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DEFORMATIONS OF FUCHSIAN ADS

REPRESENTATIONS ARE QUASI-FUCHSIAN

Thierry Barbot

Abstract

Let Γ be a finitely generated group, and let Rep(Γ, SO(2, n)) be
the moduli space of representations of Γ into SO(2, n) (n ≥ 2). An
element ρ : Γ → SO(2, n) of Rep(Γ, SO(2, n)) is quasi-Fuchsian
if it is faithful, discrete, preserves an acausal (n − 1)-sphere in
the conformal boundary Einn of the anti-de Sitter space, and if
the associated globally hyperbolic anti-de Sitter space is spatially
compact—a particular case is the case of Fuchsian representations,
i.e., composition of a faithful, discrete, and cocompact represen-
tation ρf : Γ→ SO(1, n) and the inclusion SO(1, n) ⊂ SO(2, n).
In [10] we proved that quasi-Fuchsian representations are pre-

cisely representations that are Anosov as defined in [29]. In the
present paper, we prove that the space of quasi-Fuchsian repre-
sentations is open and closed, i.e., that it is a union of connected
components of Rep(Γ, SO(2, n)).
The proof involves the following fundamental result: Let Γ be

the fundamental group of a globally hyperbolic spatially compact
spacetime locally modeled on AdSn, and let ρ : Γ → SO0(2, n)
be the holonomy representation. Then, if Γ is Gromov hyperbolic,
the ρ(Γ)-invariant achronal limit set in Einn is acausal.
Finally, we also provide the following characterization of rep-

resentations with zero-bounded Euler class: they are precisely the
representations preserving a closed achronal subset of Einn.

1. Introduction

Let SO0(1, n), SO0(2, n) denote the identity components of, respec-
tively, SO(1, n), SO(2, n) (n ≥ 2). Let Γ be a cocompact torsion-free
lattice in SO0(1, n). For any Lie group G we consider the moduli space
of representations of Γ into G modulo conjugacy, equipped with the
usual topology as an algebraic variety (see, for example, [25]):

Rep(Γ, G) := Hom(Γ, G)/G
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1.1. Discrete representations. In the case G = SO0(2, n) we dis-
tinguish the Fuchsian representations: they are the representations ob-
tained by composition of the natural embedding SO0(1, n) ⊂ SO0(2, n)
and any faithful and discrete representation of Γ into SO0(1, n). The
space of faithful and discrete representations of Γ into SO0(1, n) is the
union of two connected components of Rep(Γ,SO0(1, n)): for n ≥ 3, it
follows from the Mostow rigidity theorem, and for n = 2, it follows from
the connectedness of the Teichmüller space—observe that there are in-
deed two connected components, one corresponding to representations
such that ρ∗ξ = ξ, and the other to representations for which ρ∗ξ = −ξ,
where ξ is a generator of Hn(SO0(1, n),Z).
It follows that the space of Fuchsian representations is the union of

two connected subsets of Rep(Γ,SO0(2, n)). Therefore, one can consider
the union Rep0(Γ, G) of connected components of Rep(Γ,SO0(2, n))
containing all the Fuchsian representations. The main result of the
present paper is the following theorem, which provides a positive an-
swer to Question 8.1 in [10].

Theorem 1.1. Every deformation of a Fuchsian representation, i.e.,
every element of Rep0(Γ,SO0(2, n)), is faithful and discrete.

This Theorem is actually a particular case of a more general result,
Theorem 1.2, that we will state in the next section.
If one compares this result with the a priori similar theory of defor-

mations of Fuchsian representations into SO0(1, n+1), one observes that
the situation is at first glance completely different: it is well known that
large deformations of Fuchsian representations are not faithful and dis-
crete; Fuchsian representations actually can be deformed to the trivial
representation!
On the other hand, Theorem 1.1 is very similar to the principal the-

orem in [29] in the case G = SL(n,R), and where Γ is a cocompact lat-
tice in SO0(1, 2), i.e., a closed surface group. In this situation, Fuchsian
representations are induced by the inclusion Γ ⊂ SO0(1, 2) and the mor-
phism SO0(1, 2)→ SL(n,R) corresponding to the unique n-dimensional
irreducible representation of SO0(1, 2). The connected component of
Rep(Γ,SL(n,R)) containing the Fuchsian representations is the Hitchin
component, and its elements are called quasi-Fuchsian representations.
In [29] F. Labourie proves that quasi-Fuchsian representations are hy-
perconvex, i.e., that they are faithful, have discrete image, and preserve
some curve in the projective space P(Rn) with some very strong con-
vexity properties (in particular, this curve is strictly convex). Later, O.
Guichard proved in [26] that conversely hyperconvex representations
are quasi-Fuchsian.
1.2. Anosov representations. At the very heart of the theory is the
notion of (G,P )-Anosov representation (or simply Anosov representa-
tion when there is no ambiguity about the pair (G,P )), where G is a
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Lie group acting on any topological space P . The group Γ in general is
a Gromov hyperbolic finitely generated group ([28]; see also Sect. 8 in
[10])—typically, a closed surface group, or, more generally, a cocompact
lattice in SO0(1, k) for some k.
Unfortunately, the terminology is not uniform in the literature. For

example, what is called a (SO0(1, n+1), ∂H
n+1)-Anosov representation

in [27] would be called (G,Y)-Anosov in the terminology of [7] or [10],
where Y is the space of geodesics of Hn+1, and also P -Anosov in the
terminology of [28], where P is the stabilizer of a point in ∂Hn+1. Here
we adopt the definition used in [28], and the terminology of [27].
Simple, general arguments ensure that Anosov representations are

faithful, with discrete image formed by loxodromic elements, and that
they form an open domain in Rep(Γ, G). As a matter of fact, quasi-
Fuchsian representations into SL(n,R) are (SL(n,R),F)-Anosov, where
F is the frame variety. However, the converse is not necessarily true:
see [7] for the study of a family of non-hyperconvex (SL(3,R),F)-
Anosov representations.
The quasi-Fuchsian terminology is inherited from hyperbolic geom-

etry: a representation ρ : Γ → SO0(1, n + 1) is quasi-Fuchsian if it is
faithful, discrete, and preserves a topological (n − 1)-sphere in ∂Hn+1.
It is well known to the experts that quasi-Fuchsian representations into
SO0(1, n+1) are precisely the (SO0(1, n+1), ∂Hn+1)-Anosov represen-
tations, and a proof can be obtained by adapting the arguments used
in [10]. It is also a direct consequence of Theorem 1.8 in [28].
The anti-de Sitter space AdSn+1 is the Lorentzian analogue of the hy-

perbolic space Hn+1 (see Sect. 2.1 for a brief review on basic facts about
AdSn+1). It is a Lorentzian manifold, of constant sectional curvature−1.
Whereas in hyperbolic space pairs of points are classified up to isometry
by their distance, in anti-de Sitter space we have to distinguish three
types of pairs of points, according to the nature of the geodesic joining
the two points: this geodesic may be spacelike, lightlike, or timelike—in
the last two cases, the points are said to be causally related. Moreover,
AdSn+1 is oriented and admits also a time orientation, i.e., an orien-
tation of every non-spacelike geodesic. The group SO0(2, n) is precisely
the group of orientation and time orientation preserving isometries of
AdSn+1.
The anti-de Sitter space AdSn+1 admits a conformal boundary called

the Einstein universe and denoted by Einn, which plays a role similar
to that of the conformal boundary ∂Hn+1 for the hyperbolic space.
The Einstein universe is a conformal Lorentzian spacetime, and is also
subject to a causality notion: in particular, a subset Λ of the Einstein
space Einn is called acausal if any pair of distinct points in Λ are the
extremities of a spacelike geodesic in AdSn+1.
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Once these fundamental notions are introduced, we can state the
main content of [10]: Let Γ be a Gromov hyperbolic group. For any
representation ρ : Γ→ SO0(2, n) the following notions coincide:
– ρ : Γ→ SO0(2, n) is (SO0(2, n),Einn)-Anosov,
– ρ : Γ → SO0(2, n) is faithful, discrete, and preserves an acausal

closed subset Λ in the conformal boundary Einn of AdSn+1.
If, furthermore, Γ is isomorphic to the fundamental group of a closed

manifold of dimension n, then Λ is a topological (n− 1)-sphere.
In particular, when Γ is a uniform lattice in SO0(1, n), a representa-

tion of Γ into SO0(2, n) is called quasi-Fuchsian if it is faithful, discrete,
and preserves an acausal topological (n − 1)-sphere in Einn. In other
words, Theorem 1.1 can be restated as follows: Deformations (large or
small) of Fuchsian representations into SO0(2, n) are all quasi-Fuchsian.
It will be a corollary of the following more general statement, which will
be proved in Sect. 6:

Theorem 1.2. Let n ≥ 2, and let Γ be a Gromov hyperbolic group
of cohomological dimension ≥ n. Then the moduli space

Repan(Γ,SO0(2, n))

of (SO0(2, n),Einn)-Anosov representations is open and closed in the
moduli space Rep(Γ,SO0(2, n)).

Remark 1.3. The reason for the hypothesis on the cohomological
dimension is to ensure that the invariant closed acausal subset is a topo-
logical (n− 1)-sphere. It will follow from the proof that actually, under
this hypothesis, if Repan(Γ,SO0(2, n)) is non-empty, then Γ is the fun-
damental group of a closed manifold, and its cohomological dimension
is precisely n.

1.3. GHC-regular representations. In order to present the ideas
involved in the proof of Theorem 1.2, we need to recall a bit further a
few classical definitions in Lorentzian geometry. By spacetime we mean
here an oriented Lorentzian manifold with a time orientation given by
a smooth timelike vector field. This allows us to define the notion of
future- and past-directed causal curves. A subset Λ in (M,g) is achronal
(respectively acausal) if there every timelike curve (respectively causal
curve) joining two points in Λ is necessarily trivial, i.e., reduced to one
point. A time function is a function t : M → R that is strictly increasing
along any causal curve. A spacetime (M,g) is globally hyperbolic spatially
compact (abbreviated to GHC) if it admits a time function whose level
sets are all compact.
Spatially compact global hyperbolicity is notoriously equivalent to the

existence of a compact Cauchy hypersurface, i.e., is a compact achronal
set S that intersects every inextendible timelike curve at exactly one
point. This set is then automatically a locally Lipschitz hypersurface
(see [31, Sect. 14, Lemma 29]).
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Observe that all these notions are not really associated to the Loren-
tzian metric g, but to its conformal class [g]. Hence they are rele-
vant to the Einstein universe, which is naturally equipped with an
SO0(2, n)-invariant conformal class of Lorentzian metric, but without
any SO0(2, n)-invariant representative.
The key fact used in [10] is that (SO0(2, n),Einn)-Anosov representa-

tions are holonomy representations of GHC spacetimes locally modeled
on AdSn+1. Thanks to the work of G. Mess and his followers [30, 2]
the classification of GHC locally AdS spacetimes has been almost com-
pleted: they are in one-to-one correspondence with GHC-regular repre-
sentations.
More precisely: Let Γ be a torsion-free finitely generated group of

cohomological dimension n. A morphism ρ : Γ → SO0(2, n) is a GHC-
regular representation if it is faithful, discrete, and preserves an achro-

nal closed (n − 1)-topological sphere Λ in Einn. Define the invisible
domain E(Λ) as the domain in AdSn+1 consisting of the points that are
not causally related to any element of Λ (cf. Sect. 3.1). The action of
ρ(Γ) on E(Λ) is then free and properly discontinuous; the quotient space,
denoted by Mρ(Λ), is GHC. Moreover, every maximal GHC spacetime
locally modeled on AdS has this form. Also observe that Λ only depends
on ρ; there is at most one such invariant achronal sphere. Finally, if the
limit set Λ is acausal, then the group Γ is Gromov hyperbolic (actually,
in this case, Γ acts properly and cocompactly on a CAT(−1) metric
space; see Proposition 8.3 in [10]).
Therefore, the only reason a GHC-regular representation may fail to

be (SO0(2, n),Einn)-Anosov is that the achronal sphere Λ might be non-
acausal. A crucial step of the present paper, which is proved in Sect. 5.3,
and from which Theorem 1.2 follows quite directly, is the following:

Theorem 1.4. Let ρ : Γ → SO0(2, n) be a GHC-regular representa-
tion, where Γ is a Gromov hyperbolic group. Then the achronal limit set
Λ is acausal, i.e., ρ is (SO0(2, n),Einn)-Anosov.

Even if not logically relevant to the proofs in the present paper, we
point out that there are examples of GHC-regular representations with
non-acausal limit set Λ. Let us describe briefly in this introduction the
family detailed in Sect. 4.6: Let (p, q) be a pair of positive integers such
that p+q = n, and let Γ be a cocompact lattice of SO0(1, p)×SO0(1, q).
The natural inclusion of SO0(1, p)×SO0(1, q) into SO0(2, n) arising from
the orthogonal splitting R2,n = R1,p ⊕ R1,p induces a representation
ρ : Γ→ SO0(2, n) that is GHC-regular but where the invariant achronal
limit set Λ is not acausal. The quotient space Mρ(Λ) := ρ(Γ)\E(Λ) is a
GHC spacetime, called a split AdS spacetime, and the representation is
a split regular representation (Definition 4.28).
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1.4. Bounded cohomology. Finally, in the last section, we give an-
other characterization of GHC-regular representations. There is a fun-
damental bounded cohomology class ξ in H2b(SO0(2, n),Z), the bounded
Euler class. It can be alternatively defined as the bounded cohomol-
ogy class induced by the natural Kähler form ω of the symmetric 2n-
dimensional space

T2n := SO0(2, n)/(SO0(2)× SO0(n)),

or as the one associated to the central exact sequence

1→ Z→ S̃O0(2, n)→ SO0(2, n)→ 1.

If ρ : Γ→ SO0(2, n) is GHC-regular, the pull-back ρ∗(ξ) (the Euler class
eub(ρ)) is necessarily trivial.

Theorem 1.5. Let ρ : Γ→ SO0(2, n) be a faithful and discrete repre-
sentation, where Γ is the fundamental group of a negatively curved closed
manifold M of dimension n. The following assertions are equivalent:

1) ρ is (SO0(2, n),Einn)-Anosov,
2) ρ is GHC-regular,
3) the bounded Euler class eub(ρ) vanishes.

