is given byX+ = D andX− =
−1

2D
∗. We define the antipodal map A : SM → SM by A(x, v) :=

(x,−v). In terms of coordinates (x, θ), this is simply the translation of
π in the θ component. The action by pull-back on functions becomes,
in the decomposition (3.6),

A∗ : C∞(SM) → C∞(SM), A∗u =
∑
k∈Z

(−1)kuk =
∑
k∈Z

u2k−
∑
k∈Z

u2k+1.

The kernel of 1
2(Id− A∗) consists of functions with even Fourier coeffi-

cients in the fibers, the map 1
2 (Id − A∗) has range the set of functions

with odd Fourier coefficients. These operator extend continuously to
C−∞(SM) by duality since A is a diffeomorphism, and we shall say
that a distribution is odd (resp. even) if it is in the range (resp. kernel)
of 1

2 (Id− A∗). We can write in general u = uev + uod for distributions,

where uod := 1
2 (Id − A∗)u. The operator X maps odd distributions to

even distributions and conversely. Therefore, one has

(3.8) w ∈ C−∞(SM), Xw = 0 =⇒ Xwod = 0 and Xwev = 0.

Szegö projector. We now define the Szegö projection in the fibers
using decomposition (3.6)

S : C∞(SM) → C∞(SM), Su =
∑
k≥1

uk,

which is the projector on the positive Fourier coefficients. This extends
as a self-adjoint bounded operator on L2(SM), and as a bounded op-
erator on Hs(SM) for all s ∈ R. Moreover, an easy computation using
X = η+ + η− gives

(3.9) XSu = SXu− η+u0 + η−u1.

Let pV ∈ C∞(T ∗SM) be the principal symbol of −iV , it is given by
pV (y, ξ) = ξ(Vy). We first recall a standard result.
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Lemma 3.10. The operator S has Schwartz kernel with wave front
set contained in

{(y, ξ, y,−ξ) ∈ T ∗(SM)× T ∗(SM); pV (ξ) ≥ 0}.

Proof. First we notice that the distribution kernel is supported on
{π0(y) = π0(y

′)}. Then it suffices to work locally near a point (x0, θ0,
x0, θ

′
0) ∈ SM × SM and we use isothermal coordinates there. The

operator S acting on functions supported in a neighborhood of π−1(x0)
can be viewed as an operator with a compactly supported distributional
kernel on (R2×S1)×(R2×S1); moreover, this is a convolution operator
and the convolution kernel is given by

S̃(x, eiθ) = δ0(x)⊗
1

2π

∑
k≥1

eikθ

The singular support of S̃ is contained in {0} × S1. Notice that∑
k≥1 e

ikθ = eiθ(1 − eiθ)−1 is smooth outside eiθ = 1, then for any

smooth function χ on S1 which vanishes near 1, the wave front set of
χ(eiθ)S̃ is contained in the conormal bundle N∗({0} × S1), and since
this was a convolution kernel, when returning to SM × SM this part
has wave front set contained in the subset {(y, ξ, y,−ξ); pV (ξ) = 0} of
the conormal bundle to the diagonal. Now we are left to analyze the
remaining part of the convolution kernel (1− χ(eiθ))S̃. If 1− χ is sup-
ported close enough to 1, we can view this as a distribution on R

2
x ×Rθ

with Fourier transform

(ξx, ξθ) �→
∑
k≥1

ψ̂(ξθ − k),

where ψ ∈ C∞0 (R) is a function equal to 1 near 0 and ψ(θ) = 0 for |θ| >
π/2. Since pV (ξx, ξθ) = ξθ, the Fourier transform decays to all order in
all directions ξ = (ξx, ξθ) so that pV (ξ) < 0. Coming back to SM×SM ,
this part has wave front set contained in {(y, ξ, y,−ξ); pV (ξ) ≥ 0}. q.e.d.

