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HOMOTOPY CLASSES
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Abstract

The paper is devoted to studying the Dirichlet energy of moving
frames on 2-dimensional tori immersed in the euclidean 3 ≤ m-
dimensional space. This functional, called frame energy, is nat-
urally linked to the Willmore energy of the immersion and on
the conformal structure of the abstract underlying surface. As the
first result, a Willmore-conjecture type lower bound is established:
namely for every torus immersed in Rm, m ≥ 3, and any moving
frame on it, the frame energy is at least 2π2 and equality holds if
and only if m ≥ 4, the immersion is the standard Clifford torus
(up to rotations and dilations), and the frame is the flat one.
Smoothness of the critical points of the frame energy is proved af-
ter the discovery of hidden conservation laws and, as application,
the minimization of the frame energy in regular homotopy classes
of immersed tori in R

3 is performed.

1. Introduction

The purpose of this paper is to study the Dirichlet energy of moving
frames associated to tori immersed in R

m, m ≥ 3. Moving frames have
played a key role in the modern theory of immersed surfaces starting
from the pioneering works of Darboux [10], Cartan [6], Chern [8]–[9],
etc. (Note also that in the book of Willmore [42], the theory of surfaces
is presented from Cartan’s point of view of moving frames, and the
recent book of Hélein [16] is devoted to the role of moving frames in
modern analysis of submanifolds; see also the recent introductory book
of Ivey and Landsberg [18].) Indeed, due to the strong link between
moving frames on an immersed surface and the conformal structure of
the underlying abstract surface (see later in the introduction for more
explanations), the importance of selecting a “best moving frame” in
surface theory is comparable to fixing an optimal gauge in physical
problems (for instance for the study of Einstein’s equations of general
relativity it is natural to work in the gauge of the so called harmonic
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coordinates, for the analysis of Yang-Mills equation it is convenient to
use the so called Coulomb gauge, etc.).

Before going to the description of the main results of the present
paper, the objects of the investigation of this work must be defined.

Let T
2 be the abstract 2-torus (seen as 2-dimensional smooth man-

ifold) and let �Φ : T
2 ↪→ R

m,m ≥ 3, be a smooth immersion (let
us start with smooth immersions, then we will move to weak immer-
sions). One denotes with T �Φ(T2) the tangent bundle to �Φ(T2); a pair

�e := (�e1, �e2) ∈ Γ(T �Φ(T2)) × Γ(T �Φ(T2)) is said to denote a moving

frame on �Φ if, for every x ∈ T
2, the couple (�e1(x), �e2(x)) is a positive

orthonormal basis for Tx
�Φ(T2) (by positive we mean that we fix a priori

an orientation of �Φ(T2) and that the moving frame agrees with it).

Given �Φ and �e as above we define the frame energy as the Dirichlet
energy of the frame, i.e.

(1.1) F(�Φ, �e) :=
1

4

∫
T2

|d�e|2 dvolg,

where d is the exterior differential along �Φ, dvolg is the area form given

by the immersion �Φ (this can be seen equivalently as the restriction to
�Φ(T2) of the 2-dimensional Hausdorff measure on R

m, or as the volume

form associated to the pullback metric g := �Φ∗(gRm) where gRm is the
euclidean metric on R

m), and |d�e| is the length of the exterior differential

of the frame which is given in local coordinates by |d�e|2 =
∑2

k=1 |d�ek|
2 =∑2

i,j,k=1 g
ij∂xi

�ek · ∂xj
�ek; in the paper �u · �v or (�u,�v) denotes the scalar

product of vectors in R
m.

Let �n be the unit simple m− 2-multivector giving the normal space

to �Φ in terms of the Hodge duality operator in R
m

(1.2) �n := �Rm
∂x1

�Φ ∧ ∂x2
�Φ

|∂x1
�Φ ∧ ∂x2

, �Φ|
.

In R
3, for instance, it can be written in terms of vector product

(1.3) �n :=
∂x1

�Φ× ∂x2
�Φ

|∂x1
�Φ× ∂x2

�Φ|
.

Let πT : Rm → T �Φ(T2) and π�n : Rm → N�Φ(T2) be the orthonormal
projections on the tangent and on the normal space respectively. Recall

that the second fundamental form �I of the immersion �Φ is defined by

(1.4) �Iij := π�n(∂
2
xixj

�Φ)

and the mean curvature �H is given by half of its trace

(1.5) �H :=
1

2
gij�Iij .
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Notice that, writing d�ei = πT (d�ei)+π�n(d�ei) = (d�ei, �ei+1)�ei+1+π�n(d�ei)-
where Z2-indices are used—the frame energy decomposes as

(1.6) F(�Φ, �e) =
1

2

∫
T2

|�e1 · d�e2|
2
g dvolg +

1

4

∫
T2

|�I|2 dvolg.

The tangential part

(1.7) FT (�Φ, �e) :=
1

2

∫
T2

|�e1 · d�e2|
2
g dvolg

is equal to the L2-norm of the covariant derivative of the frame with
respect to the Levi-Civita connection, whereas the normal part corre-
sponds to the Willmore energy after having applied the Gauss Bonnet
theorem:

(1.8) W (�Φ) :=

∫
T2

| �H|2 dvolg =
1

4

∫
T2

|�I|2 dvolg;

where the above defined W is the so-called Willmore functional, we get

(1.9) F(�Φ, �e) = FT (�Φ, �e) +W (�Φ).

Let us observe that the frame energy F is invariant under scaling and
under conformal transformations of the metric g, but not under confor-
mal transformations of R

m (to this purpose note that, by definition,
the moving frame has to be orthonormal with respect to the extrinsic
metric, i.e. gRm , but the norm of the derivative as well as the volume
form is computed with respect to the intrinsic metric g). Therefore,
even if natural on its own, F can be seen as a more coercive Willmore
energy where the extra term FT prevents the degenerations caused by
the action of the Moebius group of Rm and the degeneration of the con-
formal class of the abstract torus. More precisely we have the following
proposition.

Proposition 1.1. For every C > 0, the metrics induced by the
framed immersions in F−1([0, C]) are contained in a compact subset
of the moduli space of the torus.

Let us mention that the proof of Proposition 1.1 is remarkably el-
ementary and makes use just of the Fenchel lower bound [14] on the
total curvature of a closed curve in R

m.
Combining Proposition 1.1 with the celebrated results of Li-Yau [21]

and Montiel-Ros [25] on the Willmore conjecture, we manage to prove
the following sharp lower bound (with rigidity) on the frame energy.

Theorem 1.1. Let �Φ : T2 ↪→ R
m be a smooth immersion of the 2-

dimensional torus into the euclidean 3 ≤ m-dimensional space and let

�e = (�e1, �e2) be any moving frame along �Φ.
Then the following lower bound holds:

(1.10) F(�Φ, �e) :=
1

4

∫
T2

|d�e|2 dvolg ≥ 2π2.
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Moreover, if in (1.10) equality holds then it must be m ≥ 4; �Φ(T2) ⊂ R
m

must be, up to isometries and dilations in R
m, the Clifford torus

(1.11) TCl := S1 × S1 ⊂ R
4 ⊂ R

m,

and �e must be, up to a constant rotation on T (�Φ(T2)), the moving frame
given by ( ∂

∂θ ,
∂
∂ϕ), where of course (θ, ϕ) are the natural flat coordinates

on S1 × S1.

Remark 1.1. Let us mention that, thanks to (1.9), in codimension
one, the lower bound (1.10) follows by the recent proof of the Willmore
conjecture by Marques and Neves [22] using the min-max principle; the
approach here is a more direct energy based consideration. Indeed from

their result non just the frame energy but the Willmore functional W (�Φ)

is bounded below by 2π2 for any smooth immersed torus, and W (�Φ) =

2π2 if and only if �Φ is a conformal transformation of the Clifford torus.
Curiously, our lower bound seems to work better in codimension at least
two, where it becomes sharp and rigid; clearly, in codimension one it is
not sharp because of the nonexistence of flat immersions of the torus in
R
3 and because of the Marques-Neves proof of the Willmore conjecture.
Let us also mention that Topping [37, Theorem 6], using arguments of

integral geometry (very far from our proof), obtained an analogous lower
bound on an analogous frame energy for immersed tori in S3 under the
assumption that the underlying conformal class of the immersion is a
rectangular flat torus.

For variational matters the framework of smooth immersions has to
be relaxed to a weaker notion of immersion introduced by the second
author in [30] that we recall below.

Given any smooth reference metric g0 on T
2 (the definition below is

independent of the choice of a smooth g0), the map �Φ : T2 → R
m is

called weak immersion if the following properties hold:

1) �Φ ∈ W 1,∞(T2,Rm) and the pullback metric g�Φ := �Φ∗gRm is equiv-
alent to g0, i.e. there exists a constant C�Φ > 1 such that

C−1
�Φ

g�Φ ≤ g0 ≤ C�Φ g�Φ as quadratic forms.

2) Denoting by �n ∈ L∞(T2,Λm−2
R
m) the normal space defined a.e.

by (1.2) (or more simply in R
3 by (1.3)), it holds that �n ∈ W 1,2(T2);

or, equivalently, the second fundamental form�I defined a.e. in (1.4)
is L2 integrable over T2.

The space of weak immersions �Φ from T
2 into Rm is denoted by E(T2,Rm).

Recall also that given a weak immersion, up to a local bilipschitz diffeo-
morphism, we can assume it is locally conformal so it induces a smooth
conformal structure on the torus (this result is a consequence of a com-
bination of works of Toro [38]–[39], Müller-Sverak [26], Hélein [16] and
the second author [30]; for a comprehensive discussion see [32]).
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Let us remark that Proposition 1.1 and Theorem 1.1 hold for weak
immersions as well (for more details see Section 5).

In order to perform the calculus of variations of the frame energy,
in Section 3.1 we establish that the frame energy is differentiable in
E(T2,Rm) and we compute the first variation of the tangential frame
energy FT which, combined with the first variation of the Willmore func-
tional [28] and with (1.9), gives the first variation of the frame energy
F . As for the Willmore energy (as well as for many important geometric
problems as Harmonic maps, CMC surfaces, Yang Mills, Yamabe, etc.)
the equation we obtain is critical. It is therefore challenging to prove
the regularity of critical points of the frame energy.

Inspired by the work of Hélein [16] on CMC surfaces and of the sec-
ond author on Willmore surfaces [28] (see also [24] for the manifold
case and [32] for a comprehensive discussion), in order to study the
regularity of the critical points of the frame energy we discover some
new hidden conservation laws: in Subsection 3.2 we find some new iden-
tities for general weak conformal immersions, and then in Subsection
3.3 we use these identities in order to deduce a system of conservation
laws satisfied by the critical points of the frame energy. In particular,
this system of conservation laws yields to an elliptic system involving
Jacobian nonlinearities which can be studied using integrability by com-
pensation theory (for a comprehensive treatment see [29]). Thanks to
this special form, we are able to show regularity of the solutions of this
critical system; namely we prove the following result.

Theorem 1.2. Let �Φ be a weak immersion of the disc D2 into R
3

and let �e = (�e1, �e2) be a moving frame on �Φ such that (�Φ, �e) is a critical
point of the frame energy F . Then, up to a bilipschitz reparametrization,

we have locally that �Φ is conformal and �e is the coordinate moving frame

associated to �Φ, i.e. (�e1, �e2) =

(
∂x1

�Φ

|∂x1�Φ| ,
∂x2

�Φ

|∂x2�Φ|

)
. Moreover, there exists

ρ ∈ (0, 1) such that �Φ|Bρ(0) is a C∞ immersion.

Let us observe that for the sake of simplicity of presentation, this work
is more focused on the codimension one case; the higher codimensional
case will be the object of a forthcoming paper, in which many of the
arguments carry on in a similar way.

Now let us discuss an application of the tools developed in this paper
to the study of regular homotopy classes of immersions.

Let us first recall some classical facts about regular homotopies, start-
ing from the definition: given a smooth closed surface Σ2, two smooth
immersions f, g : Σ2 ↪→ R

m are said to be regularly homotopic if
there exists a smooth map H : Σ2 × [0, 1] → R

m, called regular ho-
motopy between f and g, such that H(·, 0) = f(·), H(·, 1) = g(·) and



148 A. MONDINO & T. RIVIÈRE

Ht(·) := H(·, t) : Σ2 ↪→ R
m is an immersion for every t ∈ [0, 1]; every-

thing up to diffeomorphisms of Σ2.
In his celebrated paper [35] of 1958, Smale proved that any couple of

smooth immersions of the 2-sphere into R
3 are regularly homotopic, i.e.

homotopic via a one-parameter family of immersions (see also [36] for
the higher dimensional results). The same is not true for immersions of
the 2-sphere in R

4 where indeed there are countably many regular ho-
motopy classes. A year later, Hirsch [17] generalized the ideas of Smale
to arbitrary submanifolds, and in particular he proved that the regular
homotopy classes of immersions of any fixed smooth closed surface in
a euclidean space of codimension higher than two trivialize, i.e. every
two immersions of a fixed surface are regularly homotopic (this follows
from the fact that the second homotopy group of the Stiefel manifold
V2(R

m) is null for m ≥ 5).
Remarkably, the case of tori immersed in R

3 differs from the one of
the spheres. Indeed, as proved by Pinkall in 1985 [27], there are exactly
two regular homotopy classes of immersed tori in R

3: the standard one
(the one of a classical rotational torus, say) and the nonstandard one
(a knotted torus, for an explicit example we refer to in [27]). One could
address the question of a canonical representative for each of the two
classes.

As an application of the tools developed in this paper, we prove the
existence of a smooth minimizer of the frame energy within each of the
two regular homotopy classes; such a minimizer can be seen as a canon-
ical representative of its regular homotopy class. It is proven below that
the notion of regular homotopy class extends to the general framework
of weak immersions (see Proposition 5.7). The following is the last main
result of the present paper.

