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ERRATUM FOR “THE DEGREE THEOREM IN
HIGHER RANK”

Chris Connell & Benson Farb

Abstract

The purpose of this erratum is to correct a mistake in the proof
of Theorem 4.1 of [CF].

1. Introduction

In this note we fix a mistake in Theorem 4.1 of [CF]. This error
was pointed out to us by Inkang Kim and Sungwoon Kim, to whom we
are extremely grateful. The error occurs in the final step of the proof
of Theorem 4.4 in [CF]: the stated angle inequality should hold not
just for a subspace V , but for each individual vector in an orthonormal
k-frame. The problem with the proof in [CF] occurs at the very end of
§5, at the top of page 52. Lemma 5.4 in [CF] applies to all of V ′

k, but
one needs to justify that this lemma applies to the subspace W ′.

The fix. Throughout the present paper we use the notation and termi-
nology of [CF]. The setup is as follows. Let X = G/K be a symmetric
space of noncompact type with no local R,H2 or SL3(R)/SO(3) factors.
We also assume (cf. §4.2 of [CF]) that X is irreducible. We fix a point
x ∈ X and a maximal flat F through x ∈ X. The stabilizer of x in
G is (after conjugation) K, and K acts by the derivative action on the
tangent space TxX, which we identify as a subspace p of the Lie algebra
g = p⊕ k of G, endowed with the standard inner product coming from
the Killing form B. We identify F and F⊥ with their corresponding
tangent spaces in TxX. As in §4.4 of [CF], define the angle between
two subspaces V,W ⊆ TxX as

∠(V,W ) :=

inf{dSO(TxX)(I, P ) : P ∈ SO(H) with PV ⊂ W or PW ⊂ V }.
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We do not see how to prove Theorem 4.4 of [CF], called there the
“Eigenvalue Matching Theorem”, as stated. We instead prove the fol-
lowing result. Call a set of vectors {w1, . . . , wk} is a δ-orthonormal
k-frame if 〈wi, wj〉 < δ for all 1 ≤ i < j ≤ k.

Theorem 1.1 (Weak eigenvalue matching).For each symmetric space
X as above, there are constants C1 and C so that the following holds.
Given any ε < 1/(rank(X)+1)2, for any orthonormal k-frame v1, . . . , vk
in TxX with k ≤ rank(X), whose span V satisfies ∠(V,F) ≤ ε there is a
C1ε-orthonormal 2k-frame given by vectors v′1, v

′′
1 , . . . , v

′

k, v
′′

k , such that
for i = 1, . . . , k:

(1.1) ∠(hv′i,F⊥) ≤ C∠(hvi,F)

and

(1.2) ∠(hv′′i ,F⊥) ≤ C∠(hvi,F)

for every h ∈ K, where hv is the linear (derivative) action of K on
v ∈ TxX.

Fortunately, Theorem 1.1 is enough to deduce the main theorem
(Theorem 4.1) of [CF]. We make this deduction in §4 below.

Acknowledgements. We are extremely grateful to Inkang Kim and
Sungwoon Kim for finding the mistake in [CF], and for their careful
readings, questions and comments on the present paper. We are also
grateful to the referee for making a number of corrections and sugges-
tions that improved the paper.

2. Proof of Theorem 1.1 when ε = 0

By extending a given orthonormal k-frame to an orthonormal basis, it
is enough to prove the theorem for the case k = n, where n = rank(X).
So let {v1, . . . , vn} be an orthonormal n-frame in TxX, and let V denote
its span. In this section we prove will prove the following:

Theorem 1.1 holds in the special case when ε = 0, that is when V ⊂ F .
Further, in this special case, the theorem holds with only the assumption
that {vi} spans all of F , not necessarily that {vi} forms an orthonormal
frame.

We thus assume throughout this section that V ⊂ F . Let Ki denote
the stabilizer of vi. Recall that the Lie algebra of Ki is m⊕j kαij

, where

m is the Lie algebra of the stabilizer of F and the sum is taken over
the family of all one-dimensional spaces kαij

⊂ k such that vi belongs to

the kernel of the (positive) root αij . We define for each 1 ≤ i ≤ n the
subspace

Qi := (span{Ki · F})⊥.
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For each positive root α, we have [kα, a] ⊂ pα⊕ a ⊂ gα⊕ g−α⊕ g0. In
particular, Qi is spanned by the set of pα for those positive roots α 	= 0
such that kα 	∈ kvi .

