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AFFINE RIGIDITY OF LEVI DEGENERATE TUBE
HYPERSURFACES

Alexander Isaev

Abstract

Let C2,1 be the class of connected 5-dimensional CR-hypersurf-
aces that are 2-nondegenerate and uniformly Levi degenerate of
rank 1. In our recent article, we proved that the CR-structures
in C2,1 are reducible to so(3, 2)-valued absolute parallelisms. In
the present paper, we apply this result to study tube hypersur-
faces in C

3 that belong to C2,1 and whose CR-curvature identically
vanishes. By explicitly solving the zero CR-curvature equations
up to affine equivalence, we show that every such hypersurface
is affinely equivalent to an open subset of the tube M0 over the
future light cone

{
(x1, x2, x3) ∈ R

3 | x2
1 + x2

2 − x2
3 = 0, x3 > 0

}
.

Thus, if a tube hypersurface in the class C2,1 locally looks like a
piece of M0 from the point of view of CR-geometry, then from the
point of view of affine geometry it (globally) looks like a piece of
M0 as well. This rigidity result is in stark contrast to the Levi
nondegenerate case, where the CR-geometric and affine-geometric
classifications significantly differ.

1. Introduction

We consider connected smooth real hypersurfaces in the complex vec-
tor space C

n with n ≥ 2. Specifically, we are interested in tube hyper-
surfaces, i.e, locally closed real submanifolds of the form

S + iV,

where S is a hypersurface in a totally real n-dimensional linear sub-
space V ⊂ C

n. One can choose coordinates z1, . . . , zn in C
n such that

V = {Im zj = 0, j = 1, . . . , n}, and everywhere below V is identified
with R

n by means of the coordinates xj := Re zj , j = 1, . . . , n. Tube
hypersurfaces arise, for instance, as the boundaries of tube domains,
that is, domains of the form

D + iRn,

where D is a domain in R
n. We refer to the hypersurface S and domain

D as the bases of the above tubes.
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The study of tube domains is a classical subject in several complex
variables and complex geometry, which goes back to the beginning of
the 20th century. Indeed, already Siegel found it convenient to realize
certain symmetric domains as tubes. For example, the familiar unit ball
in C

n is biholomorphically equivalent to the tube domain with the base
given by

xn >

n−1∑
α=1

x2α.

The property that makes tube domains interesting from the complex-
geometric point of view is that they possess an n-dimensional commuta-
tive group of holomorphic symmetries, namely the group of translations
{z �→ z + ib | b ∈ R

n}, where z := (z1, . . . , zn) ∈ C
n. Furthermore,

any affine automorphism of the base of a tube can be extended to a
holomorphic affine automorphism of the tube. In the same way, any
affine transformation between the bases of two tubes can be lifted to a
holomorphic affine transformation between the tubes. This last observa-
tion, however simple, indicates an important link between complex and
affine geometries by way of tube domains. Indeed, they can be viewed
either as objects of affine geometry and considered up to affine transfor-
mations of the bases or as objects of complex geometry and considered
up to biholomorphisms, and the first collection of maps is included in
the second one. In the present paper we adopt a similar approach to
tube hypersurfaces and look at them from both the affine-geometric and
CR-geometric points of view. We will now proceed with describing the
background and content of the article and refer the reader to Section 2
for all necessary definitions and facts from CR-geometry.

There has been a substantial effort to relate the two aspects of the
study of tubes (see, e.g., [Ma], [Sh1], [Sh2], [Lo], [EEI], [KS1], [KS2]
[FK3], [FK4], [I1]). In particular, one would like to understand the
interplay between affine equivalence and CR-equivalence for tube hy-
persurfaces, where M1 = S1+ iRn and M2 = S2+ iRn are called affinely
equivalent if there exists an affine transformation of Cn of the form

(1.1) z �→ Az + b, A ∈ GLn(R), b ∈ C
n

that maps M1 onto M2 (this occurs if and only if the bases S1 and S2
are affinely equivalent as submanifolds of Rn). Specifically, the following
two questions have attracted much attention:

(∗) When does local or global CR-equivalence of M1, M2 imply
affine equivalence?

(∗∗) For what kinds of tube hypersurfaces can one refine known
CR-classification results to deduce affine classifications?

So far, the most comprehensive answers to the above questions have
been given for the class of Levi nondegenerate tube hypersurfaces that
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are CR-flat, i.e., have identically vanishing CR-curvature, as defined
below. For a CR-hypersurface M with Levi form of signature (p, q),
where p + q = n − 1, q ≤ p, the condition of CR-flatness means that
near its every point M is CR-equivalent to an open subset of the real
affine quadric

Re zn =

p∑
α=1

|zα|2 −
n−1∑

α=p+1

|zα|2.

Thus, for a fixed signature (p, q) of the Levi form, all CR-flat tube
hypersurfaces are pairwise locally CR-equivalent to each other. Nev-
ertheless, the question of classifying them up to affine equivalence is
highly nontrivial. We refer the reader to monograph [I1] for an up-to-
date exposition of the existing theory. In particular, there are explicit
affine classifications for q = 0, 1, 2 and an overall understanding of how
results of this kind can be obtained in general. Moreover, CR-flat tube
hypersurfaces possess remarkable properties. In particular, G. Fels and
W. Kaup have discovered a deep connection between such hypersurfaces
and commutative algebra by showing that all CR-flat tube hypersurfaces
arise, in a canonical way, from real and complex Artinian Gorenstein
algebras (see [FK3] and Chapter 9 of [I1] for details). This last fact has
led to an independent line of research concerning Artinian Gorenstein
algebras over arbitrary fields (see [FK5], [I2]) and even inspired a new
approach to constructing invariants of isolated hypersurface singulari-
ties (see [FIKK], [EI], [AI]).

Our aim is to extend these results to other classes of CR-flat tube hy-
persurfaces. In general, CR-curvature is defined in situations when the
CR-structures in question are reducible to absolute parallelisms with
values in some Lie algebra g. Let C be a class of CR-manifolds. Then
the CR-structures in C are said to reduce to g-valued absolute paral-
lelisms if to every M ∈ C one can assign a fiber bundle PM → M and
an absolute parallelism ωM on PM such that for every p ∈ M the par-
allelism establishes an isomorphism between Tp(M) and g and for any
M1,M2 ∈ C the following holds:
(i) every CR-isomorphism f : M1 → M2 can be lifted to a diffeomor-
phism F : PM1

→ PM2
satisfying

(1.2) F ∗ωM2
= ωM1

,

and
(ii) any diffeomorphism F : PM1

→ PM2
satisfying (1.2) is a bundle

isomorphism that is a lift of a CR-isomorphism f : M1 → M2. In this
situation one introduces the g-valued CR-curvature form

(1.3) ΩM := dωM − 1

2
[ωM , ωM ] ,

and CR-flatness means that ΩM identically vanishes on PM .
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Reducing CR-structures (as well as other geometric structures) to

absolute parallelisms goes back to É. Cartan who showed that reduc-
tion takes place for all 3-dimensional Levi nondegenerate CR-hyper-
surfaces (see [Ca]). Since then there have been many developments
(see, e.g., [T1], [T2], [T3], [CM], [Ch], [BS1], [BS2], [J], [La], [Mi],
[GM], [EIS], [ČSc], [ČSl], [ScSl], [ScSp]), all of which require Levi
nondegeneracy. In particular, the famous work of Tanaka and, inde-
pendently, that of Chern and Moser established reduction to absolute
parallelisms for all Levi nondegenerate CR-hypersurfaces. On the other
hand, reducing the CR-structures of Levi degenerate CR-manifolds has
proved to be rather difficult. Despite É. Cartan’s approach having been
known for over a century and Tanaka’s work published almost half a
century ago, the first result on reduction to absolute parallelisms for a
large class of Levi degenerate manifolds only appeared in 2013 in our
paper [IZ]. Specifically, we considered the class C2,1 of connected 5-
dimensional CR-hypersurfaces that are 2-nondegenerate and uniformly
Levi degenerate of rank 1 (see Section 2 for definitions) and showed that
the CR-structures in this class reduce to so(3, 2)-valued parallelisms.
Reduction to absolute parallelisms for this class was attempted earlier
in article [E], but the proof contained a serious flaw (see, e.g., the cor-
rection to [E]). Yet another construction for C2,1 was presented in the
recent paper [MS]; however, the proofs given therein are very brief,
and we have not been able to verify all the details. In addition, a local
reduction result was obtained in preprint [P] for the manifolds in C2,1

that are embedded in C
3 and have nowhere vanishing CR-curvature (see

also Remark 4.3).
As explained in [IZ], a manifold M ∈ C2,1 is CR-flat if and only if

near its every point M is CR-equivalent to an open subset of the tube
hypersurface over the future light cone in R

3:

(1.4) M0 :=
{
(z1, z2, z3) ∈ C

3 | x21 + x22 − x23 = 0, x3 > 0
}
.