Theorem 1.3. Fix σ as a regular homotopy class of immersions
of the 2-torus T

2 into R
3. Then there exists a smooth conformal im-

mersion �Φ : T2 ↪→ R
3, with �Φ ∈ σ, such that, with �e := (�e1, �e2) :=(

∂x1
�Φ

|∂x1�Φ| ,
∂x2

�Φ

|∂x2�Φ|

)
called the coordinate moving frame, the couple (�Φ, �e)

minimizes the frame energy F among all weak immersions of T2 into
R
3 lying in σ and all W 1,2 moving frames on �Φ(T2):

(1.12)

F(�Φ, �e) = min
{
F(�̃Φ, �̃e) : �̃Φ ∈ E(T2,R3), �̃Φ ∈ σ, �̃e ∈ W 1,2(T2)

}
.

Let us conclude the introduction with some comment and open prob-
lems. As already observed in Remark 1.1, from Theorem 1.1 it follows
that the global minimizer of the frame energy for (weak) immersions
of T2 into R

m, for m ≥ 4, is the Clifford torus; instead it is still an
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open problem to identify who is the minimizer for immersions into R
3.

We expect it to be the Clifford torus as well. We also expect the mini-
mizer of the nonstandard regular homotopy class of immersed tori into
R
3 to be the diagonal double cover of the Clifford torus proposed by

Kusner in the framework of the Willmore problem [20, page 333]. Both
of these are open problems, as well as the existence of a minimizer of
the frame energy among regular homotopy classes of tori immersed into
R
4; indeed, in codimension two, there is an extra difficulty given by the

possibility of having a loss of homotopic complexity in the concentra-
tion points of the frame energy (to exclude this, in our argument we use
Lemma 6.10, which is not true in codimension two). Notice finally that
in codimension greater than or equal to three, by the aforementioned
result of Hirsch, there is just one regular homotopy class of immersed
tori, and by Theorem 1.1 the global minimizer is the Clifford torus, up
to isometries and rescalings, with rigidity.

The paper is organized as follows.
Section 2 is devoted to the proofs of Proposition 1.1 and Theorem

1.1, namely the bound on the conformal class and the lower bound
(with rigidity) on the frame energy.

In Section 3 the system of conservation laws satisfied by the critical
points of the frame energy is established. More precisely, in Subsec-
tion 3.1 we establish the Frechet differentiability of F in the space of
weak immersion and compute the first variation formula, in Subsection
3.2 we discover some general conservation laws associated to a general
weak conformal immersion, and in Subsection 3.3 these conservation
laws are used to obtain a system of conservation laws involving Jaco-
bian quadratic nonlinearities satisfied by the critical points of the frame
energy.

In Section 4 the peculiar form of the aforementioned system is ex-
ploited in order to deduce the regularity of the critical points of the
Frame energy via the theory of integrability by compensation; namely
Theorem 1.2 is proved.

In Section 5 the above tools of the calculus of variations are applied
to prove the existence of a minimizer of the frame energy in regular
homotopy classes: namely Theorem 1.3.

Finally, in the Appendices we recall some classical geometric compu-
tations in conformal coordinates used in Section 3, a lemma of functional
analysis used in the proof of the regularity theorem, and a lemma of dif-
ferential topology used in the proof of Theorem 1.3.

Acknowledgments. A.M. acknowledges support of the ETH fellowship
having the title “Weak immersions of surfaces into manifolds and the
Willmore functional.”
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2. A lower bound–with rigidity–for the frame energy in R
m,

the analogue of the Willmore conjecture

2.1. Reduction to conformal immersions of flat tori and coor-

dinate moving frames. Let �Φ : T2 ↪→ R
m be a smooth immersion of

the torus into the euclidean 3 ≤ m-dimensional space.
The goal of this section is to prove Lemma 2.1: namely to reduce

the problem of calculating the infimum of the frame energy among all
smooth immersions of T2 into R

m and all moving frames, to the case of
coordinate moving frames associated to smooth conformal immersions
of tori lying in the moduli space of conformal structures. We will proceed
with consecutive reductions.

Reduction 1: �e satisfies the Coulomb condition. Since in this sec-
tion we are interested in giving a lower bound on the frame energy
F , we can assume that the frame �e minimizes its tangential part FT :=
1
2

∫
T2 |�e2, ·d�e1|

2
g dvolg; this is equivalent to saying that �e is a Coulomb

frame, i.e. it satisfies the Coulomb condition

(2.13) d∗g (�e1, d�e2) = 0,

which reads in local isothermal coordinates as div(�e1,∇�e2) = 0 (for
more details about Coulomb frames and the Chern method see [16] or
[32]).

Reduction 2: �e is a coordinate moving frame. Recall that, by using
the Chern moving frame method and the fact that �e is Coulomb, we
can cover the torus T2 by finitely many balls {Bk}k=1,...,N such that for

every ball there exists a diffeomorphism fk : Bk → Bk such that �Φ ◦ fk
is a smooth conformal immersion of Bk into R

m and

(2.14) �ej =
∂xj

(�Φ ◦ fk)

|∂xj
(�Φ ◦ fk)|

,

i.e. the moving frame �e is the coordinate moving frame associated to

the smooth conformal immersion �Φ.

Reduction 3: The reference torus is flat. Now the local conformal
coordinates on T

2 define a smooth conformal structure on T
2. Therefore,

by the Uniformization Theorem, there exists a diffeomorphism ψ from
a flat torus Σ (i.e. Σ is the quotient of R2 modulo a Z

2 lattice) into
our T2 such that f−1

k ◦ ψ is a conformal diffeomorphism; it follows that
�Φ ◦ψ = �Φ ◦ fk ◦ f

−1
k ◦ψ is a smooth conformal immersion of Σ into R

m.
Moreover, recalling that the property of being Coulomb for a moving
frame is invariant under conformal changes of metric (this property is a
direct consequence of equation (2.13) and of the invariance of the Hodge
operator ∗g under conformal changes of metric), we get that �e ◦ ψ is a
Coulomb moving frame on Σ.
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Now observe that we have another natural Coulomb frame on the flat
torus Σ given by the conformal immersion �Φ ◦ ψ, namely

(2.15) �fj =
∂yj (

�Φ ◦ ψ)

|∂yj (
�Φ ◦ ψ)|

, satisfying �f1 · d�f2 = ∗dλ,

where y1, y2 are standard coordinates on Σ and λ = log(|∂yi(
�Φ ◦ ψ)|) is

the conformal factor. Clearly, we can compare the two moving frames �e

and �f via a rotation in the tangent space, i.e.

�e1 + i�e2 = eiθ(�f1 + i �f2)

for some smooth function θ : Σ → S1. Observe that, using (2.15) and
integrating by parts, we get

FT (�Φ, �e) =

∫
Σ

|�e1 · d�e2|
2dy =

∫
Σ

|�f1 · d�f2 − dθ|2dy

(2.16)

=

∫
Σ

|�f1 · d�f2|
2 + |dθ|2 − 2 < �f1 · d�f2, dθ > dy

=

∫
Σ

|�f1 · d�f2|
2 + |dθ|2 − 2 < ∗dλ, dθ > dy =

∫
Σ

|�f1 · d�f2|
2 + |dθ|2dy

≥ FT (�Φ, �f),

with equality if and only if �e is a constant rotation of �f (this will be
useful to prove the part of the rigidity statement involving the frame).

Reduction 4: The flat torus lies in the moduli space of conformal
structures. In this last reduction, we want to reduce the problem to the
case when Σ is a flat torus in the canonical moduli space M of conformal
structures of tori composed by the parallelograms in R

2 whose edges are
(1, 0) and τ = (τ1, τ2) ∈ M where M is the strip

M : = {τ = (τ1, τ2) ∈ R
2 : τ2 > 0,−

1

2
< τ1 <

1

2
,(2.17)

|τ | ≥ 1 and τ1 ≥ 0 if |τ | = 1}.

Indeed a classical result of Riemann surfaces (see for instance [19, Sec-
tion 2.7]) says that up to composition with a linear transformation which
preserves the orientation (more precisely up to composition with a pro-
jective unimodular transformation in PSL(2,Z)), the conformal struc-
ture of our flat torus Σ is isomorphic to the one of a flat torus described
by the parallelogram given by (1, 0) and (τ1, τ2) ∈ M , where M was de-
fined in (2.17). We can finally summarize the discussion in the following
lemma.

Lemma 2.1. Let T
2 be the abstract torus (i.e. the unique smooth

orientable 2-dimensional manifold of genus one).
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Call βm
1 ≥ 0 the infimum of the frame energy F(�Φ, �e) among all

smooth immersions �Φ of T
2 into R

m and all the moving frames �e =

(�e1, �e2) along �Φ.

Denote also as βm
2 ≥ 0 the infimum of the frame energy F(�Φ, �f)

among all smooth conformal immersions �Φ of any flat torus Σ described
by any lattice in R

2 of the form ((1, 0), (τ1, τ2)), where (τ1, τ2) ∈ M is

defined in (2.17); here �f is the coordinate moving frame associated to
�Φ, i.e. �fj := ∂xj

�Φ/|∂xj
�Φ|, j = 1, 2, (x1, x2) being flat coordinates on Σ.

Then βm
1 = βm

2 . In other words, in order to compute the infimum
of F among all smooth immersions of tori and all moving frames, it
is enough to restrict to coordinate moving frames associated to smooth
conformal immersions of flat tori lying in M, the moduli space of con-
formal structures of tori.

2.2. Proof of Theorem 1.1: lower bound and rigidity for the

frame energy. From now on we will work with a torus as in the reduced
case: Σ = R

2/(Z×τZ) is the flat quotient of R2 by the lattice generated
by the two vectors (1, 0), (τ1, τ2), where (τ1, τ2) ∈ M is defined in (2.17);
we will denote

(2.18) θΣ := arccos τ1 ∈

(
π

3
,
2π

3

)
,

where the interval
(
π
3 ,

2π
3

)
comes directly from the definition of M as in

(2.17).
One of the key technical results of this paper is the control of the

conformal class in terms of the frame energy, namely Proposition 1.1;
this is implied by the following lower bound.

Proposition 2.2. Let Σ = R
2/(Z × τZ), with τ ∈ M as above, be a

flat torus. Let �Φ : Σ ↪→ R
m, m ≥ 3, be a smooth conformal immersion

and let �e be the coordinate frame associated to �Φ: �ej := ∂xj
�Φ/|∂xj

�Φ|,
j = 1, 2, (x1, x2) being flat coordinates on Σ.

Then the following lower bound holds true:∫
Σ
e−4λ

[(
1 +

cos4 θ

sin2 θ

)
�I211 + sin2 θ�I222 + 4cos2 θ�I212

]
(2.19)

+
[(
1 + cot2 θ

)
(d�e1�e1, �e2)

2 + (d�e2�e2, �e1)
2
]
dvolg

≥ 4π2

(
τ2 +

1

τ2

)
,

where θ := θΣ := arccos τ1 ∈
(
π
3 ,

2π
3

)
, dvolg is the area form on Σ

induced by the pullback metric g = �Φ∗gRm , and λ = log(|∂xi
�Φ|) is the

conformal factor. In particular (2.19) implies the following lower bound
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on the frame energy of (�Φ, �e):

(2.20) F(�Φ, �e) :=
1

4

∫
Σ
|d�e|2 dvolg ≥ π2

(
τ2 +

1

τ2

)(
sin2 θ

sin2 θ + cos4 θ

)
.

Proof of Proposition 2.2. First of all recall that by the classical Fenchel
theorem (the original proof of Fenchel [14]—see also [11]—was for closed
curves immersed in R

3; the result was generalized to immersions in R
m,

m ≥ 3, by Borsuk [5] with a different proof), given a smooth closed
curve �γ : S1 ↪→ R

m, one has

(2.21)

∫
�γ
k ds ≥ 2π,

where k := | d
2

ds2
�γ(s)| is the curvature of �γ—here s is the arc-length

parameter. The strategy is to apply the Fenchel theorem to the curves

�γx := �Φ(γx(·)), �γy := �Φ(γy(·)) where γx(·) : [0, τ2] → Σ and γy(·) :
[0, 1] → Σ are given by

(2.22) γx(t) := (x+ t cot θ, t) , γy(t) := (y cot θ + t, y) ,

for every x ∈ [0, 1] and y ∈ [0, τ2]. Notice that γx and γy are nothing
but the parallel curves of the vectors generating the lattice of Σ. Now
applying the Fenchel theorem to �γy, recalling that �Φ is conformal with

λ := log |∂x�Φ| = log |∂y�Φ| so that ∂x�Φ = eλ�e1, we have

2π ≤

∫
�γy

k ds =

∫ L(�γy)

0

∣∣∣∣ dds�̇γ
∣∣∣∣ ds =

∫ L( �γy)

0
|d�e1�e1| ds =

∫ 1

0
|d�e1�e1| e

λdx,

where L(�γy) is of course the length of the curve �γy(·). Squaring the
above inequality, using Cauchy-Schwartz and integrating with respect
to y ∈ [0, τ2] gives

(2.23) 4π2τ2 ≤

∫ τ2

0

∫ 1

0
|d�e1�e1|

2 e2λdxdy =

∫
Σ
|d�e1�e1|

2 dvolg.

Analogously, calling �eθ2 := (cos θ �e1, sin θ �e2), observing that �̇γ/|�̇γ| = �e2θ
we get

2π ≤

∫
�γx

k ds =

∫ L(�γx)

0

∣∣∣∣ dds�̇γ
∣∣∣∣ ds =

∫ L( �γx)

0

∣∣∣d�eθ
2

�eθ2

∣∣∣ ds = 1

sin θ

∫ τ2

0

∣∣∣d�eθ
2

�eθ2

∣∣∣ eλdy.
Again, squaring the above inequality, using Cauchy-Schwartz and inte-
grating with respect to x ∈ [0, 1] gives
(2.24)

4π2

τ2
≤

1

sin2 θ

∫ 1

0

∫ τ2

0

∣∣∣d�eθ
2
�eθ2

∣∣∣2 e2λ dy dx =
1

sin2 θ

∫
Σ

∣∣∣d�eθ
2
�eθ2

∣∣∣2 dvolg.
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A straightforward computation using the definition of �eθ2 gives∣∣∣d�eθ
2
�eθ2

∣∣∣2 =
∣∣∣π�n(d�eθ

2
�eθ2)
∣∣∣2 + (d�eθ

2
�eθ2, �e1

)2
+
(
d�eθ

2
�eθ2, �e2

)2
(2.25)

= e−4λ
[
cos4 θ�I211 + sin4 θ�I222 + 4 sin2 θ cos2 θ�I212

]
+ cos2 θ (d�e1�e1, �e2)

2 + sin2 θ (d�e2�e2, �e1)
2 .