As a corollary of this, we obtain

Corollary 3.11. Let B ∈ Ψ0(SM) such that Id−B is microsupported
outside a conic neighborhood of {pV (ξ) = 0}. Let u, v ∈ C−∞(SM) be
odd so that Bu,Bv ∈ H2(SM). Then the multiplication w := S(u).S(v)
makes sense as a distribution on SM , w = S(w), and w = w′ + w′′

for some w′ ∈ H2(SM) and some w′′ with wave front set WF(w′′) ⊂
{pV (ξ) > 0}. Let u1 = S(π∗1π1∗u) and v1 = S(π∗1π1∗v), then if Xu =
Xv = 0 and η−u1 = η−v1 = 0, we have Xw = 0.

Proof. We write u = u′+u′′ and v = v′+ v′′ with u′ := Bu and v′ :=
Bv. Then S(u′), S(v′) ∈ H2(SM) so that the product w′ := S(u′).S(v′)
make sense as an element inH2(SM) (recall thatH2(SM) ⊂ L∞(SM)).
We have WF(u′′) ⊂ {(y, ξ); |pV (ξ)| > 0} by the microsupport prop-
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erty of B, thus we can use [Hö2, Theorem 8.2.13] and Lemma 3.10
to deduce that WF(S(u′′)) ⊂ {(y, ξ); pV (ξ) > 0} and WF(S(u′)) ⊂
{(y, ξ); pV (ξ) ≥ 0}; the same property holds for S(v′) and S(v′′). Then
by [Hö2, Theorem 8.2.10], we see that the multiplication S(u′′).S(v)
and S(u′).S(v′′) make sense as distributions and have wave front set in
{(y, ξ); pV (ξ) > 0}. This shows that S(u).S(v) make sense as a distribu-
tion and we have the desired result with w′′ := S(u′′).S(v)+S(u′).S(v′′).
The fact that S(u).S(v) = S(S(u).S(v)) is straightforward to check by
taking sequences un, vn ∈ C∞(SM) converging to u, v ∈ C−∞(SM) as
n → ∞ and using that the equality S(S(un)S(vn)) holds for all n. More-
over, if u, v are odd, in kerX and η−u1 = η−v1 = 0, we deduce from
(3.9) that XS(u) = XS(v) = 0 and thus X(S(u).S(v)) = 0, again by
approximating by smooth functions in the distribution topology. This
completes the proof. q.e.d.

Proof of Injectivity of X-ray on tensors. We can now prove

Theorem 3.12. On a Riemannian surface with Anosov geodesic
flow, then for all m ≥ 0 we have ker Im ∩ kerD∗ = 0.

Proof. First we claim that for f1 ∈ H1 ∩ C∞(SM) which satisfies
η−f1 = 0, then ∀s > 0
(3.10)

∃w ∈ C−∞(SM) odd , Xw = 0, π1∗w = π1∗f1,

∃B ∈ Ψ0(SM), WF(Id−B) ∩ {pV (ξ) = 0} = ∅, Bw ∈ Hs(SM).

Indeed, the condition D∗(π1∗f) = 0 becomes η+f−1 + η−f1 = 0 if f ∈
C∞(M,T ∗M) and π∗1f = f1+f−1, so if f−1 = 0, the condition η−f1 = 0
and Corollary 3.8 insure that for each s > 0 there is w ∈ ∩r<0H

r(SM)
so that Xw = 0 and π1∗w = π1∗f1, and such that for any B′ ∈ Ψ0(SM)
with microsupport not intersecting E∗u ∪E∗s , B

′w ∈ Hs(SM). We have
that pV (ξ) �= 0 on (E∗u ∪E∗s ) \ {0} since {pV (ξ) = 0} is the conormal to
the fibers of SM → M (i.e., the annihilator of the vertical space of SM)
and E∗u∪E

∗
s intersect it only at ξ = 0, therefore, we can choose B′ so that

WF(Id−B′)∩ {pV (ξ) = 0} = ∅ and WF(B′)∩ (E∗u ∪E∗s ) = ∅. Next we
take the odd part wod of w, then Xwod = 0 and π1∗(wod) = π1∗f1. If A
is the antipodal map, we get A∗(B′w) ∈ Hs(SM) and if w′ := w−B′w
we have WF(w′) ∩ {pV (ξ) = 0} = ∅ and by [Hö2, Theorem 8.2.4],

WF(A∗w′) ⊂ {(y, (dA)T ξ); (A(y), ξ) ∈ WF(w′)}.