Observe that the equivalence between items (1) and (2) follows from
the main result in [10], Theorem 1.4, and the fact that fundamental
groups of negatively curved closed manifolds are Gromov hyperbolic.
As a last comment, we recall part of the conjecture already proposed

in [10, Conjecture 8.11]: We expect that GHC-regular representations
of hyperbolic groups are all quasi-Fuchsian; in other words, that if a
hyperbolic group Γ admits a GHC-regular representation into SO0(2, n),
then it must be isomorphic to a uniform lattice in SO0(1, n).
We expect actually a bit more. According to Theorems 1.2 and 1.4,

the space of GHC-regular representations is open and closed, hence a
union of connected components of Rep(Γ,SO0(2, n)). It would be in-
teresting to prove eventually that it coincides with Rep0(Γ,SO0(2, n)),
i.e., that quasi-Fuchsian representations are all deformations of Fuch-
sian representations.

1.5. Overview of the paper. Section 2 introduces the preliminary
material on anti-de Sitter space, Einstein space, and their Klein models
and conformal models. In Sect. 3 we define the convex hull Conv(Λ) and
the invisible domain E(Λ) associated to a closed achronal subset Λ of
Einn. We describe how one fits inside the other one, and show that they
are dual one to each other. In Sect. 4 we study the specific case where
Λ is a topological sphere: the invisible domain E(Λ) is then globally
hyperbolic, and admits a regular cosmological time, whose gradient lines
form a remarkable family of timelike geodesics—the cosmological lines.
They form an interesting embedded surface in the space of timelike
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geodesics of AdSn+1, which is the symmetric space T2n associated to
SO0(2, n). We conclude this section with the description of split AdS
spacetimes, and the description of crowns and their realms, which are
in one-to-one correspondence with maximal flats in T2n.
In Sect. 5 we really start the proofs of the main theorems. In Sect.

5.1 we show that if Λ is preserved by a GHC-regular representation
of a Gromov hyperbolic group, then it contains no crown. Then, in the
following section, we use this result to show that under these hypotheses,
the only common part between the closure of the invisible domain and
the convex hull is Λ. These are the main results we need for the proof
of Theorem 1.4, which we present in Sect. 5.3.
In Sect. 6 we prove Theorem 1.2. The point is that it is quite easy to

show that a limit of GHC-regular representations is GHC-regular, and
Theorem 1.4 ensures that this limit is Anosov.
The last section, 7, is devoted to the proof of Theorem 1.5. We end the

paper by showing in Sect. 7.3 that Theorem 1.5 gives a quick proof of the
fact that two representations of the same group Γ (Gromov hyperbolic
or not) in PSL(2,R) are semiconjugate if and only if they have the same
bounded Euler class.

Acknowledgments. I would like to thank A. Wienhard and O. Gui-
chard for their encouragement to write the paper, and also F. Guéritaud
and F. Kassel for their interest, remarks, and help. O. Guichard also
contributed to improve a first version of this paper. This work has been
supported by ANR grant GR-A-G (ANR-2011-BS01-003-02) and ANR
grant ETTT (ANR-09-BLAN-0116-01).
The quality of the paper has also been greatly improved by the ob-

servations of the referees.

2. Preliminaries on the anti-de Sitter space

and the Einstein universe

We assume the reader sufficiently acquainted with basic causality no-
tions in Lorentzian manifolds like causal or timelike curves, inextendible
causal curves, Lorentzian length of causal curves, time orientation, fu-
ture and past of subsets, time function, achronal subsets, etc., so that
the brief description provided in the introduction above is sufficient. We
refer to [11] or [31, section 14] for further details.

Definition 2.1. A spacetime is a connected, oriented, and time-
oriented Lorentzian manifold.
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2.1. Anti-de Sitter space. Let R2,n be the vector space of dimension
n + 2, with coordinates (u, v, x1, . . . , xn), endowed with the quadratic
form

q2,n(u, v, x1, . . . , xn) := −u2 − v2 + x21 + . . .+ x2n.

We denote by 〈x | y〉 the associated scalar product. For any subset A
of R2,n we denote A⊥ the orthogonal of A, i.e., the set of elements y in
R2,n such that 〈y | x〉 = 0 for every x in A. We also denote by Cn the
isotropic cone {x ∈ R2,n/q2,n(x) = 0}.

Definition 2.2. The anti-de Sitter space AdSn+1 is the hypersurface
{x ∈ R2,n/q2,n(x) = −1} endowed with the Lorentzian metric obtained
by restriction of q2,n.

For every element x of AdSn+1, there is a canonical identification
between the tangent space TxAdSn+1 and the q2,n-orthogonal x

⊥.
We will also consider the coordinates (r, θ, x1, . . . , xn) with

u = r cos(θ), v = r sin(θ).

We equip AdSn+1 with the time orientation defined by this vector field,

i.e., the time orientation such that the timelike vector field
∂

∂θ
is every-

where future oriented.
Observe the analogy with the definition of hyperbolic space Hn. More-

over, for every real number θ0, the subset Hθ0 := {(r, θ, x1, . . . , xn)/θ =
θ0} ⊂ R2,n is a totally geodesic copy of Hn embedded in AdSn+1. More
generally, the totally geodesic subspaces of dimension k in AdSn+1 are
connected components of the intersections of AdSn+1 with the linear
subspaces of dimension (k + 1) in R2,n.

Remark 2.3. In particular, geodesics are intersections with 2-planes.
Timelike geodesics can all be described in the following way: Let x,
y two elements of AdSn+1 such that 〈x | y〉 = 0. Then, when θ de-
scribes R/2πZ, the points c(θ) := cos(θ)x + sin(θ)y describe a future
oriented timelike geodesic containing x (for θ = 0) and y (for θ = π/2),
parametrized by unit length: the Lorentzian length of the restriction of
c to ]0, θ[ is θ.

2.2. Conformal model.

Proposition 2.4. The anti-de Sitter space AdSn+1 is conformally
equivalent to (S1×Dn,−dθ2+ds2), where dθ2 is the standard Riemann-
ian metric on S1 = R/2πZ, where ds2 is the standard metric (of cur-
vature +1) on the sphere Sn and Dn is the open upper hemisphere of
Sn.

Proof. In the (r, θ, x1, . . . , xn)-coordinates the AdS metric is

−r2 dθ2+ds2hyp
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where ds2hyp is the hyperbolic metric, i.e., the induced metric on H0 =
{(r, θ, x1, . . . , xn)/θ = 0} ≈ Hn. More precisely, H0 is a sheet of the
hyperboloid {(r, x1, . . . , xn) ∈ R1,n/ − r2 + x21 + · · · + x2n = −1}. The
map (r, x1, . . . , xn) → (1/r, x1/r, . . . , xn/r) sends this hyperboloid to
Dn, and an easy computation shows that the pull-back by this map of
the standard metric on the hemisphere is r−2 ds2hyp. The proposition
follows. q.e.d.

Proposition 2.4 shows in particular that AdSn+1 contains many closed
causal curves (including all timelike geodesics; cf. Remark 2.3). But the

universal covering ÃdSn+1, conformally equivalent to (R × Dn,−dθ2 +
ds2), contains no periodic causal curve. However, it is not globally hy-
perbolic (see Definition 4.5).

2.3. Einstein universe. The Einstein universe Einn+1 is the product
S1 × Sn endowed with the metric −dθ2 + ds2, where ds2 is as above

the standard spherical metric. The universal Einstein universe Ẽinn+1
is the cyclic covering R×Sn equipped with the lifted metric still denoted
−dθ2 + ds2, but where θ now takes value in R. Observe that for n ≥ 2,

Ẽinn+1 is the universal covering, but it is not true for n = 1. According

to this definition, Einn+1 and Ẽinn+1 are Lorentzian manifolds, but it
is more adequate to consider them as conformal Lorentzian manifolds.
We fix a time orientation: the one for which the coordinate θ is a time
function on Ẽinn+1.

In the sequel, we denote by p : Ẽinn+1 → Einn+1 the cyclic covering

map. Let δ : Ẽinn+1 → Ẽinn+1 be a generator of the Galois group of this

cyclic covering. More precisely, we select δ so that for any x̃ in Ẽinn+1
the image δ(x̃) is in the future of x̃.
Even if the Einstein universe is seen merely as a conformal Lorentzian

spacetime, one can define the notion of photons, i.e., (non-parameterized)
lightlike geodesics. We can also consider the causality relation in Einn+1
and Ẽinn+1. In particular, we define for every x in Einn+1 the lightcone
C(x): it is the union of all photons containing x. If we write x as a
pair (θ, x̄) in S1 × Sn, the lightcone C(x) is the set of pairs (θ′, ȳ) such
that |θ′− θ| = d(x̄, ȳ), where d is the distance function for the spherical
metric ds2.
There is only one point in Sn at distance π of x̄: the antipodal point

−x̄. Above this point, there is only one point in Einn+1 contained in
C(x): the antipodal point −x = (θ + π,−x̄). The lightcone C(x) with
the points x, −x removed is the union of two components:
– The future cone: It is the set C+(x) := {(θ′, ȳ)/θ < θ′ < θ +

π, d(x̄, ȳ) = θ′ − θ}.
– The past cone: It is the set C−(x) := {(θ′, ȳ)/θ − π < θ′ <

θ, d(x̄, ȳ) = θ − θ′}.
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Observe that the future cone of x is the past cone of −x, and that
the past cone of x is the future cone of −x.
According to Proposition 2.4 AdSn+1 (respectively ÃdSn+1) confor-

mally embeds in Einn+1 (respectively Ẽinn+1). Hence we will some-
times write by the letter x elements of AdSn+1 instead of the letter x,
which is the notation for elements of R2,n. Observe that this embedding
preserves the time orientation. Since the boundary ∂Dn is an equato-

rial sphere, the boundary ∂ÃdSn+1 is a copy of the Einstein universe

Ẽinn. In other words, one can attach a “Penrose boundary” ∂ÃdSn+1
to ÃdSn+1 such that ÃdSn+1 ∪ ∂ÃdSn+1 is conformally equivalent to
(S1 × D

n
,−dθ2 + ds2), where D

n
is the closed upper hemisphere of Sn.

The restrictions of p and δ to ÃdSn+1 ⊂ Ẽinn+1 are, respectively, a
covering map over AdSn+1 and a generator of the Galois group of the
covering; we will still denote them by p and δ.

2.4. Achronal subsets. Recall that a subset of a conformal Lorentzian
manifold is achronal (respectively acausal) if there is no timelike (re-
spectively causal) curve joining two distinct points of the subset. In

Ẽinn ≈ (R × Sn−1,−dθ2 + ds2), it is quite easy to show that every
achronal subset is precisely the graph of a 1-Lipschitz function f :
Λ0 → R where Λ0 is a subset of Sn−1 endowed with its canonical
metric d. In particular, the achronal embedded topological hypersur-

faces in ∂ÃdSn+1 are exactly the graphs of the 1-Lipschitz functions
f : Sn−1 → R: they are topological (n− 1)-spheres.

Similarly, achronal subsets of ÃdSn+1 are graphs of 1-Lipschitz func-
tions f : Λ0 → R where Λ0 is a subset of D

n and achronal topological
hypersurfaces are graphs of 1-Lipschitz maps f : Dn → R.

Stricto sensu, there is no achronal subset in Einn+1 since closed time-
like curves through a given point cover the entire Einn+1. Nevertheless,
we can keep track of this notion in Einn+1 by defining “achronal” sub-

sets of Einn+1 as projections of genuine achronal subsets of Ẽinn+1. This
definition is justified by the following results:

Lemma 2.5 (Lemma 2.4 in [10]). The restriction of p to any achro-

nal subset of Ẽinn+1 is injective.

Corollary 2.6 (Corollary 2.5 in [10]). Let Λ̃1, Λ̃2 be two achronal

subsets of Ẽinn+1 admitting the same projection in Einn+1. Then there
is an integer k such that

Λ̃1 = δkΛ̃2,

where δ is the generator of the Galois group introduced above.

2.5. The Klein model ADSn+1 of the anti-de Sitter space. We
now consider the quotient S(R2,n) of R2,n \{0} by positive homotheties.
In other words, S(R2,n) is the double covering of the projective space
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P(R2,n). We denote by S the projection of R2,n \ {0} onto S(R2,n). For
every x, y in S(R2,n), we denote by 〈x | y〉 the sign of the real num-
ber 〈x | y〉, where x, y ∈ R2,n are representatives of x, y. The Klein
model ADSn+1 of the anti-de Sitter space is the projection of AdSn+1
to S(R2,n), endowed with the induced Lorentzian metric, i.e.,

ADSn+1 := {x ∈ S(R2,n) / 〈x | x〉 < 0}.
The topological boundary of ADSn+1 in S(R2,n) is the projection

of the isotropic cone Cn; we will denote this boundary by ∂ADSn+1.
The projection S defines a one-to-one isometry between AdSn+1 and
ADSn+1. The continuous extension of this isometry is a canonical home-
omorphism between AdSn+1 ∪∂AdSn+1 and ADSn+1 ∪ ∂ADSn+1.
For every linear subspace F of dimension k+1 in R2,n, we denote by

S(F ) := S(F \ {0}) the corresponding projective subspace of dimension
k in S(R2,n). The geodesics of ADSn+1 are the connected components of
the intersections of ADSn+1 with the projective lines S(F ) of S(R2,n).
More generally, the totally geodesic subspaces of dimension k in ADSn+1
are the connected components of the intersections of ADSn+1 with the
projective subspaces S(F ) of dimension k of S(R2,n).

Definition 2.7. For every x = S(x) in ADSn+1, we define the affine
domain (also denoted by U(x))

U(x) := {y ∈ ADSn+1 / 〈x | y〉 < 0}.
In other words, U(x) is the connected component of ADSn+1 \ S(x⊥)

containing x. Let V (x) (also denoted by V (x)) be the connected com-

ponent of S(R2,n) \ S(x⊥) containing U(x). The boundary ∂U(x) ⊂
∂ADSn+1 of U(x) in V (x) is called the affine boundary of U(x).

Remark 2.8. We can assume that x = (1, 0, . . . , 0) ∈ R2,n, so that

S(x⊥) is the projection of the hyperplane {u = 0} in R2,n and V (x) is
the projection of the region {u > 0} in R2,n. The map

(u, v, x1, x2, . . . , xn+1) �→ (t, x̄1, . . . , x̄n) :=
(v
u
,
x1
u
,
x2
u
, . . . ,

xn
u

)

induces a diffeomorphism between V (x) and Rn+1 mapping the affine
domain U(x) to the region {(t, x̄1, . . . , x̄n) ∈ Rn+1| q1,n(t, x̄1, . . . , x̄n) <
1}, where q1,n is the Minkowski norm. The affine boundary ∂U(x)
corresponds to the hyperboloid {(t, x̄1, . . . , x̄n| q1,n(t, x̄1, . . . , x̄n) = 1}.
The intersections between U(x) and the totally geodesic subspaces of
ADSn+1 correspond to the intersections of the region {(t, x̄1, . . . , x̄n) ∈
Rn+1| q1,n(t, x̄1, . . . , x̄n) < 1} with the affine subspaces of Rn+1.