Note that this hypersurface had been extensively studied prior to our
work (see, e.g., [FK1], [FK2], [KZ], [Me]). In particular, it can be
realized as part of the boundary of the classical symmetric domain of
type (IV3), or, equivalently, of type (III2) (see Section 2 for details).

We are now ready to state the main theorem of this paper.

Theorem 1.1. Let M be a tube hypersurface in C
3 and assume that

M ∈ C2,1. Suppose further that M is CR-flat. Then M is affinely
equivalent to an open subset of M0.

This theorem can be viewed as an affine rigidity result since it asserts
that if a tube hypersurface M in the class C2,1 locally looks like a piece
of M0 from the point of view of CR-geometry, then from the point of
view of affine geometry it (globally) looks like a piece of M0 as well.
In fact, M extends to a tube hypersurface in C

3 affinely equivalent to
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M0, which is a complete answer to question (∗) in this situation. This
surprising fact is in contrast to the Levi nondegenerate case, where
the CR-geometric and affine-geometric classifications differ even in low
dimensions.

The paper is organized as follows. In Section 2 we give necessary
CR-geometric preliminaries. Section 3 contains an outline of our con-
struction from [IZ]. In Section 4 we perform a detailed analysis of the
invariants described in Section 3 in terms of a local defining function of
a tube hypersurface. In particular, it turns out that in order to obtain
the conclusion of Theorem 1.1, one does not need to assume that the
full curvature form is identically zero; it suffices to require that only two
coefficients in the expansion of just one of its components vanish. This
stronger result is stated as Theorem 3.1.

One observation critical for the proof of Theorem 3.1 is the fact that
the base of any tube hypersurface M in C

3 that is uniformly Levi de-
generate of rank 1 can be locally written as the graph of a function
of two variables satisfying the homogeneous Monge-Ampère equation.
It is well-known that the general solution of this equation is given ex-
plicitly in parametric form in terms of two arbitrary functions of one
variable. If M ∈ C2,1, the vanishing of the two curvature coefficients
assumed in Theorem 3.1 imposes conditions on these two functions that
allow us to explicitly solve the Monge-Ampère equation for the case at
hand. The resulting formulas for the solutions then lead to local (hence
global) affine equivalence of M to an open subset of M0. Overall, the
proof of Theorem 3.1 in Section 4 shows that the reduction to abso-
lute parallelisms achieved in [IZ] can be successfully applied to effective
computations in terms of defining functions. This outcome is rather
encouraging and calls for further applications.

Acknowledgements. The research is supported by the Australian
Research Council. The author is grateful to Boris Kruglikov for useful
discussions. A significant portion of this work was done during the
author’s visit to the Max-Planck Institute for Mathematics in Bonn in
2014.

2. Preliminaries

Recall that an almost CR-structure on a smooth manifold M is a sub-
bundle H(M) ⊂ T (M) of the tangent bundle of even rank endowed with
operators of complex structure Jp : Hp(M) → Hp(M), J2

p = −id, that
smoothly depend on p ∈M . A manifold equipped with an almost CR-
structure is called an almost CR-manifold. The subspaces Hp(M) are
called the complex tangent spaces to M , and their complex dimension,
denoted by CRdimM , is the CR-dimension of M . The complementary
dimension dimM − 2CRdimM is called the CR-codimension of M .
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Further, a smooth map f : M1 → M2 between two almost CR-
manifolds is a CR-map if for every p ∈ M1 the differential df(p) of
f at p maps Hp(M1) into Hf(p)(M2) and is complex-linear on Hp(M1).
If for two almost CR-manifolds M1, M2 of equal CR-dimensions there
exists a diffeomorphism f from M1 onto M2 that is also a CR map,
then the manifolds are said to be CR-equivalent and f is called a CR-
isomorphism.

Next, for every p ∈M consider the complexification Hp(M)⊗R C of
the complex tangent space at p. It can be represented as the direct sum

Hp(M)⊗R C = H(1,0)
p (M)⊕H(0,1)

p (M),

where

H
(1,0)
p (M) := {X − iJpX | X ∈ Hp(M)},

H
(0,1)
p (M) := {X + iJpX | X ∈ Hp(M)}.

Then the almost CR-structure on M is said to be integrable if the
bundle H(1,0)(M) is involutive, i.e., for any pair of local sections z, z′ of
H(1,0)(M) the commutator [z, z′] is also a local section of H(1,0)(M). An
integrable almost CR-structure is called a CR-structure and a manifold
equipped with a CR-structure a CR-manifold. In this paper we consider
only CR-hypersurfaces, i.e., CR-manifolds of CR-codimension 1.

If M is a real hypersurface in a complex manifold X with operators
of almost complex structure Jq, q ∈ X, it is naturally an almost CR-
manifold with Hp(M) := Tp(M) ∩ Jp(Tp(M)) and Jp being the restric-
tion of Jp to Hp(M) for every p ∈ M . Moreover, the almost complex
structure so defined is integrable, thus M is in fact a CR-hypersurface
of CR-dimension dimX − 1. In particular, any tube hypersurface in C

n

is a CR-hypersurface of CR-dimension n− 1.
Further, the Levi form of a CR-hypersurface M comes from taking

commutators of local sections of H(1,0)(M) and H(0,1)(M). Let p ∈M ,

ζ, ζ ′ ∈ H
(1,0)
p (M). Choose local sections z, z′ of H(1,0)(M) near p such

that z(p) = ζ, z′(p) = ζ ′. The Levi form of M at p is then the Hermitian

form on H
(1,0)
p (M) with values in (Tp(M)/Hp(M))⊗R C given by

LM (p)(ζ, ζ ′) := i[z, z′](p)(modHp(M)⊗R C).

For fixed ζ and ζ ′ the right-hand side of the above formula is independent
of the choice of z and z′. Identifying Tp(M)/Hp(M) with R, one obtains
a C-valued Hermitian form defined up to a real scalar multiple.

In this paper, we consider 5-dimensional CR-hypersurfaces that are
uniformly Levi degenerate of rank 1. This means that the kernel
kerLM (p) of the Levi form has dimension 1 at every p ∈M , where

kerLM (p) :=
{
ζ ∈ H(1,0)

p (M) | LM (p)(ζ, ζ ′) = 0∀ ζ ′ ∈ H(1,0)
p (M)

}
.
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We will now discuss the condition of 2-nondegeneracy. For the gen-
eral notion of k-nondegeneracy (as well as other nondegeneracy condi-
tions) we refer the reader to Chapter XI in [BER] and remark that
for CR-hypersurfaces 1-nondegeneracy is equivalent to Levi nondegen-
eracy. Rather than giving the general definition of 2-nondegeneracy, we
explain what this condition means in the case at hand.

LetM be a 5-dimensional CR-hypersurface uniformly Levi degenerate
of rank 1. Fix p0 ∈ M . Locally near p0 the CR-structure is given by
1-forms μ, ηα, α = 1, 2, where μ is iR-valued and vanishes precisely
on the complex tangent spaces Hp(M), and ηα are C-valued and their
restrictions to Hp(M) at every point p are C-linear and constitute a
basis of H∗

p (M). The integrability condition for the CR-structure is
then equivalent to the Frobenius condition, which states that dμ, dηα

belong to the differential ideal generated by μ, ηβ (see, e.g., pp. 174–175
in [Y]). Since μ is iR-valued, this implies

(2.1) dμ ≡ hαβη
α ∧ ηβ (modμ)

for some functions hαβ satisfying hαβ = hβα, where we use the summa-

tion convention for subscripts and superscripts (here and everywhere
below the conjugation of indices denotes the conjugation of the corre-

sponding forms, e.g., ηβ̄ := ηβ). Since M is uniformly Levi degenerate
of rank 1, one can choose ηα near p0 so that

(2.2) (hαβ) ≡
( ±1 0

0 0

)
.

Next, the integrability condition yields

dη1 ≡ η2 ∧ σ (modμ, η1)

for some complex-valued 1-form σ. Now, assuming that (2.2) holds,

we say that M is 2-nondegenerate at p0 if the coefficient at η1̄ in the
expansion of σ with respect to μ, ηα, ηᾱ does not vanish at p0. Clearly,
with (2.2) satisfied, this condition is independent of the choice of μ,
ηα. Also, we say that M is 2-nondegenerate if M is 2-nondegenerate at
every point. As shown in [E] (see Proposition 1.16 and p. 51 therein),
this definition of 2-nondegeneracy is equivalent to the standard one. In
our arguments in the forthcoming sections we utilize the definition given
above.