Lemma 2.1 (Vectors in Qi satisfy (1.1)). There exists a constant
C > 0, depending only on dim(X), so that for any w ∈ Qi and any
h ∈ K:

(2.1) ∠(w, h · F⊥) ≤ C∠(vi, h · F)

where h acts via the derivative action of K on v ∈ TxX.

Proof. This exact fact was proven in Lemma 5.3 of [CF]: take V :=
span{vi} and V ′ := span{w} and apply the proof of that lemma verba-
tim starting with the line “If no such constant . . ..” The earlier part of
the lemma was meant only to produce such a V ′. q.e.d.

Let KF < K denote the stabilizer of F , and let m = dimK/KF =
dimK − dimKF . Note that n +m = dim(X). For each positive root
α, let pα := (gα ⊕ g−α) ∩ p. Now [kα, a] ⊂ pα ⊕ a ⊂ gα ⊕ g−α ⊕ g0. For
each i choose ai ∈ a such that bi := [ki, ai] spans pαi

:= (gαi
⊕g−αi

)∩p.
Replacing bi by bi/||bi||, we can assume that each bi has length 1. Note
that bi 	∈ a since [k, a] ∩ a = 0.

For two distinct roots α, β with α+ β 	= 0, the Killing form satisfies
B(gα, gβ) = 0. It follows that bi ∈ F⊥ and {bi} is orthonormal. In par-

ticular, since this set has cardinality dim(F⊥), it forms an orthonormal
basis for F⊥.

Denote the Lie algebra of Ki by ki. Now

Qi = (span{Ki · F})⊥ = span{bj : bj 	∈ [ki, a]}.
Since Ki is a proper subgroup of K, for each j there exists i so that
bj 	∈ [ki, a]; in particular bj ∈ Qi. Note that this i is not necessarily
unique. Thus, to summarize, the basis {bi} is adapted to the Qi in the
sense that each bj belongs to some Qi and each Qi is spanned by the
collection of bj’s that it contains.

Lemma 2.2. There exists a subset of {bi} consisting of 2n distinct
elements, two from each Qi, 1 ≤ i ≤ n.

We prove Lemma 2.2 below. Assuming this for now, let vi, v
′
i de-

note the pair of vectors in Qi guaranteed by the lemma. We claim that
{v′1, v′′1 , . . . , v′n, v′′n} satisfy the conclusion of Theorem 1.1, thus prov-
ing that theorem in the special case V ⊂ F , which we have assumed
throughout this section. To see this, first note that, by definition, the
set {bi} is orthonormal, and its span is also orthogonal to V . Since
v′i, v

′′
i ∈ Qi, the inequality (2.1) of Lemma 2.1 gives exactly inequalities

(1.1) and (1.2) of the theorem, as desired. The rest of this paper is
devoted to proving Lemma 2.2.



24 C. CONNELL & B. FARB

2.1. Combinatorial Translation. To prove Lemma 2.2 we first trans-
late it into a problem that is purely combinatorial. To this end, let
A = AG = (aij) be the n ×m matrix whose i, j entry is 1 if bj belongs
to Qi and 0 otherwise. Lemma 2.2 is then the statement that we can
pick two 1 entries from each row of A, so that all of our 2n choices are
in different columns. More formally:

Key Claim (Lemma 2.2 restated): For each 1 ≤ i ≤ n there exists
1 ≤ ji, ki ≤ m with ji 	= ki so that each aiji = aiki = 1 and

⋃n
i=1 {ji, ki}

has cardinality 2n.

Given the Key Claim, we set v′i := bji and v′′i := bki , proving (as
explained above) Theorem 1.1. The rest of this paper is devoted to
proving the Key Claim.

Note that the Key Claim is true for A if and only if it is true for
any matrix obtained from A by permuting its rows or columns, as these
operations correspond to just re-ordering the Qi’s and bj’s, respectively.
We think of the n×m matrix of being a list u1, . . . , un of n row vectors,
each in {0, 1}n. Before proving properties of the matrix A, we will need
the following lemma from Lie theory.