Lemma 2.9 (Lemma 10.13 in [3]). Let U be an affine domain in
ADSn+1, and let ∂U ⊂ ∂ADSn+1 be its affine boundary. Let x be be
a point in ∂U , and let y be a point in U ∪ ∂U . There exists a causal
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(respectively timelike) curve joining x to y in U ∪ ∂U if and only if
〈x | y〉 ≥ 0 (respectively 〈x | y〉 > 0).

Remark 2.10. The boundary of U(x) in ADSn+1 is S(x
⊥)∩ADSn+1.

It has two components: the past component H−(x) and the future com-
ponent H+(x). These components are characterized by the following
property: timelike geodesics enter U(x) throughH−(x) and exit through
H+(x).

They can also be defined as follows: Let Ũ(x) be a lifting in ÃdSn+1 of

U(x), and let H̃±(x) be the lifts of H±(x). Then Ũ(x) is the intersection
between the future of H−(x) and the past of H+(x).
The boundary components H±(x) are totally geodesic embedded co-

pies of Hn. They are also called hyperplanes dual to x, and we distin-
guish the hyperplane past-dual H−(x) from the hyperplane future-dual
H+(x).
Last but not least, H±(x) have also the following characteristic prop-

erty: every future oriented (respectively past oriented) timelike geodesic
starting at x reaches H+(x) (respectively H−(x)) at time π/2 (see Re-
mark 2.3). In other words, H±(x) is the set of points at Lorentzian
distance ±π/2 from x.

2.6. The Klein model of the Einstein universe. Similarly, the Ein-
stein universe has a Klein model: the projection S(Cn) in S(R2,n) of the
isotropic cone Cn in R2,n. The conformal Lorentzian structure can be de-
fined in terms of the quadratic form q2,n (for more details, see [21, 9]).
An immediate corollary of Lemma 2.9 as follows:

Corollary 2.11. For Λ ⊆ Einn, the following assertions are equiva-
lent:

1) Λ is achronal (respectively acausal).
2) When we see Λ as a subset of S(Cn) ≈ Einn the scalar product
〈x | y〉 is non-positive (respectively negative) for every distinct
x, y ∈ Λ.

Remark 2.12. Concerning the notation: In the sequel, we always
have in mind the identifications Einn ≈ S(Cn) and AdSn+1 ≈ ADSn+1;
and also the conformal identification of AdSn+1 with the open domain
Dn× S1 of Einn+1, and we will frequently switch from one model to the
other.
We will from now denote by x elements of Ein and AdS, using the

notation x when we want to insist on the Klein model, and x for elements
of AdSn+1 when we see them as elements of R2,n.

2.7. Isometry groups. Every element of SO(2, n) induces an isometry
of AdSn+1, and every isometry of AdSn+1 comes from an element of
O(2, n). Similarly, for n ≥ 2, conformal transformations of Einn+1 are
projections of elements of O(2, n+ 1) acting on Cn+1 (still for n ≥ 2).
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In the sequel we will only consider isometries preserving the orienta-
tion and the time orientation, i.e., elements of the neutral component
SO0(2, n) (or SO0(2, n + 1)).

Let S̃O0(2, n) be the group of orientation and time orientation pre-

serving isometries of ÃdSn+1 (or conformal transformations of Ẽinn).
There is a central exact sequence

1→ Z→ S̃O0(2, n)→ SO0(2, n)→ 1

where the left term is generated by the transformation δ generating the

Galois group of p : Ẽinn → Einn defined previously. Observe that for

n ≥ 3, S̃O0(2, n) is the universal covering of SO0(2, n).

Remark 2.13. Let x0 be any element of Einn ≈ S(Cn). Then the
open domain defined by

Mink(x0) = {x ∈ S(Cn) / 〈x0 | x〉 < 0}
is conformally isometric to the Minkowski space R1,n−1 (see [21, 9]).
In particular, the stabilizer G0 of x0 in SO0(2, n) is isomorphic to the

group of conformal automorphisms of R1,n−1, i.e., of affine transforma-
tions whose linear part has the form x �→ λg(x), where λ is a positive
real number and g an element of SO0(1, n − 1).

3. Regular AdS manifolds

In all this section, Λ̃ is a closed achronal subset of ∂ÃdSn+1, and Λ is

the projection of Λ̃ in ∂AdSn+1. We describe the invisibility domain of Λ̃
(or Λ) and describes their geometric properties. Roughly speaking, they

are the region in ÃdSn+1 (or AdSn+1) consisting of the points which are

not causally related to any point in Λ̃ (or Λ). We also show (section 3.3)
that the invisible domain E(Λ) can be defined as the convex domain
dual to the convex hull of Λ (considered in the Klein model).

3.1. AdS regular domains.We denote by Ẽ(Λ̃) the invisible domain

of Λ̃ in ÃdSn+1, i.e.,

Ẽ(Λ̃) =: ÃdSn+1 \
(
J−(Λ̃) ∪ J+(Λ̃)

)
,

where J−(Λ̃) and J+(Λ̃) are the causal past and the causal future of Λ̃ in

ÃdSn+1 ∪ ∂ÃdSn+1 = (R× D
n−1

,−dθ2 + ds2). We denote by Cl(Ẽ(Λ̃))

the closure of Ẽ(Λ̃) in ÃdSn+1 ∪ ∂ÃdSn+1 and denote by E(Λ) the

projection of Ẽ(Λ̃) in AdSn+1 (according to Corollary 2.6, E(Λ) only

depends on Λ, not on the choice of the lifting Λ̃).

Definition 3.1. A (n+ 1)-dimensional AdS regular domain is a do-
main of the form E(Λ), where Λ is the projection in ∂AdSn+1 of an
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achronal subset Λ̃ ⊂ ∂ÃdSn+1 containing at least two points. If Λ̃ is a
topological (n − 1)-sphere, then E(Λ) is GH-regular (this definition is
motivated by Theorem 4.12 and Proposition 4.14).

Remark 3.2. The invisible domain Ẽ(Λ̃) is causally convex in of

ÃdSn+1; i.e., every causal curve joining two points in Ẽ(Λ̃) is entirely

contained in Ẽ(Λ̃). This is an immediate consequence of the definitions.

Remark 3.3. Recall that Λ̃ is the graph of a 1-Lipschitz function
f : Λ0 → R, where Λ0 is a closed subset of Sn−1 (Section 2.4). Define

two functions f−, f+ : D
n → R as follows:

f−(x̄) := Supȳ∈Λ0
{f(ȳ)− d(x̄, ȳ)},

f+(x̄) := Infȳ∈Λ0
{f(ȳ) + d(x̄, ȳ)},

where d is the distance induced by ds2 on D
n
. It is easy to check that

Ẽ(Λ̃) = {(θ, x̄) ∈ R× Dn | f−(x̄) < θ < f+(x̄)}.
Remark 3.4. Keeping the notation of the previous remark, observe

that the graph of the restriction of f+ (or f−) to ∂Dn is a closed achronal

(n− 1)-sphere Λ̃+ (or Λ̃−) in ÃdSn+1 that contains the initial achronal

subset Λ̃. They project to achronal (n−1)-spheres Λ± in ∂AdSn+1 that
contain Λ.
Furthermore, any element g of SO0(2, n) preserving Λ must preserve

E(Λ), hence the graphs of f±, and therefore must preserve Λ+ and Λ−.

Definition 3.5. The graph of f− (respectively f+) is a closed achro-

nal subset of ÃdSn+1, called the lifted past (respectively future) horizon

of Ẽ(Λ̃), and denoted H−(Λ̃) (respectively H+(Λ̃)).

The projections in AdSn+1 of H̃±(Λ̃) are called past and future hori-
zons of E(Λ), and denoted H±(Λ).
The following lemma is a refinement of Lemma 2.5:

Lemma 3.6 (Corollary 10.6 in [3]). For every (non-empty) closed

achronal set Λ̃ ⊂ ∂ÃdSn+1, the projection of Ẽ(Λ̃) onto E(Λ) is one-to-
one.

Definition 3.7. Λ̃ is purely lightlike if the associated subset Λ0 of S
n

contains two antipodal points x̄0 and −x̄0 such that, for the associated
1-Lipschitz map f : Λ0 → R the equality f(x̄0) = f(−x̄0) + π holds.

If Λ̃ is purely lightlike, for every element x̄ of D
n
we have f−(x̄) =

f+(x̄) = f(−x̄0) + d(−x̄0, x̄) = f(x̄0) − d(x̄0, x̄), implying that Ẽ(Λ̃) is
empty. Conversely, we have the following:

Lemma 3.8 (Lemma 3.6 in [10]). Ẽ(Λ̃) is empty if and only if Λ̃ is
purely lightlike. More precisely, if for some point x̄ in Dn the equality

f+(x̄) = f−(x̄) holds, then Λ̃ is purely lightlike.
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Observe that a purely lightlike achronal subset of Λ̃ is contained in
the union of lightlike geodesics joining two antipodal points of Einn.

3.2. AdS regular domains as subsets of ADSn+1. The canonical
homeomorphism between AdSn+1 ∪∂AdSn+1 and ADSn+1 ∪ ∂ADSn+1
allows us to see AdS regular domains as subsets of ADSn+1.
Putting together the definition of the invisible domain E(Λ) of a set

Λ ⊂ ∂ AdSn+1 and Lemma 2.9, one gets the following:

Proposition 3.9 (Proposition 10.14 in [3]). If we see Λ and E(Λ)
in the Klein model ADSn+1 ∪ ∂ADSn+1, then

E(Λ) = {y ∈ ADSn+1 such that 〈y | x〉 < 0 for every x ∈ Λ}.
3.3. Convex core of AdS regular domains. In this section, we as-
sume that Λ is not purely lightlike and not reduced to a single point.
The following notions are classical and well known:

Definition 3.10. A subset Ω of S(R2,n) is convex if there is a convex
cone J of R2,n such that Ω = S(J). The relative interior of Ω, denoted
by Ω◦, is the convex subset S(J◦), where J◦ is the interior of J in the
subspace spanned by J .

It is well known that the closure of a convex subset is still convex,
and that it coincides with the closure of the relative interior.

Theorem-Definition 3.11. Let Ω = S(J) be a convex subset of
S(R2,n). The following assertions are equivalent:

• J contains no complete affine line.
• There is an affine hyperplane H in S(R2,n) such that H ∩ J is
relatively compact in H and such that Ω = S(J ∩H).

• The closure of Ω contains no pair of opposite points.

If one of these equivalent properties hold, then Ω is salient.

Definition 3.12. Let Ω = S(J) a convex subset of S(R2,n). The dual
of Ω is the closed convex subset S(J∗ \ {0}) where

J∗ = {x ∈ R2,n / ∀y ∈ J, 〈x | y〉 ≤ 0}.
Proposition 3.13. Let Ω be a convex subset of S(R2,n). Then the

bidual Ω∗∗ is the closure Cl (Ω) of Ω in S(R2,n). The relative interior Ω◦

is open in S(R2,n) if and only if Ω∗ is salient.

Let Λ̂ be the preimage of Λ ⊂ Einn = S(Cn) by S. The convex hull

of Λ̂ is a convex cone Conv(Λ̂) in R2,n, whose projection is a compact
convex subset of S(R2,n), denoted by Conv(Λ), and called the convex
hull of Λ and the convex core of E(Λ).

Lemma 3.14. The intersection of Conv(Λ) and Einn is the union
of lightlike segments in Einn joining two elements of Λ. The relative
interior Conv(Λ)◦ is contained in ADSn+1.
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Proof. Elements of Conv(Λ̂) are linear combinations x =

k∑
i=1

tixi,

where ti are non-negative real numbers and xi elements of Λ̂.

q2,n(x) =

k∑
i,j=1

titj〈xi | xj〉

Since every 〈xi | xj〉 is non-positive (cf. Lemma 2.9), we have q2,n(x) ≤ 0.
Moreover, if q2,n(x) = 0, then every 〈xi | xj〉 must be equal to 0, i.e.,

the vector space spanned by the xi’s is isotropic, hence either a line, or
an isotropic plane in Cn. In the first case, S(x) is an element of Λ, and
in the second case, S(x) lies on a lightlike geodesic of Einn joining two
elements of Λ.
Finally, assume that Conv(Λ)◦ is not contained in ADSn+1. Since

q2,n(x) ≤ 0 for every x in Λ̂, it follows that Conv(Λ̂) is contained in Cn,
and more precisely, by the argument above, in an isotropic 2-plane. This
is a contradiction since Λ by hypothesis is not purely lightlike. q.e.d.

Actually, the case where Conv(Λ)◦ is not an open subset of AdSn+1
is exceptional:

Lemma 3.15 (Lemma 3.13 in [10]). If Conv(Λ)∩AdSn+1 has empty
interior, then it is contained in a totally geodesic spacelike hypersurface
of AdSn+1.

Proposition 3.9 can be rewritten as follows:

Proposition 3.16 (Proposition 10.17 in [3]). The domain E(Λ) is
the intersection ADSn+1 ∩ (Conv(Λ)∗)◦.

Remark 3.17. A corollary of Proposition 3.16 is that the invisible
domain E(Λ) is convex, and hence contains Conv(Λ)◦.

Hence, if x lies in the interior of Conv(Λ), the affine domain U(x)
contains the closure of E(Λ). Therefore, we have the following:

Proposition 3.18. Assume that Λ is not the boundary of a totally

geodesic copy of Hn in AdSn+1. Then the restriction of p : ÃdSn+1 →
AdSn+1 to the closure of Ẽ(Λ̃) is one-to-one.

In particular, p : H̃±(Λ̃)→H±(Λ) is injective.

The boundary of E(Λ) in AdSn+1 has two components: the past and
future horizons H±(Λ) (cf. Definition 3.5). Since E(Λ) is convex, every
point x in H−(Λ) lies in a support hyperplane for E(Λ), i.e., a totally
geodesic hyperplane H tangent to H−(Λ) at x. According to Proposi-
tion 3.16, H is the hyperplane dual to an element p of ∂ Conv(Λ), and
hence H is either spacelike (if p ∈ AdSn+1) or degenerate (if p ∈ Einn).
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Remark 3.19. For every achronal subset Λ, the intersection

Conv(Λ) ∩ Einn
that is a union of lightlike geodesic segments joining elements of Λ is

still achronal (since 〈
∑

si xi |
∑

tj yj〉 =
∑

sitj〈xi | yj〉 ≤ 0 for

si, tj ≥ 0, xi, yj ∈ Λ). We call it the filling of Λ and denote it by
Fill(Λ). According to Proposition 3.16,

E(Fill(Λ)) = E(Λ)

Hence we can always assume without loss of generality that Λ is filled,
i.e., Λ = Fill(Λ).
Observe also that any filled purely lightlike achronal subset of Einn

can be described as the union of the lightlike geodesic joining two given
antipodal points (see the end of Sect. 3.1).