Recall that C2,1 was defined in the introduction as the class of con-
nected 5-dimensional CR-hypersurfaces that are 2-nondegenerate and
uniformly Levi degenerate of rank 1. It is not hard to see that the tube
hypersurface M0 introduced in (1.4) belongs to this class. In the next
section we will outline the procedure from [IZ] for reducing the CR-
structures in C2,1 to absolute parallelisms. The hypersurface M0 (or,
rather, a certain extension of M0) serves as a model for the reduction,
and we will now briefly discuss it.
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For x = (x1, . . . , x5) ∈ R
5 set

(x, x) := x21 + x22 + x23 − x24 − x25,

and realize SO(3, 2) as the group of real 5×5-matrices C with detC = 1
satisfying (Cx,Cx) ≡ (x, x). Consider the symmetric and Hermitian
extensions of the form ( , ) to C

5, with the symmetric extension denoted
by the same symbol ( , ) and the Hermitian extension by 〈 , 〉. For
Z = (z1 : · · · : z5) ∈ CP

4 we now consider the projective quadric

Q := {Z ∈ CP
4 | (Z,Z) = 0}

and the open subset D ⊂ Q defined as

D := {Z ∈ Q | 〈Z,Z〉 < 0}.
Observe that the group SO(3, 2) acts on D, and the action is effective.

The set D has two connected components as follows:

D+ := {Z ∈ D | Re z4 Im z5 − Re z5 Im z4 > 0} ,
D− := {Z ∈ D | Re z4 Im z5 − Re z5 Im z4 < 0} .

Each of these components is a realization of the classical symmetric
domain of type (IV3), or, equivalently, of type (III2), and all holomor-
phic automorphisms of each of D± arise from the action of the group
G := SO(3, 2)◦, the connected identity component of SO(3, 2) (see pp.
285–289 in [Sa]).

Further, it is not hard to see that the action of G on ∂D+∪∂D− ⊂ Q
has two real hypersurface orbits:

Γ+ := {Z ∈ Q | (Re z,Re z) = (Im z, Im z) = (Re z, Im z) = 0,

Re z4 Im z5 − Re z5 Im z4 > 0} ⊂ ∂D+,

Γ− := {Z ∈ Q | (Re z,Re z) = (Im z, Im z) = (Re z, Im z) = 0,

Re z4 Im z5 − Re z5 Im z4 < 0} ⊂ ∂D−.

These hypersurfaces are CR-equivalent, and we will only consider Γ+,
which is the G-orbit of the point q+ := (i : 1 : 0 : 1 : i). Writing
D+ in tube form (see p. 289 in [Sa] and p. 64 in [FK1]), one observes
that M0 is CR-equivalent to an open dense subset of Γ+. Since Γ+ is
homogeneous, we then see that it belongs to the class C2,1. By Theorems
4.5, 4.7 of [KZ], in this realization every local CR-automorphism of M0

extends to a holomorphic automorphism of Q induced by an element of
G.

We will now bring the hypersurface Γ+ to a form suitable for our
future calculations. Let Φ : (z1 : · · · : z5) �→ (z∗1 : · · · : z∗5) be the
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automorphism of CP4 given by

z∗1 =
1

2
(z1 + iz2 − iz4 − z5), z∗2 =

1

2
(z1 − iz2 + iz4 − z5), z∗3 = z3,

z∗4 =
1

2
(z1 + iz2 + iz4 + z5), z∗5 =

1

2
(z1 − iz2 − iz4 + z5).

When viewed as a transformation of C
5, it takes ( , ) and 〈 , 〉 into

the bilinear and Hermitian forms defined, respectively, by the following
matrices:

S :=

⎛⎜⎜⎜⎜⎝
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

⎞⎟⎟⎟⎟⎠ , T :=

⎛⎜⎜⎜⎜⎝
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0

⎞⎟⎟⎟⎟⎠ .

Let G be the connected identity component of the group of complex
5× 5-matrices C with detC = 1 satisfying

CtSC = S, CtTC̄ = T

(clearly, G is isomorphic to G). The Lie algebra g of G (which is iso-
morphic to so(3, 2)) consists of all matrices of the form

(2.3)

⎛⎜⎜⎜⎜⎝
α β γ δ 0
β̄ ᾱ γ̄ 0 −δ
σ σ̄ 0 −γ̄ −γ
ρ 0 −σ̄ −ᾱ −β
0 −ρ −σ −β̄ −α

⎞⎟⎟⎟⎟⎠ ,

with α, β, γ, σ ∈ C, δ, ρ ∈ iR.
Set Γ := Φ(Γ+), q := Φ(q+) = (0 : 0 : 0 : 1 : 0). Then Γ is the G-orbit

of q, and we denote by H ⊂ G the isotropy subgroup of q. One has
H = H1

�H2, where H1, H2 are the following subgroups of G:

(2.4) H1 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
A 0 0 0 0
0 Ā 0 0 0
0 0 1 0 0
0 0 0 Ā−1 0
0 0 0 0 A−1

⎞⎟⎟⎟⎟⎠ , A ∈ C
∗

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,

(2.5) H2 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
B B̄ 1 0 0

Λ− |B|2/2 −B̄2/2 −B̄ 1 0
−B2/2 −Λ− |B|2/2 −B 0 1

⎞⎟⎟⎟⎟⎠ ,
B ∈ C,
Λ ∈ iR

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

The hypersurface Γ will be a CR-flat model for our reduction to paral-
lelisms outlined in the next section, and the subgroups H1, H2 will be
instrumental in the reduction process.
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3. Reduction to parallelisms

In this section we summarize the procedure from [IZ] for reducing
the CR-structures in C2,1 to g-valued absolute parallelisms. Our proof
of Theorem 1.1 in the next section is based on this procedure.

Fix M ∈ C2,1. As mentioned in Section 2, locally on M the CR-
structure is given by 1-forms μ, ηα, α = 1, 2, where μ is iR-valued and
vanishes precisely on the complex tangent spaces Hp(M), and ηα are
C-valued and their restrictions to Hp(M) at every point p are C-linear
and form a basis of H∗

p (M). The integrability condition for the CR-
structure then implies that identity (2.1) holds for some functions hαβ
satisfying hαβ = hβα.

For p ∈ M define Ep as the collection of all iR-valued covectors θ
on Tp(M) such that Hp(M) = {X ∈ Tp(M) | θ(X) = 0}. Clearly, all
elements in Ep are real nonzero multiples of each other. Let E be the
bundle over M with fibers Ep. Define ω to be the tautological 1-form
on E, that is, for θ ∈ E and X ∈ Tθ (E) set

ω(θ)(X) := θ(dπE(θ)(X)),

where πE : E →M is the projection. Since the Levi form of M has rank
1 everywhere, identity (2.1) implies that for every θ ∈ E there exist a
real-valued covector φ and a complex-valued covector θ1 on Tθ(E) such
that: (i) θ1 is the pull-back of a complex-valued covector on Tπ

E
(θ)(M)

complex-linear on Hπ
E
(θ)(M), and (ii) the following identity holds:

(3.1) dω(θ) = ±θ1 ∧ θ1 − ω(θ) ∧ φ.

For every p ∈M the fiber Ep has exactly two connected components,
and the signs in the right-hand side of (3.1) coincide for all covectors θ
lying in the same connected component of Ep and are opposite for any
two covectors lying in different connected components irrespectively of
the choice of θ1, φ. We then define a bundle P1 over M as follows: for
every p ∈M the fiber P1

p over p is connected and consists of all elements
θ ∈ Ep for which the minus sign occurs in the right-hand side of (3.1);
we also set π1 := πE

∣∣
P1 .

Next, the most general transformation of (ω(θ), θ1, θ1, φ) preserving
the equation

(3.2) dω(θ) = −θ1 ∧ θ1 − ω(θ) ∧ φ
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and the covector ω(θ) is given by the matrix (acting on the column

vector (ω(θ), θ1, θ1, φ)T on the left)

(3.3)

⎛⎜⎜⎜⎜⎝
1 0 0 0

b a 0 0

−b 0 a 0

λ −ab −ab 1

⎞⎟⎟⎟⎟⎠ ,

where a, b ∈ C, |a| = 1, λ ∈ iR. Let H1 be the group of matrices of the
form (3.3). Observe that H1 is isomorphic to the subgroup H1

1 � H2

of H, where H1
1 is the subgroup of H1 given by the condition |A| = 1

(see (2.4), (2.5)). Our goal is to reduce the H1-structure on P1 to an
absolute parallelism.