Lemma 2.3 (Codimension of proper Lie subgroups of K). Let
G 	= SL(3,R) be a connected, simply-connected, simple Lie group with
n := rankR(G) ≥ 2. Let K denote the maximal compact subgroup of
G. Let H < K be the stabilizer of a vector in F , and let d(H) :=
dimK − dimH. Then:

1) If K = SO(n + 1) then either d(H) ≥ 2n − 2 or d(H) = n and H
is locally isomorphic to SO(n).

2) If K = SO(n)× SO(n+ r) with r ≥ 0 then d(H) ≥ 2n− 2 + r.
3) For all other K we have d(H) ≥ 2n− 1.

Lemma 2.3 should not be a surprise since the dimension of a rank n
compact Lie group K grows quadratically in n, and typically the rank
of a proper Lie subgroup of K has rank < n, and (n+1)2−n2 = 2n+2.

Proof. The list of maximal compact subgroups K of all possible real
and complex, connected, simply-connected, simple Lie groups, including
exceptional groups, is given on pages 684–718 of [Kna]. Since we are
bounding codimension from below, we can assume that H is a subgroup
of a maximal proper subgroup of K.

For each of the K coming from the classical algebras, the list of
possible connected Lie subgroups is given in Tables 5–8 found on pages
1018–1027 of [AFG]. (For a simpler list that is sufficient in our case,
the maximal Lie subalgebras are found in Tables 1–4 on pages 987–1010
of that same paper.) The list of the exceptional cases can be found in
Table 1.7 on page 37 of [Ant], where one interprets the list respectively
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as either the complex or real compact form, ignoring the noncompact
real split cases.

The dimension of each of these groups is the sum of the dimensions
of its simple factors. The dimensions for these can be computed for
example, from Table 1 on page 66 of [Hum]. (Note that for the complex
groups, to compute the real dimension one must multiply the number
of positive roots by two and add the rank.) The possible dimensions of
maximal compact lie subgroups follows by going through each case and
plugging in the numbers from these tables.

Now there is one general case where the codimensions of maximal
proper subgroups do not agree with the codimension bounds listed in
the statement, namely there are maximal subgroups of K = SO(n) ×
SO(n + r) which are locally isomorphic to SO(n − 1) × SO(n + r)
which only have codimension n − 1 in K. (This case arises for G =
SO(n, n + r).) However, any maximal stabilizer of a vector in F must
be locally isomorphic to a subgroup of SO(n− 1)×SO(n+ r− 1) since
neither factor group stabilizes any vector of F and maximal proper
subgroups of SO(k) for any k > 1 are locally isomorphic to subgroups
of SO(k − 1). Hence the codimension of H < K is 2n − 2 + r in this
case. q.e.d.

We remark that the data we need from all these tables is really orig-
inally due to Dynkin [Dyn, Dyn2] who computed these in the alge-
braically closed case. However, it is a tedious exercise to extract all of
the real reductive, split and compact form cases that arise. This has
been done for us in the more modern references cited above.

With Lemma 2.3 in hand, we are now ready to prove properties of the
matrix A. Recall that we have reduced the situation to the case where
X is irreducible. Thus we only care about simple Lie group G not locally
isomorphic to SL3(R). Let |ui| denote the number of 1 entries of ui.

Lemma 2.4 (Properties of A). Let G 	= SL3(R) be a connected,
simply-connected, simple Lie group with n := rankR(G) ≥ 2. Let K
denote the maximal compact subgroup of G. Let A = AG be defined as
above, with row vectors u1, . . . , un. Then the following hold.

1) Each column of A has at least one entry equal to 1.
2) |ui| ≥ n for each i.
3) If K is not locally isomorphic to SO(n+1), then |ui| ≥ 2n− 2 for

each i.
4) If ui = uj then |ui| = |uj | ≥ 2n− 1.
5) For i 	= j, if |ui| < 2n− 2 and |uj | < 2n− 2, then there is at most

one k with aik = ajk = 1.