4. Globally hyperbolic AdS spacetimes

In all this section, Λ is a topological achronal (n − 1)-sphere in the
boundary ∂ AdSn+1 that is not purely lightlike. In particular, it implies
that Λ is filled (cf. Remark 3.19).

Proposition 4.1 (Corollary 10.7 in [3]). For every achronal topolog-
ical (n − 1)-sphere Λ ⊂ ∂ AdSn+1, the intersection between the closure
Cl (E(Λ)) of E(Λ) in Einn+1 and Einn = ∂AdSn+1 is reduced to Λ.

Proposition 4.1 implies that (Conv(Λ)∗)◦ ⊂ AdSn+1. Thus, when Λ
is a topological sphere,

E(Λ) = ADSn+1 ∩ (Conv(Λ)∗)◦ = (Conv(Λ)∗)◦.

Remark 4.2. It follows from Proposition 4.1 that the GH-regular do-
main E(Λ) characterizes Λ, i.e., invisible domains of different achronal
(n− 1)-spheres are different. We call Λ the limit set of E(Λ).

In this section, we give a description of how the convex hull Conv(Λ)
fits inside E(Λ) (Proposition 4.3). We introduce the notion of global
hyperbolicity and show that E(Λ) is globally hyperbolic. Furthermore,
it admits a regular cosmological time is the sense of [1]. We do a de-
tailed study of the cosmological time and show that its restriction to
the past tight region is a Cauchy time function (Proposition 4.18) and
C1,1 (Lemma 4.19).
We then clarify what is a GH-regular or GHC-regular spacetime,

strictly or not.
We introduce (Section 4.5) the space T2n of timelike geodesics, which

is actually the symmetric space associated to SO0(2, n). We describe
afterwards some examples of non-strictly GHC-spacetimes, the split AdS
spacetimes, which are closely related to the notion of crowns, and their
realms, defined in Section 4.7. An important feature in the proof of our
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main result (Theorem 1.4) is that crowns correspond to flats in T2n
(Remark 4.32).

4.1. More on the convex hull of achronal topological (n − 1)-

spheres. Recall that there are two maps f−, f+ such that Ẽ(Λ̃) =
{(θ, x̄)/f−(x̄) < θ < f+(x̄)} (cf. Definition 3.3).

Proposition 4.3. The complement of Λ in the boundary ∂ Conv(Λ)
has two connected components. Both are closed achronal subsets of

AdSn+1. More precisely, in the conformal model their liftings to ÃdSn+1
are graphs of 1-Lipschitz maps F+, F− from Dn into R such that

(1) f− ≤ F− ≤ F+ ≤ f+.

Proof. See Proposition 3.14 in [10]. Observe that in [10], Proposition
3.14 is proved in the case where Λ is acausal, and not Fuchsian (the
Fuchsian case being the case where Λ is the boundary of a totally geo-

desic hypersurface in ÃdSn+1). Inequalities in Equation (1) are then all
strict inequalities, which is false in the general case, as we will see later
(section 4.6) in the case of split AdS spacetimes, hence the case where
F+ = F− everywhere. Nevertheless, the proof of Proposition 3.14 in
[10] can easily be adapted, providing a proof of Proposition 4.3. q.e.d.

We have already observed that ∂E(Λ)\Λ is the union of two achronal
connected components H±(Λ); in a similar way, ∂ Conv(Λ) \ Λ is the
union of two achronal n-dimensional topological disks: the past compo-
nent S−(Λ) (the graph of F−) and the future component S+(Λ). Since
E(Λ) and Conv(Λ) are convex and dual one to another, for every el-
ement x in S−(Λ) (respectively S+(Λ)) there is an element p of Λ or
H+(Λ) (respectively H−(Λ)) such that H−(p) (respectively H+(p)) is a
support hyperplane for S−(Λ) (respectively S+(Λ)) at x: these support
hyperplanes are either totally geodesic copies of Hn (if p ∈ AdSn+1) or
degenerate (if p ∈ Λ).
Similarly, at every element x of H−(Λ) (respectively H+(Λ)) there is

a support hyperplane H−(p) (respectively H+(p)) where p is an element
of S+(Λ) ∪ Λ (respectively S−(Λ) ∪ Λ) (see Figure 1).

Remark 4.4. For every p in H−(Λ), H+(p) is a support hyperplane
for Conv(Λ), but it could be at a point in Λ. Elements of H−(Λ) that are
dual to support hyperplanes for Conv(Λ) at a point inside AdSn+1, i.e.,
in S+(Λ), form an interesting subset of H−(Λ), the initial singularity
set (cf. [12]).

4.2. Global hyperbolicity.

Definition 4.5. A spacetime (M,g) is globally hyperbolic (abbrevia-
tion GH) if:

• (M,g) is causal, i.e., contains no timelike loop,
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Figure 1. The global situation. The dotted hyperboloid
represents the boundary of an affine domain of AdSn+1
containing the invisible domain E(Λ). The limit set Λ
is represented by a topological circle turning around the
hyperboloid, and Conv(Λ)◦ is a convex subset inside the
(dual) convex subset E(Λ). The future-dual plane H+(p)
for p in the past horizon H−(Λ) is a support hyperplane
of S+(Λ).

• for every x, y in M , the intersection J+(x) ∩ J−(y) is empty or
compact.

Definition 4.6. Let (M,g) be a spacetime. A Cauchy hypersurface is
a closed acausal subset S ⊂M that intersects every inextendible causal
curve in (M,g) in one and only one point.
A Cauchy time function is a time function T : M → R such that

every level set T−1(a) is a Cauchy hypersurface in (M,g).

Theorem 4.7 ([20], [14, 15, 16]). Let (M,g) be a spacetime. The
following assertions are equivalent:

1) (M,g) is globally hyperbolic.
2) (M,g) contains a Cauchy hypersurface.
3) (M,g) admits a Cauchy time function.
4) (M,g) admits a smooth Cauchy time function.

In a GH spacetime, the Cauchy hypersurfaces are homeomorphic one
to the other. In particular, if one of them is compact, all of them are
compact.

Definition 4.8. A spacetime (M,g) is globally hyperbolic spatially
compact (abbrev. GHC) if it contains a compact Cauchy hypersurface.
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Proposition 4.9. A spacetime (M,g) is GHC if and only if it con-
tains a time function T : M → R such that every level set T−1(a) is
compact.

4.3. Cosmological time functions. In any spacetime (M,g), one can
define the cosmological time function as follows (see [1]):

Definition 4.10. The cosmological time function of a spacetime
(M,g) is the function τ : M → [0,+∞] defined by

τ(x) := Sup{L(c) | c ∈ R−(x)},
where R−(x) is the set of past-oriented causal curves starting at x and
L(c) is the Lorentzian length of the causal curve c.

Definition 4.11. A spacetime (M,g) with cosmological time func-
tion τ is CT-regular if

1) M has finite existence time in the past, τ(x) < ∞ for every x in
M , and

2) for every past-oriented inextendible causal curve c : [0,+∞[→ M ,
lim
t→∞

τ(c(t)) = 0.

Theorem 4.12 ([1]). If a spacetime (M,g) with cosmological time
function τ is CT-regular, then:

1) M is globally hyperbolic.
2) τ is a time function, i.e., τ is continuous and is strictly increasing

along future-oriented causal curves.
3) For each x in M , there is at least one realizing geodesic, i.e., a

future-oriented timelike geodesic c :]0, τ(x)] → M realizing the
distance from the “initial singularity,” i.e., c has unit speed, is
geodesic, and satisfies:

c(τ(x))) = x and τ(c(t)) = t for every t.

4) τ is locally Lipschitz, and admits first and second derivative almost
everywhere.

However, τ is not always a Cauchy time function (see the comment
after Corollary 2.6 in [1]).
A very nice feature of CT-regularity is that it is preserved by isome-

tries (and thus, by Galois automorphisms):

Proposition 4.13 (Proposition 4.4 in [10]). Let (M̃ , g̃) be a CT-
regular spacetime. Let Γ be a torsion-free discrete group of isometries of

(M̃, g̃) preserving the time orientation. Then the action of Γ on (M̃ , g̃)
is properly discontinuous. Furthermore, the quotient spacetime (M,g) is

CT-regular. More precisely, if p : M̃ → M denotes the quotient map,

the cosmological times τ̃ : M̃ → [0,+∞[ and τ : M → [0,+∞[ satisfy

τ̃ = τ ◦ p.
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Recall that in this section Λ denotes a non-purely lightlike topological
achronal (n − 1)-sphere in ∂ AdSn+1.

Proposition 4.14 (Proposition 11.1 in [3]). The GH-regular AdS
domain E(Λ) is CT-regular.

Hence, according to Theorem 4.12, GH-regular domains are globally
hyperbolic. Furthermore:

Definition 4.15. The region {τ < π/2} is denoted E−0 (Λ) and called
the past tight region of E(Λ).

Proposition 4.16 (Proposition 11.5 in [3]). Let x be an element of
the past tight region E−0 (Λ). Then there is a unique realizing geodesic
for x. More precisely, there is one and only one element r(x) in the past
horizon H−(Λ)—called the cosmological retract of x—such that the seg-
ment ]r(x), x] is a timelike geodesic whose Lorentzian length is precisely
the cosmological time τ(x).

Proposition 4.17 (Proposition 11.6 in [3]). Let c :]0, T ]→ E−0 (Λ) be
a future oriented timelike geodesic whose initial extremity p := lim

t→0
c(t) is

in the past horizon H−(Λ). Then the following assertions are equivalent:

1) For every t ∈]0, T ], c|]0,t] is a realizing geodesic for the point c(t).
2) There exists t ∈]0, T ] such that c|]0,t] is a realizing geodesic for the

point c(t).
3) c is orthogonal to a support hyperplane of E(Λ) at p := lim

t→0
c(t).

The following proposition was known in the case n = 2 ([30, 12]
and was implicitly admitted in the few previous papers devoted to the
higher-dimensional case (for example, [3, 10]):

Proposition 4.18. The past tight region E−0 (Λ) is the past in E(Λ)
of the future boundary component S+(Λ) of the convex core (in partic-
ular, it contains Conv(Λ)◦). The restriction of the cosmological time to
E−0 (Λ) is a Cauchy time, taking all values in ]0, π/2[.

Proof. Let x be an element of E−0 (Λ). In the sequel, we will consider

x as an element of R2,n (but, in order to slightly simplify the redaction,
we didn’t use the notation x). According to Propositions 4.16 and 4.17
there is a realizing geodesic ]r(x), x] orthogonal to a spacelike support
hyperplaneH tangent toH−(Λ) at r(x). As described in Section 4.1, this
support hyperplane is the hyperplane H−(p) past-dual to an element p
of S+(Λ). The realizing geodesic is contained in the geodesic θ �→ c(θ) =
cos(θ)r(x)+sin(θ)p(x) (cf. Remark 2.3). For θ in ]0, π/2[ sufficiently close
to π/2, c(θ) belongs to Conv(Λ) ⊂ E(Λ), and since E(Λ) is convex, every
c(θ) (θ ∈]0, π/2[) lies in E(Λ). Moreover, according to Proposition 4.17,
for every θ0 in ]0, π/2[, the restriction of c to ]0, θ0[ is a realizing geodesic.
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Hence

∀θ ∈]0, π/2[, τ(c(θ)) = θ.

Hence every value in ]0, π/2[ is attained by τ . Moreover, x lies in the
past of p(x), hence of S+(Λ). We have

E−0 (Λ) ⊂ I−(S+(Λ)) ∩E(Λ).

Conversely, for every x in I−(S+(Λ))∩E(Λ), there is a (not necessarily
unique) realizing geodesic c :]0, τ(x)[→ E(Λ) such that c(τ(x)) = x (cf.
item (3) in Theorem 4.12). Then the curve c being a timelike geodesic
inextendible (in E(Λ)) towards the past, for t→ 0 the points c(t) con-
verge to a limit point c(0) in H−(Λ). If τ(x) ≥ π/2, on the one hand, we
observe that c(π/2) lies in the past of x = c(τ(x)), hence in I−(S+(Λ)).
On the other hand

〈c(π/2) | c(0)〉 = 0

Hence c(π/2) is in the hyperplane dual to an element of H−(Λ) and
therefore, by Proposition 3.16, belongs to S+(Λ). But it is a contraction
since S+(Λ) is achronal and c(π/2) ∈ I−(S+(Λ)). Hence τ(x) < π/2,
i.e.,

I−(S+(Λ)) ∩ E(Λ) ⊂ E−0 (Λ).

In order to conclude, we have to prove that τ is a Cauchy time func-
tion. Let c0 :]a, b[→ E−0 (Λ) be an inextendible future-oriented causal
curve. The image of τ ◦ c0 is an interval ]α, β[. According to item (2)
of Definition 4.11, α = 0. We aim to prove β = π/2; hence we as-
sume by contradiction that β < π/2. The curve c is contained in the
compact subset Cl(E(Λ)) of AdSn+1 ∪∂AdSn+1 ⊂ Einn+1, and hence
admits a future limit point c(b) in AdSn+1 ∪∂AdSn+1. If c(b) lies in
Einn = ∂AdSn+1, then it is in Λ (cf. Proposition 4.1). Some element of

E(Λ) (for example, c(
a+ b

2
)) would be causally related to an element of

Λ. This contradiction shows that c(b) lies in AdSn+1—more precisely, in
the boundary of E−0 (Λ) in AdSn+1. Since c is future oriented, it follows
that c(b) has to be an element of the future boundary S+(Λ).
For every t in ]a, b[, we denote by r(t) the cosmological retract r(c(t))

of c(t), and we consider the unique realizing geodesic segment δt :=
]r(t), c(t)[. We extract a subsequence tn converging to b such that r(tn)
converges to an element r0 of Cl

(
H−(Λ)

)
= H−(Λ) ∪ Λ. Then δtn con-

verge to a geodesic segment δ0 = (r0, c(b)). Since every δtn is timelike,
δ0 is non-spacelike.
For every t in ]a, b[ we have c(t) = cos τ(c(t))r(t) + sin τ(c(t))p(t)

(where p(t) is the dual of the hyperplane orthogonal to the realizing
geodesic at r(t), see above). Hence

〈r(tn) | c(tn)〉 = − cos τ(c(tn)).
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In the limit,

〈r0 | c(b)〉 = − cos(β) < 0 (since β < π/2 )

It follows that δ0 is not lightlike, but timelike. Since timelike geodesics
in AdSn+1 do not meet ∂AdSn+1, it follows that r0 lies in H−(Λ).
Finally, every δtn is orthogonal to a support hyperplane at r(tn), and

hence at the limit δ0 is orthogonal to a support hyperplane, which is
spacelike since δ0 is timelike. According to Proposition 4.17, δ0 is a
realizing geodesic. At the beginning of the proof, we have shown that
every realizing geodesic can be extended to a timelike geodesic of length
π/2 entirely contained in E−0 (Λ); hence there is an element p0 in S+(Λ)∩
H+(r0) such that the geodesic ]r0, p0[ contains δ0—in particular, c(b).
Hence [c(b), p0] is a non-trivial timelike geodesic segment joining two
elements of the achronal subset S+(Λ), which is a contradiction.
This contradiction proves β = π/2, i.e., that the restriction of τ

to every inextendible causal curve is surjective. In other words, τ is a
Cauchy time function. The Proposition is proved. q.e.d.