We now introduce a principal H1-bundle P2 over P1 as follows: for
θ ∈ P1 let the fiber P2

θ over θ be the collection of all 4-tuples of covectors

(ω(θ), θ1, θ1, φ) on Tθ(P1), where θ1 and φ are chosen as described above.
Let π2 : P2 → P1 be the projection. It is easy to see that P2 is
a principal H-bundle when regarded as a fiber bundle over M with
projection π := π1 ◦ π2. Indeed, define (left) actions of the subgroups
H1, H2 on P2 by the respective formulas

(3.4)

(θ, θ1, θ1, φ) �→ (|A|2θ,Aθ1∗, Aθ1∗, φ∗),

(θ, θ1, θ1, φ) �→ (θ, θ1 +Bω(θ), θ1 −Bω(θ),
φ−Bθ1 −Bθ1 − 2Λω(θ)),

where asterisks denote the pushforwards of covectors on Tθ(P1) to cov-
ectors on T|A|2θ(P1) by means of the diffeomorphism of P1 given by

θ �→ |A|2θ. It is then not hard to verify that formulas (3.4) yield an
action of H on P2 as required.

We now define two tautological 1-forms on P2 as

ω1(Θ)(X) := θ1(dπ2(Θ)(X)),

ϕ(Θ)(X) := φ(dπ2(Θ)(X)),

where Θ = (ω(θ), θ1, θ1, φ) is a point in P2
θ and X ∈ TΘ(P2). It is clear

from (3.2) that these forms satisfy

(3.5) dω = −ω1 ∧ ω1 − ω ∧ ϕ,

where we denote the pull-back of ω from P1 to P2 by the same sym-
bol. Further, computing dω1 in local coordinates on P2 and using the
integrability of the CR-structure of M we obtain

(3.6) dω1 = θ2 ∧ ξ − ω1 ∧ ϕ2 − ω ∧ ϕ1

for some complex-valued 1-forms θ2, ξ, ϕ1, ϕ2. Here for any point Θ =

(ω(θ), θ1, θ1, φ) the covector θ2(Θ) is the pull-back of a complex-valued
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covector θ20 at p := π(Θ) such that θ20 is complex-linear on Hp(M) and
the restrictions of θ10 and θ20 to Hp(M) form a basis of H∗

p (M), where

θ10 is the covector at p that pulls back to θ1.
In [IZ] we study consequences of identities (3.5) and (3.6). Our cal-

culations are entirely local, and we impose conditions that determine
the forms θ2, ϕ1, ϕ2 (as well as another iR-valued 1-form ψ introduced
below) uniquely. This allows us to patch the locally defined forms
θ2, ϕ1, ϕ2, ψ into globally defined 1-forms on P2. Together with ω, ω1

these globally defined forms are used to construct an absolute g-valued
parallelism on P2. We will now briefly explain the procedure.

Exterior differentiation of (3.5) and substitution of (3.5), (3.6) for dω,
dω1, respectively, yield

(3.7)
(ϕ− ϕ2 − ϕ2̄) ∧ ω1 ∧ ω1̄ + ξ̄ ∧ ω1 ∧ θ2̄ + ξ ∧ θ2 ∧ ω1̄+

(dϕ− ω1 ∧ ϕ1̄ − ω1̄ ∧ ϕ1) ∧ ω = 0.

It then follows that

ϕ− ϕ2 − ϕ2̄ = Pω1 + Pω1̄ +Qθ2 +Qθ2̄ +Rω

for some smooth functions P,Q,R, where R is iR-valued. Setting

ϕ̃2 := ϕ2 + Pω1 +Qθ2 +
1

2
Rω,

we see that the form ϕ2 can be chosen to satisfy identity (3.6) with some

ξ̃, ϕ̃1 in place of ξ, ϕ1 as well as the condition

(3.8) Reϕ2 =
ϕ

2
,

and from now on we assume that (3.8) holds.
With condition (3.8) satisfied, identity (3.7) implies

ξ = Uθ2 + V ω1̄ +Wω

for some functions U, V,W . Setting

ξ̃ := ξ − Uθ2 −Wω,

we therefore can assume that the form ξ is a multiple of ω1̄ and satisfies
(3.6) with some ϕ̃1 in place of ϕ1. For ξ = V ω1̄ the definition of 2-
nondegeneracy given in Section 2 yields that V is a nowhere vanishing
function, thus by scaling θ2 we suppose from now on that ξ = ω1̄. Hence
identity (3.6) turns into the identity

(3.9) dω1 = θ2 ∧ ω1̄ − ω1 ∧ ϕ2 − ω ∧ ϕ1.

Furthermore, for this choice of ξ equation (3.7) implies

(3.10) dϕ = ω1 ∧ ϕ1̄ + ω1̄ ∧ ϕ1 + 2ω ∧ ψ,

where ψ is an iR-valued 1-form.
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Next, it is not hard to see that the forms θ2, ϕ1, ϕ2, ψ satisfying
(3.8), (3.9), (3.10) are defined up to the following transformations:

(3.11)

θ2 = θ̃2 + cω1 + fω,

ϕ2 = ϕ̃2 − cω1 + cω1̄ + gω,

ϕ1 = ϕ̃1 + gω1 + fω1̄ + rω,

ψ = ψ̃ − r

2
ω1 +

r

2
ω1̄ + sω

for some functions c, f , g, r, s, where g and s are R-valued. We will
now impose conditions on θ2, ϕ1, ϕ2, ψ in order to fix them uniquely.

As computation in local coordinates immediately shows, the values
of iω, Reω1, Imω1, Re θ2, Im θ2, Reϕ1, Imϕ1, ϕ, Imϕ2, iψ at any Θ
constitute a basis of T ∗Θ(P2). In what follows, in order to choose the
functions c, f , g, r, s, we utilize expansions of certain complex-valued
forms on P2 with respect to ω, ω1, ω1̄, θ2, θ2̄, ϕ1, ϕ1̄, ϕ2, ϕ2̄, ψ. We
will be particularly interested in coefficients at wedge products of ω, ω1,
ω1̄, θ2, θ2̄ and for a form Ω denote them by Ωα...β̄... 0, where α, β = 1, 2,

with index 0 corresponding to ω, index 1 to ω1, and index 2 to θ2. We
will also consider analogous expressions for forms with tildas.

Define

(3.12) Θ2 := dθ2 + θ2 ∧ (ϕ2 − ϕ2̄)− ω1 ∧ ϕ1

and let Θ̃2 be the 2-form given as in (3.12) by the 1-forms with tildas.
In [IZ] we prove

(3.13) Θ̃2
21̄ = Θ2

21̄ − 3c,

where Θ2
21̄

and Θ̃2
21̄

are the coefficients at the wedge products θ2 ∧ ω1̄

and θ̃2 ∧ ω1̄ in the expansions of Θ2 and Θ̃2, respectively. This shows

that c can be determined by the requirement Θ̃2
21̄

= 0. Thus, we assume
that the condition

(3.14) Θ2
21̄ = 0

is satisfied, hence in formula (3.11) one has c = 0.
Further, under this assumption in [IZ] we show

(3.15) Θ2 ≡ Θ2
11̄ω

1 ∧ ω1̄ (modω, θ2 ∧ ω1)

and

(3.16) Θ̃2
11̄ = Θ2

11̄ + 2f.

Hence, f can be fixed by the requirement Θ̃2
11̄

= 0, thus we suppose
that the condition

(3.17) Θ2
11̄ = 0
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holds. Therefore, in formula (3.11) we now have c = f = 0, i.e., (3.14),
(3.17) fully determine θ2. Also, as explained in [IZ], these conditions
yield that the expansion of Θ2 has the form

(3.18) Θ2 = Θ2
21θ

2 ∧ ω1 +Θ2
20θ

2 ∧ ω +Θ2
10ω

1 ∧ ω +Θ2
1̄0ω

1̄ ∧ ω.

Next, to choose the function g, we introduce

(3.19) Φ2 := dϕ2 − θ2 ∧ θ2̄ − ω1 ∧ ϕ1̄ − ω ∧ ψ.

Notice that according to (3.8), (3.10), this form is iR-valued. In [IZ] we
prove

(3.20) Φ̃2
11̄ = Φ2

11̄ + 2g,

therefore the real-valued function g can be determined by the require-

ment Φ̃2
11̄

= 0. Thus, we assume that the condition

(3.21) Φ2
11̄ = 0

is satisfied. Hence, in formula (3.11) one has c = f = g = 0, and we see
that (3.14), (3.17), (3.21) completely determine ϕ2.

We will now make a choice of the function r. For this purpose we
utilize the form

(3.22) Φ1 := dϕ1 + θ2 ∧ ϕ1̄ − ω1 ∧ ψ − ϕ1 ∧ ϕ2̄.

In [IZ] we show

(3.23) Φ̃1
11̄ = Φ1

11̄ +
3r

2
.