Proof. If (1) does not hold, then there is some b ∈ {bi} that does not
lie in Qi for any i. We can write b = [k, a] where k (resp. a) is a positive
root vector in k (resp. a). Let ki be the Lie algebra of Ki.
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Since b ∈ {bi} but b 	∈ Qi = (span{Ki · F})⊥, the fact that {bi} is an
orthonormal basis for F⊥ implies that b ∈ span{Ki ·F}, so we can write
b ∈ [ki, a]. Since this is true for each i, it follows that k ∈ ∩iki. However,
since the entire frame {vi} forms a basis for F and exp k stabilizes each
vector simultaneously, k belongs to the stabilizer of a in k. In other
words, k ∈ k ∩ g0, contradicting the fact that k belongs to a positive
root space. Thus it must be that each bj lies in some Qi, proving (1).

To prove (2), we first note that X = K · F . Thus

dimQi = dim span({Ki · F})⊥ = dim(X) − dim span{Ki · F}.
Since KF is an extension of the pointwise stabilizer K ′

F
of F by a finite

group (the Weyl group of G), and so dimKF = dimK ′
F
, we also have

dimX = dim span{K · F} = dimK + dimF − dimKF

and

dim span{Ki · F} = dimKi + dimF − dimKF

since KF is contained in Ki. Combining the above three equations gives

(2.2) dimQi = dimK − dimKi.

Items (2) and (3) now follow by applying Lemma 2.3.
We now prove (4). If ui = uj then Ki = Kj and therefore vi and

vj belong to the same singular subspace W ⊆ F , and neither lies in
a more singular subspace. Hence dim(W ) ≥ 2, and so W contains a
1-dimensional subspace that is K ′-invariant for some proper subgroup
K ′ of K properly containing Ki. Lemma 2.3 implies that if K ′ does not
already have codimension at least 2n−1, then either K is isomorphic to
SO(n+1) and K ′ is necessarily locally isomorphic to SO(n) or else K =
SO(n)×SO(n) andK ′ is locally isomorphic to SO(n−1)×SO(n−1). In
the second case any proper Lie subgroup of K ′ already has codimension
2n−1 in K. In the first case, Ki can have dimension no larger than that
of SO(n− 1), corresponding to a proper Lie subgroup of K ′. Therefore
Ki has codimension at least n−1 in K ′ and codimension at least 2n−1
in K, as indicated. This proves (4).

For (5), we first note that, by Proposition 2.20.5 of [Ebe], both Ki

and Kj are proper semisimple subgroups of K. From Lemma 2.3, we
note that the only case where there can exist ur with |ur| < 2n − 2 is
when K is locally isomorphic to SO(n+1) and Kr is locally isomorphic
to SO(n). We assume this is the case, and hence Ki and some Kj are
locally isomorphic to SO(n).

From the discussion above, it remains to show that the dimension of
Qi ∩Qj , or the intersection of k� ki and k� kj , is at most one. We note
that the basis of Qi consists of all of those br’s whose corresponding
kr ∈ k is not in ki; similarly, Qj consists of those br for which kr 	∈ kj .
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Hence Qi +Qj is spanned by the set of those br with br 	∈ ki ∩ kj . This

corresponds exactly to (span{(Ki ∩Kj) · F})⊥.
The dimension of Qi+Qj is therefore the codimension inK ofKi∩Kj.

The subgroups Ki and Kj are distinct by (4). The intersection of two
distinct copies of so(n) in so(n + 1) is isomorphic to a subalgebra of
so(n − 1). Hence dim(Qi + Qj) ≥ 2n − 1 and hence dimQi ∩ Qj =
dimQi + dimQj − dim(Qi + Qj) ≤ 2n − (2n − 1) = 1, completing the
proof. q.e.d.

2.2. Solving the combinatorial problem. By re-ordering and rela-
beling the rows, we can and will assume |ui| ≤ |ui+1| for all i.
Lemma 2.4(2), Lemma 2.4(3) and Lemma 2.3(1) together imply that
for each i either |ui| = n or else |ui| ≥ 2n − 2.