Combining (2.24) and (2.25) we obtain∫
Σ
e−4λ

[
cos4 θ

sin2 θ
�I211 + sin2 θ�I222 + 4cos2 θ�I212

]
(2.26)

+
[
cot2 θ (d�e1�e1, �e2)

2 + (d�e2�e2, �e1)
2
]
dvolg ≥

4π

τ2
.

Observing that |d�e1�e1|
2 = e−4λ�I211 + (d�e1�e1, �e2)

2 and putting together
(2.23) with (2.26) gives the first claim (2.19).

In order to obtain (2.20), let us recall that
(2.27)

|d�e|
2
:=

2∑
i,j=1

|d�ei�ej |
2
= e−4λ

[
�I211 +

�I222 + 2�I212

]
+ 2 (d�e1�e1, �e2)

2
+ 2 (d�e2�e2, �e1)

2
.

Observe also that by the definition of M as in (2.17), we have θ ∈
[π/3, 2π/3]; therefore we get that 4 cos2 θ ≤ 1 and 1 + cot2 θ ≤ 4

2 < 2.
Now, combining the last trigonometric estimates with (2.19) and (2.27),
we conclude that (2.20) holds true. q.e.d.

Now we can prove the lower bound (and the rigidity statement) for
the frame energy of immersed tori in arbitrary codimension, namely
Theorem 1.1. Notice the analogy with the Willmore conjecture (proved
by Marques-Neves in codimension one but still open in arbitrary codi-
mension).

Proof of Theorem 1.1. First of all, thanks to Lemma 2.1 we can assume
that

• the reference torus is flat (so, following the notations above, it will
be denoted with Σ) and is given by the quotient of R2 via the Z

2

lattice generated by the vectors (1, 0), (τ1, τ2) with (τ1, τ2) ∈ M
defined in (2.17),

• the immersion �Φ : Σ ↪→ R
m is conformal,

• �e is the coordinate moving frame associated to �Φ: �ei =
∂xi

�Φ

|∂xi �Φ| .

Once this reduction is performed, we proved in Proposition 2.2 that the
lower bound (2.20) holds, namely

(2.28) F(�Φ, �e) :=
1

4

∫
Σ
|d�e|2 dvolg ≥ π2

(
τ2 +

1

τ2

)(
sin2 θ

sin2 θ + cos4 θ

)
,
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where θ = θΣ = arccos τ1. Notice that, up to switching orientation of
the flat torus (action which leaves the energy unchanged), it is enough
to consider (τ1, τ2) ∈ M+, where M+ := M ∩ {τ1 ≥ 0}.

From now on we denote by f : M+ → R the function

(2.29) f(τ2, θ) :=

(
τ2 +

1

τ2

)(
sin2 θ

sin2 θ + cos4 θ

)
.

A first attempt would be to prove that f is bounded below by 2 on the
whole M+. However, by an elementary computation, it is easy to check
that

f(τ2 = 1, θ = π/2) = 2 and f(τ2 = sin θ, θ) < 2 for θ ∈ [π/3, π/2) ;

or, in other words, except for τ = (0, 1), on the arc of circle S1 ∩ M+

we always have f < 2.

In order to overcome this difficulty let us recall that, by equation
(1.9), we can write

(2.30) F(�Φ, �e) = FT (�Φ, �e) +W (�Φ)

where W (�Φ) =
∫
Σ |H�Φ|

2 dvolg�Φ is the Willmore functional of �Φ and

FT—defined in (1.7)—is a non-negative functional. Let us denote

ΩLYMR :=

{
(τ1, τ2) :

(
τ1 −

1

2

)2

+ (τ2 − 1)2 ≤
1

4

}
∩M+,

and recall that if τ ∈ ΩLYMR the Willmore conjecture holds true (see
[25, Corollary 7]; this remarkable result of Montiel and Ros extends a
previous celebrated result of Li and Yau [21]), namely one has

W (�Φ) ≥ 2π2 for every smooth conformal immersion(2.31)

�Φ : R2/(Z × τZ) with τ ∈ ΩLYMR.

A direct computation shows that

(2.32) f |∂ΩLY MR
≥ 2 with equality if and only if τ2 = 1 and θ =

π

2
,

where, of course, ∂ΩLYMR =
{
(τ1, τ2) :

(
τ1 −

1
2

)2
+ (τ2 − 1)2 = 1

4

}
∩

M+. Observing that the function τ2 �→ f(τ2, θ) is monotone strictly
increasing for τ2 ≥ 1, the lower bound (2.32) implies that
(2.33)

f |M+\ΩLY MR
≥ 2 with equality if and only if τ2 = 1 and θ =

π

2
.

The claimed lower bound for the frame energy (1.10) follows then by
combining on one hand (2.28), (2.29), with (2.33) and on the other hand
(2.30) with (2.31).
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Now let us discuss the rigidity statement. From the work of Montiel
and Ros (in particular combining Corollary 6 and the estimate (1.11)
in [25]), we already know that

W (�Φ) > 2π2 for every smooth conformal immersion(2.34)

�Φ : R2/(Z × τZ) with τ ∈ Ω̊LYMR,

where Ω̊LYMR is the interior of the region ΩLYMR as a subset of M+.
Therefore, combining on one hand (2.28), (2.29), with (2.33) and on the

other hand (2.30) with (2.34) we get that if F(�Φ, �e) = 2π2 then �Φ is a

smooth conformal embedding (recall that if �Φ has self intersection then

by [21] one has W (�Φ) ≥ 8π) of the flat square torus—i.e. τ2 = 1, θ =
π
2—into R

m.
At this point the rigidity statement would follow by the work of Li-

Yau [21], where they prove that the Clifford torus is the unique mini-
mizer of the Willmore energy in its conformal class. In any case, below,
we wish to give an elementary proof of the rigidity.

Observing that the flat square torus lies in ΩLYMR, we have again by
(2.31) that

2π2 = F(�Φ, �e) = W (�Φ) + FT (�Φ, �e) ≥ 2π2 +FT (�Φ, �e),

and since FT is non-negative we obtain
(2.35)

FT (�Φ, �e) =
1

2

∫
[0,1]2

|�e1 · d�e2|
2
g dvolg�Φ = 0 ⇒ �e1 · d�e2 ≡ 0 on [0, 1]2.

A simple computation shows that �e1 · d�e2 = ∗gdλ (which in our setting

writes more easily as �e1 · ∇�e2 = −∇⊥λ), where λ = | log(∂x1
�Φ)| is the

conformal factor. Therefore the conformal factor of the immersion �Φ is
constant and, up to a scaling in R

m, �Φ is actually an isometric embed-
ding of the square torus into R

m. At this point, repeating the proof of
Proposition 2.2, we observe that now θ = 0, so the curves �γx and �γy
are the coordinate curves. Moreover, equality must hold in the Fenchel
theorem (2.21); it follows that �γx, �γy are planar convex curves with cur-
vatures, respectively, kx(·), ky(·). Since also in the Schwarz inequality
bringing respectively to (2.23) and (2.24) there must be equality, it fol-
lows that the curvatures kx(·), ky(·) are constant, so �γx and �γy are two
planar circles of constant radius one, whose plane may depend on x and
y respectively. Finally, we claim that the plane is independent of x and
y. Indeed, since θ = 0 and �e1 · d�e2 = �e2 · d�e1 = 0 by (2.35), the estimate
(2.19) reduces to

(2.36) 2π2 ≤
1

4

∫
[0,1]2

e−4λ
[
�I211 +

�I222

]
dvolg.
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But, on the other hand, using (1.6), (2.35), and the energy assumption,
we have that
(2.37)

2π2 = F(�Φ, �e) =
1

4

∫
[0,1]2

|�I|2dvolg =
1

4

∫
[0,1]2

e−4λ
[
�I211 +

�I222 + 2�I212

]
dvolg.

Combining (2.36) and (2.37) yields�I12 ≡ 0 which, combined with (2.35),
implies that

d

dx
�̇γx(y) = ∂2

x1x2

�Φ = ∂2
x2x1

�Φ =
d

dy
�̇γy(x) ≡ 0 on [0, 1]2.

We conclude that the plane where �γx (resp. �γy) lies does not depend on

x (resp. y) and then, up to rotations, �Φ([0, 1]2) = S1 × S1 ⊂ R
4 ⊂ R

m.
Let us conclude by discussing the rigidity of the frame. From the

discussion of Subsection 2.1 it should be clear that if (�Φ, �e) attains
the minimal value 2π2, then the frame �e must be a Coulomb frame
(this is because in particular it minimizes the tangential frame energy

FT ); moreover, calling �f :=
(

∂
∂θ ,

∂
∂ϕ

)
the flat coordinate moving frame

on S1 × S1, the estimate (2.16) gives that FT (�Φ, �e) ≥ FT (�Φ, �f) with

equality if and only if �e is a constant rotation of �f . This was exactly our
claim. q.e.d.

3. Geometric systems of conservation laws associated

to the frame energy

3.1. First variation formula for the frame energy. For simplicity
of presentation, and since our applications are in codimension one, here
we present the formulas of the first variation to the frame energy for
weak conformal immersions in the euclidean three space R

3; the higher
codimensional computations are similar but notationally more involved
and can be performed along the same lines as in [28].

Since by equation (1.9) the frame energy is the sum of the tangential
frame energy FT and of the Willmore energy W , and since the first vari-
ation formula for W is well known (see for instance [40] for the classical
form of the equation, [28]–[32] for the divergence form in R

m, and [24]
for the divergence form in Riemannian manifolds), here we compute the
first variation of the tangential frame energy FT . This is the content of
the next proposition. Before stating it let us introduce some notations.

Let �Φ ∈ E(D2,R3) be a weak conformal immersion, λ = log(|∂x1
�Φ|) =

log(|∂x2
�Φ|) the conformal factor, and �e := (�e1, �e2) = e−λ(∂x1

�Φ, ∂x2
�Φ)

the associated orthonormal frame.
For any smooth vector field �w ∈ C∞

c (R3,R3), we call �Φt(x) := �Φ(x)+

t �w(�Φ(x)) ∈ E(D2,R3) the perturbed weak immersion and we consider
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the following orthonormal frame associated to �Φt:

(3.38) �e1,t := �e2 × �nt = �e1 + t e−λ (∂x1
�w, �n) �n+ o(t),

where, in the second equality, we used (6.117); the second vector of the
frame is therefore

(3.39) �e2,t = −�e1,t × �nt = �e2 + t e−λ (∂x2
�w, �n) + o(t).

Proposition 3.3. Let �Φ ∈ E(D2,R3) be a weak conformal immer-

sion, λ = log(|∂x1
�Φ|) = log(|∂x2

�Φ|) the conformal factor and �e :=

(�e1, �e2) = e−λ(∂x1
�Φ, ∂x2

�Φ) the associated orthonormal frame.
Then, for any smooth perturbation �w ∈ C∞

c (R3,R3) with �w|�Φ(∂D2) =

0, calling �Φt(x) := �Φ(x) + t �w(�Φ(x)) ∈ E(D2,R3) the perturbed weak
immersion and �et := (�e1,t, �e2,t) the associated moving frame defined in
(3.38)-(3.39), it holds that

d

dt
FT (�Φt, �et)(0) : =

d

dt

[
1

2

∫
D2

〈�e2,t · d�e1,t〉
2
gt

dvolgt

]
(0)

(3.40)

=

∫
D2

(
�w, d

[
�I g(�e2, d�e1)

]
+ d∗g

[[
(�e2, d�e1)⊗ (�e2, d�e1)− 2−1 〈�e2 · d�e1〉

2
g g
]

g d�Φ
])

=

∫
D2

(
�w,div

[
−�I g(�e2,∇

⊥�e1)− (�e2,∇
⊥�e1)〈

(�e2,∇�e1),∇�Φ
〉
g
+

1

2
(�e2,∇�e1)

2∇⊥�Φ
])

,

where in the last formula we use the following notation: div is the di-
vergence in R

2 with euclidean metric, ∇⊥ = (−∂x2
, ∂x1

), (�u,�v) or �u · �v
denotes the euclidean scalar product in R

3, and < u, v >g denotes the

scalar product in (D2, g), where g = �Φ∗gR3 is the pullback on D2 of the
euclidean metric in R

3. In the second formula, ∗g denotes the Hodge
duality with respect to g, d is the Cartan differential, and g is the
restriction of forms with respect to g.

Proof. Using the expression of �et given in (3.38)–(3.39), we compute

d

dt
(�e2,t, d�e1,t)

2 =
d

dt

⎛
⎝∑

ij

gijt (�e2,t, ∂xi
�e1,t) (�e2,t, ∂xj

�e1,t)

⎞
⎠ .
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We have on one hand

(�e2,t, ∂xi
�e1,t) = (�e2, ∂xi

�e1) + t e−λ (∂x2
�w, �n) (∂xi

�e1, �n) + t e−λ ∂x1
w (�e2, ∂xi

�n)

(3.41)

= (�e2, ∂xi
�e1) + t (∂x2

�w, �n) Ii1 e−2λ − t (∂x1
�w, �n) Ii2 e−2λ + o(t).