Hence r can be fixed by the requirement Φ̃1
11̄

= 0, thus we suppose that
the condition

(3.24) Φ1
11̄ = 0

holds. Hence, in formula (3.11) one has c = f = g = r = 0, and one
observes that (3.14), (3.17), (3.21), (3.24) fully define ϕ1.

Finally, to fix the function s, we introduce an iR-valued form as
follows:

(3.25) Ψ := dψ + ϕ1 ∧ ϕ1̄ + ϕ ∧ ψ.

In [IZ] we prove

Ψ̃11̄ = Ψ11̄ + s,

therefore the real-valued function s can be determined by the require-

ment Ψ̃11̄ = 0. Thus, we impose the condition

(3.26) Ψ11̄ = 0

and observe that (3.14), (3.17), (3.21), (3.24), (3.26) completely define
ψ.

The forms θ2, ϕ1, ϕ2, ψ determined by requirements (3.14), (3.17),
(3.21), (3.24), (3.26) give rise to 1-forms on all of P2, and we denote
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these globally defined forms by the same respective symbols. Further,
let us denote by PM the bundle P2 viewed as a principal H-bundle
over M and introduce a g-valued absolute parallelism ωM on PM by the
formula

(3.27) ωM :=

⎛⎜⎜⎜⎜⎝
ϕ2 θ2 ω1 ω 0

θ2̄ ϕ2̄ ω1̄ 0 −ω
ϕ1̄ ϕ1 0 −ω1̄ −ω1

ψ 0 −ϕ1 −ϕ2̄ −θ2
0 −ψ −ϕ1̄ −θ2̄ −ϕ2

⎞⎟⎟⎟⎟⎠ .

Notice that in (3.27) we arranged the scalar-valued 1-forms constructed
above so that the resulting matrix-valued form indeed takes values in
the algebra g described in (2.3). As shown in Theorem 3.2 of [IZ],
the bundle PM and the parallelism ωM constitute a reduction of the
CR-structures in the class C2,1 to absolute parallelisms.

Next, consider the curvature form ΩM of ωM given by formula (1.3).
Then in terms of matrix elements identities (3.5), (3.9), (3.10) can be
written as

(ΩM )14 = 0, (ΩM )13 = 0, Re(ΩM )11 = 0,

respectively. Further, using the globally defined 1-forms θ2, ϕ1, ϕ2, ψ we
now introduce the corresponding globally defined 2-forms by formulas
(3.12), (3.19), (3.22), (3.25) and denote them, as before, by Θ2, Φ1, Φ2,
Ψ. Then one has

Θ2 = (ΩM )12, Φ1 = (ΩM )32, Φ2 = (ΩM )11, Ψ = (ΩM )41.

Below we will be particularly interested in the component Θ2. Recall
that its expansion has the form (3.18).

Let us now return to considering the group G and hypersurface Γ
introduced in Section 2. Using the (left) action of G on Γ, we define a
right action as

G× Γ→ Γ, (g, p) �→ g−1p
and identify Γ with the right coset space H \G by means of this right
action. Consider the principal H-bundle G → H \ G � Γ (with H
acting on the total spaceG by left multiplication) and the right-invariant
Maurer-Cartan form ωMC

G on G. On the other hand, one can associate
to Γ the bundle PΓ and parallelism ωΓ as constructed in this section.
By inspection of our construction one can observe that there exists an
isomorphism F of the bundles PΓ → Γ and G → H \ G that induces
the identity map on the base and such that F ∗ωMC

G = ωΓ. The Maurer-
Cartan equation

dωMC
G =

1

2

[
ωMC
G , ωMC

G

]
then implies that the CR-curvature form ΩΓ of Γ identically vanishes.
Furthermore, as explained in [IZ] (see Corollary 5.1 therein), for M ∈
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C2,1 one has ΩM ≡ 0 if and only if M is locally CR-equivalent to Γ,
i.e., for every point p ∈M there exists a neighborhood of p that is CR-
equivalent to an open subset of Γ. Thus, CR-flat manifolds in C2,1 are
precisely those that are locally CR-equivalent to Γ.

We now have all the necessary tools for proving Theorem 1.1. In fact,
as we will see in the next section, instead of the assumption of the van-
ishing of the full curvature tensor, it suffices to require in Theorem 1.1
that only the coefficients Θ2

21 and Θ2
10 in the expansion of the curvature

component Θ2 are zero. Thus, in the next section we will establish the
following stronger fact.

Theorem 3.1. Let M be a tube hypersurface in C
3 and assume that

M ∈ C2,1. Suppose further that the coefficients Θ2
21 and Θ2

10 in the
expansion of the component Θ2 of the curvature form ΩM vanish iden-
tically on PM . Then M is affinely equivalent to an open subset of M0.

As explained in Remark 4.2 below, the choice of the curvature coef-
ficients Θ2

21 and Θ2
10 in the statement of Theorem 3.1 is in some sense

optimal. The proof given below is based on computing these coefficients
in terms of a local defining function of M , which requires a careful ap-
plication of the reduction procedure to tube hypersurfaces.

4. Proof of Theorem 3.1

Let M be any tube hypersurface in C
3. For p ∈ M , a tube neigh-

borhood of p in M is an open subset U of M that contains p and has
the form M ∩ (U + iR3), where U is an open subset of R3. It is easy
to see that for every point p ∈ M there exists a tube neighborhood U
of p in M and an affine transformation of C3 as in (1.1) that maps p
to the origin and establishes affine equivalence between U and a tube
hypersurface Γρ of the form

(4.1) z3 + z̄3 = ρ(z1 + z̄1, z2 + z̄2),

where ρ(t1, t2) is a smooth function defined in a neighborhood of 0 in
R
2 with ρ(0) = 0, ρ1(0) = 0, ρ2(0) = 0 (here and below subscripts 1

and 2 indicate partial derivatives with respect to t1 and t2). In what
follows, Γρ will be analyzed locally near the origin, hence we will only
be interested in the germ of ρ at 0, and the domain of ρ will be allowed
to shrink if necessary. This convention also applies to all other functions
involved in the local analysis of Γρ.

If M is uniformly Levi degenerate of rank 1, then the Hessian matrix
of ρ has rank 1 at every point, hence ρ satisfies the homogeneous Monge-
Ampère equation

(4.2) ρ11ρ22 − ρ212 ≡ 0,

and one can additionally assume that ρ11 > 0 everywhere. We will
now recall classical facts concerning solutions of equation (4.2). For
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details the reader is referred to paper [U], which treats this equation in
somewhat greater generality.

Let us make the following change of coordinates near the origin

(4.3)
v = ρ1(t1, t2),

w = t2

and set

(4.4)
p(v, w) := ρ2(t1(v, w), w),

q(v) := t1(v, 0).

Equation (4.2) immediately implies that p is independent of w, so we
write p as a function of the variable v alone. Furthermore, we have

(4.5) q′(v) =
1

ρ11(t1(v, 0), 0)
.

Clearly, (4.4), (4.5) yield

(4.6) p(0) = 0, q(0) = 0, q′ > 0 everywhere.

In terms of p and q, the inverse of (4.3) is written as

(4.7)
t1 = q(v)− w p′(v),

t2 = w,

and the solution ρ in the coordinates v, w is given by

(4.8) ρ(t1(v, w), w) = vq(v)−
∫ v

0
q(τ)dτ + w(p(v)− vp′(v)).

Furthermore, the following holds:

(4.9)

ρ11(t1(v, w), w) =
1

q′ − w p′′
,

ρ12(t1(v, w), w) =
p′

q′ − w p′′
,

ρ22(t1(v, w), w) =
(p′)2

q′ − w p′′
.

In particular, we see that all solutions to the homogeneous Monge-
Ampère equation satisfying the conditions

(4.10) ρ(0) = 0, ρ1(0) = 0, ρ2(0) = 0, ρ11 > 0 everywhere

are parametrized by a pair of smooth functions satisfying (4.6).
We now return to our study of the hypersurface Γρ given by (4.1).