We will now describe an algorithm which takes input a subset of row
vectors {ui}, and at each stage removes one of the vectors, and changes
each vector by removing two of its entries. We still call the remaining
vectors by the same names ui. First consider the case that there exists
p > 0 so that |ui| = n for each 1 ≤ i ≤ p. Set t = 1. For any t let N(i, t)
denote the number of 1’s left in the vector ui at the start of Stage t
of the algorithm. So for example N(i, 1) = n for all 1 ≤ i ≤ p. Now,
starting with t = 1, perform “Stage t” of the following algorithm on the
row vectors {u1, . . . , up}:

• Step 1: Re-order the rows so that N(i, t) ≤ N(i + 1, t) for each
1 ≤ i ≤ p− t.

• Step 2: Choose two 1 entries of the top row; and let jt, kt be the
column numbers of these two entries.

• Step 3: Delete the top row and the columns jt and kt, still calling
the remaining vectors uj by their original name. Now increase the
counter t by 1, and go to Step 1.

At each stage we remove two columns corresponding to the columns
of two 1 entries of the top row. By Lemma 2.4(5), this implies that at
most one 1 is removed from any of the other rows. We thus have that
if the vector ui remains at Stage t then

(2.3) N(i, t) ≥ N(i, t− 1)− 1.

The algorithm can only fail at Step 2. Let d be the smallest t for
which Stage t of the algorithm fails. A has at most n rows, so d ≤ n.
Let uj denote the top row after performing Step 1 at Stage t = d. The
assumption of failure is then N(j, d) ≤ 1. Lemma 2.4(5) implies that
at each stage t = 1, . . . , d− 1, at most one 1 was removed from uj . But
N(j, 1) ≥ n, so that

1 ≥ N(j, d) ≥ n− (d− 1) = n− d+ 1

and so d ≥ n, so that d = n and N(j, n) = 1. In other words, the
algorithm will succeed in choosing two 1’s from each row ui with |ui| =
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n, except possibly if |ui| = n for each 1 ≤ i ≤ n, in which case the
algorithm can only possibly fail at Stage n, at the final row vector uj .

If N(j, n) = 2 we are done, so assume N(j, n) ≤ 1. Application of
(2.3) gives N(j, n − 1) ≤ 2. By our ordering in Step 1, the top row
uk at Stage t = n − 1 has N(k, n − 1) ≤ 2. A repeated application of
(2.3) gives that N(i, 2) ≤ n− 1 for all 2 ≤ i ≤ p. This means that each
u2, . . . , up must have a 1 in one of the two columns removed from u1
during Step 2 of Stage 1. Since N(1, 1) = n > 2, there exists an entry
of u1 that does not overlap with any other uj. Instead of choosing the
entry of u1 that overlaps with uj, choose this entry to remove. Then we
can choose the original entry from uj , so that we do not fail at the last
stage.

We have thus shown that the above algorithm always succeeds: we
can choose two 1’s from each ui with |ui| = n, all satisfying the Key
Claim. Since we are done if every row is of this form, we can now assume
that |un| ≥ 2n − 2. Note that it may be that |ui| = 2n − 2 for each
1 ≤ i ≤ n.

Having performed the algorithm successfully on the (possibly empty)
{ui : |ui| = n}, we now continue with the algorithm on the remaining
vectors {ui : |ui| ≥ 2n − 2}, not resetting t = 1. Since at most two
columns are removed at any stage of the algorithm, the only way for the
algorithm to fail with some vector uj with |uj | = 2n−2 or |uj | = 2n−1
in the top row is at Stage t = n. If this happens then of the 2n − 2
columns removed in the first n− 1, stages, at least 2n− 3 of them must
have been in columns in which uj has a 1.

Lemma 2.4(1) states that each column of A has a 1. The number of
columns of A is the dimension of the symmetric space X minus the rank.
From Table II on page 354 of [Hel], we see that for any given rank n ≥ 2
the dim(X) − n is at least n(n + 1)/2, equality occurring only for the
case when G = SL(n+1,R). Hence the total number of columns of A is
always at least n(n+ 1)/2. Thus, after having removed at most 2n− 2
columns, there must be at least n(n+1)/2−(2n−2) = (n2−3n+4)/2 ≥ 2
(for n ≥ 3 - this is where we are using the hypothesis G 	≈ SL3(R))
columns not yet removed, which have an entry with 1. Call two of these
columns c1, c2. These 1 entries are entries in row vectors up, uq for some
p, q 	= j, with p = q possible. At some stage up was the top row, and
two columns were removed corresponding to two 1 entries of up. Put
back one of these columns and remove c1 instead. Do the same thing
with up replaced by uq and c1 replaced by c2.