Lemma 4.19. The restriction of τ to E−0 (Λ) is C1,1 (i.e., differen-
tiable with locally Lipschitz derivative), and the realizing geodesics are
orthogonal to the level sets of τ .

Proof. In this proof, we consider, for any subset X of E(Λ), the strict
past set I−(X) (to be distinguished from the causal past J−(X)), which
is the set of final points of past oriented timelike curves contained in
E(Λ) and starting from an element of X. Since E(Λ) is globally hyper-
bolic, I−(Λ) is actually the interior of J−(Λ).
Let x be an element of E−0 (Λ), and let ]r(x), x] be the unique realizing

geodesic for x. As proven during the proof of Proposition 4.18, there is
an element p(x) of S+(Λ) such that ]r(x), p(x)[ is a timelike geodesic
containing x = cos(τ(x))r(x) + sin(τ(x))p(x) and entirely contained in
E−0 (Λ).
Let U be the affine domain U(p(x)); the past boundary component

H of U is a support hyperplane of H−(Λ) at r(x) (see Definition 2.7,
Remark 2.10). Let τ1 : U →]0, π[ be the cosmological time function of
U : for every y in U , τ1(y) is the Lorentzian distance between y and H.
Let W be the future of r(x) in U , and let τ0 be the cosmological time
function in W : for every y in W, τ0(y) is the Lorentzian length of the
timelike geodesic [r(x), y]. We have

τ0(x) = τ(x) = τ1(x).

Moreover,
∀y ∈W, τ0(y) ≤ τ(y) ≤ τ1(y).

A direct computation shows that τ0 and τ1 have the same derivative at
x: by a standard argument (see, for example, [17, Proposition 1.1]) it
follows that τ is differentiable at x, with derivative dxτ = dxτ0 = dxτ1.
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Furthermore, the gradient of τ0 and τ1 at x is −ν(x), where ν(x) is the
future-oriented timelike vector tangent at x to the realizing geodesic
[x, r(x)[ of Lorentzian norm −1, i.e.,

∀v ∈ TxW, −〈v | ν(x)〉 = dxτ0(v)x = dxτ(v).

Therefore, −ν(x) is also the Lorentzian gradient of τ . It follows that
realizing geodesics are orthogonal to the level sets of τ .
In order to prove that τ is C1,1, i.e., that ν is locally Lipschitz, we

adapt the argument used in the flat case in [4]. We consider first the re-
striction of ν to the level set Sπ/4 = τ−1(π/4) equipped with the induced

Riemannian metric. For every x in Sπ/4, we have x =
r(x) + p(x)√

2
. Ob-

serve that
p(x)− r(x)√

2
is then an element of R2,n of norm −1, orthogonal

to x, hence representing an element of TxAdSn+1. This tangent vector

is future oriented and orthogonal to Sπ/4: hence
p(x)− r(x)√

2
represents

ν(x).
Let c :]− 1, 1[→ Sπ/4 be a C1 curve in Sπ/4. Since r is the projection

onto H−(Λ), and since H−(Λ) is locally Lipschitz, the path r ◦ c is
differentiable almost everywhere in ] − 1, 1[. We denote by ṙ, ṗ, ν̇ the

derivatives of r, p, ν =
p− r√

2
along c. Almost everywhere, we have

q2,n(ν̇) = q2,n(
ṗ − ṙ√

2
)

=
1

2
(q2,n(ṗ) + q2,n(ṙ)− 2〈ṙ | ṗ〉).

But the derivative of c is

q2,n(ċ) = q2,n(
ṙ + ṗ√

2
)

=
1

2
(q2,n(ṙ) + q2,n(ṗ) + 2〈ṙ | ṗ〉).

Now, since H−(Λ) is locally convex, the quantity 〈ṙ | ṗ〉, wherever it
is defined, is non-negative. Therefore,

q2,n(ν̇) ≤ q2,n(ċ).

It follows that ν is 1-Lipschitz along Sπ/4.

On other level sets St = τ−1(t) with t ∈ (0, π/2), every element is

of the form x = cos(t)r(x) + sin(t)p(x), and xπ/4 =
r(x) + p(x)√

2
is a

point in Sπ/4. Geometrically, xπ/4 is the unique point in the realizing
geodesic for x at cosmological time π/4. The unit normal vectors ν(x)
and ν(xπ/4) are parallel one to the other along the realizing geodesic
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]r(x), p(x)[; hence the variation of ν(x) along St is controlled by the
distortion of the map x→ xπ/4 and the variation of ν along Sπ/4. The
lemma follows. q.e.d.

4.4. GH-regular and quasi-Fuchsian representations. Let Γ be
a finitely generated torsion-free group, and let ρ : Γ → SO0(2, n) be a
faithful, discrete representation, such that ρ(Γ) preserves Λ. According
to Proposition 4.13, the quotient space Mρ(Λ) := ρ(Γ)\E(Λ) is globally
hyperbolic. Observe that, moreover, Cauchy hypersurfaces of Mρ(Λ)
are quotients of Cauchy hypersurfaces in E(Λ), which are contractible
(since they are graphs of maps from Dn into R). Hence the cohomological
dimension of Γ is ≤ n, and it is n if and only if the Cauchy hypersurfaces
are compact, i.e., Mρ(Λ) is spatially compact.
Conversely, in his celebrated preprint [30, 2], G. Mess proved that

any globally hyperbolic spatially compact AdS spacetime embeds iso-
metrically in such a quotient space Γ\E(Λ). Actually, G. Mess only
deals with the case where n = 2, but his arguments also apply in higher
dimension. For a detailed proof, see [5, Corollary 11.2].

Definition 4.20. Let Γ be a torsion-free discrete group. A represen-
tation ρ : Γ → SO0(2, n) is GH-regular if it is faithful, discrete, and
preserves a non-empty GH-regular domain E(Λ) in AdSn+1. If, more-
over, the (n− 1)-sphere Λ is acausal, then the representation is strictly
GH.

Definition 4.21. A (strictly) GH-regular representation ρ : Γ →
SO0(2, n) is (strictly) GHC-regular if the quotient space ρ(Γ)\E(Λ) is
spatially compact.

Hence a reformulation of Mess’s result is the following:

Proposition 4.22. A representation ρ : Γ → SO0(2, n) is GHC-
regular if and only if it is the holonomy of a GHC AdS spacetime.

There is an interesting special case of strictly GHC-regular represen-
tations: the case of quasi-Fuchsian representations.

Definition 4.23. A strictly GHC-regular representation ρ : Γ →
SO0(2, n) is quasi-Fuchsian if Γ is isomorphic to a uniform lattice in
SO0(1, n).

This terminology is motivated by the analogy with the hyperbolic
case.
There is a particular case: the case where Λ is a “round sphere” in

∂AdSn+1, i.e., the boundary of a totally geodesic spacelike hypersurface
S(v⊥) ∩AdSn+1:

Definition 4.24. Let Γ be a uniform lattice in SO0(1, n). A Fuch-
sian representation ρ : Γ→ SO0(2, n) is the composition of the natural
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inclusions Γ ⊂ SO0(1, n) and SO0(1, n) ⊂ SO0(2, n), where in the lat-
ter SO0(1, n) is considered as the stabilizer in SO0(2, n) of a point in
AdSn+1.

In other words, a quasi-Fuchsian representation is Fuchsian if and
only if it admits a global fixed point in AdSn+1.

4.5. The space of timelike geodesics. Timelike geodesics in AdSn+1
are intersections between AdSn+1 ⊂ R2,n and 2-planes P in R2,n such
that the restriction of q2,n to P is negative definite. The action of
SO0(2, n) on negative 2-planes is transitive, and the stabilizer of the
(u, v)-plane is SO(2)×SO(n). Therefore, the space of timelike geodesics
is the symmetric space

T2n := SO0(2, n)/SO(2) × SO(n).

T2n has dimension 2n. We equip it with the Riemannian metric gT
induced by the Killing form of SO0(2, n). It is well known that T2n
has non-positive curvature and rank 2: the maximal flats (i.e., totally
geodesic embedded Euclidean subspaces) have dimension 2. It is also
naturally Hermitian. More precisely: let G = so(2, n) be the Lie algebra
of G = SO0(2, n), and let K be the Lie algebra of the maximal compact
subgroup K := SO(2)× SO(n). We have the Cartan decomposition

G = K⊕K⊥

where K⊥ is the orthogonal of K for the Killing form. Then K⊥ is natu-
rally identified with the tangent space at the origin of G/K. The adjoint
action of the SO(2) term in the stabilizer defines a K-invariant almost-

complex structure on K⊥ ≈ TK(G/K) that propagates through left
translations to a genuine complex structure J on T2n = G/K. There-
fore, T2n is naturally equipped with a structure of n-dimensional com-
plex manifold, together with a J-invariant Riemannian metric, i.e., a
hermitian structure.
Let us consider once more the achronal (n−1)-dimensional topological

sphere Λ. Then it is easy to prove that every timelike geodesic in AdSn+1
intersects E(Λ) (cf. [10, Lemma 3.5]), and since E(Λ) is convex, this
intersection is connected, i.e., is a single inextendible timelike geodesic
of E(Λ). In other words, one can consider T2n as the space of timelike
geodesics of E(Λ).
Let ρ : Γ → SO0(2, n) be a GH-regular representation preserving Λ.

The (isometric) action of ρ(Γ) on T2n is free and proper, and the quotient
T2n(ρ) := ρ(Γ)\T2n is naturally identified with the space of inextendible
timelike geodesics of Mρ(Λ) = ρ(Γ)\E(Λ).

Definition 4.25. Let S be a differentiable Cauchy hypersurface in a
GH-regular spacetime Mρ(Λ) of dimension n+ 1. The Gauss map of S
is the map ν : S → T2n(ρ) that maps every element x of Mρ(Λ) to the
unique timelike geodesic of Mρ(Λ) orthogonal to S at x.
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When S is C1,1 (for example, a level set τ−1(t) of the cosmological
time for t < π/2), then one can define for every C1 curve c in S the
Gauss length as the length in T2n(ρ) of the Lipschitz curve ν◦c. It defines
on S a length metric, called the Gauss metric (of course, if S is Cr with
r ≥ 2, then ν is Cr−1, and the Gauss metric is a Cr−1 Riemannian
metric).

Since every timelike geodesic intersects S at most once, the Gauss
map is always injective. The image of the Gauss map is actually the
set of timelike geodesics that are orthogonal to S. Since every timelike
geodesic intersects S, it follows easily that the image of the Gauss map
is closed and that the Gauss map is actually an embedding.

Remark 4.26. For every 0 < t < π/2, let Σt(τ) be the image by the
Gauss map of the cosmological level set τ−1(t). According to Lemma
4.19, Σt(τ) is the space of realizing geodesics. In particular, it does not
depend on t. We will denote by Σ(τ) this closed embedded submanifold
and call it the space of cosmological geodesics.

4.6. Split AdS spacetimes. Let (p, q) be a pair of positive integers
such that p+ q = n. Let R2,n = V ⊕W be a splitting so that

• V has dimension p+ 1,
• W has dimension q + 1, and
• the restriction of q2,n to V (respectively W ) has signature (1, p)
(respectively (1, q)).

Let (x0, x1, . . . , xp, y0, y1, . . . , yq) be a coordinate system for R2,n such
that V is the subspace {y0 = y1 = · · · = yq = 0}, W is the subspace
{x0 = x1 = · · · = xq = 0}, and such that the quadratic form q2,n is

−x20 + x21 + · · ·+ x2p − y20 + y21 + · · · + y2q .

Let GV,W ≈ SO0(1, p) × SO0(1, q) be the subgroup of SO0(2, n) pre-

serving the splitting R2,n = V ⊕W ≈ R1,p ⊕ R1,q.
Let ΛV (respectively ΛW ) be the subset S(CV ) (respectively S(CV ))

of (the Klein model of) Einn where

CV := {−x20 + x21 + · · ·+ x2p = 0, x0 > 0, y0 = y1 = · · · = yq = 0}
and

CW := {−y20 + y21 + · · ·+ y2q = 0, y0 > 0, x0 = x1 = · · · = xp = 0}.
Observe that ΛV , ΛW are topological spheres of dimension, respec-

tively, p−1, q−1. Moreover, for every pair of elements x, y in ΛV ∪ΛW

the scalar product 〈x | y〉 is non-positive. Hence, according to Corol-
lary 2.11, ΛV ∪ ΛW is achronal. Moreover, every point in ΛV is linked
to every point in ΛW by a unique lightlike geodesic segment contained
in (the Klein model of) Einn.
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Lemma 4.27. The invisible domain E(ΛV ∪ ΛW ) is the interior of
the convex hull of ΛV ∪ ΛW .

Proof. Clearly,

Conv(CV ) = {−x20 + x21 + · · ·+ x2p ≤ 0, x0 > 0, y0 = y1 = · · · = yq = 0}.
Similarly,

Conv(CW ) = {−y20 + y21 + · · ·+ y2q ≤ 0, y0 > 0, x0 = x1 = · · · = xp = 0}.
Therefore, Conv(ΛV ∪ΛW ) is the projection by S of the set of points

(x0, x1, . . . , xp, y0, y1, . . . , yq) satisfying the following inequalities:

−x20 + x21 + · · · + x2p ≤ 0,

−y20 + y21 + cldots+ y2q ≤ 0,

x0 ≥ 0,

y0 ≥ 0.

According to Remark 3.17, Conv(ΛV ∪ΛW )◦ is contained in E(ΛV ∪
ΛW ). Conversely, let z = (x0, x1, . . . , xp, y0, y1, . . . , yq) be an element

of R2,n representing an element of E(ΛV ∪ ΛW ) ⊂ S(R2,n). Then, by
definition of E(ΛV ∪ΛW ), the scalar product 〈z | x〉 is negative for every
element x of CV . It follows that (x0, x1, . . . , xp) must lie in the future

cone of V ≈ R1,p, i.e.,

−x20 + x21 + · · ·+ x2p < 0,

x0 > 0.