Everywhere below, unless stated otherwise, we assume that all functions
of the variables t1, t2 are calculated for

(4.11)
t1 = z1 + z̄1,

t2 = z2 + z̄2.
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Using this convention and setting

(4.12)
μ := ρ1dz1 + ρ2dz2 − dz3

∣∣
Γρ
,

η1 := ρ11dz1 + ρ12dz2
∣∣
Γρ
, η2 := dz2

∣∣
Γρ
,

we see

(4.13)

dμ = − 1

ρ11
η1 ∧ η1̄,

dη1 = −
(
ρ12
ρ11

)
1

η2 ∧ η1̄ +

[
ρ111
ρ211

η1̄ +

(
ρ12
ρ11

)
1

η2̄
]
∧ η1,

where the second equation is obtained by utilizing the identity

ρ111

(
ρ12
ρ11

)2

− 2ρ112

(
ρ12
ρ11

)
+ ρ122 = 0,

which is a consequence of (4.2). Therefore, by the definition of 2-
nondegeneracy given in Section 2, we see that Γρ is 2-nondegenerate
if and only if the function

(4.14) S := (ρ12/ρ11)1

vanishes nowhere.
We are now ready to prove Theorem 3.1. We will show that for every

p ∈ M there exists a tube neighborhood U of p in M that is affinely
equivalent to an open subset of M0. Observe that this claim implies
the statement of the theorem. Indeed, it yields, first of all, that M is
real-analytic. Hence, if for some p ∈ M and a tube neighborhood U
of p we let F be an affine transformation of C3 of the form (1.1) with
F (U) ⊂M0, then the connected real-analytic tube hypersurfaces F (M)
and M0 coincide on an open subset. This implies that F (M) ⊂M0 since
otherwise one would be able to extend M0 to a smooth real-analytic
hypersurface in C

3 containing iR3, which is impossible.
To obtain the above claim, we fix p ∈M and find a tube neighborhood

U of p as well as a function ρ such that U is affinely equivalent to Γρ

and the following holds:

(i) ρ satisfies (4.2), (4.10),

(ii) the function S defined by (4.14) vanishes nowhere.

For the hypersurface Γρ we will now consider the bundles and forms con-
structed in Section 3, and everywhere below all the notation introduced
there will be applied to Γρ in place of M .

For the form ω on P1 one has ω(uμ) = uμ∗, where μ is defined in
(4.12), u > 0 is the fiber coordinate on P1 and the asterisk indicates
the pull-back of μ from Γρ to P1. From the first equation in (4.13) we
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see

(4.15) dω = − u

ρ∗11
η1∗ ∧ η1̄∗ − ω ∧ du

u
.

Identity (4.15) shows that by setting

(4.16) ν :=

√
u

ρ∗11
η1∗,

one can parametrize the fibers of P2 → P1 as

θ1 = aν + b̄ω,

φ =
du

u
− abν − āb̄ν̄ + λω,

with |a| = 1, b ∈ C, λ ∈ iR (see (3.3)). We then have

(4.17)

ω1 = aν∗ + b̄ω,

ϕ =

(
du

u

)∗
− bω1 − b̄ω1̄ + λω,

where asterisks indicate pull-backs from P1 to P2 and the pull-back of
ω is denoted by the same symbol (cf. the notation of Section 3).

Set

(4.18)

θ2(1) := −a2S∗∗η2∗∗,

ϕ2(1) :=
da

a
+

(
du

2u

)∗
+

ā2

2
θ2(1) − a2

2
θ2(1)−

(
2b+

āρ∗∗111
2
√

u∗ρ3∗∗11

)
ω1 +

(
b̄+

aρ∗∗111
2
√

u∗ρ3∗∗11

)
ω1̄ +

λ

2
ω,

ϕ1(1) := db̄+ bθ2(1) + bϕ2(1)−(
2|b|2 − λ

2
+

abρ∗∗111
2
√
u∗ρ3∗∗11

+
āb̄ρ∗∗111

2
√
u∗ρ3∗∗11

)
ω1 + b̄2ω1̄ +

λb̄

2
ω,

ψ(1) := −1

2
dλ+

b

2
ϕ1(1) − b̄

2
ϕ1(1) − λ

2
ϕ+

λb

4
ω1 +

λb̄

4
ω1̄,

where double asterisks indicate pull-backs from Γρ to P2. We think of
these forms as the first approximations of the respective components
θ2, ϕ1, ϕ2, ψ of the parallelism ωΓρ

(see (3.27)), as indicated by the

superscript (1). In what follows, we will introduce further approxima-
tions of these forms and denote them by the superscripts (2), (3), etc.
We also extend this notation to the curvature form and write Θ2(k),
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Φ1(k), Φ2(k), Ψ(k) for the corresponding components of the curvature
form derived from θ2(k), ϕ1(k), ϕ2(k), ψ(k). We think of them as the kth
approximations of the respective components Θ2, Φ1, Φ2, Ψ of ΩΓρ

.

Observe that (4.17), (4.18) imply

(4.19) Reϕ2(1) =
ϕ

2
,

which agrees with identity (3.8).
Before proceeding further, we record expressions for (du)∗, da, db, dλ

in terms of the forms ω, ω1, θ2(1), ϕ1(1), ϕ2(1), ψ(1) and their conjugates,
as they will be used in our future arguments. Indeed, identities (4.17),
(4.18), (4.19) yield

(4.20)

(du)∗ = u∗
(
ϕ2(1) + ϕ2(1) + bω1 + b̄ω1̄ − λω

)
,

da = a

[
− ā2

2
θ2(1) +

a2

2
θ2(1) +

1

2
ϕ2(1) − 1

2
ϕ2(1)+(

3b

2
+

āρ∗∗111
2
√

u∗ρ3∗∗11

)
ω1 −

(
3b̄

2
+

aρ∗∗111
2
√

u∗ρ3∗∗11

)
ω1̄

]
,

db = −bθ2(1) + ϕ1(1) − bϕ2(1) − b2ω1+(
2|b|2 + λ

2
+

abρ∗∗111
2
√
u∗ρ3∗∗11

+
āb̄ρ∗∗111

2
√

u∗ρ3∗∗11

)
ω1̄ − λb

2
ω,

dλ = bϕ1(1) − b̄ϕ1(1) − λ
(
ϕ2(1) + ϕ2(1)

)
− 2ψ(1) +

λb

2
ω1 +

λb̄

2
ω1̄.

Below it will be sufficient to perform some of the calculations only on
the section γ0 of PΓρ

→ Γρ given by

(4.21) γ0 : u∗ = 1, a = 1, b = 0, λ = 0.

On this section formulas (4.20) simplify as

(4.22)

(du)∗ = ϕ2(1) + ϕ2(1),

da = −1

2
θ2(1) +

1

2
θ2(1) +

1

2
ϕ2(1) − 1

2
ϕ2(1)+

ρ∗∗111
2
√

ρ3∗∗11

ω1 − ρ∗∗111
2
√

ρ3∗∗11

ω1̄,

db = ϕ1(1), dλ = −2ψ(1).

Next, by a somewhat lengthy computation utilizing formulas (3.5),
(4.12), (4.13), (4.14), (4.16), (4.17), (4.18), (4.20), one verifies that the
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following holds:

(4.23)
dω1 = θ2(1) ∧ ω1̄ − ω1 ∧ ϕ2(1) − ω ∧ ϕ1(1),

dϕ = ω1 ∧ ϕ1(1) + ω1̄ ∧ ϕ1(1) + 2ω ∧ ψ(1),

which agrees with identities (3.9), (3.10). Recall that (3.8), (3.9), (3.10)
lie at the foundation of our construction in Section 3. It is therefore
important that the first approximations θ2(1), ϕ1(1), ϕ2(1), ψ(1) satisfy
analogous identities (4.19), (4.23).

We will now calculate the coefficient Θ2
21 in the expansion of the

component Θ2 of the curvature form of Γρ. In fact, for our purposes
it suffices to find this coefficient only on the section γ0 (see (4.21)). In
order to do this, we introduce second approximations of the forms θ2,
ϕ1, ϕ2, ψ. Namely, according to the procedure described in Section 3,
we set (cf. formula (3.11)):

(4.24)

θ2(2) := θ2(1) − cω1,

ϕ2(2) := ϕ2(1) + c̄ω1 − cω1̄,

ϕ1(2) := ϕ1(1),

ψ(2) := ψ(1),

where c is chosen so that the expansion of Θ2(2) (equivalently, that of

dθ2(2)) does not involve θ2(2) ∧ ω1̄ (see (3.12)). By formula (3.13), the
function c is given by

(4.25) c =
1

3
Θ

2(1)

21̄
.

Observe that the coefficient Θ
2(1)

21̄
in the above formula is equal to that at

the wedge product θ2(1) ∧ ω1̄ in the expansion of dθ2(1). Differentiating
the first equation in (4.18) and using (4.12), (4.16), (4.17), (4.18), (4.20),
we then obtain

(4.26) Θ
2(1)

21̄
= − aS∗∗1√

u∗ρ∗∗11S∗∗
+

aρ∗∗111√
u∗ρ3∗∗11

+ 3b̄.