Hence, using (6.120) we obtain

d

dt
(�e2,t, d�e1,t)

2
gt
(0) = −e−4λ

∑
ij

[
(∂xi

�Φ, ∂xj
�w) + (∂xj

�Φ, ∂xi
�w)
](3.42)

(�e2, ∂xi
�e1)(�e2, ∂xj

�e1)

+ 2e−4λ
∑
i

(�e2, ∂xi
�e1) [(∂x2

�w,�n) I1i − (∂x1
�w,�n) I2i]

= −2
〈
[(�e2, d�e1)⊗ (�e2, d�e1)] �gd�Φ, d�w

〉
g

− 2
〈
�I�g(�e2, �e1), ∗gd�w

〉
g
.

Combining now the variation of the volume form (6.121)—computed in
the appendix—and (3.42), we obtain

d

dt
FT (�Φt, �et)(0) =

∫
D2

[
−

〈[
(�e2, d�e1)⊗ (�e2, d�e1)−

1

2
|�e2, d�e1|

2g

]
�gd�Φ, d�w

〉
g

−
〈
�I�g(�e2, �e1), ∗gd�w

〉
g

]
dvolg.

The thesis follows with an integration by parts, recalling that by as-
sumption �w|�Φ(∂D2) = 0. q.e.d.

3.2. Some general conservation laws for conformal immersions.

The goal of the present section is to prove the following proposition.

Proposition 3.4. Let �Φ ∈ E(D2,R3) be a weak conformal immer-

sion, λ = log(|∂x1
�Φ|) = log(|∂x2

�Φ|) the conformal factor, and �e :=

(�e1, �e2) = e−λ(∂x1
�Φ, ∂x2

�Φ) the associated coordinate orthonormal frame.
Then the following identities hold:
(3.43)

(∗gd�Φ)·
[
�I g(�e2 · d�e1) + ∗g

([
�e2 · d�e1 ⊗ �e2 · d�e1 − 2−1 |�e2 · d�e1|

2 g
]

g d�Φ
)]

= 0

and

〈
(∗gd�Φ) ∧

[
�I g(�e2 · d�e1) + ∗g

([
�e2 · d�e1 ⊗ �e2 · d�e1 − 2−1 |�e2 · d�e1|

2 g
]

g d�Φ
)]〉

g

(3.44)

= − < ∗gdλ, d �D >g,

where

(3.45) d�D = −I g ∗gd�Φ ∧ �n.
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The rest of the section is devoted to the proof of Proposition 3.4. We
start by computing

(∗d�Φ) ·
[
�I g(�e2 · d�e1) + ∗

([
�e2 · d�e1 ⊗ �e2 · d�e1 − 2−1 |�e2 · d�e1|

2 g
]

g d�Φ
)](3.46)

=
〈[
�e2 · d�e1 ⊗ �e2 · d�e1 − 2−1 |�e2 · d�e1|

2 g
]
, d�Φ⊗̇d�Φ

〉
g

=
〈[
�e2 · d�e1 ⊗ �e2 · d�e1 − 2−1 |�e2 · d�e1|

2 g
]
, g
〉
g
= 0

where the upper dot means a contraction in the R
3 coordinates; this

gives the first part of the thesis, namely (3.43). The second identity of
the thesis is more subtle. We compute

〈
(∗d�Φ)∧

[
�I g(�e2 · d�e1) + ∗

([
�e2 · d�e1 ⊗ �e2 · d�e1 − 2−1 |�e2 · d�e1|

2 g
]

g d�Φ
)]〉

g

(3.47)

= − e−4λ ∂x2

�Φ ∧
(
�I11 (�e2 · ∂x1

�e1) +�I12 (�e2 · ∂x2
�e1)
)

+ e−4λ ∂x1

�Φ ∧
(
�I21 (�e2 · ∂x1

�e1) +�I22 (�e2 · ∂x2
�e1)
)

+
〈
d�Φ ∧

([
�e2 · d�e1 ⊗ �e2 · d�e1 − 2−1 |�e2 · d�e1|

2 g
]

g d�Φ
)〉

g
.

An elementary computation gives

(3.48)
〈
d�Φ ∧

([
�e2 · d�e1 ⊗ �e2 · d�e1 − 2−1 |�e2 · d�e1|

2 g
]

g d�Φ
)〉

g
= 0.

Hence (for the moment the following formula is not used but it will be
useful later in the section)

〈
(∗d�Φ)∧

[
�I g(�e2 · d�e1) + ∗

([
�e2 · d�e1 ⊗ �e2 · d�e1 − 2−1 |�e2 · d�e1|

2 g
]

g d�Φ
)]〉

g

(3.49)

=
〈
(∗d�Φ)∧�n, I g(�e2 · d�e1)

〉
g
.

Using that �e2 · d�e1 = ∗dλ = −1
2e

2λ ∗ de−2λ, from (3.47) we get
(3.50)〈

(∗d�Φ)∧
[
�I g(�e2 · d�e1) + ∗

([
�e2 · d�e1 ⊗ �e2 · d�e1 − 2−1 |�e2 · d�e1|

2 g
]

g d�Φ
)]〉

g

= 2−1 e−2λ ∂x2

�Φ ∧ �n
(
−I11 ∂x2

e−2λ + I12 ∂x1
e−2λ

)
−2−1 e−2λ ∂x1

�Φ ∧ �n
(
−I21 ∂x2

e−2λ + I22 ∂x1
e−2λ

)
= 2−1 e−2λ ∂x2

�Φ ∧ �n
(
−I011 ∂x2

e−2λ + I012 ∂x1
e−2λ + 2H ∂x2

λ
)

−2−1 e−2λ ∂x1

�Φ ∧ �n
(
−I021 ∂x2

e−2λ − I011 ∂x1
e−2λ − 2H ∂x1

λ
)
.
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So we have established the following:
(3.51)〈

(∗d�Φ)∧
[
�I g(�e2 · d�e1) + ∗

([
�e2 · d�e1 ⊗ �e2 · d�e1 − 2−1 |�e2 · d�e1|

2 g
]

g d�Φ
)]〉

g

= 2−1 e−2λ ∂x2

�Φ ∧ �n
[
−∂x2

(I011 e
−2λ) + ∂x1

(I012 e
−2λ)

]
+2−1 e−2λ ∂x2

�Φ ∧ �n
[
∂x2

I011 e
−2λ − ∂x1

I012 e
−2λ + 2H ∂x2

λ
]

− 2−1 e−2λ ∂x1

�Φ ∧ �n
[
−∂x2

(I021 e
−2λ)− ∂x1

(I011 e
−2λ)

]
− 2−1 e−2λ ∂x1

�Φ ∧ �n
(
∂x2

I021 e
−2λ + ∂x1

I011 e
−2λ − 2H ∂x1

λ
)
.

Using the expression of �H0 (6.126) and the Codazzi identity (6.128), we
obtain

(3.52)〈
(∗d�Φ)∧

[
�I g(�e2 · d�e1) + ∗

([
�e2 · d�e1 ⊗ �e2 · d�e1 − 2−1|�e2 · d�e1|

2g
]

g d�Φ
)]〉

g

= −2−1e−2λ∂x2

�Φ ∧ �n
[
∂x2

H0
�
+ ∂x1

H0
�

]
− 2−1∂x2

�Φ ∧ �n∂x2
(e−2λH)

−2−1e−2λ∂x1

�Φ ∧ �n
[
∂x2

H0
�
− ∂x1

H0
�

]
− 2−1 ∂x1

�Φ ∧ �n∂x1
(e−2λH).

Hence, using that (the first two equalities follow from (6.126) and the
others from the definition of I)

∂x1
(e−2λ ∂x1

�Φ)− ∂x2
(e−2 λ ∂x2

�Φ) = 2 �H0
�,

∂x1
(e−2λ ∂x2

�Φ) + ∂x2
(e−2 λ ∂x1

�Φ) = − 2 �H0
�,

∂x1
�Φ ∧ ∂x1

�n = −∂x2
�Φ ∧ ∂x2

�n = − e−2λ
I12 ∂x1

�Φ ∧ ∂x2
�Φ,

∂x2
�Φ ∧ ∂x1

�n = e−2λ
I11 ∂x1

�Φ ∧ ∂x2
�Φ,

∂x1
�Φ ∧ ∂x2

�n = − e−2λ
I22 ∂x1

�Φ ∧ ∂x2
�Φ,

we get
(3.53)

H0
�
[
∂x2

�Φ ∧ ∂x1
�n+ ∂x1

�Φ ∧ ∂x2
�n
]
+H0

�∂x2
�Φ ∧ ∂x2

�n−H0
�∂x1

�Φ ∧ ∂x1
�n

= e−2λ H0
�(I11 − I22)∂x1

�Φ ∧ ∂x2
�Φ+ 2 e−2λ H0

�I12∂x1
�Φ ∧ ∂x2

�Φ = 0,

since again H0
� = 2−1 e2λ (I11−I22) and H0

� = −e2λ I12. We then deduce
(3.54)

2
〈
(∗d�Φ)∧

[
�I g(�e2 · d�e1) + ∗

([
�e2 · d�e1 ⊗ �e2 · d�e1 − 2−1|�e2 · d�e1|

2 g
]

g d�Φ
)]〉

g

= −∂x1

[
e−2λ ∂x1

�Φ ∧ [ �H − �H0
�] + e−2λ ∂x2

�Φ ∧ �H0
�

]

−∂x2

[
e−2λ ∂x1

�Φ ∧ �H0
� + e−2λ ∂x2

�Φ ∧ [ �H + �H0
�]
]
.
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Thus using (3.49) we have proved so far

2
〈
(∗d�Φ)∧

[
�I g(�e2 · d�e1) + ∗

([
�e2 · d�e1 ⊗ �e2 · d�e1 − 2−1 |�e2 · d�e1|

2 g
]

g d�Φ
)]〉

g

(3.55)

= 2
〈
(∗d�Φ)∧�n, I g(�e2 · d�e1)

〉
g

= −∂x1

[
e−4λ

[
∂x1

�Φ ∧�I22 − ∂x2

�Φ ∧�I12

]]
− ∂x2

[
e−4λ

[
− ∂x1

�Φ ∧�I12 + ∂x2

�Φ ∧�I11

]]
.

Now we want to use the second equality in order to write the right hand
side in a more convenient way. Observe that on one hand

2
〈
(∗d�Φ)∧�n, I g(�e2 · d�e1)

〉
g
=− 2 I21 ∂x2

λ ∂x1
�Φ ∧ �n e−4λ

+ 2 I22 ∂x1
λ ∂x1

�Φ ∧ �n e−4λ(3.56)

− 2 I12 ∂x1
λ ∂x2

�Φ ∧ �n e−4λ

+ 2 I11 ∂x2
λ ∂x2

�Φ ∧ �n e−4λ.

On the other hand, it holds that

∂x1

[
e−4λ

[
∂x1

�Φ ∧�I22 − ∂x2
�Φ ∧�I12

]]
(3.57)

+ ∂x2

[
e−4λ

[
− ∂x1

�Φ ∧�I12 + ∂x2
�Φ ∧�I11

]]
= e−2λ ∂x1

[
e−2λ

[
∂x1

�Φ ∧�I22 − ∂x2
�Φ ∧�I12

]]
+ e−2λ ∂x2

[
e−2λ

[
− ∂x1

�Φ ∧�I12 + ∂x2
�Φ ∧�I11

]]
− 2 I22 ∂x1

λ ∂x1
�Φ ∧ �n e−4λ + 2 I12 ∂x1

λ ∂x2
�Φ ∧ �n e−4λ

+ 2 I21 ∂x2
λ ∂x1

�Φ ∧ �n e−4λ − 2 I11 ∂x2
λ ∂x2

�Φ ∧ �n e−4λ.

Combining (3.56) and (3.57) gives

∂x1

[
e−4λ

[
∂x1

�Φ ∧�I22 − ∂x2
�Φ ∧�I12

]]
(3.58)

+ ∂x2

[
e−4λ

[
− ∂x1

�Φ ∧�I12 + ∂x2
�Φ ∧�I11

]]
= e−2λ ∂x1

[
e−2λ

[
∂x1

�Φ ∧�I22 − ∂x2
�Φ ∧�I12

]]
+ e−2λ ∂x2

[
e−2λ

[
− ∂x1

�Φ ∧�I12 + ∂x2
�Φ ∧�I11

]]
− 2

〈
(∗d�Φ)∧�n, I g(�e2 · d�e1)

〉
g
.

Thus, putting together this time the second equality of (3.55) and (3.58),
we have obtained the following lemma.
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Lemma 3.2. For any smooth conformal immersion the following
identity holds:

e−2λ ∂x1

[
e−2λ

[
∂x1

�Φ ∧�I22 − ∂x2
�Φ ∧�I12

]]
(3.59)

+ e−2λ ∂x2

[
e−2λ

[
− ∂x1

�Φ ∧�I12 + ∂x2
�Φ ∧�I11

]]
= 0,

which also implies
(3.60)

∂x1

[
e
−2λ

[
∂x1

�Φ ∧�I22 − ∂x2

�Φ ∧�I12
]]

= −∂x2

[
e
−2λ

[
− ∂x1

�Φ ∧�I12 + ∂x2

�Φ ∧�I11
]]

.

Let �D be the 2-vector given by

(3.61)

⎧⎪⎨
⎪⎩

∂x1
�D := e−2λ

[
− ∂x1

�Φ ∧�I12 + ∂x2
�Φ ∧�I11

]

−∂x2
�D := e−2λ

[
∂x1

�Φ ∧�I22 − ∂x2
�Φ ∧�I12

]
.

Using �D, we can rewrite (3.55) as

2
〈
(∗d�Φ)∧

[
�I g(�e2 · d�e1) + ∗

([
�e2 · d�e1 ⊗ �e2 · d�e1 − 2−1 |�e2 · d�e1|

2
g
]

g d�Φ
)]〉

g

(3.62)

= ∂x1

[
e
−2λ

∂x2

�D
]
− ∂x2

[
e
−2λ

∂x1

�D
]
.

We conclude by observing that

∂x1
(e−2λ ∂x2

�D)− ∂x2
(e−2λ ∂x1

�D) = −2 e−2λ
[
∂x1

λ∂x2
�D − ∂x2

λ∂x1
�D
](3.63)

= −2 < ∗gdλ, d �D > .