Similarly, since 〈z | x〉 < 0 for every element x of CW ,

−y20 + y21 + · · ·+ y2q < 0,

y0 > 0.

The lemma follows. q.e.d.

Let Λp,q be the intersection in S(R2,n) of Conv(ΛV ∪ΛW ) and S(Cn) ≈
Einn. Let (x0, x1, . . . , xp, y0, y1, . . . , yq) be an element of R

2,n represent-
ing an element of Λp,q. According to the proof of Lemma 4.27, we must

have −x20 + x21 + · · · + x2p ≤ 0 and −y20 + y21 + · · · + y2q ≤ 0, and since
(x0, x1, . . . , xp, y0, y1, . . . , yq) lies in Cn, these quantities must vanish.
Hence the inequalities defining Λp,q are

−x20 + x21 + · · ·+ x2p = 0,

−y20 + y21 + · · ·+ y2q = 0,

x0 ≥ 0,

y0 ≥ 0.

Therefore, Λp,q is the union of ΛV , ΛW , and the lightlike segments
joining a point of ΛV to a point of ΛW : it is achronal, but not acausal!
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Topologically, Λp,q is the join of two spheres; therefore, it is a sphere of
dimension 1 + (p− 1) + (q − 1) = n− 1. It is not an easy task to figure
out how it fits inside Einn = ∂AdSn+1.
For that purpose, we consider the coordinates

(r, θ, a1, . . . , ap, b1, . . . , bq)

on AdSn+1 = {−x20 + x21 + ... + x2p − y20 + y21 + . . . + y2q = −1} ⊂ R2,n

such that x0 = r cos θ, y0 = r sin θ, xi = rai, yi = rbi, and r > 0. Then
we have

V = {θ ≡ 0 [π], b1 = 0, . . . , bq = 0},
W = {θ ≡ π/2 [π], a1 = 0, . . . , ap = 0}.

According to Proposition 2.4, the (n+1)-tuple (a1, . . . , ap, b1, . . . , bq, 1/r)

describes the upper hemisphere Dn = {a21+. . .+a2p+b21+. . .+b2q+1/r
2 =

1, r > 0} in the Euclidean sphere of Rn+1 of radius 1. Furthermore
AdSn+1 is conformally isometric to the product S

1×Dn with the metric
− dθ2+ds2, where ds2 is the round metric on Dn.
In these coordinates, the inequalities defining E(ΛV ∪ΛW ) established

in the proof of Lemma 4.27 become

0 < θ < π/2,(2)

a21 + . . .+ a2p < cos2 θ,(3)

b21 + · · ·+ b2q < sin2 θ.(4)

Let DW be the subdisk of Dn defined by a1 = · · · = ap = 0, and let
DV be the subdisk defined by b1 = · · · = bq = 0. For every x̄ in Dn,
let dW (x̄) be the distance in Dn of x̄ to DW , and define similarly the
“distance to DV ” function dV : Dn → [0,+∞[. Observe that since DV

and DW both contain the North pole (0, . . . , 0, 1) of Dn, and since every
point in Dn is at distance at most π/2 of the North pole, dW and dV
take value in [0, π/2[. Now, observe that the following identities hold

a21 + · · ·+ a2p = sin2 dW (a1, . . . , ap, b1, . . . , bq, 1/r),(5)

b21 + · · ·+ b2q = sin2 dV (a1, . . . , ap, b1, . . . , bq, 1/r).(6)

It follows that E(ΛV ∪ ΛW ) is the domain in AdSn+1 ≈ S1 × Dn

consisting of the points (θ, x̄) such that

dV (x̄) < θ < π/2− dW (x̄).

In the terminology of Remark 3.3, it means that the lifting Ẽ( ˜ΛV ∪ ΛW )
is defined by the functions f− = dV and f+ = π/2−dW . These functions

extend uniquely as 1-Lipschitz maps f± : D
n → [0, π/2].

The boundary ∂Dn = Sn−1 is totally geodesic in D
n
, and ∂DW , ∂DV

are totally geodesic spheres of dimensions p− 1, q− 1, respectively. Let
δW : ∂Dn → [0, π/2] (respectively δV : ∂Dn → [0, π/2]) be the function
“distance (in ∂Dn, and also in Dn) to ∂DW” (respectively “distance to
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∂DV ”). It follows from equations (5) and (6) , which naturally extend
to the boundary ∂Dn, that every point of ∂DW is at distance π/2 of
∂DV . Hence, on ∂DV ,

δW + δV = π/2.

In other words, the restrictions of f− and f+ to ∂Dn coincide and are
equal to δV = π/2 − δW . The restriction of f− = f+ to ∂DV vanishes,
and the graph of this restriction is ΛV . The restriction of f− = f+ to
∂DW is the constant map of value π/2, and the graph is ΛW . The graph
of f± : ∂Dn → S1 is Λp,q, which is therefore an achronal sphere in Einn.
Clearly, Λp,q is preserved by GV,W . Let Γ be a cocompact lattice of

GV,W ≈ SO0(1, p)×SO0(1, q). The inclusion Γ ⊂ GV,W ⊂ SO0(2, n) is a
GH-regular representation, but not strictly since the invariant achronal
limit set Λp,q is not acausal. According to Proposition 4.13, the quotient
space Mp,q(Γ) := Γ\E(Λp,q) is a GH spacetime. Actually, the Cauchy
surfaces of Mp,q(Γ) are quotients by Γ of the graph of a 1-Lipschitz map

f : Dn → S1, and hence they are K(Γ, 1) (since Dn is contractible). On
the other hand, the quotient of Hp × Hq is a K(Γ, 1) too. Since Γ is
a cocompact lattice, it follows that every n-dimensional manifold that
is a K(Γ, 1)—in particular, the Cauchy hypersurfaces in Mp,q(Γ)—is
compact. The inclusion Γ ⊂ SO0(2, n) is therefore GHC-regular.

Definition 4.28. The quotient space Mp,q(Γ) is a split AdS space-
time. The representation ρ : Γ → SO0(2, n) is a split GHC-regular rep-
resentation of type (p, q).

Remark 4.29. The split AdS spacetimes of dimension 2 + 1 are
precisely the Torus universes studied in [18]. Observe indeed that the
lattice in SO0(1, 1)×SO0(1, 1) ≈ R2 is isomorphic to Z2, and the Cauchy
surfaces are indeed tori.

4.7. Crowns. A particular case of split AdS spacetime is the case
p = q = 1 (and, therefore, n = 2). Then the topological spheres ΛV

and ΛW have dimension 0, i.e., are pairs of points ΛV = {x−, y−} and
ΛW = {x+, y+}. The topological circle Λp,q is then piecewise linear; more
precisely, it is the union of the four lightlike segments [x−, x+], [x+, y−],
[y−, y+], [y+, x−]. The invisible domain E(Λp,q) is then an ideal tetrahe-
dron, interior of the convex hull of the four ideal points {x−, y−, x+, y+}.
This tetrahedron has six edges; four of them are the lightlike segments
forming Λp,q, and the other two are the spacelike geodesics ] x

−, y−[ and
] x+, y+[ of AdSn+1 (see Figure 2). Observe that [x

−, x+] and [y−, y+]
are future oriented, whereas [x+, y−] and [y+, x−] are past oriented.
More generally:

Definition 4.30. For every integer n ≥ 2, a crown of Einn is quadru-
ple C = (x−, y−, x+, y+) in Einn such that

• 〈x− | x+〉 = 〈x− | y+〉 = 0,
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Figure 2. Picture of the realm of a crown in AdS3. The
hyperboloid represents the boundary of an affine domain
of AdS3 containing the realm of the crown. There are
two triangular faces, one visible on the picture, which
are in the past horizon. There are two triangular faces,
one visible on the picture, forming the future horizon.

• 〈y− | x+〉 = 〈y− | y+〉 = 0,
• 〈x− | y−〉 < 0,
• 〈x+ | y+〉 < 0, and
• the lightlike segment [x−, x+] is future oriented.

The subset {x−, y−, x+, y+} is then an achronal subset of Einn. The
invisible domain E({x−, y−, x+, y+}) is called the realm of the crown
and denoted by E(C). The convex hull of {x−, y−, x+, y+} is denoted by
Conv(C).

Observe that, for n > 2, the convex hull Conv(C) and the realm E(C)
do not coincide (see Remark 4.33).

Remark 4.31. Let C = (x−, y−, x+, y+) be a crown in Einn, and let
x−, y−, x+, y+ be elements of R2,n representing the vertices of the crown.
Let V (C) be the linear space spanned by x+, x−, y−, y+. The restriction
of q2,n to V (C) has signature (2, 2), and S(V (C)) is the unique totally
geodesic copy of Ein2 in Einn containing C.

Remark 4.32. Let Z be the stabilizer in SO0(2, n) of a crown. It pre-

serves the orthogonal sum V (C)⊕V (C)⊥. It is isomorphic to the product
A × SO(n − 2), where A is a maximal R-split semisimple abelian sub-
group of SO0(2, 2), hence of SO0(2, n). Therefore, Z is the centralizer in
SO0(2, n) of A, and it has finite index in the normalizer N of A. It follows
that the space of crowns is naturally a finite covering over the space G/N
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of maximal flats in the symmetric space T2n = SO0(2, n)/SO(2)×SO(n)
of timelike geodesics.

Remark 4.33. In this remark, we go back to the coordinate system
used in Section 2.1. Up to an isometry, one can assume that the crown
C = (x−, y−, x+, y+) is represented by

x+ = (1, 0, 1, 0, 0, . . . , 0),

y+ = (1, 0,−1, 0, 0, . . . , 0),
x− = (0, 1, 0, 1, 0, . . . , 0),

y− = (0, 1, 0,−1, 0, . . . , 0).
According to Proposition 3.9, the realm E(C) is defined by the in-

equalities

x1 − u < 0,

−x1 − u < 0,

x2 − v < 0,

−x2 − v < 0,

−u2 − v2 + x21 + . . .+ x2n < 0,

and hence by

|x1| < u, |x2| < v, −u2 − v2 + x21 + . . .+ x2n < 0.

Observe that the last inequality is implied by the two previous ones
when n = 2. If n = 2, the realm of a crown C coincides with the interior
of Conv(C) (Lemma 4.27), but this is obviously not true for n > 2, since
Conv(C) is always 3-dimensional.

5. Acausality of limit sets of Gromov hyperbolic groups

Throughout this section, Γ is a torsion-free Gromov hyperbolic group,
and ρ : Γ → SO0(2, n) a GHC-regular representation, with limit set
Λ ≈ Sn. By hypothesis, E(Λ) is not empty, and therefore Λ is not
purely lightlike.

5.1. Non-existence of crowns.

Proposition 5.1. The limit set Λ contains no crown.

Proof. Recall that T2n denotes the space of timelike geodesics (cf.
Sect. 4.5). Let C = (x−, y−, x+, y+) be a crown contained in Λ. Let
F (C) be the subset of T2n consisting of timelike geodesics containing
a segment [p−,p+] with p± ∈] x±, y±[. Let A be the maximal R-split
abelian subgroup stabilizing C, i.e., the subgroup of the stabilizer Z of
C acting trivially on V (C)⊥ (cf. Remark 4.32). Then, F (C) is an orbit of
the action of A in T2n. Therefore, F (C) is a flat in the symmetric space
T2n.
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Let Σ(τ) be the space of cosmological geodesics in E−0 (Λ) (cf. Re-
mark 4.26).

Claim: Σ(τ) contains F (C).
Let p+, p− be elements of the spacelike lines ] x+, y+[, ] x−, y−[. The

closure of E(Λ) contains Conv(Λ) (Remark 3.17); in particular, it con-
tains p±. On the other hand, 〈x+ | p−〉 = 0; hence, by Proposition 3.9,
the point p+ does not lie in E(Λ). Therefore, p− is an element of the
past horizon H−(Λ) (recall Definition 3.5).
Observe that 〈p− | p+〉 = 0. Hence p− lies in the hyperplane H−(p+)

past-dual to p+. Now, since p+ lies in Conv(Λ), we have 〈p+ | y〉 ≤ 0
for every y in E(Λ). Therefore, H−(p+) is a support hyperplane of
H−(Λ) at p−, orthogonal to the timelike geodesic [p−,p+]. According
to Proposition 4.17, (p−,p+) is a realizing geodesic, hence an element
of Σ(τ). The claim follows.
Consider now the Gauss metric on Σ(τ) (cf. Definition 4.25). Accord-

ing to the claim, Σ(τ) contains the Euclidean plane F (C). Since F (C) is
totally geodesic in T2n, it is also totally geodesic in Σ(τ).
On the other hand, the group Γ acts on Σ(τ), and the quotient of this

action is compact, since this quotient is the image by the Gauss map
of a compact surface in Mρ(Λ). Hence Σ(τ) is quasi-isometric to Γ, and
therefore, Gromov hyperbolic. This is a contradiction since a Gromov
hyperbolic metric space cannot contain a 2-dimensional flat. q.e.d.

5.2. Compactness of the convex core. In Section 3.3, we have seen

that, up to a lifting in ÃdSn+1, the convex core Conv(Λ) (respectively
the invisible domain E(Λ)) can be defined as the region between the
graphs of functions F± : Dn → R (respectively f± : Dn → R) such that
(cf. Proposition 4.3)

(7) f− ≤ F− ≤ F+ ≤ f+,

where the inequality F− ≤ F+ is strict as soon as ρ : Γ→ SO0(2, n) is
not Fuchsian.

Proposition 5.2. The left and right inequalities in (7) are strict;
i.e., for every x in Dn, we have

f−(x̄) < F−(x̄) ≤ F+(x̄) < f+(x̄).

Proof. Assume not. Reverting the time orientation if necessary, it
means that f−(x̄) = F−(x̄) for some x̄ in Dn. In other words, (F−(x̄), x̄)
represents an element x = S(x) of S−(Λ) is on the boundary of E(Λ) ⊂
ADSn+1—more precisely, in the past horizon H−(Λ)). The representant
x in R2,n is a linear combination x = t1x1 + . . . + tkxk, where k ≥ 2, ti
are positive real numbers and xi are elements of Cn ⊂ R2,n such that
the projections S(xi) belong to Λ. Moreover, since x lies in ADSn+1, we
have 〈xa | xb〉 < 0 for some integers a, b. Since x lies in the boundary
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of E(Λ), there is an element x0 in Cn representing an element of Λ such
that

0 = 〈x0 | x〉
= t1〈x0 | x1〉+ . . .+ tk〈x0 | xk〉.

Since Λ is achronal, each 〈x0 | xi〉 is non-positive, and therefore vanishes.
In particular,

• 〈x0 | xa〉 = 〈x0 | xb〉 = 0,
• 〈xa | xb〉 < 0.