Notice now that one has Θ2
21 = Θ

2(2)
21 since, by formulas (3.12) and

(3.15), transformations of the form (3.11) with c = 0 cannot change the

value of this coefficient. Clearly, Θ
2(2)
21 is equal to the coefficient at the

wedge product θ2(2) ∧ ω1 in the expansion of dθ2(2). In order to find
it, we need to differentiate the first identity in (4.24), which involves
differentiating the function c. These calculations are quite substantial,
but they significantly simplify when restricted to the section γ0 (see
(4.21)). Utilizing formulas (4.12), (4.16), (4.17), (4.18), (4.22), (4.23),
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(4.24), (4.25), (4.26), we arrive at the following result:

(4.27)

Θ
2(2)
21

∣∣∣
γ0

=
1

3S∗∗

[
ρ∗∗12
ρ∗∗11

(
S∗∗1√
ρ∗∗11S∗∗

)
1

−
(

S∗∗1√
ρ∗∗11S∗∗

)
2

]
−

1

3S∗∗

[
ρ∗∗12
ρ∗∗11

(
ρ∗∗111√
ρ3∗∗11

)
1

−
(

ρ∗∗111√
ρ3∗∗11

)
2

]
− 11S∗∗1

6
√
ρ∗∗11 S∗∗

− ρ∗∗111
6
√

ρ3∗∗11

,

where double asterisks indicate pull-backs from Γρ to γ0.
We will now use the assumption Θ2

21 ≡ 0 of the theorem. From
formula (4.27) one obtains

(4.28)

2
√
ρ11

[
ρ12

(
S1√
ρ11S

)
1

− ρ11

(
S1√
ρ11S

)
2

]
−

2
√
ρ11

[
ρ12

(
ρ111√
ρ311

)
1

− ρ11

(
ρ111√
ρ311

)
2

]
− 11S1 ρ11 − S ρ111 ≡ 0.

Note that in (4.28) we dropped asterisks and no longer need to assume
that substitution (4.11) takes place, thus the left-hand side of (4.28) is
regarded as a function on a neighborhood of the origin in R

2.
Further, formulas (4.9) can be used to rewrite (4.28) in the coordi-

nates v, w introduced in (4.3). Namely, one has

(4.29)

S(t1(v, w), w) =
p′′

q′ − w p′′
,

S1(t1(v, w), w) =
p′′′q′ − p′′q′′

(q′ − w p′′)3
,

ρ111(t1(v, w), w) = − q′′ − w p′′′

(q′ − w p′′)3
,

and it is not hard to see that (4.28) is equivalent to

(4.30) p′′′q′ − p′′q′′ ≡ 0,

that is, to the condition S1 ≡ 0. Since S vanishes nowhere, the first
identity in (4.29) implies that p′′ does not vanish either. Then, dividing
(4.30) by (p′′)2, one obtains q′/p′′ ≡ const, which yields, upon taking
into account conditions (4.6), the identity

(4.31) q = C(p′ −D),

where D := p′(0) and C is a constant satisfying C p′′ > 0.
Thus, the assumption Θ2

21 ≡ 0 leads to relation (4.31) between p and
q. We will now interpret this relation in terms of the function ρ. Let ζ
be the inverse of the function D − p′ near the origin. Define

(4.32) χ(τ) :=
1

τ

∫ τ

0
ζ(σ)dσ.
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Clearly, χ is smooth near 0 and satisfies

(4.33) χ(0) = 0, χ′(0) = − 1

2p′′(0)
.

Now set

(4.34) ρ̃(t1, t2) := (t1 +Dt2)χ

(
t1 +Dt2
t2 − C

)
.

Lemma 4.1. One has ρ = ρ̃.

Proof. From (4.34) we compute:

(4.35)

ρ̃1 = χ

(
t1 +Dt2
t2 − C

)
+

t1 +Dt2
t2 − C

χ′
(
t1 +Dt2
t2 − C

)
,

ρ̃2 = Dχ

(
t1 +Dt2
t2 − C

)
+

t1 +Dt2
t2 − C

(
D − t1 +Dt2

t2 − C

)
χ′
(
t1 +Dt2
t2 − C

)
,

ρ̃11 =
2

t2 − C
χ′
(
t1 +Dt2
t2 − C

)
+

t1 +Dt2
(t2 − C)2

χ′′
(
t1 +Dt2
t2 − C

)
.

Using (4.33), (4.34) we then see

ρ̃(0) = 0, ρ̃1(0) = 0, ρ̃2(0) = 0, ρ̃11 > 0.

Also, it is easy to observe that ρ̃ satisfies Monge-Ampère equation (4.2).
Hence, ρ̃ is fully determined by a pair of functions p̃, q̃ as in formulas
(4.7), (4.8). These functions satisfy

p̃(0) = 0, q̃(0) = 0, q̃ ′ > 0 everywhere

(cf. conditions (4.6)).
Let us make a change of coordinates near the origin analogous to

change (4.3):

(4.36)
ṽ = ρ̃1(t1, t2),

w̃ = t2.

Then (4.35) yields

ṽ = (D − p′)−1
(
t1 +Dt2
t2 − C

)
and therefore, taking into account (4.31), we see that (4.36) is inverted
as

t1 = C(p′(ṽ)−D)− w̃p′(ṽ) = q(ṽ)− w̃p′(ṽ),

t2 = w̃.

On the other hand, as in (4.7) we have

t1 = q̃(ṽ)− w̃p̃ ′(ṽ).
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Hence, it follows that q̃ = q and, since p̃(0) = p(0) = 0, one also has
p̃ = p. Therefore, ρ̃ = ρ, and the proof is complete. q.e.d.

Next, we calculate the coefficient Θ2
10 in the expansion of the compo-

nent Θ2 of the curvature form of Γρ. In fact, it suffices for our purposes
to determine Θ2

10 only on the section γ0 of PΓρ
→ Γρ (see (4.21)). This

is computationally much harder to do than finding Θ2
21|γ0 and will re-

quire introducing three additional sets of approximations of the forms
θ2, ϕ1, ϕ2, ψ. We start with the third approximations:

(4.37)

θ2(3) := θ2(2) − fω,

ϕ2(3) := ϕ2(2),

ϕ1(3) := ϕ1(2) − fω1̄,

ψ(3) := ψ(2).

Here f is chosen so that the expansion of Θ2(3) (equivalently, that of

dθ2(3)) does not involve ω1 ∧ ω1̄. By formula (3.16), the function f is
given by

(4.38) f = −1

2
Θ

2(2)

11̄
,

where the coefficient Θ
2(2)

11̄
in fact coincides with that at the wedge prod-

uct ω1 ∧ ω1̄ in the expansion of dθ2(2). In order to find it, we need to
differentiate the first equation in (4.24), which leads to rather lengthy
calculations. They can be accomplished with the help of formulas (4.12),
(4.16), (4.17), (4.18), (4.20), (4.23), (4.24), (4.25), (4.26), and one ob-
tains

(4.39) Θ
2(2)

11̄
=

a2ρ(IV)∗∗

3u∗ρ2∗∗11

+
2ab̄ρ∗∗111

3
√

u∗ρ3∗∗11

− 4a2ρ2∗∗111

9u∗ρ3∗∗11

+ b̄2,

where ρ(IV) := ∂ 4ρ/∂ t41.
Next, we introduce the fourth approximations of the forms θ2, ϕ1,

ϕ2, ψ as

(4.40)

θ2(4) := θ2(3),

ϕ2(4) := ϕ2(3) − gω,

ϕ1(4) := ϕ1(3) − gω1,

ψ(4) := ψ(3),

with g chosen so that the expansion of Φ2(4) (equivalently, that of dϕ2(4))

does not involve ω1 ∧ ω1̄ (see (3.19)). By (3.20), the function g is given
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by

(4.41) g = −1

2
Φ
2(3)

11̄
,

with the coefficient Φ
2(3)

11̄
being equal to that at the wedge product

ω1 ∧ ω1̄ in the expansion of dϕ2(3) (notice that dϕ2(3) = dϕ2(2)). In
order to find it, we need to differentiate the second equation in (4.24),
which again requires substantial calculations. They can be performed
by utilizing formulas (4.12), (4.16), (4.17), (4.18), (4.20), (4.23), (4.24),
(4.25), (4.26), (4.37), (4.38), (4.39), and one arrives at the following
expression:

(4.42) Φ
2(3)

11̄
=

ρ(IV)∗∗

3u∗ρ2∗∗11

+
abρ∗∗111

3
√

u∗ρ3∗∗11

+
āb̄ρ∗∗111

3
√

u∗ρ3∗∗11

− 4ρ2∗∗111

9u∗ρ3∗∗11

+ |b|2.