We claim that there is not a failure at stage n, with row vector uj . If
N(j, n) = 0 then precisely two 1’s from uj were removed at each stage
1, . . . , n−1, so that the two columns we just replaced now each give a 1
back to uj , so that the algorithm doesn’t fail at uj . If N(j, n) = 1 then
it is still the case that of the 2n− 2 columns removed, at most one such
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column of uj did not have a 1 entry. In particular uj had a 1 removed
from one of the columns c1 or c2. Since we replaced this column, and
since N(j, n) = 1, the replacement gives two 1 entries for uj, and again
the algorithm does not fail at stage n.

We have thus shown that the modified algorithm given above termi-
nates with the choices proving the Key Claim.

3. Finishing the proof of Theorem 1.1

In this section we complete the proof of prove Theorem 1.1.
Let ki ∈ K be a closest element to the identity such that ŵi := k−1

i vi
lies in F . If it happens that there is a more singular vector in F very
nearby to ŵi, then it may be that ki could be large (say on the order of
π) as it moves ŵi through a large rotation around the singular vector,
but keeping it very close to F . Hence we begin by replacing ŵi with
the most singular vector wi in the ball of radius εo = 1/(rank(X) + 1)2

about ŵi and that is closest to ŵi. (This vector will be unique as the
singular subspaces form linear flags.) By the choice of εo, the new wi

will be the most singular in its εo-ball.
Set Ki = StabK(wi) and note that Ki will contain the stabilizer of

ŵi. Since each element k of a stabilizer subgroup not belonging to Ki

stabilizes a vector at least 3εo away from ŵi, it follows that k moves ŵi

at least a distance of εo
4πdK(k, 1) away from ŵi, provided dK(k, 1) < π

4 .
We will show that there is a small element of K that moves vi into

Ki · F , as follows. Since the derivative at 0 of the exponential map
exp : g → G is the identity map, we can transport metric estimates to
g. Therefore, setting âi to be the lift to a of ŵi, there is a co depending
only on εo such that each element u ∈ k orthogonal to ki and with
|u| < 1 has |[u, âi]| ≥ co|u|. In particular, the ε

co
-neighborhood U of 0

in k has the property that [U + ki, a] + a contains the ε-neighborhood
of âi in p. Consequently, descending back to X, there is a constant
c1 depending only on εo (or equivalently rank(X)) such that smallest
element k′i = exp(u) ∈ K such that vi ∈ k′iKi · F has dK(k′i, 1) < c1ε.

We also have ∠(wi, vi) < ε0 + ε < 2ε0. Since {vi} is orthonormal, it
follows that {wi} is 4ε0-orthonormal, and in particular it is still a frame.

Since {wi} ⊂ F , we can apply the special case ε = 0 of Theorem
1.1 proved in §2. (Recall that for this case, we did not require the
{wi} to be orthonormal.) This produces an orthonormal (since ε = 0)
2k-frame {w′

i, w
′′
i } satisfying the angle inequalities of Theorem 1.1 with

vi, v
′
i, v

′′
i replaced by wi, w

′
i, w

′′
i . (Observe that w′

i and w′′
i also satisfy

the angle inequalities with wi replaced by ŵi as well since w′
i and w′′

i
are orthogonal to all of Ki · F and Ki contains the stabilizer of ŵi.)