We can assume without loss of generality that x is actually equal to
xa + xb, after rescaling if necessary xa, xb so that xa + xb has norm −1,
i.e., lies in ADSn+1.
Consider now any element y0 = S(y0) of E

−
0 (Λ) in the future of x, i.e.,

such that ] x, y0[ is a future oriented timelike segment. More precisely,
we can select y0 such that the timelike segment [x, y0] is orthogonal to
the segment [xa, xb]. Let t0 be the cosmological time at y0, let S0 be the
cosmological level set τ−1(t0), and let d0 be the induced metric on S0:
this metric is complete since S0 admits a compact quotient.
Let P be the 3-subspace of R2,n spanned by y0, x and x0: by con-

struction, P is orthogonal to xa − xb. Then, A := S(P ) ∩ ADSn+1 is a
totally geodesic copy of ADS2. The restriction of τ to A∩E−0 (Λ) is still
a Cauchy time function, and S0 ∩ A is a spacelike path which contains
y0. Moreover, there is a sequence yn := S(yn) in S0 ∩ A converging to
x0 := S(x0).
Let K0 ⊂ S0 be a compact fundamental domain for the action of ρ(Γ)

on S0. There is a sequence gn = ρ(γn) in ρ(Γ) such that zn := gn yn
converge to z̄ in K0. We define

an := gnxa,

bn := gnxb,

qn := gnx0,

xn := gnx = an + bn.

Up to a subsequence, we can assume that an := S(an), bn := S(bn),
qn := S(qn) converge to elements ā, b̄, q̄ of Λ, and that xn := S(xn)
converges to an element x̄ of the segment [ā, b̄]. At this level, it could
happen that this segment is reduced to one point—i.e., ā = b̄—but we
will prove that it is not the case.

Claim: x̄ lies in ADSn+1.
Indeed, since every xn belongs to H−(Λ), if the limit x̄ does not lie in

ADSn+1, then, according to Proposition 4.1, it is an element of Λ. The
segment [x̄, z̄], limit of the timelike segments [xn, zn], would be causal,
and the element z̄ ofK0 ⊂ E(Λ) would be causally related to the element
x̄ of Λ: a contradiction.
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Therefore, x̄ lies in H−(Λ). It follows in particular that ā �= b̄. Con-
sider now the iterates pn := gn y0 of y0. They belong to S0. Up to a
subsequence, we can assume that the sequence (pn)n∈N admits a limit
p̄. Since d0 is complete and the yn converge to a point in ∂ADSn+1, the
distance d0(yn, y0) converge to +∞. Therefore,

d0(zn,pn) = d0(gn yn, gn y0) = d0(yn, y0)

is unbounded: the limit p̄ is at infinity, i.e., an element of Λ.
The four points q̄, ā, b̄, p̄ in Einn satisfy

• 〈q̄ | ā〉 = 〈q̄ | b̄〉 = 0 (since 〈x0 | xa〉 = 〈x0 | xb〉 = 0),
• 〈ā | b̄〉 < 0 (since ]ā, b̄[ contains the element x̄ of ADSn+1), and

• 〈p̄ | ā〉 = 〈p̄ | b̄〉 = 0 (since every pn lies in a⊥n ∩ b⊥n ).

Now observe that in every iterate An = gnA, the timelike geodesic
Δn containing [xn, zn] disconnects An, and that the ideal points qn, pn
lie on (the boundary of) different components of An \Δn.
It follows that p̄ �= q̄. Observe that q̄, p̄ lie in the projection by S of

the isotropic cone of ā⊥ ∩ b̄⊥, which has signature (1, n− 1). Moreover,
every pn, qn lies in the future of xn: it follows that q̄, p̄ lies in the same

connected component of the projection of the isotropic cone of ā⊥ ∩ b̄⊥
(with the origin removed); therefore,

〈p̄ | q̄〉 < 0.

It follows that (ā, b̄, p̄, q̄) is a crown, contradicting Proposition 5.1. q.e.d.

5.3. Proof of Theorem 1.4. In this section, we prove the following:
Theorem 1.4. Let ρ : Γ → SO0(2, n) be a GHC-regular representa-

tion, where Γ is a Gromov hyperbolic group. Then the achronal limit set
Λ is acausal, i.e., ρ is (SO0(2, n),Einn)-Anosov.

Proof. We equip the convex domain E(Λ) with its Hilbert metric: for
every element x, y in E(Λ) ⊂ ADSn+1, the Hilbert distance dh(x, y) is

defined to be
1

2
[a; x; y; b], where the cross-ratio [a; x; y; b] is defined so

that [0; 1; z;∞] = z and where a, b are the intersections between ∂E(Λ)
and the projective line in S(R2,n) containing x and y. The Hilbert metric
is of course ρ(Γ)-invariant.
Assume by contradiction that Λ is not acausal. Then, since it is filled

in the sense of Remark 3.19, it contains a lightlike segment [x, y] with
x �= y. We can assume without loss of generality that this segment is
maximal, i.e., that [x, y] is precisely the intersection between Λ and
a projective line in Einn ⊂ S(R2,n). Let P be a projective 2-plane of
S(R2,n) containing [x, y] and an element z of Conv(Λ)◦. The intersection
P ∩ Conv(Λ)◦ is a convex domain containing the ideal triangle x, y, z,
with a side [x, y] contained at infinity. Let u be an element in the segment
] x, y[. For every t > 0, let xt (respectively yt) be the element of the
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segment [z, x[ (respectively [z, y[) such that dh(z, xt) = t (respectively
dh(z, yt) = t), and let ut be the intersection [z,u]∩ [xt, yt]. Observe that
[z, xt]∪ [xt, yt] ∪ [yt, z] is a geodesic triangle for dh. Now, an elementary
computation shows (see the proof of Proposition 2.5 in [13])

lim
t→+∞

dh(ut, [z, xt] ∪ [z, yt]) = +∞.

This implies that Conv(Λ) \ Λ, equipped with the restriction of dh, is
not Gromov hyperbolic.
But, on the other hand, the quotient of Conv(Λ) \Λ by ρ(Γ) is com-

pact. Indeed, according to Proposition 5.2, the future boundary S+(Λ)
and the past boundary S−(Λ) of the convex core are contained in E(Λ).
Their projections in Mρ(Λ) are therefore compact achronal hypersur-
faces, bounding a compact region C, which is precisely the quotient of
Conv(Λ) \ Λ.
Since Γ is Gromov hyperbolic, (Conv(Λ)\Λ, dh) is Gromov hyperbolic.

Contradiction. q.e.d.

6. Limits of Anosov representations

This section is entirely devoted to the proof of the Theorem 1.2, wi-
hich we restate here for the reader’s convenience:

Theorem 1.2. Let n ≥ 2, and let Γ be a Gromov hyperbolic group
of cohomological dimension ≥ n. Then Repan(Γ,SO0(2, n)) is open and
closed in Rep(Γ,SO0(2, n)).

We recall that one important step of the proof will be be to show that
under these hypotheses, Γ is the fundamental group of a closed manifold,
and that its cohomological dimension is eventually n (cf. Remark 1.3).
Let Γ be as in the hypotheses of the Theorem a Gromov hyperbolic

group of cohomological dimension ≥ n. The fact that

Repan(Γ,SO0(2, n))

is open in Rep(Γ,SO0(2, n)) is well known (cf. Theorem 1.2 in [28], or
[29]); hence our task is to prove that it is a closed subset.
Let ρk : Γ → SO0(2, n) be a sequence of (SO0(2, n),Einn)-Anosov

representations converging to a representation ρ∞ : Γ→ SO0(2, n).

Proposition 6.1. The limit representation ρ∞ : Γ → SO0(2, n) is
discrete and faithful.

Proof. Since Γ is Gromov hyperbolic and non-elementary, it contains
no nilpotent normal subgroup (see [22]). Hence, by a classical argument,
the limit ρ∞ : Γ → SO0(2, n) is discrete and faithful (cf. Lemma 1.1 in
[24]).
Actually, we give a sketch of the argument, since we will later need, in

the proof of Lemma 6.2, a slightly more elaborate version of it. The key
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point is that SO0(2, n), as any Lie group, contains a Zassenhaus neigh-
borhood, i.e., a neighborhoodW0 of the identity such that every discrete
subgroup generated by elements in W0 is contained in a nilpotent Lie
subgroup of SO0(2, n) (for a proof, see [32, Theorem 8.16] where this
result is attributed to Zassenhaus and Kazhdan-Margulis). In particu-
lar, such a discrete subgroup is nilpotent, and there is a uniform bound
N for the nilpotence class (i.e., the length of the lower central series)
of these nilpotent groups.
Assume that Ker(ρ∞) ⊂ Γ is non-trivial. Then it is a normal sub-

group. For any finite subset F of Ker(ρ∞), there is an integer k0 such
that k ≥ k0 implies that ρk(F ) is contained in W0, hence that the
subgroup generated by ρk(F ) is nilpotent of nilpotence class ≤ N . It
follows that Ker(ρ∞) is nilpotent, therefore trivial: the representation
ρ∞ is faithful.
Let Ḡ∞ be the closure of ρ∞(Γ) in SO0(2, n), and let Ḡ

0
∞ be the iden-

tity component of Ḡ∞: it is a normal subgroup of Ḡ∞, and it is generated
by any neighborhood of the identity in Ḡ∞. Therefore, ρ∞(Γ)∩W0 gen-
erates a dense subgroup of Ḡ0

∞. On the other hand, any expression of
the form

(8) [ρ∞(γ1), [ρ∞(γ2), [· · · [ρ∞(γN ), ρ∞(γN+1)] · · · ]]]

with every ρk(γi) ∈W0 is the limit for k → +∞ of

(9) [ρk(γ1), [ρk(γ2), [· · · [ρk(γN ), ρk(γN+1)] · · · ]]].

For k sufficiently big, every ρk(γi) belongs to W0 and ρk(Γ) is discrete;
hence (9) is trivial. The limit (8) is trivial too. It follows that Ḡ0

∞ is
nilpotent. Then ρ−1∞ (ρ∞(Γ)∩ Ḡ0

∞) is a nilpotent normal subgroup of Γ,
and hence trivial. It follows that Ḡ0

∞ is trivial, i.e., ρ∞(Γ) is discrete.
q.e.d.

An immediate consequence of the representations ρk being Anosov
is the existence of a ρk(Γ)-equivariant map ξ : ∂∞Γ → Einn whose
image is a closed ρk(Γ)-invariant acausal subset Λk (cf. [10, 28]). Ac-
cording to the Remark 3.4, for every integer k there is a ρk(Γ)-invariant
achronal topological (n − 1)-sphere Λ+k , which is not purely lightlike
since it contains the acausal subset Λk. Therefore, every ρk is a GH-
regular representation. The Cauchy hypersurfaces of the associated GH
spacetimes are contractible (since the universal coverings are topological
disks embedded in regular domains of AdSn+1) and have fundamental
groups isomorphic to Γ. Since Γ has cohomological dimension ≥ n, these
Cauchy hypersurfaces are compact: the ρk are GHC-regular representa-
tions.
The ρk(Γ)-invariant spheres Λ̂k are graphs of locally 1-Lipschitz maps

fk : S
n−1 → S1. It follows easily by the Ascoli–Arzela Theorem that,
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up to a subsequence, ρ∞(Γ) preserves the graph a of locally 1-Lipschitz
map f∞ : Sn−1 → S1, i.e., an achronal sphere Λ∞.

Lemma 6.2. Λ∞ is not purely lightlike.

Proof. Assume otherwise. Then Λ∞ is the union of lightlike geodesics
joining two antipodal points x0 and − x0 in Einn (see Remark 3.19). Let
G0 be the stabilizer in SO0(2, n) of ± x0: the image ρ∞(Γ) is a discrete
subgroup of G0.
According to Remark 2.13, the group G0 is isomorphic to the group

of conformal affine transformations of the Minkowski space Mink(x0) ≈
R1,n−1. There is an exact sequence

1→ R1,n−1 → G0 → R× SO0(1, n − 1)→ 1,

where the left term is the subgroup of translations of R1,n−1 and the
right term the group of conformal linear transformations of R1,n−1. Let
L : G0 → R × SO0(1, n − 1) be the projection morphism. Let L̄ be
the closure in R × SO0(1, n − 1) of L(ρ∞(Γ)), and let L̄0 be the iden-
tity component of L̄. Considering as in the proof of Proposition 6.1
a Zassenhaus neighborhood V0 of the identity in G0, and using as a
trick the fact that conjugacies in G0 by homotheties in R1,n−1 can
reduce at an arbitrary small-scale translations in R1,n−1, one proves
that ρ∞(Γ) ∩ L−1(L(ρ∞(Γ)) ∩ L̄0) is a normal nilpotent subgroup of
ρ∞(Γ) ≈ Γ (cf. [19, Theorem 1.2.1]). Therefore, it is trivial: L(ρ∞(Γ))
is a discrete subgroup of R× SO0(1, n − 1).
Now we consider R× SO0(1, n − 1) as the group of isometries of the

Riemannian product R×Hn−1. By what we have just proved, the action
of ρ∞(Γ) on R×Hn−1 is properly discontinuous. On the other hand, Γ
acts properly and cocompactly on a topological disk of dimension n (a
Cauchy hypersurface in E(Λk) for any k); hence its action on R×Hn−1

is cocompact. This is a contradiction since R × Hn−1 is not Gromov
hyperbolic (it contains flats of dimension 2). q.e.d.

Proof of Theorem 1.2. According to Lemma 3.8, Proposition 6.1,
and Lemma 6.2, ρ∞ : Γ → SO0(2, n) is a GH-regular representation.
It is actually a GHC-regular representation since Cauchy surfaces in
ρ∞(Γ)\E(Λ∞) are K(Γ, 1) and thus compact since Cauchy surfaces in
every ρk(Γ)\E(Λk) are compact. According to Theorem 1.4, the repre-
sentation ρ∞ : Γ→ SO0(2, n) is (SO0(2, n),Einn)-Anosov.

7. Bounded cohomology

This section is devoted to the proof of Theorem 1.5.
Theorem 1.5 Let ρ : Γ→ SO0(2, n) be a faithful and discrete repre-

sentation, where Γ is the fundamental group of a negatively curved closed
manifold M of dimension n. The following assertions are equivalent:
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1) ρ is (SO0(2, n),Einn)-Anosov.
2) ρ is GHC-regular.
3) The bounded Euler class eub(ρ) vanishes.

For a friendly introduction to bounded cohomology, close to our
present concern, see [23, Section 6].