Finally, we define the fifth approximations of the forms θ2, ϕ1, ϕ2, ψ
by

(4.43)

θ2(5) := θ2(4),

ϕ2(5) := ϕ2(4),

ϕ1(5) := ϕ1(4) − rω,

ψ(5) := ψ(4) +
r̄

2
ω1 − r

2
ω1̄,

where r is chosen so that the expansion of Φ1(5) (equivalently, that of

dϕ1(5)) does not involve ω1 ∧ ω1̄ (see (3.22)). By (3.23), the function r
is given by

(4.44) r = −2

3
Φ
1(4)

11̄
,

with the coefficient Φ
1(4)

11̄
being equal to that at the wedge product ω1∧

ω1̄ in the expansion of dϕ1(4). In order to find it, we have to differentiate
the third equation in (4.40), which involves extensive calculations. They
are accomplished with the help of formulas (4.12), (4.16), (4.17), (4.18),
(4.20), (4.23), (4.24), (4.25), (4.26), (4.37), (4.38), (4.39), (4.40), (4.41),
(4.42), and we obtain

(4.45)

Φ
1(4)

11̄
=

(4a2b− ab− āb̄− 2b̄)ρ(IV)∗∗

6u∗ρ2∗∗11

−

(11a2b− 3ab− 3āb̄− 5b̄)ρ2∗∗111

12u∗ρ3∗∗11

+
(a|b|2 − āb̄2)ρ∗∗111

4
√

u∗ρ3∗∗11

− 3λb̄

2
.

Observe now that one has Θ2
10 = Θ

2(5)
10 since, by formulas (3.12),

(3.18), transformations of the form (3.11) with c = f = g = r = 0

cannot change the value of this coefficient. Clearly, Θ
2(5)
10 is equal to
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the coefficient at the wedge product ω1 ∧ ω in the expansion of dθ2(5),
which coincides with dθ2(3). In order to find it, we need to differentiate
the first identity in (4.37). These calculations are lengthy, but they
simplify substantially when restricted to the section γ0 (see (4.21)).
Utilizing formulas (4.12), (4.16), (4.17), (4.18), (4.22), (4.23), (4.24),
(4.25), (4.26), (4.37), (4.38), (4.39), (4.40), (4.41), (4.42), (4.43), (4.44),
(4.45), we arrive at the following result:

(4.46) Θ
2(5)
10

∣∣∣
γ0

=
ρ(V)∗∗

6
√

ρ5∗∗11

− 5ρ(IV)∗∗ρ∗∗111
6
√

ρ7∗∗11

+
20ρ3∗∗111

27
√

ρ9∗∗11

,

where ρ(V) := ∂ 5ρ/∂ t51 and double asterisks indicate pull-backs from Γρ

to γ0.
We will now use the assumption Θ2

10 ≡ 0 of the theorem. From
formula (4.46) one obtains

(4.47) 9ρ(V)ρ211 − 45ρ(IV)ρ111ρ11 + 40ρ3111 ≡ 0.

Notice that in (4.47) we dropped asterisks and no longer assume that
substitution (4.11) takes place, thus the left-hand side of (4.47) is re-
garded as a function near the origin in R

2.
Further, formulas (4.9), (4.29) can be used to rewrite (4.47) in the

coordinates v, w introduced in (4.3). Indeed, one has

ρ(IV)(t1(v, w), w) = − 1

(q′ − w p′′)5
[
(q′′′ − w p(IV))(q′ − w p′′)−

3(q′′ − w p′′′)2
]
,

ρ(V)(t1(v, w), w) = − 1

(q′ − w p′′)7
[(

(q(IV) − w p(V))(q′ − w p′′)−

5(q′′ − w p′′′)(q′′′ − w p(IV))
)
(q′ − w p′′)−

5
(
(q′′′ − w p(IV))(q′ − w p′′)− 3(q′′ − w p′′′)2

)
(q′′ − w p′′′)

]
,

and after some calculations identity (4.47) reduces to the Monge equa-
tion

(4.48) 9p(V)(p′′)2 − 45p(IV)p′′′p′′ + 40(p′′′)3 ≡ 0,

where we took into account relation (4.31).
Recalling that Cp′′ > 0, for the left-hand side of (4.48) we observe

(4.49)

C

(Cp′′)11/3
(
9p(V)(p′′)2 − 45p(IV)p′′′p′′ + 40(p′′′)3

)
=(

9p(IV)

C(Cp′′)5/3
− 15(p′′′)2

(Cp′′)8/3

)′
.
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Further, notice that

(4.50)
C

9

(
9p(IV)

C(Cp′′)5/3
− 15(p′′′)2

(Cp′′)8/3

)
=

(
p′′′

(Cp′′)5/3

)′
and that

(4.51) −2C

3

p′′′

(Cp′′)5/3
=

(
1

(Cp′′)2/3

)′
.

Now, identities (4.48), (4.49), (4.50), (4.51) imply

p′′(v) =
1

C(C1v2 + C2v + C3)3/2

for some constants C1, C2, C3 with C3 > 0.
We now let Δ := C2

2 − 4C1C3 and consider three cases. The formulas
that appear below contain constants of integration as well as compli-
cated expressions in C, C1, C2, C3. We write all these constants as
C4, C5, etc.
Case 1: C1 = C2 = 0. In this situation we have

p′(v) =
v

C C
3/2
3

+ C4.

Therefore, the function χ defined in (4.32) is linear, and Lemma 4.1
yields

ρ(t1, t2) = C5
(t1 +Dt2)

2

t2 − C
,

where C5 �= 0. It then follows that Γρ is affinely equivalent to an open
subset of the tube hypersurface whose base is given by

(4.52) x1x2 = x23, x1 > 0.

Clearly, this hypersurface is affinely equivalent to an open subset of M0.
Case 2: Δ = 0, C2 �= 0 (hence C1 > 0). In this situation we find

p′(v) = − 2
√
C1

C(2C1v + C2)2
+ C4,

which after some calculations leads to

χ(τ) =
C5

τ

(√
C6τ + 1− 1

)
− C5C6

2
,

where C5 �= 0, C6 �= 0. Then by Lemma 4.1 we obtain

ρ(t1, t2) = C5(t2 −D)

√
C6

t1 +Dt2
t2 −D

+ 1 + C7(t1 +Dt2) + C8(t2 −D).

Again, it immediately follows that Γρ is affinely equivalent to an open
subset of the tube hypersurface with base (4.52), hence to an open
subset of M0.
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Case 3: Δ �= 0. In this situation we compute

(4.53) p′(v) = − 4C1v + 2C2

CΔ
√
C1v2 + C2v + C3

+ C4.

If C1 = 0, formula (4.53) yields

χ(τ) =
C5

C6τ + 1
− C5,

where C5 �= 0, C6 �= 0. Hence, by Lemma 4.1 we obtain

ρ(t1, t2) =
C5(t1 +Dt2)(t2 − C)

C6(t1 +Dt2) + (t2 − C)
+ C7(t1 +Dt2).

It then follows that Γρ is affinely equivalent to an open subset of the
tube hypersurface whose base is given by

x1x2 = x3(x1 + x2), x1 > 0.

It is easy to see that this hypersurface is affinely equivalent to an open
subset of M0.

Further, if C1 �= 0, formula (4.53) implies

χ(τ) =
C5

τ

(√
C6(τ + C7)2 + C8 −

√
C6C2

7 + C8

)
− C5C6C7√

C6C2
7 + C8

,

where C5 �= 0, C6 �= 0, C8 �= 0. Therefore, Lemma 4.1 yields

ρ(t1, t2) = C5(t2 −D)

√
C6

(
t1 +Dt2
t2 −D

+ C7

)2

+ C8+

C9(t1 +Dt2) + C10(t2 −D).

It is not hard to see that in this case Γρ is affinely equivalent to an open
subset of M0 as well.

The proof of Theorem 3.1 is now complete. q.e.d.

Remark 4.2. Arguing as in the proof of Theorem 3.1 above, one can
in fact calculate the full curvature form ΩΓρ

in terms of the function

ρ. Interestingly, it turns out that the condition Θ2
21 ≡ 0 implies that

all the coefficients in the expansions of the components of ΩΓρ
, with

the exception of Θ2
10, vanish on the section γ0. Therefore, our choice of

assumptions in Theorem 3.1 is optimal from the computational point of
view. Indeed, Θ2

21 is the easiest coefficient to compute and, if we restrict
our calculation to γ0 (which is very convenient computationally), then
Θ2

10 cannot be replaced with any other curvature coefficient.

Remark 4.3. For any real hypersurface in C2,1 embedded in C
3,

paper [P] introduces a pair of expressions in terms of a local defining
function that vanish simultaneously if and only if the hypersurface is
locally CR-equivalent to M0. The expressions are rather complicated,
and it would be interesting to see whether in the tube case they simplify
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to manageable formulas that can be utilized for obtaining an alternative
proof of Theorem 1.1.
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[ČSl] A. Čap & J. Slovák, Parabolic Geometries. I. Background and General The-
ory, Mathematical Surveys and Monographs 154, American Mathematical
Society, Providence, RI, 2009, MR 2532439, Zbl 1183.53002.
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