Plugging (3.63) into (3.62), we obtain (3.44).

3.3. A system of conservation laws involving Jacobian nonlin-

earities for the critical points of the frame energy. Observe that

the 2-vector �D defined in (3.45) (notice that �D is unique up to constants

and in the following we will just be interested in ∇ �D), using the more
standard notation in R

3 of vector product instead of the wedge product
of vectors, can be identified (and we will do it) with the vector defined
by

(3.64) ∇ �D = I g ∇
⊥�Φ× �n.

Notice that ∇ �D ∈ L2(D2).

Let us start by noticing that if the pair (�Φ, �e), where �Φ is a weak

immersion of D2 into R
3 and �e is a moving frame on �Φ, is a critical

point for the frame energy F , then, up to a reparametrization, we can

assume that �e is the coordinate moving frame associated to �Φ, i.e.,
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�e = (�e1, �e2) =
√
2

|∇�Φ|(∂x1
�Φ, ∂x2

�Φ). This is the content of the next lemma.

Let us also explicitly remark that when we say that (�Φ, �e) is a critical

point of F we mean with respect to every normal perturbation of �Φ and
any rotation of the moving frame �e.

Lemma 3.3. Let �Φ be a weak immersion of D2 into R
3 and �e a mov-

ing frame on �Φ (we stress that here �e can be any moving frame, i.e. we

do not assume a priori that �e = (�e1, �e2) =
√
2

|∇�Φ|(∂x1
�Φ, ∂x2

�Φ)). Assume

that (�Φ, �e) is critical for the frame energy F . Then there exists a bilip-
schitz diffeomorphism ψ : D2 → D2 such that the new weak immersion
�̃Φ := �Φ◦ψ is conformal and �e is the coordinate moving frame associated

to �̃Φ, i.e. �e = (�e1, �e2) =
√
2

|∇�̃Φ|
(∂x1

�̃Φ, ∂x2
�̃Φ).

Proof. For the moment fix �Φ. From the criticality of the moving frame
�e for the frame energy F—or equivalently for the tangential frame en-
ergy FT—with respect to rotations (i.e. with respect to variations of
the type �et = eitθ�e for θ ∈ [0, 2π]), a simple computation shows that
the frame �e satisfies the Coulomb condition div(�e1 · ∇�e2) = 0. At this
point the existence of the reparametrization ψ can be performed using
the so called Chern moving frame method and it is well known (see for
instance [32]). q.e.d.

From now on, if (�Φ, �e) is a critical point of the frame energy F , we
will always assume that �e is the coordinate orthonormal frame associated

to �Φ; this is not restrictive, up to bilipschitz reparametrizations of �Φ,

thanks to Lemma 3.3. Therefore, when saying that �Φ is a critical point

of F we will mean that (�Φ, �e) is critical, where �e is the coordinate

orthonormal frame associated to �Φ.
We recall that by identity (1.9), we have F(�Φ, �e) = FT (�Φ, �e)+W (�Φ);

combining the first variation formula of the tangential frame energy
FT computed in (3.40) with the first variation of the Willmore func-
tional W we obtain the one of F . Let us recall that the first variation
of the Willmore functional W (�Φ) :=

∫
�ΦH2dvolg on a weak conformal

immersion �Φ of a disk D2 into R
3 with respect to a smooth vector

field �w ∈ C∞
c (R3,R3) with �w|�Φ(∂D2) = 0 is given by (for more detail,

see [32])

(3.65)
d

dt |t=0
W (�Φ+ t �w) =

∫
D2

1

2
div

[
∇ �H − 3∇H �n+∇⊥�n× �H

]
· �w,

so that we obtain
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d

dt |t=0
F(�Φ + t �w) =

∫
D2

div
[1
2

(
∇ �H − 3∇H �n+∇⊥�n× �H

)(3.66)

−�I g(�e2 · ∇
⊥�e1)− �e2 · ∇

⊥�e1 (�e2 · ∇�e1,∇�Φ)g

+
1

2
|�e2 · ∇�e1|

2
g∇

⊥�Φ
]
· �w.

So we obtained the following proposition.

Proposition 3.5. Let �Φ be a weak conformal immersion of the disk

D2 into R
3. Then �Φ is a critical point of the frame energy F if and only

if

div
[1
2

(
∇ �H − 3∇H �n+∇⊥�n× �H

)
−�I g(�e2 · ∇

⊥�e1)(3.67)

− �e2 · ∇
⊥�e1 (�e2 · ∇�e1,∇�Φ)g +

1

2
|�e2 · ∇�e1|

2
g∇

⊥�Φ
]
= 0

Lemma 3.4. Let �Φ be a weak conformal immersion of the disc D2

into R
3 critical for the frame energy F . Then there exists a vector field

�LF ∈ L2,∞
loc (D2) with ∇�LF ∈ L1(D2) such that

∇⊥�LF =
1

2

(
∇ �H − 3∇H �n+∇⊥�n× �H

)
−�I g(�e2 · ∇

⊥�e1)− �e2 · ∇
⊥�e1(�e2 · ∇�e1,∇�Φ)g +

1

2
|�e2 · ∇�e1|

2
g∇

⊥�Φ.

Proof. By the first variation formula (3.66), we know that if �Φ is
critical for the frame energy then

div
[1
2

(
∇ �H − 3∇H �n+∇⊥�n× �H

)(3.68)

−�I g(�e2 · ∇
⊥�e1)− �e2 · ∇

⊥�e1(�e2 · ∇�e1,∇�Φ)g +
1

2
|�e2 · ∇�e1|

2
g∇

⊥�Φ
]
= 0.

So there exists �LF , as desired. by the weak Poincaré Lemma. (More pre-
cisely, one takes successively the convolution of the ⊥ of the divergence
free quantity above with the Poisson kernel (2π)−1 log r, then taking the
divergence and finally subtracting some harmonic vector field one gets
the conclusion; for more details see the beginning of the proof of [31,

Theorem VII.14]; in particular, the L2,∞ regularity of �LF follows by a
classical result of Adams [1] on Riesz potentials.) q.e.d.

Lemma 3.5. Let �Φ be a weak conformal immersion of the disc D2

into R
3 critical for the frame energy F and let �LF given by Lemma 3.4.
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Then the following system of conservation laws holds:

(3.69)

⎧⎪⎨
⎪⎩

div
(〈

�LF ,∇
⊥�Φ
〉
R3

)
= 0

div
(
�LF ×∇⊥�Φ+ λ ∇⊥ �D +H∇⊥�Φ

)
= 0.

Therefore there exists a function SF ∈ W
1,(2,∞)
loc (D2,R) and a vector

field �RF ∈ W
1,(2,∞)
loc (D2,R3) satisfying

∇SF =
〈
�LF ,∇�Φ

〉
R3

(3.70)

∇�RF = �LF ×∇�Φ+ (λ− λ̄) ∇ �D −H∇�Φ,(3.71)

where λ̄ is the mean value of λ on D2.

Proof. Combining Remark 3.4, the definition of �LF in Lemma 3.4,
and Theorem VII.14 in [31] (in particular see equations (VII.187) and
(VII.204)), we have

⎧⎪⎪⎨
⎪⎪⎩

〈
∇�LF ,∇

⊥�Φ
〉
g
= 0

〈
∇�LF ×∇⊥�Φ

〉
g
+ < ∇λ,∇⊥ �D >g + < ∇H,∇⊥�Φ >g= 0.

Since div ◦ ∇⊥ ≡ 0, the last system is equivalent to the desired system
(3.69). The existence and the regularity of SF and �RF is analogous to

the existence of �LF in Lemma 3.4. q.e.d.

Proposition 3.6. Let �Φ be a weak conformal immersion of the disc

D2 into R
3 critical for the frame energy F and let SF ∈ W

1,(2,∞)
loc (D2,R), �RF ∈

W 1,(2,∞)(D2,R3) be given by Lemma 3.5. Then their gradients satisfy
the following system:

(3.72)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇SF = −
〈
∇⊥ �RF , �n

〉
+ (λ− λ̄)

〈
∇⊥ �D,�n

〉
∇�RF = �n×∇⊥ �RF +∇⊥SF �n+ (λ− λ̄) ∇ �D + (λ− λ̄)

(〈
∇⊥ �D,�e2

〉
�e1 −

〈
∇⊥ �D,�e1

〉
�e2

)
.



A FRAME ENERGY FOR IMMERSED TORI 167

Therefore (SF , �RF , �D, �Φ, λ) satisfy the following elliptic system:
(3.73)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔSF = −
〈
∇⊥ �RF ,∇�n

〉
+ div

[
(λ− λ̄)

〈
∇⊥ �D,�n

〉]
Δ�RF = ∇�n×∇⊥ �RF +∇⊥SF ∇�n

+div
[
(λ− λ̄) ∇ �D + (λ− λ̄)

(〈
∇⊥ �D,�e2

〉
�e1 −

〈
∇⊥ �D,�e1

〉
�e2

)]

Δ �D = div
(
I g ∇

⊥�Φ× �n
)

[1− (λ− λ̄)]Δ�Φ = −
〈
∇�RF ×∇⊥�Φ

〉
−
〈
∇SF ,∇

⊥�Φ
〉

Δλ = −
〈
∇⊥�e1,∇�e2

〉
.

As a consequence, we have that SF ∈ W 1,2
loc (D

2,R) and �RF ∈ W 1,2
loc (D

2,R3).

Remark 3.2. A natural question arising from Proposition 3.6 is if
the system (3.73) actually is equivalent to the frame energy equation
(3.67); in analogy with the situation in the Willmore framework (see
[3], [31], [33]) we expect this not to be the case. More precisely, we
expect the system (3.73) to be equivalent to the conformal-constrained
Willmore equation. A second observation is that we expect the conserva-

tion laws on SF and �RF to be associated, via Noether’s Theorem, with
dilations and rotations (transformations that preserve the frame energy,
as observed in the introduction); this remark in the context of Willmore
surfaces is due to Yann Bernard [2].

Proof. Recall that we use the notation

(3.74) �e1 × �e2 = �n,

so, taking the scalar product in R
3 between (3.71) and �n and observing

that 〈
∂x1

�RF , �n
〉
= eλ

〈
�LF , �e2

〉
〈�e2 × �e1, �n〉+ (λ− λ̄)

〈
∂x1

�D,�n
〉

= −
〈
�LF , ∂x2

�Φ
〉
+ (λ− λ̄)

〈
∂x1

�D,�n
〉

〈
∂x2

�RF , �n
〉
= eλ

〈
�LF , �e1

〉
〈�e1 × �e2, �n〉+ (λ− λ̄)

〈
∂x2

�D,�n
〉

=
〈
�LF , ∂x1

�Φ
〉
+ (λ− λ̄)

〈
∂x2

�D,�n
〉
,

we get

(3.75)
〈
∇�RF , �n

〉
=
〈
�LF ,∇

⊥�Φ
〉
+ (λ− λ̄)

〈
∇ �D,�n

〉
;
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recalling (3.70) and the fact that (∇⊥)⊥ = −∇, the last identity gives

(3.76) ∇SF = −
〈
∇⊥ �RF , �n

〉
+ (λ− λ̄)

〈
∇⊥ �D,�n

〉
.

Analogously one computes
〈
∇�RF , �ei

〉
which, combined with (3.75),

gives

(3.77) ∇�RF =
〈
�LF ,∇

⊥�Φ
〉
�n−

〈
�LF , �n

〉
∇⊥�Φ+ (λ− λ̄) ∇ �D.

Taking the vector product of (3.77)⊥ with �n gives
(3.78)

∇⊥ �RF ×�n =
〈
�LF , �n

〉
∇⊥�Φ+(λ− λ̄)

(〈
∇⊥ �D,�e2

〉
�e1 −

〈
∇⊥ �D,�e1

〉
�e2

)
,

which, plugged into (3.77) together with (3.70), gives

∇�RF =�n×∇⊥ �RF +∇⊥SF �n+ (λ− λ̄)∇ �D + (λ− λ̄)
(〈

∇⊥ �D,�e2

〉
�e1

−
〈
∇⊥ �D,�e1

〉
�e2

)
.

Applying the divergence and recalling that div(∇⊥) ≡ 0, we get the

first two equations. The very definition of �D gives the third equation.
In order to obtain the fourth equation, compute the vector product

between ∇⊥�Φ and �RF as in (3.71):
(3.79)〈

∇⊥�Φ×∇�RF

〉
=
〈
∇⊥�Φ× (�LF ×∇�Φ)

〉
+ (λ− λ̄)

〈
∇⊥�Φ×∇ �D

〉
.

A short computation gives〈
∇⊥�Φ×∇ �D

〉
=

〈
∇⊥�Φ×

(
I g∇

⊥�Φ× �n
)〉

= I g∇
⊥�Φ

〈
∇⊥�Φ, �n

〉
− �n

〈
I g∇

⊥�Φ,∇⊥�Φ
〉

= −2e2λH�n = −Δ�Φ.(3.80)

Observing that

H
〈
∇⊥�Φ×∇�Φ

〉
= 2e2λ �H = Δ�Φ,

and〈
∇⊥�Φ× (�LF ×∇�Φ)

〉
= �LF

〈
∇⊥�Φ,∇�Φ

〉
−∇�Φ

〈
∇⊥�Φ, �LF

〉
= −

〈
∇�Φ,∇⊥SF

〉
,

where in the last equality we recalled (3.70) and that of course〈
∇⊥�Φ,∇�Φ

〉
= 0, we can therefore rewrite (3.79) as

[1− (λ− λ̄)]Δ�Φ = −
〈
∇�RF ×∇⊥�Φ

〉
−
〈
∇SF ,∇

⊥�Φ
〉
.

The last equation is classical; see for instance [31, (VII.132)].