But since dAy.Vy = VA(y) we have pV (y, (dA
T
y ξ)) = pV (A(y), ξ) and

thus WF(A∗w′) ⊂ {pV (ξ) �= 0} (in fact A = eπV and pV (ξ) is constant
under the Hamilton flow of pV ). Now since wod = 1

2(w
′ − A∗w′) +

1
2(B

′w − A∗B′w), we have shown (3.10) by choosing B ∈ Ψ0(SM) so
that WF(Id − B) ∩ {pV (ξ) = 0} = ∅, B(Id − B′) ∈ Ψ−∞(SM) and
WF(B) ∩WF(A∗w′) = ∅. Next we show
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Proposition 3.13. Assume that M is a non-hyperelliptic surface
with Anosov geodesic flow. Let f ∈ C∞(M,⊗m

S T ∗M) for some m, and
assume that there exists u ∈ C∞(SM) with Xu = π∗mf . Then u =
π∗m−1q for some q ∈ C∞(M,⊗m−1

S T ∗M), or equivalently f = Dq.

Proof. We follow the proof of Theorem 9.3 in [PSU1]. We will do
the proof by induction on m: let m ≥ 2 and assume that we have shown
that for all � < m, if Xu = f for some f ∈ ⊕�

j=0H�−2j and u ∈ C∞(SM)

then u ∈ ⊕�−1
j=0H�−1−2j. This is true for m = 2 by the result of [PSU1].

Without loss of generality, let f ∈ C∞(M,⊗m
S T ∗M) be real valued, that

we decompose into irreducible components

π∗mf = fm + fm−2 + · · ·+ f2−m + f−m with fj ∈ Hj.

Assume that there exists u ∈ C∞(SM) real so that Xu = f . We have
the orthogonal decomposition

fm = η+(hm−1)+qm with hm−1 ∈ Hm−1∩C∞(SM), qm ∈ Hm∩ker η−.

Then we have X(u−hm−1) = qm−η−(hm−1)+fm−2+ · · ·+f2−m+f−m.
We use Max Noether’s theorem as in [PSU1, Theorem 9.3], this im-
plies that qm is a finite sum qm =

∑
k∈Nm ak1 . . . akm for some akj ∈

H1∩C∞(SM) and η−akj = 0. By (3.10), there exists wkj ∈ C−∞(SM)

so that Xwkj = 0, π1∗wkj = akj and there is B ∈ Ψ0(M) so that

WF(Id − B) ⊂ {pV (ξ) �= 0} and Bwkj ∈ H2(SM) for all j. By
Corollary 3.11 applied inductively, one can define the product w :=∑

k∈Nm S(wk1) . . . S(wkm) which satisfies Xw = 0. By viewing each wkj
as limit of smooth functions, wn

kj
when n → ∞ we also see that, since

the product of m elements S(wn
kj
) satisfies

πm∗(S(w
n
k1) . . . S(w

n
km)) = π1∗(w

n
k1) . . . π1∗(w

n
km),

then we have by taking the limit n → ∞ that πm∗w = πm∗qm, and
similarly π�∗w = 0 for � < m. We then have, using π∗mπm∗qm = cmqm
and π�∗w = 0 for � < m,

cm‖qm‖2L2 = 〈π∗m(πm∗w), qm〉

= 〈w,X(u − hm−1)〉 = −〈Xw,u− hm−1〉 = 0,

and the last equality makes sense since u− hm−1 is smooth. Since f is
real, f−m = fm = η−(hm−1), and we get

X(u− hm−1 − hm−1)

= −η+(hm−1)− η−(hm−1) + fm−2 + · · ·+ f2−m ∈
m−2⊕
j=0

Hm−2−2j .