Moreover, as proved in the ε = 0 case of Theorem 1.1, w′
i, w

′′
i ∈

(KiF)⊥ for each i. Now let v′i = k′iw
′
i, let v

′′
i = k′iw

′′
i and let zi = v′i−w′

i.
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Since dK(k′i, 1) < c1ε it follows that |zi| < c1ε and

| < v′i, v
′
j > | = | < w′

i + zi, w
′
j + zj > |

= |0+ < w′
i, zj > + < zi, w

′
j > + < zi, zj > |

≤ 3c1ε

for all 1 ≤ i, j ≤ k. The same bound holds for < v′i, v
′′
j > and < v′′i , v

′′
j >

by the same computation. Now set C1 := 3c1. (Note that v′i and v′′i are
also orthogonal to vi since k′i(KiF)⊥ = (k′iKiF)⊥.)

Finally ∠(hv′i,F⊥) = ∠(hk′iw
′
i,F⊥) ≤ C∠(hk′iŵi,F) = C∠(hvi,F),

and similarly for v′′i . This completes the proof of Theorem 1.1.

4. Proving Theorem 4.1 of [CF]

In this section we prove the main theorem (Theorem 4.1) of [CF].
The proof as given in §4.5 of [CF] needs to be slightly modified, given
that we do not know Theorem 4.4 of [CF] as stated, but only the slightly
weakened form, Theorem 1.1 above.

On page 41 of [CF] we choose ε = 1/(rank(X) + 1). We now instead
choose ε so small that ε < 1/(rank(X)+1)2 and so that for any t, when
sin(t) < ε then sin(t) > t/2. This new choice of constant of course still
depends only on rank(X), and the only affect of this change will be
to change the resulting constants in the proof of the theorem. As in
[CF], we let L1, . . . , Lk be the k ≤ rank(X) eigenvalues of the positive
semi-definite quadratic form Q2 that are strictly less than ε. As stated
in [CF], if no such eigenvalues exist then we are done, so we assume
k ≥ 1. Label the Li so that 0 ≤ L1 ≤ · · · ≤ Lk. Denote by vi the
eigenvector associated to Li.

Plugging the formula r(v) = sin2 ∠(v,F), given on page 42 of [CF],
into the formula for Li given on the last line of page 41 of [CF], gives

Li =

∫
∂FX

sin2 ∠(kvi,F)dσs
y(k).

Recall that we are identifying ∂FX with K/M , whose elements we
write as elements of K, remembering that they are really equivalence
classes. For each i let

Ai := {k ∈ ∂FX : sin2(∠kvi,F) ≤
√

Li}
and let Bi := ∂FX −Ai.

We claim that for each fixed i, each k ∈ Ai moves vi a small angle
from F . To see this, note that for any k ∈ Ai:√

Li ≥ sin2∠(kvi,F) > (∠(kvi,F)/2)2

so that ∠(kvi,F) ≤ 2(Li)
1/4, as desired. Here we have used our choice

of ε to obtain the second inequality.
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Now

Li =

∫
∂FX

sin2 ∠(kvi,F)dσs
y(k) ≥

∫
Bi

sin2 ∠(kvi,F)dσs
y(k)

≥
√

Li · σs
y(B)

so that σs
y(Bi) ≤ √

Li ≤ √
ε for each i. Since we have chosen ε <

1/(rank(X) + 1)2, we obtain

σs
y(B1 ∪ · · · ∪Bk) ≤ k

√
ε ≤ rank(X)

√
ε <

rank(X)

rank(X) + 1
< 1.

Since by definition Ai is the complement Bc
i and σs

y(∂F (X)) = 1, it
follows that A := A1 ∩ · · · ∩ Ak 	= ∅. Any element in A moves all of
V = span {v1, . . . , vk} to within 2ε1/4 of F .

We have just proved that there exists an element k0 ∈ A with the
property that ∠(k0vi,F) ≤ 2ε1/4 for each i. Now apply Theorem 1.1
to {k0vi}, and note that the vectors {v′i, v′′i } produced satisfy the same
inequalities with k0vi replaced by vi. We now apply these inequalities
in the string of inequalities starting on line 2 of Page 43 of [CF] , with
only one modification, namely, the first line should now read:

detQ1 ≤ C ′

k∏
i=1

〈
v′iQ1, v

′
i

〉 〈
v′′i Q1, v

′′
i

〉

Where C ′ = 1
(1−C1ε)4k

and C1 is from Theorem 1.1. This uniform con-

stant will also be carried along in the rest of the inequalities and then
absorbed into the final constant C.
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