The improved regularity of λ, SF , and �RF is quite standard; in any

case let us briefly sketch the proof for λ and SF (the one for �RF is
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analogous). The fact that λ ∈ L∞(D2) follows directly from the Wente-
type estimate of Chanillo-Li [7] (for more details see also [31, Section
VII.6.4]). Let us discuss the regularity of SF : take any ball B ⊂ D2 and
write SF on B as

SF = S0 + S1 + S2,

where S0 ∈ C∞(B) is the harmonic extension to B of SF |∂B and S1, S2

satisfy the equations

(3.81)

⎧⎨
⎩

ΔS1 = −
〈
∇⊥ �RF ,∇�n

〉
on B

S1 = 0 on ∂B,

(3.82)

⎧⎨
⎩

ΔS2 = −div
[
(λ− λ̄)

〈
∇⊥ �D,�n

〉]
on B

S2 = 0 on ∂B.

Since by construction �RF ∈ W 1,(2,∞)(B) and �n ∈ W 1,2(B), by a re-
finement of the Wente inequality due to Bethuel [4] (which is based
on previous results of Coifman-Lions-Meyer and Semmes), equation
(3.81) implies that S1 ∈ W 1,2(B). The fact that S2 ∈ W 1,2(B) follows
instead from Stampacchia gradient estimates, recalling that λ − λ̄ ∈
L∞(B,R), �D ∈ W 1,2(B,R3) and of course �n ∈ L∞(B,R3). q.e.d.

4. Regularity of critical points for the frame energy:

proof of Theorem 1.2

The goal of the next section is to minimize the frame energy in each
regular homotopy class of immersed tori in R

3 and to propose such a
minimizer as canonical representative for its own class; to this aim, in
the present section we develop the regularity theory for critical points of
the frame energy. The fundamental starting point is given by the elliptic
system with quadratic Jacobian nonlinearities satisfied by the critical
points of the frame energy, namely Proposition 3.6.

The strategy is to show that, for every x0 ∈ D2 and r > 0 small
enough, the system (3.73) with Dirichlet boundary condition has at
most one solution in a suitable function space for every 0 < ρ ≤ r;
then, using a good slicing argument together with properties of the
trace and harmonic extension, we construct a more regular solution of
the system (3.73) having the same boundary condition as the initial
solution. By the uniqueness we infer that the initial solution had to be
more regular, namely in a subcritical space; then we conclude with a
standard bootstrap argument that the initial solution is actually C∞.

Before stating the lemmas let us introduce some notation. In the

following, �Φ will be a weak conformal immersion of D2 into R
3 critical
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for the functional F . For any ρ ∈ (0, 1), k ∈ R and p ∈ (1,∞) we will
denote

Ek,p(Bρ(0)) :=W k,p(Bρ(0),R)×W k,p(Bρ(0),R
3)

×W k,p(Bρ(0),R
3)×W k+1,p(Bρ(0),R

3),

E1,p
0 (Bρ(0)) :=W 1,p

0 (Bρ(0),R) ×W 1,p
0 (Bρ(0),R

3)

×W 1,p
0 (Bρ(0),R

3)× (W 2,p ∩W 1,p
0 (Bρ(0),R

3)).

Let us define
(4.83)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(A) := ΔA+
〈
∇⊥ �B,∇�n

〉
− div

[
(λ− λ̄)

〈
∇⊥ �C, �n

〉]

L( �B) := Δ �B −∇�n×∇⊥ �B −∇⊥A ∇�n

−div
[
(λ− λ̄) ∇�C + (λ− λ̄)

(〈
∇⊥ �C,�e2

〉
�e1 −

〈
∇⊥ �C,�e1

〉
�e2

)]

L(�C) := Δ�C − div
(
π�n(∇

2�Ψ) g ∇
⊥�Φ× �n

)

L(�Ψ) := Δ�Ψ+ 1
1−(λ−λ̄)

[〈
∇ �B ×∇⊥�Φ

〉
+
〈
∇A,∇⊥�Φ

〉]
,

where �Φ, �ei, �n, λ, λ̄ are the critical weak conformal immersion, its nor-
malized tangent vectors, its normal vector, its conformal factor, and the
mean value of the conformal factor on Bρ(0); all these terms are seen in
system (4.83) as coefficients.

Let us start by the following preliminary lemma.

Lemma 4.6. Let �Φ be a weak conformal immersion of D2 into R
3

critical for the frame energy F ; denote by �ei, λ its normalized coordinate
tangent vectors and its conformal factor. Then for every σ > 0 there

exists r > 0 (depending on �Φ and σ) such that for every ρ ∈ (0, r] it
holds that

(4.84) ‖λ− λ̄‖L∞(Bρ(0)) ≤ σ2,

where λ̄ is the mean value of λ on Bρ(0).

Proof. Since �ei are the normalized coordinate tangent vectors, the
conformal factor λ satisfies

(4.85) ∇⊥λ = �e1 · ∇�e2.

It follows that, for every δ0 > 0 to be fixed later, there exists r > 0 such
that
(4.86)

‖∇λ‖2L2(B2r(0))
=

∫
B2r(0)

|�e1 · ∇�e2|
2 dx =

∫
B2r(0)

|�e1 · d�e2|
2
g dvolg ≤ δ20 .
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Now decompose λ on B2r(0) as λ = λ0 +λ1 where λ0, λ1 satisfy respec-
tively {

Δλ0 = 0 on B2r(0)

λ0 = λ on ∂B2r(0),

and {
Δλ1 = −

〈
∇⊥�e1,∇�e2

〉
on B2r(0)

λ1 = 0 on ∂B2r(0).

By Wente estimate [41] (see also [31, Section IV]) we have

‖λ1‖L∞(B2r(0)) + ‖∇λ1‖L2(B2r(0)) ≤ C‖∇�e1‖L2(B2r(0))‖∇�e2‖L2(B2r(0))

(4.87)

≤ C′

[∫
B2r(0)

|�e2 · ∇�e1|
2 dx +

∫
B2r(0)

(|�n · ∇�e1|
2 + |�n · ∇�e2|

2) dx

]

≤ C′′

[∫
B2r(0)

|�e2 · d�e1|
2
g dvolg +

∫
B2r(0)

|�I|2g dvolg

]

≤ δ0,

for r > 0 small enough. Combining (4.86) with (4.87) we get
‖∇λ0‖L2(B2r(0)) ≤ 2δ0. Since λ0 is harmonic, calling λ̄0,ρ the mean value
of λ0 on Bρ(0), we infer

‖λ0 − λ̄0,ρ‖L∞(Bρ(0)) ≤ C‖∇λ0‖L2(B2r(0)) ≤ 2Cδ0, ∀ρ ∈ (0, r].

The combination of the last estimate with (4.87) gives the claim, once
δ0 > 0 is chosen small enough. q.e.d.

Observe that combining Lemma 4.6 with Lemma 6.9, we get that L is
a linear continuous operator from E1,p(Bρ(0)) to E−1,p(Bρ(0)) for every
p ∈ (1,∞).

The key technical lemma for proving the regularity is the following
isomorphism result.

Lemma 4.7 (L is an isomorphism between E1,p
0 and E−1,p). Let �Φ

be a weak conformal immersion of D2 into R
3 critical for the frame

energy F . Then there exists r > 0 (depending on �Φ) such that for every

ρ ∈ (0, r] the linear operator L is an isomorphism from E1,p
0 (Bρ(0)) onto

E−1,p(Bρ(0)), for every p ∈ (1,∞). In particular, if �E ∈ E1,p
0 (Bρ(0)),

for some p ∈ (1,∞), solves the homogeneous equation L( �E) = 0, then
�E = 0 a.e. on Bρ(0).

Proof. From the discussion above we already know that L : E1,p
0 (Bρ(0)) →

E−1,p(Bρ(0)) is a continuous linear operator. Our goal is to prove that

L : E1,p
0 (Bρ(0)) → E−1,p(Bρ(0)) is an isomorphism; more precisely we

prove that there exists r > 0 such that for every ρ ∈ (0, r) and for
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every (fA, �f �B ,
�f �C ,

�f�Ψ) ∈ E−1,p(Bρ(0)), the system L(A0, �B0, �C0, �Ψ0) =

(fA, �f �B,
�f �C ,

�f�Ψ) has a unique solution (A0, �B0, �C0, �Ψ0) ∈ E1,p
0 (Bρ(0)).

By Lemma 4.6 we know that for any σ > 0 there exists r > 0 such that
for every ρ ∈ (0, r] it holds that

(4.88) ‖λ− λ̄‖L∞(Bρ(0)) ≤ σ2.

From the rest of the proof consider a fixed arbitrary ρ ∈ (0, r].
As the first step we establish a priori estimates on the solutions. If

(A0, �B0, �C0, �Ψ0) ∈ E1,p
0 (Bρ(0)) solves L(A

0, �B0, �C0, �Ψ0) = (fA, �f �B,
�f �C ,

�f�Ψ)
then, using (4.88) and Lemma 6.9, and the classical Stampacchia gra-
dient estimates for elliptic PDEs, we can estimate (all the norms are
computed on Bρ(0))

‖∇2�Ψ0‖Lp ≤ γ
[
‖�f�Ψ‖Lp + ‖∇A0‖Lp + ‖∇ �B0‖Lp

]
‖∇ �C0‖Lp ≤ γ

[
‖∇2�Ψ0‖Lp + ‖∇ �B0‖Lp

]
‖∇ �B0‖Lp ≤ γ

[
‖�f �B‖W−1,p + ε0

(
‖∇A0‖Lp + ‖∇ �B0‖Lp + ‖∇ �C0‖Lp

)]
‖∇ �A0‖Lp ≤ γ

[
‖�fA‖W−1,p + ε0

(
‖∇A0‖Lp + ‖∇ �B0‖Lp + ‖∇ �C0‖Lp

)]
,

for some constant γ > 0. Bootstrapping the estimates above we obtain
that

‖(A0, �B0, �C0, �Ψ0)‖E1,p
0

(Bρ(0))
≤ γ′[

ε0‖(A
0, �B0, �C0, �Ψ0)‖E1,p

0
(Bρ(0))

+ ‖(fA, �f �B,
�f �C ,

�f�Ψ)‖E−1,p
0

(Bρ(0))

]
.

Choosing ρ > 0 small enough such that γ′ε0 ≤ 1
2 , the last estimate gives

(4.89) ‖(A0, �B0, �C0, �Ψ0)‖E1,p
0

(Bρ(0))
≤ γ′′‖(fA, �f �B,

�f �C ,
�f�Ψ)‖E−1,p

0
(Bρ(0))

.

Since L is linear, of course, the a priori estimate (4.89) ensures unique-

ness of the solution to the system L(A0, �B0, �C0, �Ψ0) = (fA, �f �B ,
�f �C ,

�f�Ψ)

in the space E1,p
0 (Bρ(0)).

We now construct the solution by iteration. Given (fA, �f �B ,
�f �C ,

�f�Ψ) ∈

E−1,p
0 (Bρ(0)), let (A0, �B0, �C0, �Ψ0) ∈ E1,p

0 (Bρ(0)) be the solution to⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ΔA0 = fA

Δ �B0 = �f �B

Δ�Ψ0 =
1

(λ−λ̄)

[〈
∇ �B0 ×∇⊥�Φ

〉
+
〈
∇A0,∇

⊥�Φ
〉]

+ �f�Ψ

Δ �C0 = div
(
π�n(∇

2�Ψ0) g ∇
⊥�Φ× �n

)
+ �f �C .
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In order to define the iteration, let us denote by L̃ : E1,p
0 (Bρ(0)) →

E−1,p
0 (Bρ(0)) the linear operator such that L = Δ− L̃ (recall the defini-

tion of L in (4.83)). Now we define (Ai+1, �Bi+1, �Ci+1, �Ψi+1) ∈ E1,p
0 (Bρ(0))

as the solution to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔAi+1 = L̃(Ai, �Bi, �Ci, �Ψi)

Δ �Bi+1 = L̃(Ai, �Bi, �Ci, �Ψi)

Δ�Ψi+1 =
1

(λ−λ̄)

[〈
∇ �Bi+1 ×∇⊥�Φ

〉
+
〈
∇Ai+1,∇

⊥�Φ
〉]

Δ �Ci+1 = div
(
π�n(∇

2�Ψi+1) g ∇
⊥�Φ× �n

)
.

Analogously as for the a priori estimates above, we estimate that

‖Ai+1‖W 1,p + ‖ �Bi+1‖W 1,p ≤ γε0‖(Ai, �Bi, �Ci, �Ψi)‖E1,p
0

which yields

‖�Ψi+1‖W 2,p + ‖�Ci+1‖W 1,p ≤ γ
(
‖Ai+1‖W 1,p + ‖ �Bi+1‖W 1,p

)
≤ γ′ε0 ‖(Ai, �Bi, �Ci, �Ψi)‖E1,p

0

.

Combining the last two estimates we obtain that there exists γ > 0, and
for every ε0 there exists r > 0 such that for every ρ ∈ (0, r) it holds
(4.90)

‖(Ai, �Bi, �Ci, �Ψi)‖E1,p
0

(Bρ(0))
≤ (γε0)

i ‖(A0, �B0, �C0, �Ψ0)‖E1,p
0

(Bρ(0))
.

Choosing ε0 ≤ γ
2 and r > 0 accordingly, it is straightforward to check

that the quantities

A0 :=
∞∑
i=0

Ai, �B0 :=
∞∑
i=0

�Bi, �C0 :=
∞∑
i=0

�Ci, �Ψ0 :=
∞∑
i=0

�Ψi

are well defined with (A0, �B0, �C0, �Ψ0) ∈ E1,p
0 (Bρ(0)), and that L(A0, �B0,

�C0, �Ψ0) = (fA, �f �B,
�f �C ,

�f�Ψ) as desired.
q.e.d.

As should be clear from the lemmas above, for proving the regularity
it is convenient to work with functions with zero boundary value. As we
will soon see, to this aim it is enough that we add to the system (4.83)

some E−1,4-terms coming from the data (SF , �RF , �D, �Φ). From now on,
let r > 0 be given by Lemma 4.7 and ρ ∈ (0, r).