7.1. The bounded Euler class. We have the central exact sequence

1→ Z→ S̃O0(2, n)→ SO0(2, n)→ 1,(10)

where Z is the group of deck transformations of the covering p̂ : Ẽinn →
Einn, generated by the transformation δ (cf. Section 2.3). Observe that

Z is not always the whole center of S̃O0(2, n), since − Id is an element
of SO0(2, n) when n is even. Fix an element x0 = (0, x̄0) in Ẽinn ≈ R×
Sn−1. In these coordinates, δ is the transformation (θ, x̄) �→ (θ+2π, x̄).

Hence we can define a section σ : SO0(2, n) → S̃O0(2, n), called the
canonical section, which maps every element g of SO0(2, n) to the unique

element σ(g) of S̃O0(2, n) above g and such that σ(g)(x0) lies in the
domain

W0 := {(θ, x̄) ∈ R× Sn−1 / − π ≤ θ < π}.
Observe that W0 is a fundamental domain for the action of 〈δ〉 = Z on

Ẽinn.
For any pair (g1, g2) of elements of SO0(2, n), we define c(g1, g2) as

the unique integer k such that σ(g1g2) = δkσ(g1)σ(g2).

Lemma 7.1 (Compare with Lemma 6.3 in [23]). The 2-cocycle c
takes only the values −1, 0, or 1.

Proof. Let x1 = (θ1, x̄1) and x2 = (θ2, x̄2) be the images of x0 by
σ(g1), σ(g2), respectively. Let x3 = (θ3, x̄3) be the image of x2 by σ(g1).

1) If |θ2| ≤ d(x̄2, x̄0). It means that x2 is not in I±(x0). Then x3 =
σ(g1)(x2) is not in I±(x1). Therefore

| θ3 − θ1 |≤ d(x̄3, x̄1) ≤ π,

implying | θ3 |≤ 2π. It follows that if x3 = σ(g1)σ(g2)(x0) is not
already in W0, δ

ε(x0) for ε = ±1 is. Hence c(g1, g2) = ε is 0, −1
or 1, as required.

2) If θ2 > d(x̄2, x̄0). Then, 0 < π − θ2 < π − d(x̄2, x̄0) = d(x̄2,−x̄0)
where −x̄0 is the antipodal point in Sn−1 at distance π from x̄0.
The point x2 is not in J±((π,−x̄0)), and hence its image x3 by
σ(g1) is not in J±((π + θ1,−x̄1). It follows that

| θ3 − (π + θ1) |< d(x̄3,−x̄1) ≤ π.

Therefore,
| θ3 |< 3π.

Hence, for some ε = 0 or ±1, we have that δε(x3) lies in W0, and
c(g1, g2) = ε is 0, −1 or 1.
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3) If −π ≤ θ2 < −d(x̄2, x̄0). We apply the same argument as in case
(2), by observing that x̄2 is then not causally related to (−π,−x̄0).
Details are left to the reader.

q.e.d.

Definition 7.2. c is a bounded 2-cocycle. It represents an element
of the bounded cohomology space H2b(SO0(2, n),Z) called the bounded
Euler class.
For any representation ρ : Γ → SO0(2, n), the pull-back ρ∗([c]) is an

element of H2b(Γ,Z), denoted by eub(ρ).

Of course, c also represents an element of the “classical” cohomology
space H2(SO0(2, n),Z). The associated 2-cocycle eu(ρ) represents the

obstruction to lifting ρ to a representation ρ̃ : Γ → S̃O0(2, n). Indeed,
eu(ρ) = 0 means that there is a 1-cochain a : Γ→ Z such that for every
γ1, γ2 in Γ we have

c(ρ(γ1), ρ(γ2)) = a(γ1γ2)− a(γ1)− a(γ2).

Then the map γ → δa(γ)σ(ρ(γ)) is a morphism, i.e., a representation

ρ̃ : Γ→ S̃O0(2, n) that is a lift of ρ.
Now eub(ρ) = 0 means precisely that eu(ρ) = 0, but also that one can

select the 1-cochain a so that it is bounded. The following proposition is a
natural generalization of the fact that a group of orientation-preserving
homeomorphisms of the circle has a vanishing bounded Euler class if
and only if it has a global fixed point (see the end of Sect. 6.3 in [23]):

Proposition 7.3. The bounded Euler class eub(ρ) vanishes if and

only if ρ lifts to a representation ρ̃ : Γ → S̃O0(2, n) such that ρ̃(Γ)
preserves a closed (n − 1)-dimensional achronal topological sphere in

Ẽinn.

Proof. Recall that W0 is the domain {(θ, x̄) ∈ R × Sn−1 / − π ≤
θ < π}.
Invariant achronal sphere ⇒ eub(ρ) = 0

Assume that ρ lifts to a representation ρ̃ : Γ → S̃O0(2, n) (i.e., that
eu(ρ) = 0) and that ρ̃(Γ) preserves a closed (n−1)-dimensional achronal
topological sphere Λ in Ẽinn, i.e., the graph of a 1-Lipschitz map f :
Sn−1 → R. Let a : Γ→ Z be the map associating to γ the unique integer
k such that

ρ̃(γ) = δkσ(ρ(γ)).

Then a is the 1-cochain whose coboundary represents the Euler class of
ρ. The point is to prove that a is bounded.
The invariant achronal sphere Λ is contained in the closure of an

affine domain of Ẽinn (cf. Lemma 2.5), i.e., in a domain of the form
{θ0−π ≤ θ ≤ θ0+π}. More precisely, either it is contained in a domain
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δqW0 for some integer q, or it contains a point (qπ, x̄), in which case Λ is
contained in the domain {(q−1)π ≤ θ < (q+1)π}. In both cases, there is
an integer q such that Λ is contained in the union Zq := δq−1W0∪δqW0.
For every γ in Γ, the image of x0 = (0, x̄0) by σ(ρ(γ)) is a point (θ, ȳ0)

with |θ| ≤ π, and hence the intersection between W0 and σ(ρ(γ))(W0)
is non-trivial. Since δ commutes with σ(ρ(γ)), the intersection Wq ∩
σ(ρ(γ))(Wq) is non-empty. A fortiori, the same is true for the inter-
section Zq ∩ σ(ρ(γ))(Zq). However, since δ acts by adding 2π to the
coordinate θ, the intersection Zq ∩ δrσ(ρ(γ))(Zq) is empty as soon as r
is an integer of absolute value > 2.
On the other hand, we know that Zq ∩ ρ̃(γ)Zq is non-empty since

Zq contains the invariant sphere Λ. It follows that the integer a(γ) has
absolute value at most 2.

eub(ρ) = 0 ⇒ Invariant achronal sphere
Assume now that eub(ρ) vanishes, i.e., that there is a bounded map

a : Γ → Z such that γ → δa(γ)σ(ρ(γ)) is a representation ρ̃ : Γ →
S̃O0(2, n). Let α be an upper bound for |a(γ)| (γ ∈ Γ). Let fid : Sn → R

be the null map, and for every element γ of Γ, let fγ : S
n → R be the 1-

Lipschitz map whose graph is the image by ρ̃(γ) of the graph of fid. The

graph of fγ contains δa(γ)σ(ρ(γ))(0, x̄0), hence a point of θ-coordinate
of absolute value bounded from above by |a(Γ)|+π. Since every fγ is 1-
Lipschitz and since the sphere has diameter π, there is a uniform upper
bound for all the fγ . For every x̄ in Sn define

f∞(x̄) := Supγ∈Γ fγ(x̄).

Then f∞ is a 1-Lipschitz map, whose graph is clearly ρ(Γ)-invariant.
q.e.d.

7.2. Proof of Theorem 1.5. Let ρ : Γ→ SO0(2, n) be a faithful and
discrete representation, where Γ is the fundamental group of a negatively
curved closed manifold M . As we have already noticed, the equivalence
between (1) and (2) follows from Theorem 1.4 and [10]. According to
Proposition 7.3, the bounded Euler class eub(ρ) vanishes if and only if

ρ lifts to a representation ρ̃ : Γ → S̃O0(2, n) such that ρ̃(Γ) preserves

a closed (n− 1)-dimensional achronal topological sphere in Ẽinn. Since
by hypothesis the representation is assumed to be faithful and discrete,
it means that item (3) is equivalent to the fact that the representation
is GH-regular. Now since Γ is assumed to be the fundamental group
of a negatively curved closed manifold, GH-regular representations of
Γ are automatically GHC-regular. The equivalence between (2) and (3)
follows. The theorem is proved.

7.3. The case n = 2. In this last section, we explain in which way one
can deduce from Proposition 7.3 the following classical result:
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Proposition 7.4. Let ρ1, ρ2 : Γ→ PSL(2,R) be two representations
such that eub(ρ1) = eub(ρ2). Then ρ1 and ρ2 are semi-conjugate, i.e.,
there is a monotone map f : RP1 → RP1 such that

∀γ ∈ Γ, ρ1(γ) ◦ f = f ◦ ρ2(γ).
Let us first recall the definition of the bounded Euler class for a rep-

resentation ρ : Γ→ PSL(2,R): it is completely similar to the definition
we have presented above.

Let p : S̃L(2,R) → PSL(2,R) be the universal covering. It acts nat-

urally on the universal covering R̃P
1
of the projective line RP1, so that

the kernel of p is the center of S̃L(2,R) and also the Galois group of

R̃P
1
. We fix a total order < on R̃P

1 ≈ R and a generator τ of ker p so

that τ(x) > x for every x in R̃P
1
. Given an element x0 of R̃P

1
, there is

still a canonical section σ : PSL(2,R)→ S̃L(2,R), which is not a homo-
morphism, that associates to any element g of RP1 the unique element
g̃ such that

x0 ≤ g̃x0 < τ(x0).

Then the Euler class of the representation ρ is the bounded cohomol-
ogy class represented by the cocycle c defined by

σ(ρ(γ1γ2)) = τ c(γ1,γ2)σ(ρ(γ1))σ(ρ(γ2)).

Proof of Proposition 7.4. Let ρ1, ρ2 be two representations of Γ into
PSL(2,R) satisfying the hypothesis of Proposition 7.4: they have the
same bounded cohomology class, meaning that, if c1, c2 are the two
cocycles defined as above representing the bounded Euler classes of ρ1,
ρ2, we have

(11) c2(γ1, γ2) = c1(γ1, γ2) + a(γ1γ2)− a(γ1)− a(γ2),

where a : Γ→ Z is some bounded map.

It has the following consequence: Consider the map Γ × S̃L(2,R) →
S̃L(2,R) that associates to (γ, g̃) the element

γ ∗ g̃ := τ−a(γ)σ(ρ2(γ))g̃σ(ρ1(γ))
−1.

Then

(γ1γ2) ∗ g̃ = τ−a(γ1γ2)σ(ρ2(γ1γ2))g̃[σ(ρ1(γ1γ2))]
−1

= τ−a(γ1γ2)+c2(γ1,γ2)ρ2(γ1)ρ2(γ2)g̃[τ
c1(γ1,γ2)

σ(ρ1(γ1))σ(ρ1(γ2))]
−1

= τ−a(γ1)−a(γ2)g̃[σ(ρ1(γ1))σ(ρ1(γ2))]
−1(see (11))

= γ1 ∗ (γ2 ∗ g̃).
Now the key point is that S̃L(2,R) is a model for the universal anti-

de Sitter space ÃdS3. Indeed, − det defines on the space Mat(2,R) of
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2-by-2 matrices a quadratic form of signature (2, 2), which is preserved
by the following action of SL(2,R) × SL(2,R):

∀g1, g2 ∈ SL(2,R),∀A ∈Mat(2,R), (g1, g2).A := g1Ag
−1
2 .

The kernel of this action is the group I of order 2 generated by (− Id,− Id),
where Id denotes the identity matrix. Hence there is a natural isomor-
phism between SO0(2, 2) and SL(2,R) × SL(2,R)/I.
Therefore, the action ∗ we have defined is an isometric action of Γ on

ÃdS3, and hence induces a representation ρ̃ : Γ → S̃O0(2, 2). Further-
more, the fact that the map a involved in the coboundary is bounded
implies that this representation ρ̃ is the lifting of a representation into
SO0(2, 2) whose bounded Euler class vanishes, i.e., that the group ρ̃(Γ)

preserves a closed achronal circle in Ẽin2.
We claim that the existence of such an invariant achronal circle is

equivalent to the existence of a semi-conjugacy between ρ1 and ρ2 as
stated in the conclusion of Proposition 7.4.
For the proof of this claim, it is convenient to consider the projec-

tivized anti-de Sitter and Einstein spaces, i.e., the quotients of AdS3
and Ein2 by − Id. The projectivized anti-de Sitter space is then natu-
rally identified with PSL(2,R). According to the identification between
(Mat(2,R),− det) and (R2,2, q2,2), we obtain an identification between

the projectivized Klein model Ein2 and the space of non-zero non-
invertible 2-by-2 matrices up to a non-zero factor. Such a class is charac-
terized by the image and the kernel of its elements, i.e., two lines in R2.
In other words, Ein2 is naturally isomorphic to the product RP

1×RP1.
The conformal action of PO(2, 2) ≈ PSL(2,R)×PSL(2,R) on RP1×RP1

is the obvious one,

(g1, g2).(x, y) = (g1x, g2y)

since the image of g1Ag
−1
2 is the image by g1 of the image of A and its

kernel is the image under g2 of the kernel of A. The isotropic circles in
Ein2 ≈ RP1 × RP1 are the circles {∗} × RP1 and RP1 × {∗}. It follows
quite easily that acausal circles in Ein2 are graphs in RP1 × RP1 of
homeomorphisms from RP1 → RP1. Achronal circles are allowed to
follow during some time one segment in {∗}×RP1 or RP1×{∗}. It follows
that they are fillings (cf. Remark 3.19) of graphs of maps f : RP1 → RP1

that are monotone, i.e., of degree 1, preserving the cyclic order on RP1,
but which can be constant on some intervals and which can be non-
continuous at certain points. In other words, f lifts to a non-decreasing

map f̃ : R̃P
1 → R̃P

1
. For more details on this well-known geometric

feature, we refer to [30] or [8].
In summary, we have proved that the representation (ρ1, ρ2) : Γ →

PSL(2,R) × PSL(2,R) ≈ PO(2, 2) preserves a closed achronal circle Λ
in Ein2 ≈ RP1 × RP1, which is the filling of the graph of a monotone
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map f : RP1 → RP1. The invariance of Λ means precisely that f is
Γ-equivariant: Proposition 7.4 is proved. �
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[17] L.A. Caffarelli & X. Cabré, Fully nonlinear elliptic equations, American Mathe-
matical Society Colloquium Publications 43 (1995), M1351007, Zbl 0834.35002.

[18] S. Carlip, Quantum Gravity in 2+ 1 Dimensions, Cambridge Monographs on
Mathematical Physics, Cambridge: Cambridge University Press (2003), MR
1637718, Zbl 0919.53024.
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