By the induction assumption, u−hm−1−hm−1 ∈ ⊕m−3
j=0 Hm−3−2j and we

have proved the induction. This achieves the proof of the Proposition
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by using the description (3.7) of symmetric tensors in terms of elements
in H� ∩ C∞(SM). q.e.d.

To conclude the proof of Theorem 1.4, it suffices to use the argument
of the proof of Theorem 1.1 in [PSU1]: M has a normal cover N which
is non-hyperelliptic and lifting the problem to N , we reduce the proof
to the case of non-hyperelliptic surfaces. Take f ∈ C∞(M,⊗m

S T ∗M)
with Im(f) = 0, then Livsic theorem tells us that there is u ∈ C∞(SM)
such that Xu = π∗mf . Then Proposition 3.13 ends the proof. q.e.d.
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[Hö2] L. Hörmander, The Analysis of Linear Partial Differential Operators I. Dis-

tribution Theory and Fourier Analysis, Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], 256.
Springer-Verlag, Berlin, 1990. xii+440 pp, MR1065993, Zbl 0712.35001.

[HuKa] S. Hurder, A. Katok, Differentiability, rigidity and Godbillon–Vey classes

for Anosov flows. Inst. Hautes Etudes Sci. Publ. Math. 72 (1990), 5–61,
MR1087392, Zbl 0725.58034.
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Boston, Inc., Boston, MA, 1999. xiv+149 pp, MR1712465, Zbl 0930.53001.

[PSU1] G.P. Paternain, M. Salo, G. Uhlmann, Spectral rigidity and invariant dis-

tributions on Anosov surfaces. J. Diff. Geom. 98 (2014), no. 1, 147–181,
MR3263517, Zbl 1304.37021.

[PSU2] G.P. Paternain, M. Salo, G. Uhlmann, Invariant distributions, Beurling

transforms and tensor tomography in higher dimensions, Math. Ann. 363
(2015), no. 1, 305–362, arXiv:1404.7009.

[PSU3] G.P. Paternain, M. Salo, G. Uhlmann, Tensor tomography on surfaces.

Invent. Math. 193 (2013), no. 1, 229–247, MR3069117, Zbl 1275.53067.



208 C. GUILLARMOU

[PeUh] L. Pestov, G. Uhlmann, Two dimensional compact simple Riemannian man-

ifolds are boundary distance rigid. Ann. of Math. (2) 161 (2005), no. 2,
1093–1110, MR2153407, Zbl 1076.53044.

[ReSi] M. Reed, B. Simon, Methods of modern mathematical physics. I. Functional

analysis. Second edition. Academic Press, Inc. [Harcourt Brace Jovanovich,
Publishers], New York, 1980. 400 pp, MR0751959, Zbl 0459.46001.

[SSU] V. Sharafutdinov, M. Skokan, G. Uhlmann, Regularity of ghosts in tensor

tomography. J. Geom. Anal. 15 (2005), no. 3, 499–542, MR2190243,

[UhVa] G. Uhlmann, A. Vasy, The inverse problem for the local geodesic ray trans-

form, to appear in Inv. Math., arXiv:1210.2084.

[Va] A. Vasy, Microlocal analysis of asymptotically hyperbolic and Kerr–de Sit-

ter spaces, with an appendix by Semyon Dyatlov, Inventiones Math. 194
(2013), 381–513, MR3117526, Zbl 06229213.

[Zw] M. Zworski, Semiclassical analysis, Graduate Studies in Mathematics 138

AMS, 2012, MR2952218, Zbl 1252.58001.

DMA

U.M.R. 8553 CNRS
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