Recall that, by Proposition 3.6, (SF , �RF , �D, �Φ) ∈ E1,2
loc (D

2); there-
fore, by Fubini’s Theorem, for a.e. ρ ∈ (0, r) we have that SF ∈ W 1,2

(∂Bρ(0),R), �RF ∈ W 1,2(∂Bρ(0),R), �D ∈ W 1,2(Bρ(0),R
3), and �Φ ∈

W 2,2 ∩W 1,∞(∂Bρ(0),R
3). So, let

(4.91) (S0, �R0, �D0, �Φ0) ∈ E1,4(Bρ(0))
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be the extensions to Bρ(0) of the above quantities defined on ∂Bρ(0)

and define (S0, �R0, �D0, �Φ0) ∈ E1,2
0 (Bρ(0)) as

(4.92) (S0, �R0, �D0, �Φ0) := (SF − S0, �RF − �R0, �D − �D0, �Φ− �Φ0).

Let us stress that (S0, �R0, �D0, �Φ0) have zero boundary value on ∂Bρ(0).

Recalling that thanks to Proposition 3.6 it holds that L(SF , �RF , �D, �Φ) =
0, we infer that

(4.93) L(S0, �R0, �D0, �Φ0) = (fS , �f�R,
�f �D,

�f�Φ) on Bρ(0)

for some (fS , �f�R,
�f �D,

�f�Φ) ∈ E−1,4(Bρ(0)) easy to compute from the defi-
nition of L as in (4.83).

Now, thanks to the isomorphism Lemma 4.7 applied with p = 4, there

exists (A0, �B0, �C0, �Ψ0) ∈ E1,4
0 (Bρ(0)) solution to the system

(4.94) L(A0, �B0, �C0, �Ψ0) = (fS , �f�R,
�f �D,

�f�Φ).

But, since clearly E1,4
0 (Bρ(0)) ⊂ E1,2

0 (Bρ(0)), the uniqueness statement
of the isomorphism Lemma 4.7 applied this time with p = 2 together
with (4.93) and (4.94) implies that

(S0, �R0, �D0, �Φ0) = (A0, �B0, �C0, �Ψ0) on Bρ(0) ⇒ (S0, �R0, �D0, �Φ0) ∈ E1,4
0 (Bρ(0)).

Therefore, recalling (4.91) and (4.92), we conclude that

(4.95) (SF , �RF , �D, �Φ) ∈ E1,4(Bρ(0)).

Now, plugging the information that �Φ ∈ W 2,4(Bρ(0)) into the Euler-
Lagrange equation of the frame energy F , we obtain that

Δ �H = �F on Bρ(0)

for some �F ∈ W−1,2(Bρ(0)), so �H ∈ W 1,2
loc (Bρ(0)). Recall that Δλ =

(∇�e1,∇
⊥�e2) ∈ L2(Bρ(0)), so λ ∈ W 2,2

loc (Bρ(0)). Also Δ�Φ = e−2λ �H ∈

W 1,2
loc (Bρ(0)), so �Φ ∈ W 3,2

loc (Bρ(0)) and in particular �Φ ∈ W 2,p
loc (Bρ(0))

for every p ∈ (1,∞).

Now repeating the above argument, we get that �Φ ∈ W 3,p
loc (Bρ(0)) for

every p ∈ (1,∞); the same procedure now gives that �Φ ∈ W k,p
loc (Bρ(0))

for every p ∈ (1,∞) and every k ∈ N. Therefore �Φ is smooth in a
neighborhood of 0 and we have proved Theorem 1.2. q.e.d.

5. Existence of a smooth minimizer of F in regular homotopy

classes of tori immersed in R
3: proof of Theorem 1.3

At first, it must be proved that the notion of regular homotopy class
extends to the general setting of weak immersions. This is the content
of the next proposition.
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Proposition 5.7. The notion of regular homotopy class extends to
the framework of weak immersions by approximation. More precisely,

let �Φ ∈ E(T2,R3) be a weak immersion; then there exists a sequence

{�Φk}k∈N of smooth immersions and there exists a fixed regular homotopy
class σ of immersed tori in R

3 such that

a) �Φk ∈ σ for every k ∈ N,

b) �Φk → �Φ in W 2,2(T2) ∩W 1,∞∗(T2).

Moreover, given any sequence {�Φk}k∈N satisfying condition b), then for
k large enough also condition a) holds. We therefore define σ to be the

regular homotopy class of �Φ.

Proof. The existence of an approximating sequence of smooth im-

mersions {�Φk}k∈N satisfying condition b) can be achieved by a standard
convolution argument recalling the two properties defining a weak im-
mersion (see the Introduction for the definition of weak immersion; more

precisely, condition 1 ensures that �Φk is a smooth immersion and the uni-

form W 1,∞ bound on �Φk, and condition 2 implies that �Φ ∈ W 2,2(T2,R3)

so that �Φk converges strongly in W 2,2-norm). By the strong W 2,2-
convergence it follows that the quantity

∫
|d�nk|

2dvolg�Φk
does not con-

centrate. The proof that, for k1, k2 large enough, two smooth immer-

sions �Φk1 ,
�Φk2 are in the same regular homotopy class is then analo-

gous to the proof of no loss of homotopic complexity in the points of
non-concentration of the frame energy, namely Case I below. The inde-
pendence of the regular homotopy class on the approximating sequence
easily follows from the arguments above just by merging two approxi-
mating sequences. q.e.d.

From now till the end of this section we fix a regular homotopy class

σ of immersions of T2 into R
3 and we consider {�Φk}k∈N ⊂ E(T2,R3)

a sequence of weak immersions, and {�ek}k∈N ⊂ W 1,2(T2, �Φ∗(V2(R
3))) a

sequence of moving frames on �Φk(T
2) such that (�Φk, �ek) is a minimizing

sequence of the frame energy F among all weak immersions belonging
to the class σ, and all moving frames on them.

Since (�Φk, �ek) is a minimizing sequence, we can assume that the frame
�ek minimizes the tangential frame energy FT defined in (1.7), i.e. we can
assume that �ek is a Coulomb frame. Using the Chern moving frame tech-
nique in order to construct conformal coordinates from a Coulomb frame

(for more details see [32]), we get that the weak immersions �Φk induce
a smooth conformal structure on T

2; moreover, up to composition with

a bilipschitz diffeomorphism of T2, the weak immersion �Φk is conformal
with respect to this smooth conformal structure. At this point, analo-
gously to the proof of Lemma 2.1, we can assume that the conformal
structure is contained in the moduli space M defined in (2.17) and that
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the moving frame is the coordinate one, i.e. �ek = ∇�Φk

√
2

|∇�Φk|
.

Let us observe that the conformal factors λk := log(|∂xi
�Φk|) satisfy

the uniform bound

(5.96) sup
k∈N

‖λk − λ̄k‖L∞(Σk) + ‖∇λk‖L2(Σk) < ∞,

where Σk is the flat torus corresponding to the conformal structure of
�Φk and λ̄k is the mean value of λk on Σk. In order to obtain (5.97) recall
that the conformal factors satisfy Δλk = − < ∇⊥�e1k,∇�e2k >; therefore,
by Wente estimates [41], we infer

‖λk − λ̄k‖L∞(Σk) + ‖∇λk‖L2(Σk) ≤ C0‖∇�e1k‖L2(Σk)‖∇�e2k‖L2(Σk)

≤ C1F(�Φk, �ek) ≤ C2.

Notice that if we rescale �Φk by a factor e−λ̄k we get that the conformal
factors of the rescaled immersions are uniformly bounded in L∞(Σk);
since the frame energy F is invariant under rescaling, we can replace
the minimizing sequence with the rescaled one, so that we can assume

(5.97) sup
k∈N

‖λk‖L∞(Σk) + ‖∇λk‖L2(Σk) < ∞.

Recalling (1.6), we have that the second fundamental forms of the �Φk’s
are uniformly bounded in L2(Σk) and therefore, thanks to (5.97), we
infer

(5.98) sup
k∈N

‖�Φk‖W 2,2(T2,R3) < ∞.

Now we claim that the conformal structures are contained in a com-
pact subset of the moduli space.

To this aim, observe that the proof of Proposition 2.2 can be repeated
for weak immersions. (Just notice that for a.e. x the curve γx is W 2,2,
so we can apply the Fenchel theorem and then integrate in x; same ar-
gument for y. All the other computations in the proof makes sense a.e.
so the integrated inequality holds as well.) Since by definition of M we
have θ ∈

[
π
3 ,

2π
3

]
, if τ2 → ∞ then the right hand side of (2.20) diverges

to +∞, which implies the claim. Therefore, up to subsequences in k,
the conformal structures Σk converge smoothly in the moduli space to
a limit Σ = Σ∞.

Combining the convergence of the conformal structures and the esti-
mates (5.97)–(5.98), we infer that there exists a weak conformal immer-

sion �Φ = �Φ∞ ∈ E(T2,R3), with conformal factor λ = λ∞ = log |∂xi
�Φ|
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and coordinate moving frame �e = �e∞ = e−λ∇�Φ such that, up to subse-
quences,

�Φk ⇀ �Φ weakly−W 2,2(Σ), �ek ⇀ �e weakly−W 1,2(Σ),

(5.99)

λk ⇀ λ weakly−W 1,2(Σ) ∩ L∞(Σ)∗.

Let us stress that the limit �Φ is not branched thanks to the uniform
estimates on the conformal factors (5.97), which of course pass to the
limit under the above convergence.

Using the conformal invariance of the Dirichlet integral, the lower
semicontinuity of the L2-norm under weak convergence, and the smooth
convergence of the conformal structures, it follows that

F(�Φ, �e) =
1

4

2∑
i=1

∫
Σ
|d�ei|

2
g�Φ

dvolg�Φ

(5.100)

=
1

4

2∑
i=1

∫
Σ
|∇�ei|

2 dx ≤ lim inf
k

1

4

2∑
i=1

∫
Σk

|∇�eik|
2 dx

= lim inf
k

1

4

2∑
i=1

∫
Σk

|d�eik|
2
g�Φk

dvolg�Φk
= lim inf

k
F(�Φk, �ek).

Since (�Φk, �ek) is by construction a minimizing sequence, thanks to (5.100),
in order to finish the proof of Theorem 1.3 we just have to show that

the weak immersion �Φ is an element of the regular homotopy class σ.

The regularity of �Φ will then follow from Theorem 1.2 and from the

criticality (actually we have even minimality) of �Φ for the frame energy
F .

In order to prove that there is no loss of homotopic complexity in the
limit, we are going to show that we can cover Σ with a finite number
of balls and that on every ball there is no loss of homotopic complexity,
with good control of the boundary; in order to do so, we start with
detecting the points of energy concentration for the frame energy.

Let ε0 > 0 small to be chosen later; for every x ∈ Σ and k ∈ N we
define

(5.101) ρk,x := inf

{
ρ > 0 :

∫
B2ρ(x)

|∇�ek|
2 dx ≥ ε0

}
,

where B2ρ(x) is the ball in R
2 of center x and radius 2ρ with respect to

the flat metric.
For a given k ∈ N, the collection {Bρk,x(x)}x∈Σ forms a Besicovitch

covering of Σ; therefore, by the Besicovitch covering theorem, there
exists a finite sub-covering {Bρ

k,xk
i

(xki )}i∈Ik such that any point in Σ is
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covered by at most cΣ ∈ N balls, where cΣ does not depend on k ∈ N.
In fact, from the uniform bound on the frame energy with respect to
k ∈ N, the cardinality of Ik is uniformly bounded in k; thus, up to
subsequences, we can assume that I is independent of k (and finite) and
that for all i ∈ I

(5.102) xki → xi, ρk,xk
i
→ ρi as k → ∞,

for some xi ∈ Σ and ρi ≥ 0. Letting

(5.103) J := {i ∈ I : ρi = 0} and I0 = I \ J,

it is clear that {Bρi(xi)}i∈I0 covers Σ; moreover, for the strict convex-
ity of the euclidean balls, the points in Σ which are not contained in
∪i∈I0Bρi(xi) cannot accumulate and therefore are isolated and hence
finite:

(5.104) {a1, . . . , aN} := Σ \ ∪i∈I0Bρi(xi).

In order to show that �Φ is an element of σ, we are going to show that
there is no loss of homotopic complexity in the limit. We are going to
consider separately the regions of Σ where there is energy concentration
and where there is not. Before starting with the latter, observe that we

can assume that �Φk and �Φ are smooth immersions; indeed, almost by
definition (see Proposition 5.7), one can approximate a weak immersion
via a smooth immersion without changing the regular homotopy class.

Case I: No loss of homotopic complexity in Bρi(xi), i ∈ I0. From
(5.99) and (5.101)–(5.102), using Fubini’s Theorem (and a standard
selection argument ensuring the independence of k; see for instance [34,
Lemma B.1]) we have that there exists ρ ∈ (ρi, 2ρi) such that, up to
subsequences in k, it holds that
(5.105)

sup
k

∫
∂Bρ(xi)

|∇�ek|
2 dl ≤ 2ε0 and �Φk ⇀ �Φ weakly −W 2,2(∂Bρ(xi).

Recalling that we can write |∇�ek|
2 = |∇�nk|

2 + 2|∇λk|
2, by Schwartz

inequality we infer that

(5.106)

∫
∂Bρ(xi)

|∇�nk|dl +

∫
∂Bρ(xi)

|∇λk| dl ≤
√

Cε0ρ,

for some universal C > 0. In particular, calling kg the geodesic curva-
ture, it follows that∣∣∣∣∣

∫
�Φk(∂Bρ(xi))

|kg| dl − 2π

∣∣∣∣∣ ≤
√

Cε0ρ.

The combination of the last two estimates implies that �Φk(∂Bρ(xi)) is
a graph over a planar simple closed curve �α(·) : S1 → R

3 (which, up to
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a rotation, we can assume to be lying on the plane R2 = {z = 0} ⊂ R
3)

and, thanks to (5.105), the same holds for �Φ(∂Bρ(xi)). Therefore, up
to a regular homotopy, we can assume that �α is parametrizing a round

circle and that both �Φk and �Φ coincide with �α up to first order, i.e.
(5.107)

�Φ(·) = �Φk(·) = �α(·) and ∂r�Φ(·) = ∂r�Φk(·) =
∂

∂r
∈ R

2 on ∂Bρ(xi).

At this point, Lemma 6.10 in the appendix concludes the proof of
Case I.

Case II: No loss of homotopic complexity in the concentration points
{a1, . . . , aN}. We are going to show the claim at a fixed concentration
point a1; of course the argument for the other ai’s is analogous. By the
definition of concentration point, there exists a sequence of radii ρk ↓ 0
such that

lim inf
k

∫
Bρk

(a1)
|∇�nk|

2dx ≥ ε0.

Moreover, by the finiteness of the frame energy, it is easy to construct
a sequence {Rk}k∈N with the following properties:
(5.108)

Rk ↓ 0, Rk > ρk, lim
k→∞

ρk
Rk

= 0 and lim
k→∞

∫
BRk

(a1)\Bρk
(a1)

|∇�ek|
2dx = 0.

Now let us rescale the sequence �Φk by defining

(5.109) �̂Φk(x) :=
1

Rk

�Φk(a1 +Rk(x− a1)).

Observe that, by the invariance of the frame energy under scaling,
(5.108) implies that for every δ ∈ (0, 1/4) we have
(5.110)

0 = lim
k→∞

∫
B1(0)\Bδ(0)

|∇�̂ek|
2dx = lim

k→∞

∫
B1(0)\Bδ(0)

|∇n̂k|
2 + 2|∇λ̂k|

2dx,

where of course λ̂k = log |∂x1
�̂Φk|, �̂ek = e−λ̂k∇�̂Φk is the coordinate mov-

ing frame associated to �̂Φk and �̂nk is the normal vector. In order to com-

pare the regular homotopy type, let us also rescale the limit �Φ = �Φ∞
given in (5.99) by the same factors, i.e. we define

(5.111) �̂Φk
∞ :=

1

Rk

�Φ∞(a1 +Rk(x− a1)).
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Since by (5.100) the frame energy of �Φ∞ is finite, we also have

0 = lim
k→∞

∫
BRK

(0)
|∇�e∞|2 dx = lim

k→∞

∫
B1(0)

|∇�̂ek∞|2dx(5.112)

= lim
k→∞

∫
B1(0)

|∇n̂k
∞|2 + 2|∇λ̂k

∞|2dx,

with obvious meaning of the hatted quantities. Let ε̂0 > 0 small to be
fixed later. Combining (5.110) and (5.112), analogously to Case I (using
Fubini’s Theorem, a selection argument, and Schwartz inequality), we
get that there exists ρ̂ ∈ (1/4, 1) such that, up to subsequences in k, it
holds that

(5.113)

∫
∂Bρ̂(0)

|∇n̂k|+ |∇λ̂k|+ |∇n̂k
∞|+ |∇λ̂k

∞| dl ≤ ε̂0.

Now, analogously to Case I, we get that for ε̂0 small enough—or, in other

words, for k large enough—�Φk and �Φk∞ are graphs over a planar sim-
ple closed curve; hence, up to a regular homotopy, we can assume that
they coincide up to first order with a planar round circle as in (5.107).

By using Lemma 6.10, we conclude that �̂Φk|Bρ̂(0) and
�̂Φ∞
k |Bρ̂(0) are regu-

larly homotopic with good control on the boundary homotopy; therefore,

rescaling back by Rk, we obtain the same statement for �Φk|Bρ̂Rk
(a1) and

�Φ∞|Bρ̂Rk
(a1), as desired.

Remark 5.3. As a side remark let us observe that, by refining the
estimates of Case II and by a cutting and filling procedure—adapted to
the frame energy—analogous to the proof of [23, Lemma 5.2], it is pos-
sible to prove that actually Case II does not occur. Indeed it is possible

to replace �Φk(Bρk(a1)) by a flat disk without changing the regular ho-
motopy type and saving ε0/2 > 0 energy. This would clearly contradict

the assumption that �Φk is a minimizing sequence. Since this argument
is not needed and it is a bit more complicated than Case II discussed
above, we decided to present this simpler proof.

Summarizing, we proved that �Φk and �Φ∞ ∈ E(T2,R3) are elements
of the same regular homotopy class σ. Therefore, by the lower semicon-

tinuity (5.100), �Φ∞ is a minimizer of the frame energy F in its regular
homotopy class among weak immersions and W 1,2-moving frames. In

particular, �Φ∞ is a critical point of F , and by Theorem 1.2 we conclude

that �Φ∞ is smooth. This completes the proof of Theorem 1.3. q.e.d.

6. Appendices

6.1. Appendix A: Some classical computations in conformal

coordinates. In this appendix we consider a weak conformal immersion
�Φ of the disk D2 into R

3. We will denote by g the pullback metric on
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D2 induced by the immersion �Φ. We will use local positive conformal
coordinates x1, x2 on D2 and we will call (�e1, �e2) the local orthonormal

frame such that ∂x1
�Φ = eλ �e1 and ∂x2

�Φ = eλ �e2; λ := |∂x1
�Φ| = |∂x2

�Φ| is
called the conformal factor.

6.1.1. Variation of classical geometric quantities. The computa-
tions in the present subsection are rather classical; we repeat them here
mainly to fix the notations. Given a vector field �w ∈ C∞

c (R3,R3), con-
sider the one-parameter family of weak immersions of D2 into R

3 given

by �Φt := �Φ+ t �w.

The normal vector �nt of �Φ is given by

(6.114) �nt = �R3

(
∂x1

�Φt ∧ ∂x2
�Φt

|∂x1
�Φt ∧ ∂x2

�Φt|

)
= �e1(t)× �e2(t),

and can be expanded as

(6.115) �nt = �n+ t (a1 �e1 + a2 �e2) + o(t).

Since �nt ⊥ ∂xi
�Φt and ∂xi

�Φt = ∂xi
�Φ+ t ∂xi

�w, we have

(6.116) (∂xi
�w,�n) + ai e

λ = 0.

Combining (6.115) and (6.116) then gives

(6.117) �nt = �n− t < (d�w,�n) �n, d�Φ >g +o(t),

which gives

(6.118)
d�nt

dt
(0) = − < (d�w,�n) �n, d�Φ >g .

We have gij = (∂xi
�Φt, ∂xj

�Φt); thus

(6.119)
d

dt
gij(0) = (∂xi

�w, ∂xj
�Φ) + (∂xi

�Φ, ∂xj
�w).

Since
∑

i g
kigij = δkj and since gij(0) = e2λ I2 where I2 is the 2 × 2

identity matrix, differentiating we get
(6.120)

d

dt
gkj(0) = −e−4λ d

dt
gkj = − e−4λ

[
(∂xk

�w, ∂xj
�Φ) + (∂xk

�Φ, ∂xj
�w)
]
.

We also have
(6.121)

d

dt
(dvolgt) =

d

dt
(det(gij))

1/2 dx1 ∧ dx2

= 2−1 (det(gij))
−1/2 e2λ

[
dg11
dt

+
dg22
dt

]
dx1 ∧ dx2

=< d�Φ, d�w >g dvolg0 .
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6.1.2. Codazzi identity in complex coordinates. Calling z = x1+
ix2 the complex coordinate associated to (x1, x2) and ∂z = 2−1(∂x1

−

i ∂x2
), the Weingarten form of the weak conformal immersion �Φ ∈

E(D2,R3) is defined as

(6.122) �h0 := 2π�n(∂
2
z2
�Φ) dz ⊗ dz ;

the scalar Weingarten form (in case of codimension one immersions) is

h0 := 2(�n, ∂2
z2
�Φ) dz ⊗ dz.

Now let us state and prove the classical Codazzi identity using the com-
plex coordinates.

Lemma 6.8 (Codazzi identity). Let h0 be the scalar Weingarten
form defined above and denote gC := e2λ dz ⊗ dz. Then it holds that

(6.123) ∂h0 = gC ⊗ ∂H.

Proof. First of all observe that

(6.124) �h0 := 2π�n(∂
2
z2
�Φ) dz ⊗ dz = e2λ �H0 dz ⊗ dz,

where

�H0 = 2 ∂z

(
e−2λ∂z�Φ

)
= 2−1e−2λ π�n(∂

2
x2
1

�Φ− ∂2
x2
2

�Φ)− i e−2λ π�n(∂
2
x1x2

�Φ)

(6.125)

= [H0
� + iH0

�] �n.

This gives
(6.126)⎧⎪⎨
⎪⎩

H0
� = −

e−2λ

2

[
(∂x1

�n, ∂x1
�Φ)− (∂x2

�n, ∂x2
�Φ)
]
= e−2λ

I
0
11 = −e−2λ

I
0
22

H0
� = e−2λ (∂x1

�n, ∂x2
�Φ) = e−2λ (∂x2

�n, ∂x1
�Φ) = −e−2λ

I
0
12.

We have

∂z �H
0 = 2 ∂z∂z

(
e−2λ ∂z�Φ

)
= 2 ∂z∂z

(
e−2λ ∂z�Φ

)
= −4 ∂z

(
e−2λ ∂zλ∂z�Φ

)
+ 2 ∂z

(
e−2λ ∂2

zz
�Φ
)

= −4 ∂z

(
e−2λ ∂zλ∂z�Φ

)
+ 2−1 ∂z

(
e−2λ Δ�Φ

)
.

Hence we have obtained the following identity:

∂z �H
0 = −4 ∂z

(
e−2λ ∂zλ∂z�Φ

)
+ ∂z �H − ∂z�Φ.

(Notice that the term ∂z�Φ comes from the fact that for �Φ : T2 ↪→ S
3 ⊂

R
4 we have 1

2e
−2λΔ�Φ = �H − �Φ; on the other hand if �Φ : T2 ↪→ R

3 one
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has 1
2e

−2λΔ�Φ = �H so the term ∂z�Φ is not present.) Taking the scalar
product with �n then gives

∂zH
0 = −2 ∂zλH

0 + ∂zH

from which we deduce

(6.127) ∂z

(
e2λ H0

)
= e2λ ∂zH,

which is the thesis. Notice that the identity can also be rewritten locally
as

(6.128)

⎧⎨
⎩

∂x1
I
0
11 + ∂x2

I
0
12 = e2λ ∂x1

H

∂x2
I
0
11 − ∂x1

I
0
12 = −e2λ ∂x2

H.

q.e.d.

6.2. Appendix B: A lemma of functional analysis. In this appen-
dix, for the reader’s convenience, we recall the following (known but
maybe not completely standard) lemma of functional analysis, which
plays a key role in the proof of the regularity.

Lemma 6.9. Let b ∈ W 1,2(D2) and p ∈ (1,∞) be given; then for
every a ∈ W 1,p(D2) there exists a unique solution ϕ ∈ W 1,p(D2) of the
equation

(6.129)

⎧⎨
⎩

Δϕ = ∂xa ∂yb− ∂ya ∂xb on D2

ϕ = 0 on ∂D2.

Moreover, the linear map Lp(D2) � ∇a �→ ∇ϕ ∈ Lp(D2) is continuous.

Proof. As a first step let us assume p > 2. By Hölder inequality, we

have that ∇a∇⊥b ∈ L
2p
p+2 (D2), so by classical elliptic theory there exists

a unique solution ϕ ∈ W
2, 2p

p+2 (D2) and ‖ϕ‖
W

2,
2p
p+2

≤ C‖∇a‖Lp ‖∇b‖L2 .

We conclude by Sobolev embedding.
Now let us assume p < 2. Let ā be the mean value of a on D2. Observe

that the system (6.129) is equivalent to the following one:

(6.130)

⎧⎨
⎩

Δϕ = ∂x((a− ā) ∂yb)− ∂y((a− ā) ∂xb) on D2

ϕ = 0 on ∂D2.

By the Poincaré-Sobolev inequality we know that ‖a−ā‖
L

2p
2−p

≤ C‖∇a‖Lp ,

so by Hölder inequality we get that

‖(a − ā)∇⊥b‖Lp ≤ C‖∇a‖Lp‖∇b‖L2

and we conclude with classical elliptic theory.
Finally, the continuity of the map L2(D2) � ∇a �→ ∇ϕ ∈ L2(D2)

follows by the classical Riesz-Torin interpolation theorem. q.e.d.
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6.3. Appendix C: A lemma of differential topology. In this sub-
section we recall the following well known Lemma of classical differen-
tial topology; we wish to thank Brian White and Yasha Eliashberg for
a helpful discussion about this point.

Lemma 6.10. Let us identify R
2 with {z = 0} ⊂ R

3. Let D2 be the

unit disk in R
2 and �Φ be a smooth immersion of D2 into R

3 such that
�Φ|∂D2 = Id∂D2 and ∂r�Φ|∂D2 = ∂

∂r ∈ R
2.

Then there exists a regular homotopy from �Φ to the identity map

of D2, IdD2 , relative to ∂D2; in other words there exists �H(·, ·) ∈

C1(D2 × [0, 1],R3) such that for every t ∈ [0, 1] the map �Ht := �H(·, t) :

D2 → R
3 is an immersion satisfying the boundary conditions �Ht|∂D2 =

Id∂D2 , (∂r �H)|∂D2 = ∂
∂r , and moreover �H0 = �Φ, �H1 = IdD2 .

Proof. Let us sketch the main idea of the classical proof. The work
of Smale [35]–[36] reduces the classification of the regular homotopy
classes of immersions of the disk Dk into R

n (fixed near the boundary)
to the computation of the homotopy group πk(Vk(R

n)), where Vk(R
n)

is the Stiefel manifold of k-frames in R
n. For k = 2, n = 3 we have

π2(V2(R
3)) = π2(SO(3)) = 0.

This reduction is performed by the so called h-principle. The main
references are the classical paper of Hirsch [17] as well as Gromov’s
book [15] and the recent book of Eliashberg-Mishachev [13]. q.e.d.
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